九年级数学几何模型压轴题专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学几何模型压轴题专题练习(解析版)

一、初三数学旋转易错题压轴题(难)

1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.

(1)如图①,若∠B、∠ADC都是直角,把ABE

△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;

(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有

EF=BE+DF;

(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3

【解析】

【分析】

(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;

(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即

180

ADG ADF

∠+∠=︒,即180

B D

∠+∠=︒;

(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.

【详解】

(1)解:如图,

∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,

∴AE=AG,∠BAE=∠DAG,BE=DG,

∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°,

∴∠DAG+∠DAF=45°,

即∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

∠=∠

⎪=

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

(2)解:∠B+∠D=180°,

理由是:

如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,

∵∠B+∠ADC=180°,

∴∠ADC+∠ADG=180°,

∴F、D、G在一条直线上,

和(1)类似,∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

∠=∠

⎪=

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

故答案为:∠B+∠D=180°;

(3)解:∵△ABC中,2BAC=90°,

∴∠ABC=∠C=45°,由勾股定理得:22

AB AC

+,

如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .

则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,

∵∠DAE=45°,

∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,

∴∠FAD=∠DAE=45°,

在△FAD 和△EAD 中

AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩

∴△FAD ≌△EAD ,

∴DF=DE ,

设DE=x ,则DF=x ,

∵BD=1,

∴BF=CE=4﹣1﹣x=3﹣x ,

∵∠FBA=45°,∠ABC=45°,

∴∠FBD=90°,

由勾股定理得:222DF BF BD =+,

22(3)1x x =-+, 解得:x=

53, 即DE=53

. 【点睛】

本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.

2.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE .

(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;

(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.

(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.

【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析

【解析】

【分析】

(1)利用直角三角形斜边的中线等于斜边的一半,即可;

(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;

(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;

【详解】

解:(1)证明:如图:

∵∠ACB=∠AEF=90°,

∴△FCB和△BEF都为直角三角形.

∵点P是BF的中点,

∴CP=1

2BF,EP=

1

2

BF,

∴PC=PE.

(2)PC=PE理由如下:

如图2,延长CP,EF交于点H,

∵∠ACB=∠AEF=90°,

∴EH//CB,

相关文档
最新文档