钢筋混凝土轴心受压构件计算
轴心受压构件正截面承载力计算
0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S
;
A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。
钢筋混凝土轴心受压构件计算
3.螺旋筋不能提升强度过多,不然会造成混凝土保护层剥
落,即 N 螺 1 .5 N 普 1 .3( 5 fcA d fs ' A d s ')
§6.2 配有纵向钢筋和螺旋箍筋旳轴心受压构件
五、构造要求 1、螺旋箍筋柱旳纵向钢筋应沿圆周均匀分布,其截面积应
不不不小于箍筋圈内关键截面积旳0.5%。常用旳配筋率在
二、破坏形态
1.影响原因: (1)徐变:
●使钢筋应力忽然增大,砼应力减小(应力重分布) ●忽然卸载砼会产生拉应力。 (2)长细比:(l0/b) 2.一般箍筋柱旳破坏特征 (1)短柱破坏——材料破坏。
破坏特征:纵向裂缝、纵筋鼓起、砼崩裂。
承载能力
PSfcAfs'dAs' |
(2)长柱破坏——失稳破坏 破坏特征:凹侧砼先被压碎,
式中 为作用于关键混fc凝c土f旳c径k向2压应力值。
2
§6.2 配有纵向钢筋和螺旋箍筋旳轴心受压构件 三、承载力计算
螺旋箍筋柱正截面承载力旳计算式并应满足
0 N d ≤ N u 0 . 9 f c A c d o k s r A d s 0 f f s 'A d s '
★★螺旋筋仅能间接地提升强度,对柱旳稳定性问题 毫无帮助,所以长柱和中长柱应按着通箍筋柱计算, 不考虑螺旋筋作用。
As' f1s'd(0r0.9Nd fcdA)
2)截面复核 已知截面尺寸,计算长度l0,全部纵向钢筋旳截面面 积,混凝土轴心抗压强度和钢筋抗压强度设计值,轴向力 组合设计值,求截面承载力。
§6.1 配有纵向钢筋和一般箍筋旳轴心受压构件
五、构造要求 1.混凝土 一般多采用C25~C40级混凝土。 2.截面尺寸 ① lo /②b30 ③2尺5寸2模c5m 数化: 25,30,
钢筋混凝土受压构件承载力计算—受压构件的构造要求
(8)纵向受力钢筋的中距: ≤ 300mm 。
受压构件的配筋构造
2、箍筋
(1)箍筋形式:采用封闭式。
(2)箍筋间距: ≤ 400mm; 且 ≤ 截面的短边尺寸; 且 ≤ 15d(绑扎骨架)或20d(焊接骨架)。
(3)箍筋直径: ≥ d/4(纵筋dmax) 且 ≥ 6mm。
受压构件的材料和截面
轴心受压构件按照配筋方式的不同,可分为两种:
a) 普通箍筋柱b) Βιβλιοθήκη 旋箍筋柱受压构件的材料和截面
纵筋的作用
1
直接受压,提高柱的承载力;
2 承担偶然偏心等产生的拉应力;
3 改善构件的破坏性能(脆性);
4
减小持续压应力下混凝土收缩和徐变的影响。
受压构件的材料和截面
箍筋的作用
1
固定纵筋,形成钢筋骨架;
受压构件的配筋构造
(4)当柱中全部纵筋的配筋率>3%时, 箍筋直径 ≥ 8mm; 箍筋间距 ≤ 10d (纵筋dmin) ,且 ≤ 200mm。 箍筋末端应作成135°的弯钩,弯钩末端平直段长度 ≥ 5箍筋直径。
(5)复合箍筋: 下列两种情况下应设置复合箍筋: 一是柱截面短边 b > 400mm,且各边纵筋 >3根时; 二是柱截面短边 b ≤ 400mm,但各边纵筋 >4根时。
(6)不得采用具有内折角的箍筋,以避免箍筋受拉时使折角处混凝土破损。
受压构件的配筋构造
b400
(每边4根)
(每边3根)
(每边多于4根)
(每边多于3根)
受压构件的配筋构造
复杂截面的箍筋形式
钢筋混凝土受压构件 构造
钢筋混凝土受压构件一般构造要求
钢结构 轴心受压构件
焊。试验算该柱是否安全。
解解::已已知知lxl=x=lyly==44.2.2mm,,f=f=221155NN/m/mmm2。2。
NN
计计算算截截面面特特性性::
AA==22××2255××11++2222××00.6.6==6633.2.2ccmm2,2,
(25 0.5 68.8) 235 235 59.4
满足要求
五.实腹式轴心压杆的计算步骤
(1)先假定杆的长细比,根据以往的设计经验,对于荷载
小 于 1500kN , 计 算 长 度 为 5 ~ 6m 的 压 杆 , 可 假 定 =80 ~ 100,荷载为3000~3500kN的压杆,可假定=60~70。再
翼翼缘缘宽宽厚厚比比为为bb1/1t/=t=(1(122.5.5--00.3.3)/)1/1==1122.2.2<<1100++00.1.1××6655.4.4==1166.5.5 腹腹板板高高厚厚比比为为hh0/0t/wtw==(2(244--22)/)0/0.6.6==3366.7.7<<2255++00.5.5××6655.4.4==5577.7.7 构构件件的的整整体体稳稳定定、、刚刚度度和和局局部部稳稳定定都都满满足足要要求求。。
轴心受力构件
力沿轴线方向 1、概念:二力杆 约束:两端铰接
2、分类
轴心受拉构件 轴心受压构件
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 稳定 刚度 (正常使用极限状态)
一、 强度计算
N f
An
(4 1)
N — 轴心拉力或压力设计值; An — 构件的净截面面积; f — 钢材的抗拉(压)强度设计值
轴心受压构件承载力计算—普通箍筋柱
(1)轴心受压构件概念。纵向压力的作用线与构件轴线重合。 (2)普通箍筋柱概念。配有纵向钢筋和普通箍筋。 (3)破坏形态。有两种,短柱是受压破坏,长柱是失稳破坏。
普通箍筋柱正截面承载力计算
C目 录 ONTENTS 1 稳定系数
2 正截面承载力计算
1 稳定系数
稳定系数以轴向受压构件稳定系数代表长柱承载力N长和短柱N短的承
箍筋柱
2 构造要求
截面尺寸 截面尺寸不宜小于250mm,通常按50mm一级增加。
混凝土等级 一般采用C25~C30的混凝土。
纵向钢筋 R235级、HRB335和HRB400级等热轧钢筋。不宜采用高强钢筋。 d≥12mm,根数不小于4根。钢筋的净距不小于50mm,不大于350mm, 普通钢筋的混凝土最小保护层厚度不小于钢筋公称直径。 纵筋的配筋率不应小于0.5%,当C50及以上时,不应小于0.6%,最大不 超过5%,同时一侧的配筋率不应小于0.2% 。
杆件 直杆
构件纵向弯曲计算长度l0值
构件及其两端固定情况 两端固定
一端固定,一端为不移动铰 两端均为不移动铰
一端固定,一端自由
计算长度l0 0.5l 0.7 l 1.0 l 2.0 l
2 正截面承载力计算
轴心受压构件承载力计算公式为
可靠度调整系数
0 Nd
Nu
0.9 (
fcd A
f
' sd
As'
载力之比 :
N长
N短
又称纵向弯曲系数。其主要与构件的长细比有关,混凝土强度等级及 配筋率对其影响很小。
钢筋混凝土受压构件的稳定系数
l0/b ≤8
10
12
14
16
18
20
轴心受压构件的计算长度系数
1
前面已经得到了两端铰接的轴心受压构件的屈曲荷载:
2EI
Pcr l 2
为了钢结构设计应用上的方便,可以把各种约束条件构件的Pcr值换算成相 当于两端铰接的轴心受压构件屈曲荷载的形式,其方法是把端部有约束的构件 用等效长度为 l0的构件来代替, ,而计算长度l0 与构件实际的几何长度之间的 关系是l0=μ l ,这里的系数μ称为计算长度系数。
A2
cosk(la)v sinka
B2
sink(l a) sinka
v
B 点的转角为 y′1(l )=kv/tanka
由B 点的变形协调条件y′1(l)=y′2(l)得到悬伸构件的屈曲方程为
kl (tanka +tankl)-tanka tankl= 0
kll
Pl EI
2EI/(l)2
EI
9
而ka=kαl=απ/μ ,这样屈曲方程为
2.0 2.0 6
悬伸轴心受压构件
如图 (a)所示悬伸轴心受压构件在图示支撑架平面内的计算长度系数。AB 段的长 度为l ,BC 段的长度为a,而a=αl ;顶端的水平杆对柱无约束。图(b)即为所研究 的悬伸轴心受压构件ABC ,它的计算简图如图 (c) 所示,构件弯曲后顶端的挠度 为v。
P C a
对于均匀受压的等截面直杆,此系数取决于构件两端的约束条件。这样一 来,具有各种约束条件的轴心受压构件的屈曲荷载转化为欧拉荷载的通式是:
2EI Pcr ( l ) 2
2
讨论:
2 EI Pcr (l )2
1、Pcr与E、I、l、μ有关,即与材料及结构的形式均有关;
2、Pcr与EI成正比,不同的方向EI不一样,压杆要求EI 在 各方向上尽可能相差不大,且其数值尽可能大;
钢筋混凝土构件受压构件承载力计算
轴心受压、偏心受压和受弯构件截面极限应力状态
’
构件截面应力随偏心距变化
矩形截面偏心受压
偏
心 受
计算基本假定
重心轴
压 平截面假定
构
计算中和轴
件 不考虑混凝土的抗拉作用
正
实际中和轴
截 混凝土和钢筋的应力应变关系
面
承 受压区混凝土采用等效矩形应力图形。 载
力 x 2 a 时,受压钢筋达到抗压设计强度。
偏
心
受
N与M线性关系
压
N与M曲线关系
构
dN/dM=0
件
纵
向
弯
曲
的
影
响
短柱、长柱和细长柱 e0相同、长细比不同时Nu的变化
长细比增加,附加弯矩增大, 长柱承载力Nu降低。(同轴压)
偏
偏心距增大系数法是一个传统的方法,使
心
用方便,在大多数情况下具有足够的精度,至
受 压
今被各国规范所采用。
构
式(5-11)是由两端铰支、计算长度为l0 、
x) 2
f cbx f y As
KV
Vu
0.7 ftbh0
1.25 f yv
Asv s
h0
fy Asb sins
1.正截面承载力(N、M)
单
KN
Nu
fcbx
f
' y
As
s
As
向 偏
KNe
Nue
fcbx h0
x 2
f
' y
As'
算
推导
适筋、超筋、界限破坏时的截面平均应变图
钢筋混凝土受压构件承载力计算
ei+ f = ei(1+ f / ei) = ei
=1 +f / ei
…7-6
N
––– 偏心距增大系数
图7-9
l 20 1 f 10
cu y
h0
1
规范采用了的界限状态为 依据,然后再加以修正
…7-7
l0 2 1 ( ) 1 2 ei h 1400 h0
(e)
(f)
偏心受拉(拉弯构件)
单向偏心受力构件
偏心受压(压弯构件)
工程应用
双向偏心受力构件
偏心受压构件:受到非节点荷载的屋架上弦杆, 厂房边柱,多层房屋边柱。 偏拉构件:矩形水池壁。
混凝土
第 七 章
2
轴心受压构件承载力
1)概 述 截面形式:
正方形、矩形、圆形、多边形、环形等
配筋形式: 普通配箍 密布螺旋式或 焊接环式箍筋
混凝土
第 七 章
短柱承载力: 条件: c s 混凝土: 当 c,max 0 0.002时, c f ck
s f yk 钢 筋: 当 y c,max,则钢筋先屈服,
当采用高强钢筋,则砼压碎时钢筋未屈服 纵筋压屈(失稳)钢筋强度不能充分发挥。 's=0.002Es=0.002×2.0×105=400N/mm2
长细比过大,可能发生失稳破坏。
2 = 1.15 – 0.01l0 / h 1.0
当l0 / h 15时 2 = 1.0
• 当构件长细比l0 / h 8,即视为短柱。取 = 1.0
混凝土
第 七 章
5
矩形截面偏压构件 正截面承载力计算
e
N e
第6章 受压构件
6.1 轴心受压构件的承载力计算
二、轴心受压短柱的承载力计算
根据短柱的破坏特征,其截面的应力分布如图所示,轴心受 压短柱的承载力可按下列公式计算。
N 1
d
Nu
1
d
( f c A f 'y A 's ) 当
承载力计算包括: (1) 截面设计;(2)截面校核。
三、轴心受压长柱的破坏特征
l0 / i l0 / I / A l0——柱的计算长度,与柱的两端支承条件有关, 两端铰支 :l0=l 一端固定,一端铰支:l0=0.7l 两端固定:l0=0.5l 一端固定,一端自由:l0=2.0l 满足下列条件的为短柱,否则为长柱。 矩形截面 l0 b 8 由于长细比不同,影响两者承载力的 圆形截面 l0 d 7 因素不一样,两者的破坏形态也有所 任意截面 l0 i 28 不同。
一、大偏心受压构件的破坏特征
这种破坏始于受拉钢筋先达到屈服强度,最后受压区边 缘混凝土εc→εcu ,混凝土被压碎而引起的——受拉破坏。 截面破坏时,受压钢筋σ’s→f ’y。 其破坏性质与双筋矩形截面梁 类似—延性破坏
大偏压破坏形式.swf
6.3 偏心受压构件正截面破坏特征 二、小偏心受压构件的破坏特征
(3) 当N 90%Nu 时,柱子出现纵向裂缝。随着N的 进一步增大,混凝土保护层开始剥落,当N Nu时 箍筋之间的纵向钢筋被压屈,并向外凸出,中部混 凝土被压碎,柱子破坏。 (4) 达到承载能力极限状态时 混凝土的压应变: c cu 0.002 , 混凝土的应力: c fc ;
第6章 钢筋混凝土受压构件承载力计算 2. 工程中的受压构件 实际工程中,典型的轴心受压构件有:承受节点荷载的屋架 腹杆和上弦杆;对称框架结构中的内柱;桩基等。在钢筋混凝 土结构中,严格意义上的轴心受力构件是不存在的。但当外加 荷载的偏心很小时,可近似按轴压构件来计算。工程中的屋架 上弦、排架柱、牛腿柱、框架柱等都是偏心受压构件。
钢筋混凝土轴心受压及受拉构件
2判 断 大 、 小 偏 心 受 拉
由e0
M N
60 400
0.15 150mm
ha 2
200 40 160mm,
可 知 构 件 为 小 偏 心 受 拉.
3求e、e'
e
h 2
e0
a
200
150
40
10m m
e'
h 2
e0
a'
200
150
6—4
e’
N
e0 e
f'yA's fcbx
fyAs
大偏心受拉构件
一、基本公式
N
1
d
Nu
1
d
(
f y As
f yAs
fcbx )
Ne
1
d
Nue
1
d
[
fcbx( h0
x 2
)
f yAs( h0
a'
)]
e e0 0.5h a
As’
a'
As h0
适用条件
N
f'yA's fcbx
fyAs
As一侧受拉,A’s一侧受压,
混凝土开裂后不会形成贯通
整个截面的裂缝。最后,As
达到受拉屈服,受压侧混凝
土受压破坏。
f yA's
fyAs
全截面均受拉,但As一侧拉应力较大, A’s一侧拉应力较小。随着拉力增加, As一侧首先开裂,但裂缝很快贯通整 个截面,As和A’s纵筋均受拉,最后As 和A’s均屈服而达到极限承载力。
轴心受拉构件正截面承载力计算公式
轴心受拉构件正截面承载力计算公式一、国内常用的正截面承载力计算公式如下:1.根据构件的材料及截面形状,选择适用的公式进行计算。
a.矩形截面承载力公式截面承载力= 0.6× f_ck × A_s + 0.4× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。
b.圆形截面承载力公式截面承载力= 0.45× f_ck × A_s + 0.45× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。
2.根据截面的受力状况进行计算。
a.单轴受力情况下,任意方向上的截面承载力公式为:截面承载力=φ×A_s×f_y其中,φ为弯曲效应系数,取值为0.93.在特殊情况下,比如钢筋屈服前的截面、钢筋屈服后的截面、局部失稳等,需要按相应的规范进行计算。
二、使用公式计算正截面承载力时需要注意以下几点:1.首先要确定构件的受力状况,根据不同的情况选择适用的公式进行计算。
2. 材料参数要严格按照规范要求进行取值,包括混凝土强度设计值f_ck、钢筋抗拉强度设计值f_y等。
3.截面承载力的计算结果是一个近似值,实际工程中需要根据安全系数选取合适的截面尺寸。
4.如果构件具有多个截面,需要分别计算每个截面的承载力,并取其最小值作为构件的正截面承载力。
综上所述,正截面承载力的计算公式是根据构件的受力状况、材料参数以及截面形状等因素来确定的。
在实际设计中,需要严格按照规范要求进行计算,并根据实际工程情况进行合理的选取。
这样才能确保结构的安全可靠。
【精】06第五章钢筋混凝土受压构件承载力计算(1)(免费阅读)
第五章钢筋混凝土受压构件承载力计算以承受轴向压力为主的构件称为受压构件(柱)。
理论上认为,轴向外力的作用线与构件轴线重合的受压构件,称为轴心受压构件。
在实际结构中,真正的轴心受压构件几乎是没有的,因为由于混凝土材料组成的不均匀,构件施工误差,安装就位不准,都会导致压力偏心。
如果偏心距很小,设计中可以略去不计,近似简化为按轴心受压构件计算。
若轴向外力作用线偏离或同时作用有轴向力和弯矩的构件称为偏心受压构件。
在实际结构中,在轴向力和弯矩作用的同时,还作用有横向剪力,如单层厂房的柱、刚架桥的立柱等。
在设计时,因构件截面尺寸较大,而横向剪力较小,为简化计算,在承载力计算时,一般不考虑横向剪力,仅考虑轴向偏心力(或轴力和弯矩)的作用。
§5-1 轴心受压构件承载力计算轴心受压构件按其配筋形式不同,可分为两种形式:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(直接配筋);另一种为配有纵向钢筋和密集的螺旋箍筋或焊接环形箍筋的构件,称为螺旋箍筋柱(间接配筋)。
在一般情况下,承受同一荷载时,螺旋箍筋柱所需截面尺寸较小,但施工较复杂,用钢量较多,因此,只有当承受荷载较大,而截面尺寸又受到限制时才采用。
(一)普通箍筋柱1、构造要点普通箍筋柱的截面常采用正方形或矩形。
柱中配置的纵向钢筋用来协助混凝土承担压力,以减小截面尺寸,并用以增加对意外弯矩的抵抗能力,防止构件的突然破坏。
纵向钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm;对水平浇筑的预制件,其纵向钢筋的最小净距应按受弯构件的有关规定处理。
配筋率不应小于0.5%,当混凝土强度等级为C50及以上时应不小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
受压构件的配筋率按构件的全截面面积计算(图5.1-1)。
柱内除配置纵向钢筋外,在横向围绕着纵向钢筋配置有箍筋,箍筋与纵向钢筋形成骨架,防止纵向钢筋受力后压屈。
柱的箍筋应做成封闭式,其直径应不小于纵向钢筋直径的1/4,且不小于8mm。
钢筋混凝土轴心受压构件承载能力极限状态计算
普通箍筋柱
螺旋箍筋柱
钢筋混凝土结构设计原理
2、轴心受压构件构造要点
钢筋混凝土结构设计原理
2、轴心受压构件构造要点
2.1 普通箍筋柱
截面形状:正方形、矩形、圆形等 截面尺寸:不宜小于250mm,取整(50mm) 纵筋:
通常采用HRB335级(Ⅱ级)和HRB400级(Ⅲ级)钢筋,不宜采用 高强钢筋。 直径不小于12mm,矩形截面不少于4根,圆形截面不少于8根, 沿周边均匀布置 ; 纵筋净距不小于50mm,也不大于350mm,满足最小保护层规 定; 纵筋最小配筋率0.5%(C50及以上时为0.6%),0.2%(一 侧);不宜超过5%,一般约为1%~2%;按构件全截面计算。
砼截面压应力均布 破坏时,砼和钢筋应力均达到材料极限抗压强度
基本图式
fcd
基本公式
0Nd Nu 0.9 fcd A f 'sd A's
f ’sdA’s
f ’sdA’s
考虑0.9的轴压构件安全系数; 当纵筋配筋率大于3%,A取用混凝土截面净面积。
钢筋混凝土结构设计原理
4、轴压构件承载力设计与复核
3、轴压构件的破坏形态分析
3.4 轴压构件中钢筋的作用
纵筋的作用: 协助混凝土受压,减小构件截面尺寸; 承担可能存在的较小弯矩; 减小持续压应力下砼收缩和徐变的影响。
在恒载轴力长期作用下,砼产生徐变,由截面的变形协调,柱 截面中压应力发生重分布,由砼向钢筋转移,导致钢筋压应力 不断增长。故需规定最小配筋率,保证钢筋压应力不会在持续 使用荷载下达到屈服。
螺旋箍筋换算截面面积As0:将螺旋箍筋的截面积折算成相 当的纵筋的截面积,即一圈螺旋箍筋的体积除以其间距。
混凝土结构设计原理 第六章 钢筋混凝土受压构件承载力计算
6.1 轴心受压构件的承载力计算
第六章 受压构件的截面承载力
采用螺旋箍筋可有效提高柱的轴心受压承载力。 采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大, ◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未 达到极限承载力之前保护层产生剥落,从而影响正常使用。 达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范》规定: 《规范》规定: ● 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载 力的50%。 力的 。 对长细比过大柱,由于纵向弯曲变形较大, ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部 受压,螺旋箍筋的约束作用得不到有效发挥。 规范》规定: 受压,螺旋箍筋的约束作用得不到有效发挥。《规范》规定: 对长细比l 大于 的柱不考虑螺旋箍筋的约束作用。 大于12的柱不考虑螺旋箍筋的约束作用 ● 对长细比 0/d大于 的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积A 和间距s有关 有关, ◆ 螺旋箍筋的约束效果与其截面面积 ss1和间距 有关,为保证 有一定约束效果, 规范》规定: 有一定约束效果,《规范》规定: 螺旋箍筋的换算面积A 不得小于全部纵筋A' 面积的25% ● 螺旋箍筋的换算面积 ss0不得小于全部纵筋 s 面积的 螺旋箍筋的间距s不应大于 不应大于d ● 螺旋箍筋的间距 不应大于 cor/5,且不大于 ,且不大于80mm,同时 , 为方便施工, 也不应小于 也不应小于40mm。 为方便施工,s也不应小于 。
普通钢箍柱 螺旋钢箍柱
6.1 轴心受压构件的承载力计算
钢筋混凝土偏心受压构件正截面承载力计算
2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算
06+钢筋混凝土轴向受力构件承载力计算
① 纵向钢筋
纵筋直径与根数:
通常采用 12~32mm, 直径宜粗不宜细,根数宜少不宜多,保证对称配置。
方形和矩形截面柱中纵向受力钢筋不少于4根, 圆柱中不宜少于8根且不应少于6根。 净距≥50mm, 中距≤300mm
配筋率:0.8%~2%
A 100% s bh
② 箍筋 箍筋的作用是为了防止纵筋压屈和保证纵筋的正确位 置。在受压构件截面周边,箍筋应做成封闭式,但不可采 用有内折角的形式。 末端做成135°弯钩, 平直段长度≥10d
例6.2 已知轴心受压构件, 截面尺寸b×h=300mm×300mm, 已配置4φ 18的HRB335级钢筋, 混凝土为C20, 柱的计算长度 l0=3.9m, 计算该柱能承受的轴向压力设计值N。
解: 查附表1、附表3、附表6得 ⑴ 验算纵筋配筋率
fc 9.6 N mm2 , f y 300 N mm2 , A 1017mm2 s
满足要求!
2 dcor 4402 152053mm2 A 6872.6mm2 Acor 4 s 4
由轴心受力平衡条件, 其正截面 受压承载力:
⑵ 承载力计算 考虑到构件可靠度的调整系数0.9 及高强混凝土的特性, 《混凝土结构 设计规范》规定采用下列公式计算配 有螺旋式(或焊接环式)间接钢筋柱 正截面受压承载力:
s N ≤ 0.9 fc Acor f y A 2 f y Ass0 dcor Ass1 间接钢筋的换算截面面积: Ass0 s 2 dcor 构件的核心截面面积: Acor 4
混凝土C25<C50, α=1.0
由公式(6.2)得:
例6.3 某展示厅内一根钢筋混凝土柱, 按建筑设计要求截 面为圆形, 直径不大于500mm。该柱承受的轴心压力设计值 N=4500kN, 柱的计算长度l0=5.4m, 采用C25混凝土, 纵筋采用 HRB335, 箍筋采用HPB235。试按螺旋箍筋设计该柱。
轴心受压构件的强度计算
第一节一、普通箍筋柱二、螺旋箍筋柱以承受轴向压力为主的构件称为受压构件。
凡荷载的合力通过截面形心的受压构件称之为轴心受压构件(compression members with axial load at zero eccentricity)。
若纵向荷载的合力作用线偏离构件形心的构件称之为偏心受压构件。
受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。
按箍筋作用的不同,钢筋混凝土轴心受压构件可分为两种基本类型:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另一种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。
一、普通箍筋柱(一)构造要点1、截面形式:正方形、矩形、工字形、圆形;2、截面尺寸:根据正压力、柱身弯距来确定,截面最小边长不宜小于250mm;3、纵筋:(1)纵向受力钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm,根数不少于4根。
(2)构件的全部纵向钢筋配筋率不宜超过5%。
构件的最小配筋率不应小于0.5%,当混凝土强度等级为C50及以上时不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
(3)纵向受力钢筋应伸入基础(foundations)和盖梁(caps),伸入长度不应规定的锚固长度。
4、箍筋:(1)箍筋应做成封闭式,以保证钢筋骨架的整体刚度。
(2)箍筋间距应不大于纵向受力钢筋直径的15倍且不大于构件横截面的较小尺寸(圆形截面采用0.8倍直径)且不大于400mm。
纵向受力钢筋搭接范围的箍筋间距,当绑扎搭接钢筋受拉时不大于主钢筋直径的5倍且不大100mm;当搭接钢筋受压时不大于主钢筋直径的10倍且不大于200mm。
纵向钢筋截面面积大于混凝土截面面积3%时,箍筋间距不应大于纵向钢筋直径的10倍且不大于200mm。
(3)箍筋直径不小于8mm且不小于纵向钢筋直径的1/4。
钢筋混凝土 第四章轴心受压构件的截面承载力计算
一、轴心受拉构件的受力性能
N N
轴心受拉构件受力特点
由于混凝土抗拉强度很低,轴向拉力还很小时,构件即已 裂通,所有外力全部由钢筋承担。最后,因受拉钢筋屈服而导 致构件破坏。
三个受力阶段:
第Ⅰ阶段为从加载到混凝土受拉开裂前; 第Ⅱ阶段为混凝土开裂后至钢筋即将屈服; 第Ⅲ阶段为受拉钢筋开始屈服到全部受拉钢筋 达到屈服。
◆ 另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质
量,全部纵筋配筋率不宜超过5%。
◆ 全部纵向钢筋的配筋率按ρ =(A's+As)/A计算,一侧受压钢筋
的配筋率按ρ '=A's/A计算,其中A为构件全截面面积。
配筋构造:
◆ 柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜
根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数 不宜少于8根,且应沿周边均匀布置。
第一节
思考题
1.轴心受压普通箍筋短柱与长柱的破坏形态有何不 同? 2.轴心受压长柱的稳定系数ϕ如何确定? 3.轴心受压普通箍筋柱与螺旋箍筋柱的正截面受压 承载力计算有何不同? 作业题: 6.1、6.2
第二节 轴心受拉构件的承载力计算
轴心受拉构件
钢筋混凝土桁架或拱拉杆、受内压力作用的环形 截面管壁及圆形贮液池的筒壁等,通常按轴心受 拉构件计算。 矩形水池的池壁、矩形剖面料仓或煤斗的壁板、 受地震作用的框架边柱,属于偏心受拉构件。 受拉构件除轴向拉力外,还同时受弯矩和剪力作 用。
承载力计算
N ≤ f y As
N为轴向拉力的设计值; fy为钢筋抗拉强度设计值; As为全部受拉钢筋的截面面积, 应满足As≥(0.9ft/fy)A,A为构件截面面积。
小 结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承载能力
PSfcAfs'dAs' |
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
(2)长柱破坏——失稳破坏 破坏特征:凹侧砼先被压碎,
砼表面有纵向裂缝;凸侧则由受压突然 转为受拉,出现横向裂缝;破坏前,横 向挠度增加很快,破坏来得比较突然, 导致失稳破坏。承载能力要小于同截面、 配筋、材料的短柱。
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件
纵向钢筋
纵向钢筋
箍筋
螺旋箍筋
图6-1 两种钢筋混凝土轴心受压构件 a)普通箍筋柱 b)螺旋箍筋柱
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
纵向钢筋作用: 帮助混凝土承担压力防止混凝土 出现突然的脆性破坏,并承受由 于荷载的偏心而引起的弯矩
第六章 轴心受压构件承载力计算
钢筋混凝土轴心受压构件计算
本章主要内容 1.配有纵向钢筋和普通箍筋的轴心受压构件的破坏形态、 承载力计算; 2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形态、 承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度造要求。
ps fcAfsAs(短柱压坏时的轴心力)
3凝. 土影强响度因等素级:长fc、d细2钢比1fEs筋'dc、强' 柱 度1的2 等初级始及挠配度筋、率竖对向其力影的响偏较心小有。关,混
钢筋混凝土轴心受压构件计算
短柱:=1.0
长柱: … l0/i (或l0/b) 查表
I i=
A
l0 ––– 构件的计算长度,与构件端部的支承条件有关。
箍 筋 作 用: 与纵筋组成空间骨架,减少纵筋 的计算长度因而避免纵筋过早的 压屈而降低柱的承载力
钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件
二、破坏形态
1.影响因素: (1)徐变:
●使钢筋应力突然增大,砼应力减小(应力重分布) ●突然卸载砼会产生拉应力。 (2)长细比:(l0/b) 2.普通箍筋柱的破坏特征 (1)短柱破坏——材料破坏。
1、受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力, 从而提高混凝土的抗压强度和变形能力。 箍筋则产生环向拉力。当箍筋外部的混凝土被压坏并剥 落后,箍筋以内即核心部分的混凝土仍能继续承受荷载,当 箍筋达到抗拉屈服强度而失去约束砼侧向变形的能力时,核 心砼才会被压碎而导致整个构件破坏,其破坏形态如图6-2 所示。
承载能力
Pl PS|
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件 三、纵向稳定系数 1.定义:考虑构件长细比增大的附加效应使构件承载力降低 的计算系数。
2.计算: =pl/ps
pl l20E2 I(欧拉公式)也即 稳长 破柱 坏失 时的临界承载力
●复合箍筋:沿箍筋设置的纵向钢筋离角筋间距大于 150mm或15倍箍筋直径(取较大者)范围,则应设置复合 箍筋。
钢筋混凝土轴心受压构件计算
复合箍筋的布设
钢筋混凝土轴心受压构件计算
1600KN
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
§6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 一、受力分析及破坏特征
钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件 一、钢筋混凝土柱的分类 普通箍筋柱:配有纵筋和箍筋的柱 ,(图6-1a)。 螺旋箍筋柱:配有纵筋和螺旋筋或焊接环筋的柱,(图6-1b)。
其中:纵筋帮助受压、承担弯距、防止脆性破坏。 螺旋筋提高构件的强度和延性。
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
钢筋混凝土轴心受压构件计算
§6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 2、破坏特征
当承受轴向压力时,螺旋箍 筋阻止砼的横向变形,使砼处 于三向受力状态,轴向力增大 到一定数值,砼保护层开始剥 落,随着轴向力增大,螺旋箍 筋应力也增大,最后达到屈服 强度,失去核心砼的约束作用, 使砼压碎而破坏。
N u 0 .9fcA d fs 'A d s '
当 > 0.03时
Ac=A-As
φ—轴心受压构件稳定系数,附表1-10 普通箍筋柱的正截面承载力计算分截面设计和强 度复核两种情况。
钢筋混凝土轴心受压构件计算
1)截面设计 已知截面尺寸,计算长度l0,混凝土轴心抗压强度和
钢筋抗压强度设计值,轴向压力组合设计值,求纵向钢筋 所需面积。
35…,不宜小于250mm。 3.纵向钢筋
直径:12~32cm ,根为≥4 ,纵筋之间净距≥5cm, 净保护层:≥2.5cm
最小配筋率:全截面0.5,一则0.2,附表1-9
钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件 4.箍筋
●箍筋直径:应不小于纵向钢筋直径的1/4,且不小于8mm; ●箍筋间距:不应大于纵向钢筋直径的15倍,且不大于构 件截面的较小尺寸(圆形截面用0.8倍直径),并不大于 400mm;在纵向钢筋截面积超过混凝土计算截面积的3%时, 箍筋的间距应不大于纵向钢筋直径的10倍,且不大200mm。
As' f1s'd(0r0.9NdfcdA)
2)截面复核 已知截面尺寸,计算长度l0,全部纵向钢筋的截面面 积,混凝土轴心抗压强度和钢筋抗压强度设计值,轴向力 组合设计值,求截面承载力。
钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件
五、构造要求 1.混凝土 一般多采用C25~C40级混凝土。 2.截面尺寸 ① lo /②b30 ③2尺5 寸2c 模5m 数化: 25,30,
两端铰
1.0l
一端固定,一端铰支 0.7l 实际结构按
两端固定
规范规定取值 0.5l
一端固定,一端自由 2.0l 钢筋混凝土轴心受压构件计算
§6.1 配有纵向钢筋和普通箍筋的轴心受压构件
四、 正截面承载力计算
《公路桥规》规定配有纵向受力钢筋和普通箍筋
的轴心受压构件正截面承载力计算式为
≤ 0Nd
Ac ––– 截面面积: