全氟聚醚润滑脂

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PFPE Lubricating Grease

Dr. Martin Schweigkofler, Dr. Stefan Grundei, Dr. Wallace Zhang, Jocelyn Zhao

Dr. Thomas Kilthau, Dr. Martin Schmidt-Amelunxen, Dr. Stefan Seemeyer,

Klüber Lubrication München SE & Co. KG

Klüber Lubrication Industries (Shanghai) Co.,Ltd.

Abstract

The paper discloses lubricating greases which contain perfluoropolyether. Composition

1.PFPE oil

Lubrication greases use base oils like mineral oils, native oils, and synthetic hydrocarbon oils, such as PAO, alkylated naphthalines, alkylated phenylethers, silicone oils, ester oils, polyglycols and so on. All these base oils contain hydrogen bonded to Carbon, i.e. CH, CH2 and CH3 groups. These base oils cannot be used at very high temperatures and can react with different chemicals like oxidizing materials. Some of them are not sufficiently stable against hydrolysis or nucleophilic substances, e.g. amines. These hydrocarbon oils can also have a strong undesired impact on seal materials or components made out of plastics such as POM, Polyamides and PEEK.

These weakness can be minimized or avoided by using Perfluoropolyether (PFPE) of the general formula

X′O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s [CF(CF3)O]u(CF2CF2CF2O)v X (I)

As base oil or part of the base oil.

In drawing (I) the perfluoroalkyloxy units can be distributed randomly throughout the chain. The subscripts m, n, s, u, and v can independently be 0 to maximal 200. The molecular weight of the material for example determined by the ratio of the terminal groups compared to the internal groups via NMR analysis can be up to 20000 u.

The kinematic viscosity of the perfluoropolyether can be between 5 and 2000 mm2/sec at 40°C, more preferable between 15 and 1300 mm2/sec.

The pour point of the perfluoropolyether can be as low as – 80°C.

The end groups X and X′ can be can be short chain perfluoroalkyl groups like CF3, C2F5, C3F7,

fluorine groups is substituted by a hydrocarbon group, hydrogen, hydroxyl groups, amine groups, amid groups, carbonyl groups, or other functional groups.

2.PFPE based grease

Typical PFPE lubricating grease is composed by base oil and thickener. In some PFPE grease, one or more additives are added as well.

The NLGI class of the greases can be between 000 and 5, preferred between 0 and 3, even more preferred between 1 and 3.

a)Base oil

i.Pure PFPE base oil

The perfluoropolyether can be used alone or in mixtures of two or more of the possible

types as indicated by formula I.

ii.Hybrid base oil

The base oil can be also composed by one or more type perfluoropolyether, mixed with one or more from the following type oil: mineral oils, synthetic oils or native oils. Typical ratio of PFPE to the other oils is in the range of 1:10 to 10:1.

The synthetic oils are selected from an ester of an aliphatic or aromatic di-, tri- or

tetracarboxylic acid with one or a mixture of C7 to C22 alcohols, a polyphenyl ether or

alkylated diphenyl ether, an ester of trimethylolpropane, pentaerythritol or dipentaerythritol with aliphatic C7 to C22 carboxylic acids, C18 dimer acid esters with C7 to C22 alcohols, complex esters, individual components or in any mixtures. In addition, the synthetic oil may be

selected from poly-α-olefins, metallocene catalyzed PAO, alkylated naphthalenes, alkylated benzenes, polyglycols, silicone oils, or alkylated diphenylether.

The mineral oils may be selected from paraffin-basic, naphthene-basic, aromatic

hydrocracking oils; gas to liquid (GTL) liquids, GTL refers to a gas to liquid method and

describes a method for production of fuel from natural gas. Natural gas is converted by

steam reforming to synthesis gas, which is then converted by Fischer-Tropsch synthesis to fuels by using catalysts. The catalysts and the process conditions control the type of fuel, i.e., whether gasoline, kerosene, diesel or oils are produced. Coal may also be used as a raw

material in the same way by the coal to liquid method (CTL) and biomass may be used as a raw material in the biomass to liquid (BTL) method.

Triglycerides from animal/vegetable sources that have been upgraded by known methods such as hydrogenation may be used as native oils. The especially preferred triglyceride oils are genetically modified triglyceride oils with high oleic acid content. Typical vegetable oils used therein and genetically modified or cultured having a high oil content include safflower oil, corn oil, canola oil, sunflower oil, soybean oil, linseed oil, peanut oil, lesquerella oil,

meadowfoam oil and palm oil. The native oils might further be processed e.g. polymerization processes.

b)thickener

The thickener material used can be fluorinated polymers like polytetrafluoroethylene (PTFE), oxides like silica, organic carbonic acid salts, boron nitride, carbides like silicon carbide, poly- or diurea compounds, polyimides or polyamidimides, melamine cyanurates, graphite, carbon black, carbon nanotubes, molybdates, phosphates.

The PTFE used can be produced by polymerization of tetrafluorethylene in suspension or dispersion. To adjust the particle size and the polymer chain length processes like grinding, thermal treatment or irradiation processes can be used. PTFE powders treated as indicated above are e.g. known as micronized PTFE, but also dispersion processes leading to low

molecular weight PTFE are known. These PTFE products can be used without the processes indicated above.

Typical molecular weights are between 10000 g/mol and 10exp8 g/mol, preferred between 100000 g/mol and 10exp7 g/mol.

Also recycling of PTFE by processes as indicated above can produce PTFE powders that can be used for thickeners of lubricants.

The organic acids can be saturated or unsaturated, branched or unbranched, mono or di or tri or polyacids containing 6 to 25 carbon acids and their mixtures like stearic acid,

hydroxystearic acid, benzoic acid, oleic acid, acelaic acid, sebacic acids, behenic acid, amid groups containing acids. Amid group containing acids can for example be prepared by

reacting primary or secondary aliphatic amines with di-acids or di-esters of aliphatic or

aromatic carbonic acids.

The cations of the organic acid salts can be lithium, sodium, potassium, magnesium, calcium, aluminum, barium or zinc.

The urea compounds are reaction products of aliphatic or aromatic mono or diisocyanate

mixtures. Examples for suitable urea compounds are reaction products of diisocyanates, preferably 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene,

4,4′-diisocyanatodiphenylmethane, 2,4′-diisocyanatodiphenylmethane,

4,4′-diisocyanatodiphenyl, 4,4′-diisocyanato-3,3′-dimethyldiphenyl,

4,4′-diisocyanato-3,3′-dimethylphenylmethane which may be used individually or in

combination, with an amine of the general formula R′2N—R or a diamine of the general

formula R′2N—R—N—R′2 where R is an aryl, alkyl or alkylene radical with 2 to 22 carbon atoms and R′ is identical to or different from a hydrogen, an alkyl, alkylene or aryl radical, or with mixtures of amines and diamines.

These thickener materials can be used alone or in combination.

The particle size of the thickener is usually below 100μ, preferred below 20 μm.

The amount of thickener material is below 50 %, preferred below 40 %

c)Additives

Additionally additives can be used to improve the EP, anti-corrosion properties, friction

properties, wear properties, oxidation resistance properties. The additives can be materials soluble in PFPE oils or insoluble materials.

PFPE soluble materials comprise one or more functional groups based on phosphates,

phosphazenes, triazines, aromatic nitro compounds, acid amides, carbonic acid derivatives, ammonium salts and linking groups or end groups consisting of PFPE moieties like groups (II) and (III),

CbF(2b+1)O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s [CF(CF3)O]u(CF2CF2CF2O)v- (II)

-O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s [CF(CF3)O]u(CF2CF2CF2O)v- (III).

PFPE insoluble additives can be metal molybdates, metal phosphates, salt of organic acids, nitrite salts, metal sulfides like molybdenum disulfide or zinc sulfide, oxides like silicates, hexagonal boron nitride, metal oxides or hydroxides or hydrogen carbonates and their

mixtures.

The cations in the mentioned oxides, hydroxides, hydrogen carbonates and carbonates can be derived from alkaline or earth alkaline metals like sodium, lithium, magnesium, potassium, calcium.

Further additives which are not soluble in PFPE can be arylamine derivatives, phenol

derivatives, metal salts of organic carbonic or sulfonic acids or phosphoric acids of

The additives can for example be chosen from the group comprising butyl hydroxy toluene, dialkyl diphenylamines, styrolized diphenylamines, alkylated phenyl-alpha-naphthylamines, polymeric trimethyl dihydroquinoline, sulfurized fatty acid esters, diphenyl cresyl phosphate, amine-neutralized phosphates, alkylated and non-alkylated triaryl phosphates, alkylated and non-alkylated triaryl thiophosphates, zinc-dialkyl dithiophosphates, carbamates, thiocarbamates, zinc-dithiocarbamates, dimercaptothiadiazole, succinic acid semi-ester, calcium sulfonates, benzotriazole derivatives, K-pentaborates, Na-thiosulfates, and

Na-pyrophosphates.

The amount of additives in the grease can be up to 15 % by weight, more preferable less than 10 % by weight.

Application

The lubricant formulations can be used in technical components like bearings, gears, chains, screws, valves, spindles, actuators, armatures, electrical contacts, ropes, combustion and electrical motors, seals, pneumatic or hydraulic devices, compressors, brakes.

Bearing industry, automotive industry, automotive supplier industry, foil producing industry, wood panel industry, food processing industry, cement industry, mining industry, marine industry, convey or …..

Typical formulation:

Sample I

1.PFPE 83% (kin.vis. @ 40°C 100 mm2/s)

2.PTFE 17% D50 < 20 μm

Sample II

1.PFPE80% (kin.vis. @ 40°C 100 mm2/s)

2.PTFE 20% D50 < 20 μm

Sample III

1.PFPE 75% (kin.vis. @ 40°C 200 mm2/s)

2.PTFE 20% D50 < 20 μm

3.BN 5%

Sample IV

1.PFPE 73% (kin.vis. @ 40°C 400 mm2/s)

2.PTFE 25% D50 < 20 μm

3.ZnS 2%

Sample V

1.PFPE 76% (kin.vis. @ 40°C 1000 mm2/s)

2.PTFE 22% D50 < 20 μm

3.ZnS 2%

Sample VI

1.PFPE 42% (kin.vis. @ 40°C 400 mm2/s)

2.Trimellitate ester, 45% (kin.vis. @ 40°C 70 mm2/s)

3.Urea thickener, 8%

4.Alkyl phenyl amine, 2%

5.Alkyl phenol, 2%

6.ZnDDP, 1%

Sample VII

1.PFPE 37% (kin.vis. @ 40°C 400 mm2/s)

2.PAO, 45% (kin.vis. @ 40°C 400 mm2/s)

3.Lithium 12OH-stearate, 8%

4.Lithium sebacate, 2%

5.Alkyl phenyl amine, 2%

6.Alkyl phenol, 2%

8.Calcium sulphonate 2%

Reference

1.PAO, 75% (kin.vis. @ 40°C 400 mm2/s)

2.Urea thickener, 8%

3.Alkyl phenyl amine, 2%

4.Alkyl phenol, 2%

5.ZnDDP, 1%

6.Calcium sulphonate 2%

Table 1. Test result of PFPE grease

Page | 8

全氟聚醚润滑脂

Dr. Martin Schweigkofler, Dr. Stefan Grundei, Dr. Wallace Zhang, Jocelyn Zhao

Dr. Thomas Kilthau, Dr. Martin Schmidt-Amelunxen, Dr. Stefan Seemeyer,

Klüber Lubrication München SE & Co. KG

克鲁勃润滑产品(上海)有限公司

摘要

本文章公开了含有全氟聚醚的润滑脂。

内容

润滑脂使用的基础油包括矿物油,植物油,合成烃类油如聚α烯烃,烷基萘,烷基化苯醚,硅油,酯油,聚乙二醇等。所有这些基础油含有结合在碳上的氢,即CH,CH2和CH3基团。由于这些基础油会与氧化性材料一类的化学品反应,所以其不能用于高温。一些基础油在胺类物质或者亲核物质中可能会水解,不能表现出足够的稳定性。对于如聚甲醛、聚酰胺和聚醚醚酮塑料制成的密封材料和组件,一些烃类基础油会产生非常不利的影响。

通过使用普通配方的全氟聚醚,可以最小化或避免以上缺陷。

X′O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s[CF(CF3)O]u(CF2CF2CF2O)v X (I)

使用上述物质作为基础油或基础油部分。

图(I)中的全氟烷基团可以在整个链里任意排列。下标的m、n、s、v值可以再0?200之间独立存在。例如该材料的分子量决定于末端基团和内部基团的比率,核磁共振分析显示可以高达20000单位。

该全氟聚醚物质在40℃下的运动粘度可以是5?2000 mm2/s,15?2000 mm2/s性能更优。

该全氟聚醚物质的倾点可以低至- 80℃。

两端的X和X'基团可以是支链或非支链的短链全氟烷基团,例如CF3、C2F5、C3F7、C4F9。该链两端的一个或多个氟基团可以由烃基,氢,羟基,氨基,酰胺基,羰基,或其它官能团所取代。

该全氟聚醚可以单独使用,也可以如配方I所示,与两种或多种合适类型的物质混合使用。所使用的稠化剂可以是氟化聚合物如聚四氟乙烯、氧化物如二氧化硅、有机碳

Page | 9

酸盐、氮化硼、碳化物如碳化硅、聚脲化合物、聚酰亚胺或聚酰胺亚胺、氰尿酸、石墨、炭黑、碳纳米管、钼酸盐、磷酸盐。

所使用的聚四氟乙烯可以将四氟乙烯悬浮或分散聚合制备。使用研磨、热处理或辐射方法可以调整粒径和聚合物链长度。虽然经上述所示处理的聚四氟乙烯粉末成为聚四氟乙烯微粉,但使用分散技术可以获得低分子量的聚四氟乙烯。这类聚四氟乙烯产品可以不经上述方法处理,直接使用。

分子量一般在10000 g/mol?10exp8 g/mol之间,100000 g/mol?10exp7 g/mol之间的性能优异。

回收的聚四氟乙烯利用上述方法制备的聚四氟乙烯粉末可以用作润滑剂的稠化剂。

通过向税基分散体中添加氟化基团或全氟聚醚链作为表面活性剂,可以将直接聚合制备的聚四氟乙烯转移到低沸点全氟聚醚油相(例如沸点70℃)。水相可通过澄清分离。分散在低沸点的全氟聚醚油相中的聚四氟乙烯可以和高沸点的全氟聚醚油混合,然后蒸发掉低沸点馏分,获得全四氟乙烯/聚四氟乙烯脂。相比较于聚四氟乙烯粉末所制备的脂,美国专利6025307A描述了上述技术,用于避免全氟聚醚粉末绝缘而导致聚四氟乙烯更小的聚集成脂。

有机酸可以是饱和或不饱和的,有支链或无支链的,单一或者二、三或含有6?25个碳的多元酸以及它们的混合物,如硬脂酸、羟基硬脂酸、苯甲酸、油酸、壬二酸、癸二酸、二十二烷酸和含有酰胺基团的酸。例如含有酰胺基团的酸可以通过伯或仲脂肪族胺与二元酸或脂族二酯或芳族碳酸来制备。

有机酸的盐的阳离子可以是锂,钠,钾,镁,钙,铝,钡或锌。

脲的化合物是由脂肪族或芳香族的单一或者二异氰酸酯化合物以及它们的混合物与脂肪族或芳香族的一元或者二元胺以及它们的混合物反应而成。例如合适的脲类化合物是由二异氰酸酯和胺反应制得。异氰酸酯包括2,4-甲苯二异氰酸酯,2,6-甲苯二异氰酸酯,4,4'-二苯甲烷二异氰酸酯,2,4'-二苯甲烷二异氰酸酯,4,4'-二苯基二异氰酸,3,3'-二甲基二苯基-4,4'-二异氰酸酯,3,3'-二甲基苯基甲烷-4,4'-二异氰酸酯,可以单独或组合使用这些异氰酸酯。胺的通式为R'2N-R的胺或通式为R'2N-R-N-R'2的二胺,也可以是这些胺与二胺的混合物,其中R可以是芳基,烷基或亚烷基等具有2?22个碳原子的自由基,同样的R'可以是不同的氢,烷基,亚烷基或芳基自由基。

上述稠化剂可单独使用或组合使用。

Page | 10

上述稠化剂的粒度通常低于100μ,选用20μm以下最好。

上述稠化剂的使用量低于50%,最好在40%以下。

此外配方中也可使用矿物油,合成油或植物油。

合成油是由以下物质单独或任意混合组成的,包括脂族酯,二、三、四芳族羧酸或者连有C7?C22醇的混合物,聚苯醚或烷基化的二苯醚,三羟甲基丙烷,连C7?C22脂肪族羧酸的季戊四醇或二季戊四醇,连有C7?C22醇的C18二聚体酸酯以及复合酯。此外,合成油可以来自聚α烯烃,烷基化萘,烷基化苯,聚乙二醇和硅油。烷基二苯醚矿物油可以来自石蜡基,萘基和芳烃加氢裂化油;液化天然气液体(GTL),GTL是指一种从气体到液体的方法,其描述了一种由天然气来制备燃料的方法。通过蒸汽重整将天然气转化为合成气,然后通过催化剂的费-托合成转化为燃料。催化剂种类和工艺条件确定了燃料类型,即是汽油,煤油,柴油或其他油类产品。同样,通过煤制液(CTL),也可以将煤作为原料,通过生物质制液体(BTL)的方法,生物质也可以作为原料。

动物或植物中的甘油三酯,经过氢化成为植物油。经过转基因的甘油三酯油,其油酸含量很高,是优良的甘油三酸酯油。传统的植物油经过转基因或基因培养后,能获得具有高油含量的油,包括红花油,玉米油,低芥酸菜子油,向日葵油,大豆油,亚麻子油,花生油,雷斯克勒油,池花籽油和棕榈油。植物油可能也会经过进一步处理,例如聚合工艺。

此外,使用添加剂可改善产品的极压性能,抗腐蚀性,摩擦性,耐磨损耗,耐氧化特性。该添加剂可溶于全氟聚醚油,也可以不溶。

可溶于全氟聚醚的物质包括基于磷酸盐,磷腈,三嗪,芳香族硝基化合物,酰胺,碳酸衍生物,铵盐的一个或多个连接连接官能团或端点官能团,包括像(II)和(III)式中所示的全氟聚醚官能团。

C b F(2b+1)O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s[CF(CF3)O]u(CF2CF2CF2O)v- (II)

-O(CF2O)m(CF2CF2O)n[CF2CF(CF3)O]s [CF(CF3)O]u(CF2CF2CF2O)v- (III).

全氟聚醚不溶性添加剂可能是金属钼酸盐,金属磷酸盐,有机酸的盐,亚硝酸盐,金属硫化物如二硫化钼或硫化锌,氧化物如硅酸盐,六方氮化硼,金属氧化物或氢氧化物或碳酸氢盐或碳酸盐以及它们的混合物。

上述氧化物,氢氧化物,碳酸氢盐和碳酸盐中的阳离子可以来自于碱金属或碱土金

Page | 11

属如钠,锂,镁,钾,钙。

其它不溶于全氟聚醚的添加剂可能是苯胺的衍生物,酚的衍生物,有机碳酸、磺酸、磷酸、膦酸的金属盐,可能也含有金属碳酸盐作为碱性缓冲剂。

例如,添加剂可以来源于丁基羟基甲苯,二烷基二苯胺,苯乙烯二苯胺,烷基化的苯基-α-萘胺,三甲基二氢喹啉聚合物,硫化脂肪酸酯,甲苯基二苯基磷酸酯,胺中和的磷酸盐,烷基化和非烷基化三芳基磷酸酯,烷基化和未烷基化三芳基硫代磷酸酯,二烷基二硫代磷酸锌,氨基甲酸酯,硫代氨基甲酸酯,二硫代氨基甲酸锌,双(辛基二硫代)噻二唑,丁二酸半酯,磺酸钙,苯并三唑衍生物,五硼酸钾,硫代硫酸钠,焦磷酸钠。

润滑脂中添加剂含量可高达15%(重量比),小于10%更好(重量比)。

应用

该润滑剂可应用于轴承,齿轮,链条,螺钉,阀门,主轴,传动装置,水阀门,电触点,钢缆,内燃机,电动机,密封件,气动或液压装置,压缩机和制动器。

轴承行业,汽车行业,汽车供应商行业,箔制品生产业,人造板业,食品加工业,水泥工业,采矿业,船舶业,传送机等。

典型样例:

样例I

3.全氟聚醚 83% (kin.vis. @ 40°C 100 mm2/s)

4.聚四氟乙烯 17% D

< 20 μm

50

样例II

3.全氟聚醚80% (kin.vis. @ 40°C 100 mm2/s)

< 20 μm

4.聚四氟乙烯 20% D

50

样例III

4.全氟聚醚 75% (kin.vis. @ 40°C 200 mm2/s)

< 20 μm

5.聚四氟乙烯 20% D

50

6.氮化硼 5%

样例IV

4.全氟聚醚 73% (40°C运动黏度 400 mm2/s)

Page | 12

5.聚四氟乙烯 25% D

< 20 μm

50

6.硫化锌 2%

样例V

4.全氟聚醚 76% (40°C运动黏度1000 mm2/s)

< 20 μm

5.聚四氟乙烯 22% D

50

6.硫化锌 2%

样例VI

7.全氟聚醚 42% (40°C运动黏度400 mm2/s)

8.偏苯三酸三酯, 45% (40°C运动黏度70 mm2/s)

9.脲增稠剂, 8%

10.烷基苯胺, 2%

11.烷基酚, 2%

12.二烷基二硫代磷酸锌, 1%

样例VII

9.全氟聚醚 37% (40°C运动黏度400 mm2/s)

10.聚α烯烃, 45% (40°C运动黏度400 mm2/s)

11.十二羟基硬脂酸锂, 8%

12.癸二酸锂, 2%

13.烷基苯胺, 2%

14.烷基酚, 2%

15.二烷基二硫代磷酸锌, 1%

16.磺酸钙, 2%

参考物质

7.聚α烯烃, 75% (40°C运动黏度400 mm2/s)

8.脲增稠剂, 8%

9.烷基苯胺, 2%

10.烷基酚, 2%

11.二烷基二硫代磷酸锌, 1%

12.磺酸钙, 2%

Page | 13

Page | 14

相关文档
最新文档