几何模型压轴题(提升篇)(Word版 含解析)

几何模型压轴题(提升篇)(Word版 含解析)
几何模型压轴题(提升篇)(Word版 含解析)

几何模型压轴题(提升篇)(Word 版 含解析)

一、初三数学 旋转易错题压轴题(难)

1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.

(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;

(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.

【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492

. 【解析】 【分析】

(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =

,1

2

PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;

(2)先判断出ABD ACE ???,得出BD CE =,同(1)的方法得出1

2

PM BD =

,1

2

PN BD =

,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;

(3)方法1:先判断出MN 最大时,PMN ?的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ?的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)

点P ,N 是BC ,CD 的中点,

//PN BD ∴,1

2

PN BD =

, 点P ,M 是CD ,DE 的中点,

//PM CE ∴,1

2

PM CE =

, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,

DPN ADC ∴∠=∠, //PM CE ,

DPM DCA ∴∠=∠, 90BAC ∠=?,

90ADC ACD ∴∠+∠=?,

90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=?, PM PN ∴⊥,

故答案为:PM PN =,PM PN ⊥;

(2)PMN ?是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,

AB AC =,AD AE =,

()ABD ACE SAS ∴???,

ABD ACE ∴∠=∠,BD CE =,

利用三角形的中位线得,12PN BD =,1

2

PM CE =,

PM PN ∴=,

PMN ∴?是等腰三角形,

同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,

同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,

DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,

MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠

BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=?,

90ACB ABC ∴∠+∠=?, 90MPN ∴∠=?,

PMN ∴?是等腰直角三角形;

(3)方法1:如图2,同(2)的方法得,PMN ?是等腰直角三角形,

MN ∴最大时,PMN ?的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,

连接AM ,AN ,

在ADE ?中,4AD AE ==,90DAE ∠=?,

22AM ∴=

在Rt ABC ?中,10AB AC ==,52AN = 22522MN ∴=最大,

222111149(72)22242

PMN S PM MN ?∴=

=?=?=最大. 方法2:由(2)知,PMN ?是等腰直角三角形,1

2

PM PN BD ==

, PM ∴最大时,PMN ?面积最大, ∴点D 在BA 的延长线上,

14BD AB AD ∴=+=,

7PM ∴=,

2211497222

PMN S PM ?∴=

=?=最大. 【点睛】

此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出

12PM CE =,1

2

PN BD =,解(2)的关键是判断出ABD ACE ???,解(3)的关键

是判断出MN 最大时,PMN ?的面积最大.

2.在△ABC 中,∠C =90°,AC =BC =6.

(1)如图1,若将线段AB 绕点B 逆时针旋转90°得到线段BD ,连接AD ,则△ABD 的面积为 .

(2)如图2,点P 为CA 延长线上一个动点,连接BP ,以P 为直角顶点,BP 为直角边作等腰直角△BPQ ,连接AQ ,求证:AB ⊥AQ ;

(3)如图3,点E ,F 为线段BC 上两点,且∠CAF =∠EAF =∠BAE ,点M 是线段AF 上一个动点,点N 是线段AC 上一个动点,是否存在点M ,N ,使CM +NM 的值最小,若存在,

求出最小值:若不存在,说明理由.

【答案】(1)36;(2)详见解析;(3)存在,最小值为3.

【解析】

【分析】

(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;

(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;

(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.

【详解】

解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,

∴△ABD是等腰直角三角形,

∵∠ACB=90°,

∴BC⊥AD,

∴AD=2BC=12,

∴△ABD的面积=1

2

AD?BC=

1

2

12×6=36,

故答案为:36;

(2)如图,过Q作QH⊥CA交CA的延长线于H,

∴∠H=∠C=90°,

∵△BPQ是等腰直角三角形,

∴PQ=PB,∠BPQ=90°,

∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,

∴∠PQH =∠BPC , ∴△PQH ≌△BPC (AAS ), ∴PH =BC ,QH =CP , ∵AC =BC , ∴PH =AC , ∴CP =AH , ∴QH =AH , ∴∠HAQ =45°, ∵∠BAC =45°,

∴∠BAQ =180°﹣45°﹣45°=90°, ∴AB ⊥AQ ;

(3)如图,作点C 关于AF 的对称点D ,过D 作DN ⊥AC 于N 交AF 于M ,

∵∠CAF =∠EAF =∠BAE ,∠BAC =45°, ∴∠CAF =∠EAF =∠BAE =15°, ∴∠EAC =30°,

则此时,CM +NM 的值最小,且最小值=DN , ∵点C 和点D 关于AF 对称, ∴AD =AC =6, ∵∠AND =90°, ∴DN =

1

2AD =12

?6=3, ∴CM +NM 最小值为3. 【点睛】

本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.

3.综合与探究:

如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90?得到线段BC ,过点C 作

CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC

与x 轴交于点H .

(1)求点C 的坐标及抛物线的表达式;

(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m . ①点G 的纵坐标用含m 的代数式表示为________;

②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;

③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.

【答案】(1)点C 的坐标为(6,2),21322y x x =-

++;(2)①1

43

m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或

4226,55?? ???或384,55?? ???

. 【解析】 【分析】

(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;

(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;

②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与

DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线

段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ?∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出

2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH

=CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可. 【详解】 解:(1)

4=OA ,2OB =,

∴点A 的坐标为(0,4),点B 的坐标为(2,0),

线段AB 绕点B 顺时针旋转90?得到线段BC ,

AB BC ∴=,90ABC ?∠=,

90ABO DBC ?∴∠+∠=,

在Rt AOB 中,90ABO OAB ?∴∠+∠=,

=OAB DBC ∴∠∠,

CD x ⊥轴于点D ,

90BDC ?∴∠=, 90AOB BDC ?∴∠=∠=.

AB BC =,

ABO BCD ∴△≌△,

2CD OB ∴==,4BD OA ==, 6OB BD ∴+=,

∴点C 的坐标为(6,2),

∵抛物线2

3y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E ,

236182c a c =?∴?++=?

, 解得,122

a c ?

=-???=?,

∴抛物线的表达式为2

1322

y x x =-

++; (2)①设直线AC 的表达式为y kx b =+, ∵直线AC 经过点()6,2C ,(0,4)A ,

∴624k b b +=??=?

解得,134k b ?

=-

???=?

,即143y x =-+,

∴点G 的纵坐标用含m 的代数式表示为:1

43

m -+,

故答案为:143

m -+.

②过点G 作GM x ⊥轴于点M ,

OM m ∴=,1

43

GM m =-+,

AB BC =,BG AC ⊥, AG CG ∴=,

90AOB GMH CDH ?∠=∠=∠=,

OA GM CD ∴,

1OM AG

MD GC

==, 1

32

OM MD OD ∴===,

3m ∴=,1433

m -+=,

∴点G 为(3,3),

设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,20

33k b k b +=??

+=?

3

6k b =?∴?=-?

,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,

∴得2

132362

x x x -

++=-, 14x ∴=,24x =-(舍去), ∴点F 的坐标为(4,6),

过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,

4PF ∴=,2AP =,2FQ =,4CQ =,

在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==, 同理可得25AB BC ==,

AB BC CF FA ∴===, ∴四边形ABCF 为菱形, 90ABC ?∠=, ∴菱形ABCF 为正方形;

③∵直线AC :1

43

y x =-+与x 轴交于点H , ∴1

403

x -

+=, 解得,x =12, ∴(12,0)H ,

∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=, 设点N 坐标为(,)s t ,

∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-, 第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,

∴2222

(4)(6)20(12)40s t s t ?-+-=?-+=?

, 解得,11425265s t ?

=????=??

,226

2s t =??=?(即点C ),

∴4226,55N ??

??

?; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,

∴2222

(4)(6)40(12)20s t s t ?-+-=?-+=?

, 解得,11385

45s t ?

=????=??

,22104s t =??=?,

∴384,55N ??

??

?或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55??

???

或384,55??

??

?. 【点睛】

本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.

4.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”. 特例感知:

(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ;

②如图3,当∠BAC=90°,BC=8时,则AD长为.

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.

【答案】(1)①1

2

;②4;(2)AD=

1

2

BC,证明见解析;(3)存在,证明见解析,

39.【解析】【分析】

(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=1

2

AB′即可解决问题;

②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;

(2)结论:AD=1

2

BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证

明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;

(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;

【详解】

解:(1)①如图2中,

∵△ABC是等边三角形,

∴AB=BC=AB=AB′=AC′,

∵DB′=DC′,

∴AD⊥B′C′,

∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,

∴∠B′=∠C′=30°,

∴AD=1

2AB′=

1

2

BC,

故答案为1

2

②如图3中,

∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,

∵AB=AB′,AC=AC′,

∴△BAC≌△B′AC′,

∴BC=B′C′,

∵B′D=DC′,

∴AD=1

2B′C′=

1

2

BC=4,

故答案为4.

(2)结论:AD=1

2 BC.

理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M

∵B′D=DC′,AD=DM,

∴四边形AC′MB′是平行四边形,

∴AC′=B′M=AC,

∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,

∴∠BAC=∠MB′A,∵AB=AB′,

∴△BAC≌△AB′M,

∴BC=AM,

∴AD=1

BC.

2

(3)存在.

理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.

连接DF交PC于O.

∵∠ADC=150°,

∴∠MDC=30°,

在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,

∴CM=2,DM=4,∠M=60°,

在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,

∴EM=1

BM=7,

2

∴DE=EM﹣DM=3,

∵AD=6,

∴AE=DE,∵BE⊥AD,

∴PA=PD,PB=PC,

在Rt△CDF中,∵3CF=6,

∴tan∠3

∴∠CDF=60°=∠CPF,

易证△FCP≌△CFD,

∴CD=PF,∵CD∥PF,

∴四边形CDPF是矩形,

∴∠CDP=90°,

∴∠ADP=∠ADC﹣∠CDP=60°,

∴△ADP是等边三角形,

∴∠ADP=60°,∵∠BPF=∠CPF=60°,

∴∠BPC=120°,

∴∠APD+∠BPC=180°,

∴△PDC是△PAB的“旋补三角形”,

在Rt△PDN中,∵∠PDN=90°,PD=AD=6,3,

∴2222

++39.

=(3)6

DN PD

【点睛】

本题考查四边形综合题.

5.请阅读下列材料:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;

问题得到解决.

请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

【答案】(17;(25

【解析】

试题分析:(1)利用旋转的性质,得到全等三角形.

(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.

(17

(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.

∴AP′=PC=1,BP=BP′2;

连接PP′,在Rt△BP′P中,

∵BP=BP′2,∠PBP′=90°,

∴PP′=2,∠BP′P=45°;

在△AP′P中,AP′=1,PP′=2,AP5

∵2

22

125

+,即AP′2+PP′2=AP2;

∴△AP′P是直角三角形,即∠AP′P=90°,

∴∠AP′B=135°,

∴∠B PC=∠AP′B=135°.

过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,

∴∠EP′B=45°,

∴EP′=BE=1,

∴AE=2;

∴在Rt△ABE中,由勾股定理,得AB=5;

∴∠BPC=135°,正方形边长为5.

点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.

6.(1)问题发现

如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.

填空:线段AD,BE之间的关系为 .

(2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.

(3)解决问题

如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.

【解析】

【分析】

(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE

交AD于点F,由垂直定义得AD⊥BE.

(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;

(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】

(1)结论:AD=BE,AD⊥BE.

理由:如图1中,

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .

理由:如图2中,设AD 交BE 于H ,

AD 交BC 于O .

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE ,

在Rt △ACD

和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,

∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .

(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,

图3-1中,当P 、E 、B 共线时,BE 最小,最小值=PB-PE=5-32, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值=PB+PE=5+32, ∴5-32≤BE≤5+32, 即5-32≤PC≤5+32.

【点睛】

本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.

7.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.

(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;

(2)如图2,若将三角板△D EC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;

(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.

【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.

【解析】

试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1

2

AD,FH∥AD,FG=

1

2

BE,

FG∥BE,即可推出答案;

(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:

(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,

∴BE=AD,

∵F是DE的中点,H是AE的中点,G是BD的中点,

∴FH=1

2

AD,FH∥AD,FG=

1

2

BE,FG∥BE,

∴FH=FG,

∵AD⊥BE,

∴FH⊥FG,

故答案为相等,垂直.

(2)答:成立,

证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE

∴AD=BE,

由(1)知:FH=1

2

AD,FH∥AD,FG=

1

2

BE,FG∥BE,

∴FH=FG,FH⊥FG,

∴(1)中的猜想还成立.

(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证

∴FH=

12AD ,FH ∥AD ,FG=1

2

BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,

在△ACD 和△BCE 中

AC BC ACD BCE CE CD ??

∠∠???

=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,

∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.

【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.

8.(操作发现)

(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF .

①求∠EAF 的度数;

②DE与EF相等吗?请说明理由;

(类比探究)

(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出

∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;

(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.

试题解析:解:(1)①∵△ABC是等边三角形,

∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.

在△ACF和△BCD中,

∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;

②DE=EF.理由如下:

∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;

(2)①∵△ABC是等腰直角三角形,

∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,

∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

解析几何压轴大题专题突破

解析几何压轴大题专题突破 1. 已知命题 p :方程 x 22m + y 29?m =1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25 ? x 2m =1 的离心率 e ∈( √6 2 ,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围. 2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα, y =sinα,(α 为参数),以坐标 原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π 4 )=2√2. (1)写出 C 1 的普通方程和 C 2 的直角坐标方程; (2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标. 3. 在直角坐标系 xOy 中,直线 C 1:x =?2,圆 C 2:(x ?1)2+(y ?2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程; (2)若直线 C 3 的极坐标方程为 θ=π 4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △ C 2MN 的面积. 4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =?1,直线 l 与抛物线相交于不同的 A ,B 两点. (1)求抛物线的标准方程; (2)如果直线 l 过抛物线的焦点,求 OA ????? ?OB ????? 的值; (3)如果 OA ????? ?OB ????? =?4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由. 5. 已知抛物线 C:y 2=2px (p >0) 与直线 x ?√2y +4=0 相切. (1)求该抛物线的方程; (2)在 x 轴正半轴上,是否存在某个确定的点 M ,过该点的动直线 l 与抛物线 C 交于 A ,B 两点,使得 1 ∣AM∣ +1∣BM∣ 为定值.如果存在,求出点 M 坐标;如果不 存在,请说明理由. 6. 在平面直角坐标系 xOy 中,动点 A 的坐标为 (2?3sinα,3cosα?2),其中 α∈R .在极坐标系(以原点 O 为极点,以 x 轴非负半轴为极轴)中,直线 C 的方程为 ρcos (θ?π 4 )=a . (1)判断动点 A 的轨迹的形状; (2)若直线 C 与动点 A 的轨迹有且仅有一个公共点,求实数 a 的值. 7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a + y 2b =1(a >b >0) 的离心率为 √6 3 .且 过点 (3,?1). (1)求椭圆 C 的方徎; (2)动点 P 在直线 l :x =?2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 l?⊥MN ,直线 l? 是否恒过定点,若是,请求出该定 点的坐标;若否,请说明理由. 8. 在平面直角坐标系 xOy 中,C 1:{x =t, y =k (t ?1) (t 为参数).以原点 O 为极点,x 轴 的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ?6ρsinθ+33=0. (1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.

高考数学总复习 专题七 解析几何 7.3 解析几何(压轴题)精选刷题练 理

7.3 解析几何(压轴题) 命题角度1曲线与轨迹问题 高考真题体验·对方向 1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足 为N,点P满足. (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. (1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0). 由得x0=x,y0=y. 因为M(x0,y0)在C上,所以=1. 因此点P的轨迹方程为x2+y2=2. (2)证明由题意知F(-1,0).设Q(-3,t),P(m,n), 则 =(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t -n). 由=1得-3m-m2+tn-n2=1. 又由(1)知m2+n2=2,故3+3m-tn=0. 所以=0,即. 又过点P存在唯一直线垂直于OQ, 所以过点P且垂直于OQ的直线l过C的左焦点F. 2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C 于A,B两点,交C的准线于P,Q两点. (1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ; (2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (1)证明由题知F. 设l1:y=a,l2:y=b,则ab≠0, 且A,B,P,Q,R.

记过A,B两点的直线为l, 则l的方程为2x-(a+b)y+ab=0. 由于F在线段AB上,故1+ab=0. 记AR的斜率为k1,FQ的斜率为k2, 则k1==-b=k2. 所以AR∥FQ. (2)解设l与x轴的交点为D(x1,0), 则S△ABF=|b-a||FD|=|b-a|,S△PQF=. 由题设可得|b-a|, 所以x1=0(舍去),x1=1. 设满足条件的AB的中点为E(x,y). 当AB与x轴不垂直时,由k AB=k DE可得(x≠1). 而=y,所以y2=x-1(x≠1). 当AB与x轴垂直时,E与D重合. 所以所求轨迹方程为y2=x-1. 新题演练提能·刷高分 1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上. (1)求点B的轨迹E的方程; (2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点. (1)解设B(x,y),则AB的中点D,y>0. ∵C(0,1),则, 在☉C中,∵DC⊥DB, ∴=0,∴-+y=0, 即x2=4y(y>0). ∴点B的轨迹E的方程为x2=4y(y>0). (2)证明由已知条件可得曲线E的方程为x2=4y, 设点P(t,-1),M(x1,y1),N(x2,y2).

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高考解析几何压轴题精选

1、 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A 、若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 、已知m >1,直线2:02 m l x my -- =,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点、 (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H 、若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围、(6分) 3已知以原点O 为中心,) 5,0F 为右焦点的双曲线C 的离心率 5 e = (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直线 222:44l x x y y +=的交点E 在双 曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分) 4、如图,已知椭圆 22 22 1(0)x y a b a b +=>>2,以该椭圆上的点与椭圆的左、右 焦点12,F F 为顶点的三角形的周长为4(21)、一等轴双曲线的顶点就是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 与2PF 与椭圆的交点分别为B A 、与 C D 、、

(Ⅰ)求椭圆与双曲线的标准方程;(Ⅱ)设直线1PF 、2 PF 的斜率分别为1k 、2k ,证明12· 1k k =;(Ⅲ)就是否存在常数λ,使得 ·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由、(7分) 5、在平面直角坐标系xoy 中,如图,已知椭圆15 92 2=+y x 的左、右顶点为A 、B,右焦点为F 。设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。 (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设3 1 ,221= =x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。(6分) 6.如图,设抛物线2 :x y C =的焦点为F,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB,且与抛物线C 分别相切于A 、B 两点、 (1)求△APB 的重心G 的轨迹方程、 (2)证明∠PFA=∠PFB 、(6分) 7.设A 、B 就是椭圆λ=+2 2 3y x 上的两点,点N(1,3)就是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点、 (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断就是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由、 (此题不要求在答题卡上画图)(6分) 8.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率() A. 等于0 B . 等于1 C . 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A.1 B .-1 C .0 D.7 3. 已知A (x 1,y 1)、B(x2,y 2)两点的连线平行y 轴,则|AB |=( ) A、|x 1-x 2|B 、|y 1-y 2|C、 x 2-x1D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限B.第一象限 C.第四象限D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x轴上的截距为() A.23- B .32- C .32 D .2 6.直线2x -y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2)B .(2)(3) C.(1)(3)D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线22 1:2+=x y l 垂直,则a 的值是( ) A 2 B -2 C.21 D .2 1- 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1y x =-

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学核心考点:解析几何压轴大题四大策略

解析几何压轴大题四大策略 解析几何研究的问题是几何问题,研究的手法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在.突破解析几何难题,先从找解题突破口入手. 策略一 利用向量转化几何条件 [典例] 如图所示,已知圆C :x 2+y 2-2x +4y -4=0,问:是否存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,请说明理由. [解题观摩] 假设存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点. 设直线l 的方程为y =x +b ,点A (x 1,y 1),B (x 2,y 2). 联立? ???? y =x +b ,x 2+y 2-2x +4y -4=0, 消去y 并整理得2x 2+2(b +1)x +b 2+4b -4=0, 所以x 1+x 2=-(b +1),x 1x 2=b 2+4b -42.① 因为以AB 为直径的圆过原点,所以OA ⊥OB , 即x 1x 2+y 1y 2=0. 又y 1=x 1+b ,y 2=x 2+b , 则x 1x 2+y 1y 2=x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0. 由①知,b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,解得b =-4或b =1. 当b =-4或b =1时, 均有Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36>0, 即直线l 与圆C 有两个交点. 所以存在直线l ,其方程为x -y +1=0或x -y -4=0. [题后悟通] 以AB 为直径的圆过原点等价于OA ⊥OB ,而OA ⊥OB 又可以“直译”为x 1x 2+y 1y 2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题. [针对训练]

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

《平面解析几何》复习试卷及答案解析

2021年新高考数学总复习第九章《平面解析几何》 复习试卷及答案解析 一、选择题 1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12 B .焦距为34 C .短轴长为14 D .离心率为 32 答案 D 解析 由椭圆方程16x 2+4y 2=1化为标准方程可得 x 2116+y 214 =1,所以a =12,b =14,c =34 , 长轴2a =1,焦距2c =32,短轴2b =12, 离心率e =c a =32 .故选D. 2.双曲线x 23-y 2 9 =1的渐近线方程是( ) A .y =±3x B .y =±13x C .y =±3x D .y =±33 x 答案 C 解析 因为x 23-y 2 9 =1, 所以a =3,b =3,渐近线方程为y =±b a x , 即为y =±3x ,故选C. 3.已知双曲线my 2-x 2=1(m ∈R )与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13 x D .y =±33x 答案 A

解析 ∵抛物线x 2=8y 的焦点为(0,2), ∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13 , ∴双曲线的渐近线方程为y =±3x ,故选A. 4.(2019·河北衡水中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y 3 =1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为( ) A.45 B.35 C.34 D.15 答案 A 解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34 , 又b 2+c 2=a 2?????34c 2+c 2=a 2?2516c 2=a 2, 所以e =c a =45 ,故选A. 5.(2019·洛阳、许昌质检)若双曲线x 2-y 2 b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3] D .[3,+∞) 答案 A 解析 双曲线x 2-y 2 b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即 2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,则k 等于( ) A.13 B.23 C.23 D.223 答案 D 解析 由????? y =k (x +2),y 2=8x ,消去y 得 k 2x 2+(4k 2-8)x +4k 2=0, Δ=(4k 2-8)2-16k 4>0,又k >0,解得0

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

平面解析几何直线练习题含答案

直线测试题 一.选择题(每小题5分共40分) 1. 下列四个命题中的真命题是( ) A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示; C.不经过原点的直线都可以用方程 1=+b y a x 表示; D.经过定点A (0, b )的直线都可以用方程y =kx +b 表示。 【答案】B 【解析】A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程b y a x +=1表示;D 中过A (0, b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 2. 图1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A.k 1<k 2<k 3 B.k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】D 【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3 均为锐角, 且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D. 3. 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A. A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A A D.2 121A A B B =1 【答案】A 【解析】法一:当两直线的斜率都存在时,- 11B A ·(2 2B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,???==???==0 001221B A B A 或,

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率( ) A. 等于0 B. 等于1 C. 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A .1 B .-1 C .0 D .7 3. 已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB|=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限 B.第一象限 C.第四象限 D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( ) A .23 - B .32- C .32 D .2 6.直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线221 :2+=x y l 垂直,则a 的值是( ) A 2 B -2 C .21 D .21 - 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1 y x =-

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高考数学压轴大题--解析几何

高考数学压轴大题-解析几何 1. 设双曲线C :1:)0(1222 =+>=-y x l a y a x 与直线相交于两个不同的点A 、B. (I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.12 5 PB PA =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组 ?? ???=+=-.1, 12 22y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012 24 2 ≠<-+≠-a a a a a a 且解得所以 双曲线的离心率 ).,2()2,2 6 ( 2 2 6 ,120.11122 +∞≠>∴≠<<+= += 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A . 12 5 ).1,(125 )1,(, 12 5 212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0, 13 17 ,060289 12,,.12125.1212172222 2 222 2 2= >= ----=--=a a a a x a a x a a x 所以由得消去所以 2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的

夹角余弦的最小值为3 1 . (Ⅰ)求椭圆C 的方程; (Ⅱ)过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ?(O 为原点)的面积的最大值及 相应的直线l 的方程. 解:(Ⅰ)设椭圆的长轴为2a , ∴a PF PF 221=+ 2221==c F F 2 12 22 124cos PF PF PF PF ?-+= θ = 2 12122124 2)(PF PF PF PF PF PF ?-?-+ =1244212-?-PF PF a 又 21212PF PF PF PF ?≥+ ∴2 21a PF PF ≤? 即31211244cos 2 22=-=--≥a a a θ ∴32 =a ∴椭圆方程为12 32 2=+ y x (Ⅱ) 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N ()1111212 OMN F OM F ON S S S OF y y ???=+=+=2121 y y - 22 1,32 1.x y x my ?+ =???=-? 063)1(222=-+-y my 即 044)32(22=--+my y m . 由韦达定理得: 324221+=+m m y y 324 22 1+-=?m y y ∴212212 214)(y y y y y y -+=- = 3216)32(162222+++m m m =2 22) 32() 1(48++m m 令12+=m t , 则1≥t ∴2 21y y -=4 1448)12(482++= +t t t t . 又令t t t f 1 4)(+=, 易知)(t f 在[1,+∞)上是增函数,

2019-2020年高考备考:2018年高考数学试题分类汇编----解析几何

见微知著,闻弦歌而知雅意 2019-2020届备考 青霄有路终须到,金榜无名誓不还! 2019-2020年备考 2018试题分类汇编---------解析几何 一、填空题 (1)直线与圆 1.(天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 1.2220x y x +-= 2.(全国卷I 文15)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.22 3.(全国卷III 理6改).直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上, 则ABP △面积的取值范围是__________. 3.[]26, 4.(天津理12)已知圆2220x y x +-=的圆心为 C ,直线2 1, 2232 x t y t ? =-+ ??? ?=-?? (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 4.1 2 5.(北京理7改)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变 化时,d 的最大值为__________. 5.3 6.(北京文7改)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如 图),点P 在其中一 段上,角α以OA 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是__________.

6.EF 7.(江苏12)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点, (5,0)B ,以AB 为直径的 圆C 与直线l 交于另一点D .若0AB CD ?=,则点A 的横坐标为__________. 7.3 8.(上海12)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y +=,则 11221 1 2 2 x y x y +-+-+ 的最大值为_________. 8.32+ (2)椭圆抛物线双曲线基本量 9.(浙江2 改)双曲线2 21 3 =x y -的焦点坐标是__________. 9.(?2,0),(2,0) 10.(上海2)双曲线2 214 x y -=的渐近线方程为_________. 10.12 y x =± 11.(上海13)设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离 之和为__________. 11.25 12.(北京文12)若双曲线2221(0)4x y a a -=>的离心率为5 2 ,则a =_________. 12.4 13.(北京文10)已知直线l 过点(1,0)且垂直于ε,若l 被抛物线24y ax =截 得的线段长为4,则抛物线 的焦点坐标为_________. 13.(1,0) 14.(全国卷II 理5 改)双曲线22 221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程 为_________. 14.2y x =± (3)圆锥曲线离心率

相关文档
最新文档