全等几何模型讲解

全等几何模型讲解
全等几何模型讲解

常见的几何模型

一、旋转主要分四大类:绕点、空翻、弦图、半角。

这四类旋转的分类似于平行四边形、矩形、菱形、正方形的分类。

1.绕点型(手拉手模型)

(1)自旋转:

?

?

?

?

?

?

?

,造中心对称

遇中点旋

全等

遇等腰旋顶角,造旋转

,造等腰直角

,造等边三角形

自旋转构造方法

180

90

90

60

60

例题讲解:

1. 如图所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。

C

A B

P

2. 如图,O 是等边三角形ABC 内一点,已知:∠AOB=115°,∠BOC=125°,则以线段OA 、OB 、OC 为边构成三角形的各角度数是多少?

3.如图,P 是正方形ABCD 内一点,且满足PA :PD :PC=1:2:3,则∠APD= .

A

B

C

O

4.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。

(2)共旋转(典型的手拉手模型)

模型变形:

等边三角形共顶点

共顶点等腰直角三角形

共顶点等腰三角形

共顶点等腰三角形

例题讲解:

1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD.

(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若

不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;

(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、

CD 之间存在的数量关系。

2.(13北京中考)

在△ABC 中,AB=AC ,∠BAC=α(?<

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);

(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

2.半角模型

说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

例题:

1.在等腰直角△ABCD的斜边上取两点M,N,使得45

=?

∠MCN,记AM=m,MN=x,BN=n,

求证以m,x,n为边长的三角形为直角三角形。

m x n

B

C

A M N

2.如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2,

求PCQ

∠的度数。

D A

C

B

Q P

3.E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =?∠,AH EF ⊥,H 为 垂足,求证:AH AB =.

4. 已知,正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交

CB 、DC (或它们的延长线)于点M 、N ,AH ⊥MN 于点H .

(1)如图①,当∠MAN 点A 旋转到BM=DN 时,请你直接写出AH 与AB 的数量关系:

AH=AB ;

(2)如图②,当∠MAN 绕点A 旋转到BM≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;

(3)如图③,已知∠MAN=45°,AH ⊥MN 于点H ,且MH=2,NH=3,求AH 的长.(可

利用(2)得到的结论)

知:正方形A 5.已

B CD 中,∠M

C

H

F

E

D B

A

AN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.

(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.

(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.

6.(14房山2模). 边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交DG于点N.

(1)求边DA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;

的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?(3)如图3,设MBN

请证明你的结论.

7. (2011石景山一模)已知:如图,正方形ABCD 中,AC ,BD 为对角线,将∠BAC 绕顶点A 逆

时针旋转α°(0<α<45),旋转后角的两边分别交BD 于点P 、点Q ,交BC ,CD 于点E 、点F ,连接EF ,EQ .

(1)在∠BAC 的旋转过程中,∠AEQ 的大小是否改变?若不变写出它的度数;若改

变,写出它的变化范围(直接在答题卡上写出结果,不必证明); (2)探究△APQ 与△AEF 的面积的数量关系,写出结论并加以证明.

8.已知在ABC △中,

90=∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线CD 上,CD DE 2

1

=

,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点. (1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量

关系:___________,___________;

(2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:

45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得

45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.

A

B E

M

D

C

B

A

9.(2014平谷一模24)

(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF ,

则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足222DN BM MN +=,请证明这个等量关系; (2)在△ABC 中, AB =AC ,点D 、E 分别为BC 边上的两点.

①如图2,当∠BAC =60°,∠DAE =30°时,BD 、DE 、EC 应满足的等量关系是

②如图3,当∠BAC =α,(0°<α<90°),∠DAE =α2

1

时,BD 、DE 、EC 应满足的等量关系是___________.【参考:1cos sin 22=+αα】

注意:222

2AM BM DM =+

A B C

D E

F 图1

B C

D

E 图2

A

D

E 图3

A

M

N

(1) 在正方形ABCD 中,AB =AD ,∠BAD =90°,

∠ABM =∠ADN=45°.

N

M F

E

D C

B

A

把△ABM绕点A逆时针旋转90°得到M

AD'

?.

连结M

N'.则,

,AM

AM

BM

M

D=

=

'',

?

=

='

∠45

ABM

M

AD,BAM

M

DA∠

='

∠.

∵∠EAF=45°,∴∠BAM+∠DAN=45°,

∠DAM′+∠DAF=45°, ?

=

=

∠45

'MAN

AN

M.

∴N

AM'

?≌AMN

?.∴N

M'=MN.

在N

DM'

?中,?

=

+

=

∠90

'

'ADM

ADN

DN

M,

2

2

2'

'DM

DN

N

M+

=

∴2

2

2BM

DN

MN+

=

(2)①2

2

2EC

EC

BD

BD

DE+

?

+

=;

②2

2

2cos

2EC

EC

BD

BD

DE+

?

?

+

3.空翻模型

例题:

1.如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作60

DMN

∠=?,射线MN与DBA

∠外角的平分线交于点N,DM与MN有怎样的数量关系?

N

E

B

M

A

D

G

N

E

B

M

A

D

【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =

又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ??≌,∴DM MN =.

2.如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线 交于点N ,MD 与MN 有怎样的数量关系?

N C

D

E B M A N

C

D

E

B M A

【解析】 猜测DM MN =.在AD 上截取AG AM =,

∴DG MB =,∴45AGM =∠

∴135DGM MBN ==?∠∠,∴ADM NMB =∠∠, ∴DGM MBN ??≌,∴DM MN =.

3.【探究发现】如图1,ABC ?是等边三角形,60AEF ?∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E 是BC 的中点时,有AE =EF 成立;

【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.

假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.

【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ??的值.

4.弦图模型

外弦图 内弦图 总统图 例题:

1.两个全等的30°,60°三角板ADE,BAC,如右下图所示摆放,E 、A 、C 在一条直线上,连接

B

B

F

A

B

BD,取BD的中点M,连接ME,MC.

(1)求证:△EDM≌△CAM;(2)求证:△EMC为等腰直角三角形.

2.如图△ABC中,已知∠A=90°,AB=AC,

(1)D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF

(2)若D,M为AC上的三等分点,如图2,连BD,过A作AE⊥BD于点E,交BC于点F,

连MF,判断∠ADB与∠CMF的大小关系并证明.

3.(14朝阳二模)

已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;

(2)如图2,E是直线BC上的一点,直线AE、CD相交于点P,且∠APD=45°,求证BD=CE.

P

E

C

图2

C

B

图1

二、对称全等模型

下图依次是450、300、、150及有一个角是300直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

3

2

P

例题:

1.如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.参考小萍的思路,探究并解答新问题:

如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)

2.问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内一点,且AD=CD,BD=BA.探究∠DBC 与∠ABC度数的比值.

请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC=90°时,依问题中的条件补全右图.观察图形,AB与AC的数量关系为_______;

当推出∠DAC=15°时,可进一步推出∠DBC的度数为_________;

可得到∠DBC与∠ABC度数的比值为_______________.

(2)当∠BAC≠90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

九年级上册几何模型压轴题专题练习(解析版)

九年级上册几何模型压轴题专题练习(解析版) 一、初三数学 旋转易错题压轴题(难) 1.已知抛物线y=ax 2+bx-3a-5经过点A(2,5) (1)求出a 和b 之间的数量关系. (2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7) ①求出此时抛物线的解析式; ②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标. 【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8 +), F 1(- 8,33-4+),G 2(8,-8 ),F 2(218,-4) 【解析】 【分析】 (1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系; (2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式; ②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出 131t - 4+=,2t -4 =,分两类讨论,分别求出G 、F 坐标。 【详解】 解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5 ∴a+2b=10 ∴a 和b 之间的数量关系是a+2b=10 (2)①设直线AD 的解析式为y=kx+c ∵直线AD 与y 轴交于(0,-7),A (2,5) ∴2k c 5{c -7+==解得k 6 {c -7 ==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2 y ax +bx-3a-5 {y 6x-7 == 消去y 得ax 2+(b-6)x-3a+2=0 ∵抛物线与直线AD 有两个交点 ∴由韦达定理可得:x A +x D =b-6- a =2a 2a +,x A x D =-3a 2 a +

解析几何中的基本公式

解析几何中的基本公式 解析几何学(analytic geometry )是借助坐标系,用代数方法研究几何对象之间的关系和性质的一门几何学分支,亦叫坐标几何。由法国数学家笛卡儿和费马等人创建,其思想来源可上溯到公元前两千年。 两点间距离:若)y ,x (B ),y ,x (A 2211,则2 12212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2221B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为: 2 2B A C By Ax d +++= οο 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则: 2 122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222121y y y x x x 变形后: y y y y x x x x --=λ--= λ21 21或

若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为),0(,π∈αα 适用范围:k1,k2都存在且k1k2≠-1 , 21121tan k k k k +-= α 若l1与l2的夹角为θ,则=θtan 2 12 11k k k k +-,]2,0(π∈θ 注意:(1)l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围),0(π l1到l2的夹角:指 l1、l2相交所成的锐角或直角。 (2)l1⊥l2时,夹角、到角=2π 。 (3)当l1与l2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面 ] 20[π ∈ββα,,的夹角; (4)l1与l2的夹角为θ,∈ θ] 20[π ,,其中l1//l2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l1到l2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l1与直线l2的的平行与垂直

解析几何公式大全

平行线间距离:若l i : Ax By C i 0, 12 : Ax By C20 则:d C i C2I J A2B2 注意点:x, y对应项系数应相等。 点到直线的距离:P(x , y ),I:Ax By C 0 则P到1的距离为: |Ax d By C 解析几何中的基本公式 .A2B2 直线与圆锥曲线相交的弦长公式:y kx b F(x,y) 0 2 消y:ax bx c 0,务必注意0. 若I与曲线交于A(x1, y1), B(x2, y2) 则:AB v'(1 k2)(X2 X i)2 若A(x i, y i), B(X2, y2),P(x,y)。P在直线AB上,且P分有向线段AB所成的比为 i y i y2 i ,特别 地: x =1时,P为AB中点且 y x-i x2 2 y i y2 2 变形后:—i或」 X2 x y2 y 若直线l i的斜率为k i,直线|2的斜率为k2,则l i到|2的角为, (0, ) 适用范围:k i,k2都存在且k i k2 —i , tan k2 k i i k i k2

I i 到I 2的夹角:指 11、 12相交所成的锐角或直角。 (2) l 1 I 2时,夹角、到角=—。 2 (3) 当11与I 2中有一条不存在斜率时,画图,求到角或夹角。 直线的倾斜角 与斜率k 的关系 每一条直线都有倾斜角 ,但不一定有斜率。 若直线存在斜率k ,而倾斜角为 ,则k=tan 。 直线I 1与直线I 2的的平行与垂直 (1)若I 1, I 2均存在斜率且不重合:①I 1//I 2 k 1=k 2 ② I 1 I 2 k 1k 2=— 1 (2)若 I 1 : A 1x B 1 y C 1 0, I 2 : A 2X B 2y C 2 若A 1、A 2、B 1、B 2都不为零 I 1//I 2 △邑 C !; A 2 B 2 C 2 若i i 与12的夹角为,则tan 注意:(1 ) I i 到12的角,指从 k i k 2 1 kk 11按逆时针方向旋转到 I 2所成的 角, (0,) (1) 倾斜角 , (0,); (2) a, b 夹角, [0, ]; (3) 直线I 与平面 的夹角 ,[0,,] (4) I 1与I 2的夹角为 [0,—],其 中 2 (5) 二面角, (0,]; (6) I 1到I 2的角, (0, ) I 1//I 2时夹角 =0; I 1 I 2 A 1A 2+B 1B 2=0;

高考解析几何中的基本公式(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为 λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

赤峰数学几何模型压轴题(篇)(Word版 含解析)

赤峰数学几何模型压轴题(篇)(Word 版 含解析) 一、初三数学 旋转易错题压轴题(难) 1.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点 E 关于AB 的对称点,连接A F 、BF . (1)求AF 和BE 的长; (2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ?<

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

解析几何公式大全

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。

高中解析几何秒杀公式及解题套路

高中解析几何秒杀公式及解题套路 高中解析几何秒杀公式是什幺,解析几何解题套路有哪些,怎幺能 用一套完整的思路做所有类似的题目?把所有类型题都搞定?下面是高中解 析几何秒杀公式及解题套路,希望你看完能上岸。 1高考解析几何的统一解题套路以高考解析几何为例1、问题都是以平 面上的点、直线、曲线如圆、椭圆、抛物线、双曲线这三大类几何元素为基础构成的图形的问题2、演绎规则就是代数的演绎规则,或者说就是列方 程、解方程的规则。当然,能用代数规则处理的问题必须是代数形式的,比如,平面上的点、直线、曲线构成的图形能用代数方法来处理,前提是构成 这些图形的点、直线、曲线必须是代数形式的。有了以上两点认识,我们可 以毫不犹豫地下这幺一个结论,那就是解决高考解析几何问题无外乎做两项 工作1、几何问题代数化。2、用代数规则对代数化后的问题进行处理。至此,我们可以发掘出一套规整的高考解析几何的统一解题套路步骤1:把题目中 的点、直线、曲线这三大类基础几何元素用代数形式表示出来(一化)步骤 2:把题目中的点与直线、曲线的从属关系用代数形式表示出来(二代)说明:这里的“从属关系”指的是什幺?实际上,在解析几何中,“点”是比直线、曲线 更基础的几何元素——任何几何图形,包括直线和曲线,都被视为是由一个 个的“点”构成的(用数学语言来表达:任何几何图形,包括直线和曲线,都 是由点构成的集合)。但为了使我们的解题套路各步骤之间条例更分明。 我们把点、直线、曲线视为构成任何其它几何图形的基础。所以,这里的“从属关系”是点与直线、曲线的属于关系问题——如果某个点在某条直线或 曲线上,那幺这个点的坐标就可代入这条直线或曲线的方程。步骤3:图形

解析几何公式大全

解析几何中的基本公 式 1、两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为:2 2 B A C By Ax d +++= οο 4、直线与圆锥曲线相交的弦长公式:???=+=0 )y ,x (F b kx y 消y :02=++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 7、(1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π ∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π ,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 8、直线的倾斜角α与斜率k 的关系

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

解析几何公式-大全

解析几何中的基本公式 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α

若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合:①l 1//l 2? k 1=k 2 ②l 1⊥l 2? k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l 若A 1、A 2、B 1、B 2都不为零 l 1//l 2? 2 1 2121C C B B A A ≠ =; l 1⊥l 2? A 1A 2+B 1B 2=0;

解析几何常用公式

1. AB →,A 为AB →的起点,B 为AB →的终点。线段AB 的长度称作AB →的长度,记作|AB → |.数轴上同向且 相等的向量叫做相等的向量.....。零向量的方向任意。..........在数轴上任意三点A 、B 、C ,向量AB →、BC → 、AC →的坐标都具有关系:AC =AB +BC . .. AC →=AB →+ 2.设 AB → 是数轴上的任一个向量,则AB =OB -OA =x 2-x 1,d (A ,B )=|AB |=|x 2-x 1|. 4.. A (x 1,y 1),B (x 2,y 2),则两点A 、B 的距离公式d (A ,B )=?x 2-x 1?2+?y 2-y 1?2 若B 点为原点,则d (A ,B )=d (O ,A )=x 21+y 21; 5. A (x 1,y 1),B (x 2,y 2),中点M( x 1+x 22, y 1+y 2 2 ). A (x ,y )关于M (a ,b )的对称点B(2x 0-x ,2y 0-y ). 6. 直线倾斜角::x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定,与x 轴 平行或重合的直线的倾斜角为0°. 7.直线的位置与斜率、倾斜角的关系 ①k =0时,倾斜角为0°,直线平行于x 轴或与x 轴重合. ②k >0时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也增大,此时直线过第一、三象限. ③k <0时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也增大,此时直线过第二、四象限. ④垂直于x 轴的直线的斜率不存在,它的倾斜角为90°. 8. 若直线l 上任意两点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,则直线l 的斜率k =y 2-y 1 x 2-x 1 . 9.直线方程的五种形式 (1)点斜式:经过点P 0(x 0,y 0)的直线有无数条,可分为两类:斜率存在时,直线方程为 y -y 0=k (x -x 0);斜率不存在时,直线方程为x =x 0. (2)斜截式:已知点(0,b ),斜率为k 的直线y =kx +b 中,截距b 可为正数、零、负数. (3)两点式: y -y 1y 2-y 1=x -x 1 x 2-x 1(x 1≠x 2,y 1≠y 2 ) (4) 截距式:当直线过(a,0)和(0,b )(a ≠0,b ≠0)时,直线方程可以写为x a +y b =1,当直线斜率 不 存在(a =0)或斜率为0(b =0)时或直线过原点时,不能用截距式方程表示直线. (5)一般式:Ax +By +C =0的形式.(220A B +≠)

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?】 ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?` ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ' ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②;③ ?证明提示: ①作垂直,如图,证明; - ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?<

?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等 边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?' ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导 ? 模型四:角含半角模型90°

高中数学必修2解析几何公式知识点总结

高中数学必修2解析几何知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

几何模型:一线三等角模型知识讲解

几何模型:一线三等 角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 同侧 锐角直角钝角 P 异侧 相似篇 A 同侧锐角直角钝角 异侧

三、“一线三等角”的性质 1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE. 3.中点型“一线三等角” 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1 902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 902 BOC BAC ∠=?+∠这是内心的性质,反之未必是内心. 在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 ) 图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用

高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结 第一部分:直线 一、直线的倾斜角与斜率 1.倾斜角α (1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。 (2)范围:?<≤?1800α 2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. αtan =k (1).倾斜角为?90的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。 (3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2 121tan x x y y k --= =α;当21x x =时,o 90=α;斜率不存在; 二、直线的方程 1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =; 2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。 3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程: 1 21 121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。 4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程: 1=+b y a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。 2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直

解析几何知识点总结复习

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2、直线的斜率k : 2121 tan y y k x x α-==-; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121121y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 12211221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y , MN =

②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122(,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d =; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22ππθπ∈,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(2240D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 22200()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >; 相切?=d r ; 相交?0d r ≤<;

相关文档
最新文档