新课标高考数学填空选择压轴题汇编(理科)
高考数学真题分项汇编专题05 导数选择、填空(理科)(解析版)
十年(2014-2023)年高考真题分项汇编导数选择、填空目录题型一:导数的概念及其几何意义 ..................................... 1 题型二:导数与函数的单调性 ......................................... 8 题型三:导数与函数的极值、最值 ..................................... 9 题型四:导数与函数的零点 .......................................... 14 题型五:导数的综合应用 ............................................ 16 题型六:定积分 (20)题型一:导数的概念及其几何意义一、选择题1.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e a b <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y ′=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t −=−,即()1t ty e x t e +−, 由题意可知,点(),a b 在直线()1t t y e x t e +−上,可得()()11t tt b ae t e a t e =+−=+−,令()()1t f t a t e =+−,则()()t f t a t e ′=−.当t a <时,()0f t ′>,此时函数()f t 单调递增, 当t a >时,()0f t ′<,此时函数()f t 单调递减,所以,()()max a f t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=, 当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .2.(2020年高考课标Ⅰ卷理科·第0题)函数43()2f xx x =−的图像在点(1(1))f ,处的切线方程为( )A .21y x =−− B .21y x =−+ C .23y x =− D .21y x =+ 【答案】B【解析】()432f x x x =− ,()3246f x x x ′∴=−,()11f ∴=−,()12f ′=−, 因此,所求切线的方程为()121y x +=−−,即21y x =−+. 故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 3.(2020年高考课标Ⅲ卷理科·第0题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D解析:设直线l在曲线y =(0x ,则00x >,函数y =的导数为y ′=,则直线l的斜率k =,设直线l的方程为)0y x x −−,即00x x −+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍), 则直线l 的方程为210x y −+=,即1122y x =+. 故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019·全国Ⅲ·理·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e −=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =−,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
2024年新高考新结构数学选填压轴好题汇编(解析版)
2024年新高考新结构数学选填压轴好题汇编01一、单选题1.(2024·广东·高三统考阶段练习)在各棱长都为2的正四棱锥V -ABCD 中,侧棱VA 在平面VBC 上的射影长度为()A.263B.233C.3D.2【答案】B【解析】把正四棱锥V -ABCD 放入正四棱柱ABCD -A 1B 1C 1D 1中,则V 是上底面的中心,取A 1B 1的中点E ,C 1D 1的中点F ,连接EF ,BE ,CF ,过A 作AG ⊥BE ,垂足为G ,在正四棱柱ABCD -A 1B 1C 1D 1中,BC ⊥平面ABB 1A 1,AG ⊂平面ABB 1A 1,所以BC ⊥AG ,又BC ∩BE =B ,BC ,BE ⊂平面EFCB ,所以AG ⊥平面EFCB ,所以侧棱VA 在平面VBC 上的射影为VG ,由已知得,AA 1=2,EB =AA 21+AB 22=3,所以S △ABE =12×2×2=12×3⋅AG ,所以AG =223,所以VG =VA 2-AG 2=22-2232=233.故选:B .2.(2024·广东·高三校联考开学考试)已知a =14,b =3e -1,c =2ln2-ln3,则()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】B【解析】令f x =e x -x 0<x <1 、g x =ln x +1-x 0<x <1 ,则f x =e x -1>0,故f x 在0,1 上为增函数,故f x >f 0 =1,e x >x +1,其中0<x <1,故e 13>13+1,即3e -1>13,故b >13;而13-2ln2+ln3=13-ln 43=133-ln 6427 =13ln 27×e 364>13ln 27×364>0,故13>2ln2-ln3=c ,故b >c ;又g x =1-xx>0,故g x 在0,1 上为增函数,故g x <g 1 =0,ln x +1-x <0,其中0<x <1,故ln 34+1-34<0,即则14<-ln 34=ln 43,故a <c ;故b >c >a .故选:B .3.(2024·广东·高三校联考开学考试)已知函数f x =2sin 2ωx +3sin2ωx ω>0 在0,π 上恰有两个零点,则ω的取值范围是()A.23,1B.1,53C.23,1D.1,53【答案】B【解析】由题意可得f (x )=2sin 2ωx +3sin2ωx =3sin2ωx -cos2ωx +1=2sin 2ωx -π6 +1.令2sin 2ωx -π6 +1=0,解得sin 2ωx -π6 =-12,因为0<x <π,所以-π6<2ωx -π6<2ωπ-π6.因为f (x )在(0,π)上恰有两个零点,所以11π6<2ωπ-π6≤19π6,解得1<ω≤53.故选:B .4.(2024·广东湛江·统考一模)已知ab >0,a 2+ab +2b 2=1,则a 2+2b 2的最小值为()A.8-227B.223C.34D.7-228【答案】A【解析】因为ab >0,得:a 2+2b 2≥22a 2b 2=22ab (当且仅当a =2b 时成立),即得:ab ≤a 2+2b 222=24(a 2+2b 2),则1=a 2+ab +2b 2≤a 2+2b 2+24(a 2+2b 2)=4+24(a 2+2b 2),得:a 2+2b 2≥14+24=8-227,所以a 2+2b 2的最小值为8-227,故选:A .5.(2024·广东湛江·统考一模)在一次考试中有一道4个选项的双选题,其中B 和C 是正确选项,A 和D 是错误选项,甲、乙两名同学都完全不会这道题目,只能在4个选项中随机选取两个选项.设事件M =“甲、乙两人所选选项恰有一个相同”,事件N =“甲、乙两人所选选项完全不同”,事件X =“甲、乙两人所选选项完全相同”,事件Y =“甲、乙两人均未选择B 选项”,则()A.事件M 与事件N 相互独立B.事件X 与事件Y 相互独立C.事件M 与事件Y 相互独立D.事件N 与事件Y 相互独立【答案】C【解析】依题意甲、乙两人所选选项有如下情形:①有一个选项相同,②两个选项相同,③两个选项不相同,所以P M =C 14⋅C 13⋅C 12C 24⋅C 24=23,P N =C 24C 22C 24⋅C 24=16,P X =C 24C 24⋅C 24=16,P Y =C 23⋅C 23C 24⋅C 24=14,因为事件M 与事件N 互斥,所以P MN =0,又P M ⋅P N =19,所以事件M 与事件N 不相互独立,故A 错误;P XY =C 23C 24⋅C 24=112≠P X P Y =124,故B 错误;由P MY =C 13⋅C 12C 24⋅C 24=16=P M P Y ,则事件M 与事件Y 相互独立,故C 正确;因为事件N 与事件Y 互斥,所以P NY =0,又P Y ⋅P N =124,所以事件N 与事件Y 不相互独立,故D 错误.故选:C .6.(2024·广东梅州·统考一模)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,点P 是面ABB 1A 1上的动点,若点P 到点D 1的距离是点P 到直线AB 的距离的2倍,则动点P 的轨迹是( )的一部分A.圆B.椭圆C.双曲线D.抛物线【答案】C【解析】由题意知,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立如图空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,2),设P 1,m ,n (m ,n >0),所以PD 1=(-1,-m ,2-n ),因为P 到D 1的距离是P 到AB 的距离的2倍,所以PD 1=2n ,即-1 2+-m 2+2-n 2=4n 2,整理,得9n +23219-3m 219=1,所以点P 的轨迹为双曲线.故选:C7.(2024·广东深圳·统考一模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线E 的右支交于A ,B 两点,若AB =AF 1 ,且双曲线E 的离心率为2,则cos ∠BAF 1=()A.-378B.-34C.18D.-18【答案】D【解析】因为双曲线E 的离心率为2,所以c =2a ,因为AB =AF 1 ,所以BF 2 =AB -AF 2 =AF 1 -AF 2 =2a ,由双曲线的定义可得BF 1 -BF 2 =BF 1 -2a =2a ,所以BF 1 =4a =2BF 2 ,在△BF 1F 2中,由余弦定理得cos ∠BF 2F 1=BF 22+F 1F 2 2-BF 1 22BF 2 ⋅F 1F 2 =4a 2+8a 2-16a 22×2a ×22a=-24,在△AF 1F 2中,cos ∠F 1F 2A =-cos ∠F 1F 2B =24,设AF 2 =m ,则AF 1 =m +2a ,由AF 1 2=F 1F 2 2+AF 2 2-2F 1F 2 AF 2 cos ∠F 1F 2A 得(2a +m )2=(22a )2+m 2-2⋅22a ⋅m ⋅24,解得m =23a ,所以AF 1 =8a3,所以cos ∠BAF 1=AF 12+AB 2-BF 122AF 1 ⋅AB=64a 29+64a 29-16a 22×8a 3×8a 3=-18.故选:D8.(2024·广东深圳·统考一模)已知数列a n 满足a 1=a 2=1,a n +2=a n +2,n =2k -1-a n,n =2k(k ∈N ∗),若S n 为数列a n 的前n 项和,则S 50=()A.624B.625C.626D.650【答案】C【解析】数列a n 中,a 1=a 2=1,a n +2=a n +2,n =2k -1-a n ,n =2k(k ∈N ∗),当n =2k -1,k ∈N ∗时,a n +2-a n =2,即数列a n 的奇数项构成等差数列,其首项为1,公差为2,则a 1+a 3+a 5+⋯+a 49=25×1+25×242×2=625,当n =2k ,k ∈N ∗时,an +2a n=-1,即数列a n 的偶数项构成等比数列,其首项为1,公比为-1,则a 2+a 4+a 6+⋯+a 50=1×[1-(-1)25]1-(-1)=1,所以S 50=(a 1+a 3+a 5+⋯+a 49)+(a 2+a 4+a 6+⋯+a 50)=626.故选:C9.(2024·湖南长沙·长郡中学校考一模)已知实数a ,b 分别满足e a =1.02,ln b +1 =0.02,且c =151,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】D【解析】由e a =1.02,则a =ln1.02,令f x =ln x -2x -1x +1,x >1,则fx =1x -2x +1 -2x -1 x +1 2=x -1 2x x +12,则当x >1时,f x >0,故f x 在0,+∞ 上单调递增,故f 1.02 =ln1.02-21.02-1 1.02+1=ln1.02-2101>f 1 =0,即a =ln1.02>2101>2102=151=c ,即a >c ,由ln b +1 =0.02,则b =e 0.02-1,令g x=e x -ln 1+x -1,x >0,则g x =e x -1x +1,令h x =e x -1x +1,则当x >0时,h x =e x +1x +12>0恒成立,故g x 在0,+∞ 上单调递增,又g 0 =e 0-11=0,故g x >0恒成立,故g x 在0,+∞ 上单调递增,故g 0.02 =e 0.02-ln 1+0.02 -1>g 0 =0,即e 0.02-1>ln1.02,即b >a ,故c <a <b .故选:D .10.(2024·湖北黄冈·浠水县第一中学校考一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦距为2c ,直线y =b a x+b2与椭圆C 交于点P ,Q,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22C.105,1 D.0,13【答案】C【解析】联立方程y =b a x +b 2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a 2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .11.(2024·湖北武汉·统考模拟预测)如图,在函数f x =sin ωx +φ 的部分图象中,若TA =AB ,则点A 的纵坐标为()A.2-22B.3-12C.3-2D.2-3【答案】B【解析】由题意ωx +φ=3π2,则x =3π2ω-φω,所以T 3π2ω-φω,0 ,设A x 1,y 1 ,B x 2,y 2 ,因为TA =AB,所以x2+3π2ω-φω2=x1y22=y1,解得x2=2x1-3π2ω+φωy2=2y1,所以2y1=y2=f x2=f2x1-3π2ω+φω=sin2ωx1-3π2+2φ=cos2ωx1+2φ=1-2sin2ωx1+φ=1-2y21,所以2y21+2y1-1=0,又由图可知y1>0,所以y1=3-1 2.故选:B.12.(2024·湖北武汉·统考模拟预测)在三棱锥P-ABC中,AB=22,PC=1,PA+PB=4,CA-CB=2,且PC⊥AB,则二面角P-AB-C的余弦值的最小值为()A.23B.34C.12D.105【答案】A【解析】因为PA+PB=4=2a,所以a=2,点P的轨迹方程为x24+y22=1(椭球),又因为CA-CB=2,所以点C的轨迹方程为x2-y2=1,(双曲线的一支)过点P作PH⊥AB,AB⊥PC,而PH∩PC=P,PF,PC⊂面PHC,所以AB⊥面PHC,设O为AB中点,则二面角P-AB-C为∠PHC,所以不妨设OH=2cosθ,θ∈0,π2,PH=2sinθ,CH=4cos2θ-1,所以cos∠PHC=2sin2θ+4cos2θ-1-122sinθ4cos2θ-1=2cos2θ22sinθ4cos2θ-1=22⋅1-sin2θsinθ3-4sin2θ,所以cos 2∠PHC =12⋅1-sin 2θ 2sin 2θ3-4sin 2θ,令1-sin 2θ=t ,0<t <1,所以cos 2∠PHC =12⋅1-sin 2θ 2sin 2θ3-4sin 2θ =12⋅t 21-t 4t -1 ≥12⋅t 21-t +4t -122=29,等号成立当且仅当t =25=1-sin 2θ,所以当且仅当sin θ=155,cos θ=105时,cos ∠PHC min =23.故选:A .13.(2024·山东日照·统考一模)已知函数f x =2sin x -2cos x ,则()A.f π4+x=f π4-x B.f x 不是周期函数C.f x 在区间0,π2上存在极值D.f x 在区间0,π 内有且只有一个零点【答案】D【解析】对于A ,sin π4+x =sin π2-π4+x =cos π4-x ,cos π4+x =cos π2-π4+x =sin π4-x,所以f π4+x =2sin π4+x -2cos π4+x =-2sin π4-x -2cos π4-x =-f π4-x ,故A 错误;对于B ,f 2π+x =2sin 2π+x-2cos 2π+x=2sin x -2cos x =f x ,所以f x 是以2π为周期的函数,故B 错误;对于C ,由复合函数单调性可知y =2sin x ,y =2cos x 在区间0,π2上分别单调递增、单调递减,所以f x 在区间0,π2上单调递增,所以不存在极值,故C 错误;对于D ,令f x =2sin x -2cos x =0,x ∈0,π ,得2sin x =2cos x ,所以sin x =cos x ,即该方程有唯一解(函数f x在0,π 内有唯一零点)x =π4,故D 正确.故选:D .14.(2024·山东日照·统考一模)过双曲线x 24-y 212=1的右支上一点P ,分别向⊙C 1:(x +4)2+y 2=3和⊙C 2:(x-4)2+y 2=1作切线,切点分别为M ,N ,则PM +PN ⋅NM的最小值为()A.28B.29C.30D.32【答案】C【解析】由双曲线方程x 24-y 212=1可知:a =2,b =23,c =a 2+b 2=4,可知双曲线方程的左、右焦点分别为F 1-4,0 ,F 24,0 ,圆C 1:x +4 2+y 2=3的圆心为C 1-4,0 (即F 1),半径为r 1=3;圆C 2:x -4 2+y 2=1的圆心为C 24,0 (即F 2),半径为r 2=1.连接PF 1,PF 2,F 1M ,F 2N ,则MF 1⊥PM ,NF 2⊥PN ,可得PM +PN ⋅NM =PM +PN ⋅PM -PN =PM 2-PN 2=PF 1 2-r 21 -PF 2 2-r 22 =PF 1 2-3 -PF 2 2-1 =PF 1 2-PF 2 2-2=PF 1 -PF 2 ⋅PF 1 +PF 2 -2=2a PF 1 +PF 2 -2≥2a ⋅2c -2=2×2×2×4-2=30,当且仅当P 为双曲线的右顶点时,取得等号,即PM +PN ⋅NM的最小值为30.故选:C .15.(2024·福建福州·统考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,记g x =f x .若g x -2 的图象关于点2,0 对称,且g 2x -g (-2x -1)=g (1-2x ),则下列结论一定成立的是()A.f x =f 2-xB.g x =g x +2C.2024n =1g (n )=0D.2024n =1f (n )=0【答案】C【解析】因为g x -2 的图象关于点2,0 对称,所以g x 的图象关于原点对称,即函数g x 为奇函数,则g 0 =0,又g 2x -g (-2x -1)=g (1-2x ),所以g 2x +g (2x +1)=-g (2x -1),所以g t -1 +g (t )+g (t +1)=0,所以g t +g t +1 +g t +2 =0,所以g t -1 =g t +2 ,所以g t =g t +3 ,即g x =g x +3 ,所以3是g x 的一个周期.因为2024n =1g (n )=2024n =0g (n )=20253×[g (0)+g (1)+g (2)]=0,故C 正确;取符合题意的函数f x =cos 2π3x ,则g (x )=f x =-2π3sin 2π3x所以g 0 =0,又g (0+2)=-2π3sin 4π3=3π3=g (0),故2不是g x 的一个周期,所以g x ≠g x +2 ,故B 不正确;因为f 1 =cos 2π3=-12不是函数f x 的最值,所以函数f x 的图象不关于直线x =1对称,所以f x ≠f 2-x ,故A 不正确;因为2024n =1f (n )=2024n =1cos2π3n =-1≠0,故D 不正确;故选:C .16.(2024·浙江湖州·湖州市第二中学校考模拟预测)已知直线BC 垂直单位圆O 所在的平面,且直线BC 交单位圆于点A ,AB =BC =1,P 为单位圆上除A 外的任意一点,l 为过点P 的单位圆O 的切线,则()A.有且仅有一点P 使二面角B -l -C 取得最小值B.有且仅有两点P 使二面角B -l -C 取得最小值C.有且仅有一点P 使二面角B -l -C 取得最大值D.有且仅有两点P 使二面角B -l -C 取得最大值【答案】D【解析】过A 作AM ⊥l 于M ,连接MB 、MC ,如图所示,因为直线BC 垂直单位圆O 所在的平面,直线l 在平面内,且直线BC 交单位圆于点A ,所以AC ⊥l ,AM ,AC ⊂平面AMC ,AM ∩AC =A ,所以l ⊥平面AMC ,MC ,MB ⊂平面AMC ,所以l ⊥MC ,l ⊥MB ,所以∠BMC 是二面角B -l -C 的平面角,设∠BMC =θ,∠AMC =α,∠AMB =β,AM =t ,则θ=α-β,由已知得t ∈0,2 ,AB =BC =1,tan α=2t ,tan β=1t ,tan θ=tan α-β =tan α-tan β1+tan α⋅tan β=2t -1t 1+2t ⋅1t =t t 2+2,令f t =t t 2+2,则ft =1⋅t 2+2 -t 2t t 2+2 2=2+t 2-t t 2+22,当t ∈0,2 时,f t >0,f t 单调递增,当t ∈2,2 时,f t <0,f t 单调递减,f 2 =13>f 0 =0所以t ∈0,2 ,当t =2时,f t 取最大值,没有最小值,即当t =2时tan θ取最大值,从而θ取最大值,由对称性知当t =2时,对应P 点有且仅有两个点,所以有且仅有两点P 使二面角B -l -C 取得最大值.故选:D .17.(2024·浙江湖州·湖州市第二中学校考模拟预测)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,以F 1为圆心且过F 2的圆与x 轴交于另一点P ,与y 轴交于点Q ,线段QF 2与C 交于点A .已知△APF 2与△QF 1F 2的面积之比为3:2,则该椭圆的离心率为()A.23B.13-3C.3-1D.3+14【答案】B【解析】由题意可得F 1-c ,0 、F 2c ,0 ,F 1F 2=2c ,则以F 1为圆心且过F 2的圆的方程为x +c 2+y 2=4c 2,令x =0,则y P =±3c ,由对称性,不妨取点Q 在x 轴上方,即P 0,3c ,则l QF 2:y -3c =3c -00-cx ,即y =-3x +3c ,有S △QF 1F 2=12×2c ×3c =3c 2,则S △APF 2=32×3c 2=332c 2,又S △APF 2=12y A ×4c =2cy A ,即有332c 2=2cy A ,即y A =334c ,代入l QF 2:y =-3x +3c ,有334c =-3x A +3c ,即x A =14c ,即A 14c ,334c在椭圆上,故14c2a 2+334c2b 2=1,化简得b 2c 2+27a 2c 2=16a 2b 2,由b 2=a 2-c 2,即有a 2-c 2 c 2+27a 2c 2=16a 2a 2-c 2 ,整理得c 4-44a 2c 2+16a 4=0,即e 4-44e 2+16=0,有e 2=44-442-4×162=22-613或e 2=44+442-4×162=22+613,由22+613>1,故舍去,即e 2=22-613,则e =22-613=13-3 2=13-3.故选:B .18.(2024·浙江湖州·湖州市第二中学校考模拟预测)设a =sin0.2,b =0.16,c =12ln 32,则()A.a >c >bB.b >a >cC.c >b >aD.c >a >b【答案】D【解析】设f x =sin x -x -x 2 ,x ∈0,0.2 ,f x =cos x -1+2x ,设g x =f x ,g x =-sin x +2>0,所以g x ≥g 0 =0,所以函数f x 在0,0.2 上单调递增,所以f 0.2 =sin0.2-0.2-0.22 =sin0.2-0.16>f 0 =0,即a >b .根据已知得c =12ln 32=12ln 1.20.8=12ln 1+0.21-0.2,可设h x =12ln 1+x -ln 1-x -sin x ,x ∈ 0,0.2 ,则h x =1211+x +11-x -cos x =11-x 2-cos x >0,所以函数h x 在0,0.2 上单调递增,所以h 0.2 >h 0 =0,即c >a .综上,c >a >b .故选:D .19.(2024·浙江湖州·湖州市第二中学校考模拟预测)对于无穷数列{a n },给出如下三个性质:①a 1<0;②对于任意正整数n ,s ,都有a n +a s <a n +s ;③对于任意正整数n ,存在正整数t ,使得a n +t >a n 定义:同时满足性质①和②的数列为“s 数列”,同时满足性质①和③的数列为“t 数列”,则下列说法正确的是()A.若{a n }为“s 数列”,则{a n }为“t 数列”B.若a n =-12n,则{a n }为“t 数列”C.若a n =2n -3,则{a n }为“s 数列” D.若等比数列{a n }为“t 数列”则{a n }为“s 数列”【答案】C【解析】设a n =-2n -3,此时满足a 1=-2-3=-5<0,也满足∀n ,s ∈N ∗,a n +s =-2(n +s )-3,a n +a s =-2n -3-2s -3=-2(n +s )-6,即∀n ,s ∈N ∗,a n +s >a n +a s ,{a n }为“s 数列”,因为a n +t =-2(n +t )-3=-2n -2t -3=a n -2t <a n ,所以A 错误;若a n =-12 n ,则a n =-12 -1=-12<0,满足①,a n +1=-12 n +1,令-12 n +1>-12n,若n 为奇数,此时-12 n <0,存在t ∈N ∗,且为奇数时,此时满足-12 n +t >0>-12 n,若n 为偶数,此时-12 n >0,则此时不存在t ∈N ∗,使得-12 n +t >-12n,所以B 错误;若a n =2n -3,则a n =2-3=-1<0,满足①,∀n ,s ∈N ∗,a n +s =2(n +s )-3,a n +a s =2n -3+2s -3=2(n +s )-6,因为2(n +s )-3>2(n +s )-6,所以∀n ,s ∈N ∗,a n +s >a n +a s ,满足②,所以C 正确;不妨设a n =(-2)n ,满足a 1=-2<0,且∀n ∈N ∗,a n =(-2)n ,当n 为奇数,取t =1,使得a n +1=(-2)n +1>a n ;当n 为偶数,取t =2,使得a n +2=(-2)n +2>a n ,所以a n 为“t 数列”,但此时不满足∀n ,s ∈N ∗,a n +s >a n +a s ,不妨取n =1,s =2,则a 1=-2,a 2=4,a 3=-8,而a 1+2=-8<-2+4=a 1+a 2,则a n 为“s 数列”,所以D 错误.故选:C .20.(2024·江苏·统考模拟预测)已知函数f x 的定义域为R ,对任意x ∈R ,有f x -f x >0,则“x <2”是“e x f x +1 >e 4f 2x -3 ”的()A.充分不必要条件B.必要不充分条件C.既不充分又不必要条件D.充要条件【答案】A【解析】因为fx -f x >0,则f x -f x e x>0,令g x =f xex ,则g x >0,所以g x 在R 上单调递增.e xf x +1 >e 4f 2x -3 ⇔f x +1 e x +1>f 2x -3e 2x -3⇔g x +1 >g 2x -3⇔x +1>2x -3⇔x <4,所以“x <2”是“e x f x +1 >e x f 2x -3 ”的充分不必要条件,故选:A .21.(2024·江苏·统考模拟预测)离心率为2的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与抛物线E :y 2=2px (p >0)有相同的焦点F ,过F 的直线与C 的右支相交于A ,B 两点.过E 上的一点M 作其准线l 的垂线,垂足为N ,若MN =3OF (O 为坐标原点),且△MNF 的面积为122,则△ABF 1(F 1为C 的左焦点)内切圆圆心的横坐标为()A.14B.24C.22D.12【答案】D【解析】MN =3OF =3⋅p 2,x M +p 2=3p 2,∴x M =p .y 2M =2p 2,y M =2p ,S △MNF =12⋅3p 2⋅2p =122,p =4,F 2,0 ,双曲线中c =2,e =ca =2,∴a =1,b 2=3,双曲线:x 2-y 23=1.设直线AB :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,AF =m ,BF =n ,△ABF 1内切圆圆心为I ,所以m =x 1-22+y 21=x 21-4x 1+4+3x 2-3=2x 1-12=2x 1-1 =2x 1-1,同理n =2x 2-1,从而AB =m +n =2x 1+x 2 -2,由双曲线定义知AF 1 =m +2a =2x 1-1+2=2x 1+1,同理BF 1 =2x 2+1;接下来我们证明如下引理:三个不共线的点C x 3,y 3 ,D x 4,y 4 ,E x 5,y 5 构成的三角形的内心坐标为GDE x 3+CE x 4+CD x 5DE +CE +CD,DE y 3+CE y 4+CD y 5DE +CE +CD,先来证明G 是三角形CDE 的内心当且仅当DE GC +CE GD +CD GE =0,若DE GC +CE GD +CD GE =0,则DE GC +CE GC +CD +CD GC +CE =0,则CG =CE CD DE +CE +CD CD CD +CECE,而由平行四边形法则可知CD CD +CECE与∠DCE 的角平分线共线,所以CG 经过三角形CDE 的内心,同理DG 经过三角形CDE 的内心,EG 经过三角形CDE 的内心,所以点G 是三角形CDE 的内心,由于上述每一步都是等价变形,反正亦然,所以G 是三角形CDE 的内心当且仅当DE GC +CE GD +CD GE =0,不妨设三角形CDE 的内心G x ,y ,则由DE GC +CE GD +CD GE =0得DE x 3-x +CE x 4-x +CD x 5-x =0,所以解得x =DE x 3+CE x 4+CD x 5DE +CE +CD ,同理y =DE y 3+CE y 4+CD y 5DE +CE +CD,从而GDE x 3+CE x 4+CD x 5DE +CE +CD,DE y 3+CE y 4+CD y 5DE +CE +CD,引理得证;由上述引理,即由内心坐标公式有x I =2x 2+1 x 1+2x 1+1 x 2-22x 1+x 2 -22x 2+1+2x 2+1+2x 1+x 2 -2=4x 1x 2-3x 1+x 2 +44x 1+x 2,联立x 2-y 23=1与AB :x =ty +2,整理并化简得3t 2-1 y 2+12ty +9=0,Δ=144t 2+363t 2-1 =36t 2+1 >0,y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,所以x 1+x 2=t y 1+y 2 +4=t ⋅-12t 3t 2-1+4=-43t 2-1,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4=t 2⋅93t 2-1+2t ⋅-12t 3t 2-1+4=-3t 2-43t 2-1,所以x I =4x 1x 2-3x 1+x 2 +44x 1+x 2=-12t 2-163t 2-1+123t 2-1+4-163t 2-1=12,△ABF 1内切圆圆心在直线x =12上.故选:D .22.(2024·云南昆明·统考模拟预测)已知函数f x =x -1 e x +a 在区间-1,1 上单调递增,则a 的最小值为()A.e -1B.e -2C.eD.e 2【答案】A【解析】由题意得f x ≥0在-1,1 上恒成立,f x =e x +a +x -1 e x =xe x +a ,故xe x +a ≥0,即a ≥-xe x ,令g x =-xe x ,x ∈-1,1 ,则g x =-e x -xe x =-x +1 e x <0在x ∈-1,1 上恒成立,故g x =-xe x 在x ∈-1,1 上单调递减,故g x >g -1 =e -1,故a ≥e -1,故a 的最小值为e -1.故选:A23.(2024·湖南·高三校联考开学考试)已知函数f x =x -a exx +1的定义域为0,4 ,若f x 是单调函数,且f x 有零点,则a 的取值范围是()A.0,4B.0,3C.0,2D.0,e【答案】B【解析】因为f x 有零点,所以方程f x =0有解,即x -a =0在0,4 上有解,所以a ∈0,4 .又由f x =x -a exx +1可得:fx =x 2+1-a x +1x +12e x.因为f x 是单调函数,所以函数g x =x 2+1-a x +1≥0在0,4 上恒成立或g x =x 2+1-a x +1≤0在0,4 上恒成立.因为g 0 =1>0,所以g x =x 2+1-a x +1≤0在0,4 上不可能恒成立.即函数g x =x 2+1-a x +1≥0在0,4 上恒成立,即x +1x+1-a ≥0在0,4 上恒成立.因为x +1x+1-a ≥3-a (当且仅当x =1时,等号成立),故须使3-a ≥0,解得a ≤3.综上,a 的取值范围是0,3 .故选:B .24.(2024·山东·高三山东省实验中学校考开学考试)双曲线M :x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点分别为A ,B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当mn +9mn 取到最小值时,双曲线离心率为()A.3 B.4 C.3 D.2【答案】D【解析】设A (-a ,0),B (a ,0),C (x ,y ),D (x ,-y ),则m =k AC =y x +a ,n =k BD =-y x -a ,所以mn =-y 2x 2-a2,将曲线方程x 2-a 2a 2=y 2b 2代入得mn =-b 2a2,又由均值定理得mn +9mn =mn +9mn ≥2mn ×9mn =6,当且仅当mn =9mn ,即mn =b 2a 2=3时等号成立,所以离心率e =1+b 2a2=2,故选:D .二、多选题25.(2024·广东·高三统考阶段练习)若过点(a ,b )可作曲线f (x )=x 2ln x 的n 条切线(n ∈N ),则()A.若a ≤0,则n ≤2B.若0<a <e -32,且b =a 2ln a ,则n =2C.若n =3,则a 2ln a <b <2ae -32+12e -3D.过e -32,-6 ,仅可作y =f (x )的一条切线【答案】ABD【解析】设切点x 0,x 20ln x 0 ,则f x 0 =2x 0ln x 0+x 0,切线为y -x 20ln x 0=2x 0ln x 0+x 0 x -x 0 ,代入(a ,b )整理得2x 0ln x 0+x 0 a -x 20ln x 0-x 20-b =0,令g (x )=(2x ln x +x )a -x 2ln x -x 2-b ,g (x )=(2ln x +3)a -2x ln x -3x =(2ln x +3)⋅(a -x ),令g(x )=0得x 1=a ,x 2=e -32.当a ≤0时,x ∈0,e-32,g (x )>0,所以g (x )在0,e -32上单调递增,x ∈e -32,+∞ ,g(x )<0,所以在e -32,+∞ 上单调递减,g e-32=-2a ⋅e-32+12⋅e -3-b ,在0,+∞ 两侧均有可能为负,同时极大值可能为正,所以g (x )至多有2个零点,故A 正确;当a ∈0,e -32时,x ∈(0,a )和x ∈e -32,+∞ 时,g(x )<0,所以g (x )在(0,a ),e -32,+∞ 上单调递减,x ∈a ,e-32,g(x )>0,所以g (x )在a ,e -32上单调递增,g (a )=a 2ln a -b ,g e-32=-2ae-32+12⋅e -3-b ,当b =a 2ln a 时,g (a )=0,所以g e -32>0,结合图象,值域为-∞,-2ae -32+12⋅e -3-b,所以n =2,B 正确;若n =3,则g (a )<0<g e -32,即a 2ln a <b <-2ae -32+12e -3,同理当a >e -32时,g e -32 <0<g (a ),即-2ae -32+12e -3<b <a 2ln a ,C 错误;若a =e-32时,g (x )≤0,g (x )单调递减;结合图象,g (x )∈-∞,b ,则当-b >0时,g (x )有1个零点,即b <0,D 正确.故选:ABD .26.(2024·广东·高三校联考开学考试)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=4,E 是棱BB 1上的一点,点F 在棱DD 1上,则下列结论正确的是()A.若A 1,C ,E ,F 四点共面,则BE =DFB.存在点E ,使得BD ⎳平面A 1CEC.若A 1,C ,E ,F 四点共面,则四棱锥C 1-A 1ECF 的体积为定值D.若E 为BB 1的中点,则三棱锥E -A 1CC 1的外接球的表面积是32π【答案】BCD【解析】对A ,由A 1,C ,E ,F 四点共面,得CF ⎳A 1E ,则DF =B 1E ,若E 不是棱BB 1的中点,则BE ≠DF ,故A 错误.对B ,当E 是棱BB 1的中点时,取A 1C 的中点G ,连接GE ,B 1D ,则G 为B 1D 的中点.因为E 为BB 1的中点,则GE ⎳BD .因为GE ⊂平面A 1CE ,BD ⊄平面A 1CE ,所以BD ⎳平面A 1CE ,则B 正确.根据长方体性质知BB 1⎳CC 1,且CC 1⊂平面A 1CC 1,BB 1⊄平面A 1CC 1,所以BB 1⎳平面A 1CC 1,同理可得DD 1⎳平面A 1CC 1,则点E ,F 到平面A 1CC 1的距离为定值,又因为△A 1CC 1的面积为定值,所以三棱锥E -A 1CC 1和三棱锥F -A 1CC 1的体积都为定值,则四棱锥C 1-A 1ECF 的体积为定值,故C 正确.取棱CC 1的中点O 1,由题中数据可得CE =C 1E =22,CC 1=4,则CE 2+C 1E 2=CC 12,所以△CC 1E 为等腰直角三角形,所以O 1是△CC 1E 外接圆的圆心,△CC 1E 外接圆的半径r =2.设三棱锥E -A 1CC 1的外按球的球心为O ,半径为R ,设OO 1=d ,则R 2=d 2+r 2=O 1B 21+A 1B 1-d 2=8+(2-d )2,即d 2+4=8+(2-d )2,解得d =2,则R 2=8,此时O 点位于DD 1中点,从而三棱锥E -A 1CC 1的外接球的表面积是4πR 2=32π,故D 正确.故选:BCD .27.(2024·广东·高三校联考开学考试)已知函数f x 的定义域为R ,且f x -1 +f x +1 =0,f 1-x =f x +5 ,若f 52=1,则()A.f x 是周期为4的周期函数B.f x 的图像关于直线x =1对称C.f x 是偶函数D.f 12 +2f 32 +3f 52 +⋯+30f 592=-31【答案】ABD【解析】对A ,因为f (x -1)+f (x +1)=0,所以f (x +1)+f (x +3)=0,所以f (x -1)=f (x +3),即f (x )=f (x +4),所以f (x )是周期为4的周期函数,则A 正确.对B ,因为f (1-x )=f (x +5),所以f (1-x )=f (x +1),所以f (x )的图象关于直线x =1对称,则B 正确.对C ,因为f 52 =1,所以f -32 =1.令x =32,得f 12 +f 52 =0,则f 12=-1.因为f (x )的图象关于直线x =1对称,所以f 32 =f 12 =-1,则f 32 ≠f -32,从而f (x )不是偶函数,则C 错误.对D ,由f (x )的对称性与周期性可得f 12 =f 32 =-1,f 52 =f 72=1,则f 12 +2f 32 +3f 52 +⋯+30f 592 =7(-1-2+3+4)-29-30=-31,故D 正确.故选:ABD .28.(2024·广东湛江·统考一模)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =2BB 1=4,BC =3,M ,N 分别为BB 1和CC 1的中点,P 为棱B 1C 1上的一点,且PC ⊥PM ,则下列选项中正确的有()A.三棱柱ABC -A 1B 1C 1存在内切球B.直线MN 被三棱柱ABC -A 1B 1C 1的外接球截得的线段长为13C.点P 在棱B 1C 1上的位置唯一确定D.四面体ACMP 的外接球的表面积为26π【答案】ABD【解析】对于A ,取棱AA 1中点Q ,连接MQ ,NQ ,若三棱柱ABC -A 1B 1C 1存在内切球,则三棱柱ABC -A 1B 1C 1内切球球心即为△MNQ 的内切圆圆心,∵△MNQ 的内切圆半径即为△ABC 的内切圆半径,又AB ⊥BC ,AB =4,BC =3,∴AC =5,∴△ABC 的内切圆半径r =2S △ABCAB +BC +AC=2×12×4×34+3+5=1,即△MNQ 的内切圆半径为1,又平面ABC 、平面A 1B 1C 1到平面MNQ 的距离均为1,∴三棱柱ABC -A 1B 1C 1存在内切球,内切球半径为1,A 正确;对于B ,取AC 中点G ,NQ 中点O ,MN 中点H ,连接BG ,OG ,OH ,B 1C ,OB 1,∵AB ⊥BC ,∴G 为△ABC 的外接圆圆心,又OG ⎳AA 1⎳BB 1,BB 1⊥平面ABC ,∴O 为三棱柱ABC -A 1B 1C 1的外接球的球心;∵BB 1⊥平面ABC ,AB ⊂平面ABC ,∴BB 1⊥AB ,又AB ⊥BC ,BB 1∩BC =B ,BB 1,BC ⊂平面BCC 1B 1,∴AB ⊥平面BCC 1B 1,∵OH ⎳MQ ⎳AB ,∴OH ⊥平面BCC 1B 1,∴H 为四边形BCC 1B 1的外接圆圆心,∵四边形BCC 1B 1为矩形,∴直线MN 被三棱柱ABC -A 1B 1C 1截得的线段长即为矩形BCC 1B 1的外接圆直径,∵B 1C =BC 2+BB 21=9+4=13,∴直线MN 被三棱柱ABC -A 1B 1C 1截得的线段长为13,B 正确;对于C ,在平面中作出矩形BCC 1B 1,设C 1P =m 0≤m ≤3 ,则B 1P =3-m ,∴PC 2=4+m 2,MP 2=1+3-m 2,MC 2=32+12=10,又PC ⊥PM ,∴PC 2+PM 2=MC 2,即4+m 2+1+3-m 2=10,解得:m =1或m =2,∴P 为棱B1C 1的三等分点,不是唯一确定的,C 错误;对于D ,取MC 中点S ,∵PC ⊥PM ,∴S 为△PCM 的外接圆圆心,且BS =12MC =1232+12=102,则四面体ACMP 的外接球球心O 在过S 且垂直于平面PCM 的直线上,∵AB ⊥平面PCM ,∴O S ⊥平面PCM ,设O S =a ,四面体ACMP 的外接球半径为R ,∴R 2=102 2+a 2=102 2+4-a 2,解得:a =2,R 2=132,∴四面体ACMP 的外接球表面积为4πR 2=26π,D 正确.故选:ABD .29.(2024·广东梅州·统考一模)如图,从1开始出发,一次移动是指:从某一格开始只能移动到邻近的一格,并且总是向右或右上或右下移动,而一条移动路线由若干次移动构成,如从1移动到9,1→2→3→5→7→8→9就是一条移动路线.从1移动到数字n n =2,3,⋅⋅⋅,9 的不同路线条数记为r n ,从1移动到9的事件中,跳过数字n n =2,3,⋅⋅⋅,8 的概率记为p n ,则下列结论正确的是()A.r 6=8B.r n +1>r nC.p 5=934D.p 7>p 8【答案】ABD【解析】画出树状图,结合图形结合树状图可知:r 2=1,r 3=2,r 4=3,r 5=5,r 6=8,r 7=13,r 8=21,r 9=34,对于选项A :可知r 6=8,故A 正确;对于选项B :均有r n +1>r n ,故B 正确;对于选项C :因为r 9=34,过数字5的路线有5条,所以p 5=1-r 5r 9=2934,故C 错误;对于选项D :因为p 7=1-r 7r 9=2134,p 8=1-r 8r 9=1334,所以p 7>p 8,故D 正确;故选:ABD .30.(2024·广东梅州·统考一模)已知函数f x =e sin x -e cos x ,则下列说法正确的是()A.f x 的图象关于直线x =π4对称 B.f x 的图象关于点π4,0中心对称C.f x 是一个周期函数 D.f x 在区间0,π 内有且只有一个零点【答案】BCD【解析】AB 选项,f x 的定义域为R ,f π2-x =e sin π2-x -e cos π2-x =e cos x -e sin x =-f x ,所以f x 关于点π4,0 中心对称,A 选项错误,B 选项正确.C 选项,f x +2π =esin x +2π-ecos x +2π=e sin x -e cos x =f x ,所以f x 是周期函数,C 选项正确.D 选项,令f x =e sin x -e cos x =0得e sin x =e cos x ,所以sin x =cos x ,在区间0,π 上,解得x =π4,所以f x 在区间0,π 内有且只有一个零点,所以D 选项正确.故选:BCD31.(2024·广东深圳·统考一模)如图,八面体Ω的每一个面都是边长为4的正三角形,且顶点B ,C ,D ,E 在同一个平面内.若点M 在四边形BCDE 内(包含边界)运动,N 为AE 的中点,则()A.当M 为DE 的中点时,异面直线MN 与CF 所成角为π3B.当MN ∥平面ACD 时,点M 的轨迹长度为22C.当MA ⊥ME 时,点M 到BC 的距离可能为3D.存在一个体积为103的圆柱体可整体放入Ω内【答案】ACD 【解析】因为BCDE 为正方形,连接BD 与CE ,相交于点O ,连接OA ,则OD ,OE ,OA 两两垂直,故以OD ,OE ,OA 为正交基地,建立如图所示的空间直角坐标系,D (22,0,0),B (-22,0,0),E (0,22,0),C (0,-22,0),A (0,0,22),F (0,0,-22),N 为AE 的中点,则N (0,2,2).当M 为DE 的中点时,M (2,2,0),MN =-2,0,2 ,CF =0,22,-22 ,设异面直线MN 与CF 所成角为θ,cos θ=cos MN ,CF =MN ⋅CFMN CF=0+0-4 2×4=12,θ∈0,π2 ,故θ=π3,A 正确;设P 为DE 的中点,N 为AE 的中点,则PN ∥AD ,AD ⊂平面ACD ,PN ⊄平面ACD ,则PN ∥平面ACD ,又MN ∥平面ACD ,又MN ∩PN =N ,设Q ∈BC ,故平面MNP ∥平面ACD ,平面ACD ∩平面BCDE =CD ,平面MNP ∩平面BCDE =PQ ,则PQ ∥CD ,则Q 为BC 的中点,点M 在四边形BCDE 内(包含边界)运动,则M ∈PQ ,点M 的轨迹是过点O 与CD 平行的线段PQ ,长度为4,B 不正确;当MA ⊥ME 时,设M (x ,y ,0),MA =(-x ,-y ,22),ME =(-x ,22-y ,0),MA ⋅ME=x 2+y (y -22)=0,得x 2+y 2-22y =0,即x 2+(y -2)2=2,即点M 的轨迹以OE 中点K 为圆心,半径为2的圆在四边BCDE 内(包含边界)的一段弧(如下图),K 到BC 的距离为3,弧上的点到BC 的距离最小值为3-2,因为3-2<3,所以存在点M 到BC 的距离为3,C 正确;由于图形的对称性,我们可以先分析正四棱锥A -BCDE 内接最大圆柱的体积,设圆柱底面半径为r ,高为h ,P 为DE 的中点,Q 为BC 的中点, PQ =4,AO =22,根据△AGH 相似△AOP ,得GH OP =AG AO ,即r 2=22-h22,h =2(2-r ),则圆柱体积V =πr 2h =2πr 2(2-r ),设V (r )=2π(2r 2-r 3)(0<r <2),求导得V (r )=2π(4r -3r 2),令V (r )=0得,r =43或r =0,因为0<r <2,所以r =0舍去,即r =43,当0<r <43时,V (r )>0,当43<r <2时,V (r )<0,即r =43时V 有极大值也是最大值,V 有最大值32227,32227-53=962-13527=962×2-135227=18432-1822527>0,故32227>53所以存在一个体积为10π3的圆柱体可整体放入Ω内,D 正确.故选:ACD .32.(2024·湖南长沙·长郡中学校考一模)已知函数f x =A tan ωx +φ (ω>0,0<φ<π)的部分图象如图所示,则()A.ω⋅φ⋅A =π6B.f x 的图象过点11π6,233C.函数y =f x 的图象关于直线x =5π3对称D.若函数y =f x +λf x 在区间-5π6,π6 上不单调,则实数λ的取值范围是-1,1【答案】BCD【解析】A :设该函数的最小正周期为T ,则有T =πω=π6--5π6 ⇒ω=1,即f x =A tan x +φ ,由函数的图象可知:π6+φ=π2⇒φ=π3,即f x =A tan x +π3,由图象可知:f 0 =A tan π3=23⇒A =2,所以ω⋅φ⋅A =2π3,因此本选项不正确;B :f 11π6 =2tan 11π6+π3 =2tan 13π6=2tan π6=2×33=233,所以本选项正确;C :因为f 5π3-x =2tan 5π3-x +π3=2tan x ,f 5π3+x =2tan 5π3+x +π3=2tan x ,所以f 5π3-x =f 5π3+x ,所以函数y =f x 的图象关于直线x =5π3对称,因此本选项正确;D :y =f x +λf x =2tan x +π3 +2λtan x +π3当x ∈-π3,π6 时,y =f x +λf x =2tan x +π3 +2λtan x +π3 =2tan x +π3 +2λtan x +π3 =2+2λ tan x +π3 ,当x ∈-5π6,-π3,y =f x +λf x =2tan x +π3 +2λtan x +π3 =-2tan x +π3 +2λtan x +π3=-2+2λ tan x +π3,当函数y =f x +λf x 在区间-5π6,π6上不单调时,则有2+2λ -2+2λ ≤0⇒-1≤λ≤1,故选:BCD33.(2024·湖南长沙·长郡中学校考一模)小郡玩一种跳棋游戏,一个箱子中装有大小质地均相同的且标有1∼10的10个小球,每次随机抽取一个小球并放回,规定:若每次抽取号码小于或等于5的小球,则前进1步,若每次抽取号码大于5的小球,则前进2步.每次抽取小球互不影响,记小郡一共前进n 步的概率为p n ,则下列说法正确的是()A.p 2=14B.p n =12p n -1+12p n -2n ≥3 C.p n =1-12p n -1n ≥2 D.小华一共前进3步的概率最大【答案】BC【解析】根据题意,小郡前进1步的概率和前进2步的概率都是12,所以P 1=12,P 2=12×12+12=34,故选项A错误;当n≥3时,其前进几步是由两部分组成:先前进n-1步,再前进1步,其概率为12p n-1,或者先前进n-2步,再前进2步,其概率为12p n-2,所以p n=12p n-1+12p n-2n≥3,故选项B正确;因为p n=12p n-1+12p n-2n≥3,所以2p n+p n-1=2p n-1+p n-2n≥3,而2p2+p1=2×34+12=2,所以2p n+p n-1=2n≥2,即p n=1-12p n-1n≥2,故选项C正确;因为当n≥2时,p n=1-12p n-1,所以p n-23=-12p n-1-23,又p1-23=12-23=-16,所以数列p n-23是首项为-16,公比为-12的等比数列.所以P n-23=-16×-12n-1,所以P n=23-16×-12n-1.当n为奇数时,n-1为偶数,则P n=23-16×12n-1,此时数列p n 单调递增,所以P n<23;当n为偶数时,n-1为奇数,则P n=23+16×12n-1,此时数列p n 单调递减,所以P n≤P2=3 4;综上,当n=2时,概率最大,即小华一共前进2步的概率最大,故选项D错误.故选:BC34.(2024·湖北黄冈·浠水县第一中学校考一模)在三棱锥A-BCD中,AD=BC=4,AB=BD=DC=CA=6,M为BC的中点,N为BD上一点,球O为三棱锥A-BCD的外接球,则下列说法正确的是()A.球O的表面积为11πB.点A到平面BCD的距离为14C.若MN⊥AB,则DN=6NBD.过点M作球O的截面,则所得的截面中面积最小的圆的半径为2【答案】BCD【解析】由AD=BC=4,AB=BD=DC=CA=6,可将三棱锥A-BCD补形成如图所示的长方体,设BF=x,BE=y,AE=z,则x2+y2=16z2+y2=36x2+z2=36,解得x=22y=22z=27,即AE=27,EB=BF=22,所以球O的半径为272+222+2222=11,所以球O的表面积为44π,故A错误.由题得长方体为正四棱柱,AB=AC=BD=CD,M为BC的中点,故AM⊥BC,DM⊥BC,又AM∩DM=M,AM,DM⊂平面AMD,则BC⊥平面AMD,又BC⊂平面BCD,故平面BCD⊥平面AMD,平面BCD∩平面AMD=MD,过点A作MD的垂线,交MD于H,则AH⊥平面BCD,故AH为点A到平面BCD的距离.在△AMD中,AM=MD=42,AD=4,故cos ∠ADH =16+32-322×4×42=122,sin ∠ADH =722,则AH =4×722=14,故B 正确.以E 为原点,EB ,EC ,EA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A 0,0,27 ,D 22,22,27 ,B 22,0,0 ,M 2,2,0 ,AB =22,0,-27 ,BD =0,22,27 .设BN =λBD=0,22λ,27λ ,所以MN =MB +BN=2,-2,0 +0,22λ,27λ =2,22λ-2,27λ ,因为MN ⊥AB ,所以MN ⋅AB=22×2-27×27λ=0,解得λ=17,所以DN =6NB ,故C 正确.当且仅当OM 与截面垂直时,截面面积最小,由A 解析知:最小的半径为11-7=2,故D 正确.故选:BCD35.(2024·湖北武汉·统考模拟预测)已知函数f x =a e x +1 ln 1+x 1-x-e x+1恰有三个零点,设其由小到大分别为x 1,x 2,x 3,则()A.实数a 的取值范围是0,1eB.x 1+x 2+x 3=0C.函数g x =f x +kf -x 可能有四个零点D.f ′x 3 f ′x 1=e x3【答案】BCD【解析】对于B ,f x =0⇔a ln 1+x 1-x +1-e x e x +1=0,设h x =a ln 1+x 1-x +1-e xe x +1,则它的定义域为-1,1 ,它关于原点对称,且h -x =a ln 1-x 1+x +1-e -x e -x +1=-a ln 1+x 1-x +1-e xe x +1=-h x ,所以h x 是奇函数,由题意h x =0有三个根x 1,x 2,x 3,则x 1+x 2+x 3=0,故B 正确;对于C ,由f x +kf -x =0⇒a e x +1 ln 1+x 1-x -e x +1+a e -x +1 ln 1-x 1+x -e -x +1 =0,所以a ln 1+x 1-x +1-e x e x +1+k a ln 1+x 1-x e x -1-e x e x1+e x=0,所以a ln 1+x 1-x +1-e x e x +1=k e x a ln 1+x 1-x +1-e x e x +1,即a ln 1+x 1-x +1-e x e x +1 1-k e x=0已经有3个实根x 1,x 2,x 3,当k >0时,令1-kex =0,则x =ln k ,只需保证ln k ≠x 1,x 2,x 3可使得方程有4个实根,故C 正确;由B 可知,x 1=-x 3,而f x 3 f x 1=e x 3⇔f x 3 =e x3f -x 3 ,又f x =ae x ln 1+x 1-x +a e x +1 21-x 2-e x ,e x 3f-x 3 =a ln 1-x 31+x 3+a e x 3+1 21-x 23-1,所以f x 3 =ae x 3ln 1+x 31-x 3+a e x 3+1 21-x 23-ex3。
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
历年高考理科数学选填压轴题专练题含详细答案
一.选择题(共26小题)1.设实数x,y 满足,则z=+的取值范围是()A.[4,]B.[,]C.[4,]D.[,]2.已知三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,则该三棱锥的外接球的体积等于()A .B .C .D .3.三棱锥P﹣ABC中,PA⊥平面ABC且PA=2,△ABC 是边长为的等边三角形,则该三棱锥外接球的表面积为()A .B.4π C.8π D.20π4.已知函数f(x+1)是偶函数,且x>1时,f′(x)<0恒成立,又f (4)=0,则(x+3)f(x+4)<0的解集为()A.(﹣∞,﹣2)∪(4,+∞)B.(﹣6,﹣3)∪(0,4)C.(﹣∞,﹣6)∪(4,+∞)D.(﹣6,﹣3)∪(0,+∞)5.当a>0时,函数f(x)=(x2﹣2ax)e x的图象大致是()A . B .C D .6.抛物线y2=4x的焦点为F,M为抛物线上的动点,又已知点N(﹣1,0),则的取值范围是()A.[1,2] B.[,] C.[,2]D.[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.268.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,若不等式f(﹣4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是()A .B .C .D .9.将函数的图象向左平移个单位得到y=g (x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min =,则φ的值是()A .B . C . D .10.在平面直角坐标系xOy中,点P为椭圆C :+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(,],则椭圆C的离心率的取值范围为()A.(0,]B.(0,]C.[,]D.[,]11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为()A .B .C .D.512.若函数f(x)=2sin ()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32 B.﹣16 C.16 D.3213.已知抛物线方程为y2=4x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为()A .B .﹣1 C.2D.2+214.已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.2﹣2 B.2C.2﹣2 D.2+215.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N是线段OA 上的动点,则的最小值为()A.0 B.1 C .D.1﹣16.若函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,且b=lg0.2,c=20.2,则()A.c<b<a B.b<c<a C.a<b<c D.b<a<c17.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A .B . C.2 D .18.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<e x的解集为()A.(﹣∞,e4)B.(e4,+∞)C.(﹣∞,0)D.(0,+∞)19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f(2)=1,则不等式f(x )<x2﹣1的解集为()A.(﹣2,+∞) B.(0,+∞)C.(1,+∞)D.(2,+∞)20.对任意实数a,b,定义运算“⊕”:,设f(x)=(x2﹣1)⊕(4+x),若函数y=f(x)﹣k有三个不同零点,则实数k的取值范围是()A.(﹣1,2]B.[0,1]C.[﹣1,3)D.[﹣1,1)21.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)22.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f(a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④中,在区间[0,1]上“中值点”多于1个的函数是()A.①④B.①③C.②④D.②③23.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x)>,则不等式f(x2)<的解集为()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.(﹣1,1)24.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x ∈(﹣,)恒成立,则φ的取值范围是()A .B .C .D .25.在R上定义运算⊕:x⊗y=x(1﹣y)若对任意x>2,不等式(x﹣a)⊗x≤a+2都成立,则实数a的取值范围是()A.[﹣1,7] B.(﹣∞,3]C.(﹣∞,7]D.(﹣∞,﹣1]∪[7,+∞)26.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是()A .B .C .D .27.已知函数f(x)=xe x﹣ae2x(a∈R)恰有两个极值点x1,x2(x1<x2),则实数a 的取值范围为.28.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)29.已知数列{a n}是各项均不为零的等差数列,S n为其前n项和,且.若不等式对任意n∈N*恒成立,则实数λ的最大值为.30.已知点A(0,1),直线l:y=kx﹣m与圆O:x2+y2=1交于B,C两点,△ABC和△OBC的面积分别为S1,S2,若∠BAC=60°,且S1=2S2,则实数k的值为.31.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f(a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2﹣x+1;③f(x)=ln(x+1);④f(x)=(x ﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为.(写出所有满足条件的函数的序号)32.已知函数f(x)=x3﹣3x,x∈[﹣2,2]和函数g(x)=ax﹣1,x∈[﹣2,2],若对于∀x1∈[﹣2,2],总∃x0∈[﹣2,2],使得g(x0)=f(x1)成立,则实数a的取值范围.1.解:由已知得到可行域如图:由图象得到的范围为[kOB,kOC],即[,2],所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z 最大值为;所以z=+的取值范围是[4,];故选:C.2.解:∵三棱锥P﹣ABC中,PA⊥平面ABC ,且,AC=2AB,PA=1,BC=3,设AC=2AB=2x,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB⊥BC,构造长方体ABCD﹣PEFG,则三棱锥P﹣ABC的外接球就是长方体ABCD﹣PEFG的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积:V==.故选:A.3.解:根据已知中底面△ABC 是边长为的正三角形,PA⊥底面ABC,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球∵△ABC 是边长为的正三角形,∴△ABC的外接圆半径r==1,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==,故三棱锥P﹣ABC外接球的表面积S=4πR2=8π,故选:C.4.解:∵函数f(x+1)是偶函数,∴其图象关于y轴对称,∵f(x)的图象是由f(x+1)的图象向右平移1个单位得到的,∴f(x)的图象关于x=1对称,又∵x>1时,f′(x)<0恒成立,所以f(x)在(1,+∞)上递减,在(﹣∞,1)上递增,又f(4)=0,∴f(﹣2)=0,∴当x∈(﹣∞,﹣2)∪(4,+∞)时,f(x)<0;当x∈(﹣2,1)∪(1,4)时,f(x)>0;∴对于(x﹣1)f(x)<0,当x∈(﹣2,1)∪(4,+∞)时成立,∵(x+3)f(x+4)<0可化为(x+4﹣1)f(x+4)<0,∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x<﹣3或x>0.故选D5.解:解:由f(x)=0,解得x2﹣2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确.设a=1,则f(x)=(x2﹣2x)ex,∴f'(x)=(x2﹣2)ex,由f'(x)=(x2﹣2)ex>0,解得x >或x <﹣.由f'(x)=(x2﹣2)ex<0,解得,﹣<x <即x=﹣是函数的一个极大值点,∴D不成立,排除D.故选B.6.解:设过点N的直线方程为y=k(x+1),代入y2=4x可得k2x2+(2k2﹣4)x+k2=0,∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°.过M作准线的垂线,垂足为A,则|MF|=|MA|,∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D.7.解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.8.解:∵定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,∴f(0)=0,且f′(x)=3x2+2x≥0,即函数f(x)在[0,+∞)上为增函数,∵f(x)是奇函数,∴函数f(x)在(﹣∞,0]上也是增函数,即函数f(x)在(﹣∞,+∞)上为增函数,则不等式f(﹣4t)>f(2m+mt2)等价为﹣4t>2m+mt2对任意实数t恒成立即mt2+4t+2m<0对任意实数t恒成立,若m=0,则不等式等价为4t<0,即t<0,不满足条件.,若m≠0,则要使mt2+4t+2m<0对任意实数t恒成立,则,解得m <﹣,故选:A9.解:将函数的图象向左平移个单位得到y=g (x)=sin[2(x+φ)+]=sin(2x+2φ+)的图象,对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min=,即两个函数的最大值与最小值的差为2时,|x1﹣x2|min=.不妨设x1=,此时x2 =±.若x1=,x2 =+=,则g(x2)=﹣1,sin2φ=1,φ=.若x1=,x2 =﹣=﹣,则g(x2)=﹣1,sin2φ=﹣1,φ=,不合题意,故选:B.10.解:∵OP在y轴上,且平行四边形中,MN∥OP,∴M、N两点的横坐标相等,纵坐标互为相反数,即M,N两点关于x轴对称,MN=OP=a,可设M(x ,﹣),N(x ,),代入椭圆方程得:|x|=b,得N (b ,),α为直线ON的倾斜角,tanα==,cotα=,α∈(,],∴1≤cotα=≤,,∴,∴0<e=≤.∴椭圆C的离心率的取值范围为(0,].故选:A.11.解:∵球形容器表面积的最小值为30π,∴球形容器的半径的最小值为r==,∴正四棱柱体的对角线长为,设正四棱柱体的高为h,∴12+12+h2=30,解得h=2.故选:B.12.解:由f(x)=2sin ()=0可得∴x=6k﹣2,k∈Z∵﹣2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D13.解:如图,过点P作PA⊥l于点A,作PB⊥y轴于点B,PB的延长线交准线x=﹣1于点C,连接PF,根据抛物线的定义得PA+PC=PA+PF,∵P到y轴的距离为d1,P到直线l的距离为d2,∴d1+d2=PA+PB=(PA+PC)﹣1=(PA+PF)﹣1,根据平面几何知识,可得当P、A、F三点共线时,PA+PF有最小值,∵F(1,0)到直线l:x﹣y+2=0的距离为=∴PA+PF 的最小值是,由此可得d1+d2的最小值为﹣1故选:B.14.解:点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x﹣y+2=0的垂线,此时d1+d2最小,∵F(2,0),则d1+d2=﹣2=2﹣2,故选:C.15.解;分别以OA,OB为x轴,y轴建立平面直角坐标系,设P(cosα,sinα),N(t,0),则0≤t≤1,0≤α≤,M(0,),∴=(﹣cosα,﹣sinα),=(t﹣cosα,﹣sinα).∴=﹣(t﹣cosα)cosα﹣sinα(﹣sinα)=cos2α+sin2α﹣tcosα﹣sinα=1﹣sin(α+φ).其中tanφ=2t,∵0≤α≤,0≤t≤1,∴当α+φ=,t=1时,取得最小值1﹣=1﹣.故选:D.16.解:由5+4x﹣x2>0,得﹣1<x<5,又函数t=5+4x﹣x2的对称轴方程为x=2,∴复合函数f(x)=log0.2(5+4x﹣x2)的减区间为(﹣1,2),∵函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,∴,则0≤a≤1.而b=lg0.2<0,c=20.2>1,∴b<a<c.故选:D.17.解:∵双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,∴F1(﹣c,0)F2(c,0)P(x,y),渐近线l1的直线方程为y=x,渐近线l2的直线方程为y=﹣x,∵l2∥PF2,∴,即ay=bc﹣bx,∵点P在l1上即ay=bx,∴bx=bc﹣bx即x=,∴P (,),∵l2⊥PF1,∴,即3a2=b2,∵a2+b2=c2,∴4a2=c2,即c=2a,∴离心率e==2.故选C.18.解:∵y=f(x+1)为偶函数,∴y=f(x+1)的图象关于x=0对称,∴y=f(x)的图象关于x=1对称,∴f(2)=f(0),又∵f(2)=1,∴f(0)=1;设(x∈R),则,又∵f′(x)<f(x),∴f′(x)﹣f(x)<0,∴g′(x)<0,∴y=g(x)单调递减,∵f(x)<ex,∴,即g(x)<1,又∵,∴g(x)<g(0),∴x>0,故答案为:(0,+∞).19.解:设g(x)=f(x )﹣(x2﹣1),则函数的导数g′(x)=f′(x)﹣x,∵f′(x)<x,∴g′(x)=f′(x)﹣x<0,即函数g(x)为减函数,且g(2)=f(2)﹣(×4﹣1)=1﹣1=0,即不等式f(x )<x2﹣1等价为g(x)<0,即等价为g(x)<g(2),解得x>2,故不等式的解集为{x|x>2}.故选:D.20.解:由x2﹣1﹣(4+x)=x2﹣x﹣5≥1得x2﹣x﹣6≥0,得x≥3或x≤﹣2,此时f(x)=4+x,由x2﹣1﹣(4+x)=x2﹣x﹣5<1得x2﹣x﹣6<0,得﹣2<x<3,此时f(x)=x2﹣1,即f(x)=,若函数y=f(x)﹣k有三个不同零点,即y=f(x)﹣k=0,即k=f(x)有三个不同的根,作出函数f(x)与y=k的图象如图:当k=2时,两个函数有三个交点,当k=﹣1时,两个函数有两个交点,故若函数f(x)与y=k有三个不同的交点,则﹣1<k≤2,即实数k的取值范围是(﹣1,2],故选:A21.解:设g(x)=exf(x)﹣ex,(x∈R),则g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵exf(x)>ex+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.22.解:根据题意,“中值点”的几何意义是在区间[a,b]上存在点,使得函数在该点的切线的斜率等于区间[a,b]的两个端点连线的斜率值.对于①,根据题意,在区间[a,b]上的任一点都是“中值点”,f′(x)=3,满足f(b)﹣f(a)=f′(x)(b﹣a),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a,b]只存在一个“中值点”,∴②不正确;对于③,f(x)=ln(x+1)在区间[a,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x)=3(x ﹣)2,且f(1)﹣f(0)=,1﹣0=1;∴3(x ﹣)2×1=,解得x=±∈[0,1],∴存在两个“中值点”,④正确.故选:A23.解:根据题意,设g(x)=f(x )﹣,其导数g′(x)=f′(x )﹣>0,则函数g(x)在R上为增函数,又由f(1)=1,则g(1)=f(1)﹣=,不等式f(x2)<⇒f(x2)﹣<⇒g(x2)<g(1),又由g(x)在R上为增函数,则x2<1,解可得:﹣1<x<1,即不等式的解集为(﹣1,1);故选:D.24.解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,故函数的周期为=π,∴ω=2,f(x)=2sin(2x+φ)+1.若f(x)>1对∀x∈(﹣,)恒成立,即当x∈(﹣,)时,sin(2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k∈Z,结合所给的选项,故选:D.25.解:∵x⊗y=x(1﹣y),∴(x﹣a)⊗x≤a+2转化为(x﹣a)(1﹣x)≤a+2,∴﹣x2+x+ax﹣a≤a+2,a(x﹣2)≤x2﹣x+2,∵任意x>2,不等式(x﹣a)⊗x≤a+2都成立,∴a ≤.令f(x)=,x>2,则a≤[f(x)]min,x>2而f(x)===(x﹣2)++3≥2+3=7,当且仅当x=4时,取最小值.∴a≤7.故选:C.26.解:由f(x+4)=f(x),即函数f(x)的周期为4,∵当x∈[﹣2,0]时,=2﹣2﹣x,∴若x∈[0,2],则﹣x∈[﹣2,0],∵f(x)是偶函数,∴f(﹣x)=2﹣2x=f(x),即f(x)=2﹣2x,x∈[0,2],由f(x)﹣loga(x+2)=0得f(x)=loga(x+2),作出函数f(x)的图象如图:当a>1时,要使方程f(x)﹣loga(x+2)=0恰有3个不同的实数根,则等价为函数f(x)与g(x)=loga(x+2)有3个不同的交点,则满足,即,解得:<a <故a 的取值范围是(,),故选:C.二.填空题(共6小题)27.解:函数f(x)=xex﹣ae2x可得f′(x)=ex(x+1﹣2aex),要使f(x)恰有2个极值点,则方程x+1﹣2aex=0有2个不相等的实数根,令g(x)=x+1﹣2aex,g′(x)=1﹣2aex;(i)a≤0时,g′(x)>0,g(x)在R递增,不合题意,舍,(ii)a>0时,令g′(x)=0,解得:x=ln,当x<ln时,g′(x)>0,g(x)在(﹣∞,ln)递增,且x→﹣∞时,g(x)<0,x>ln时,g′(x)<0,g(x)在(ln,+∞)递减,且x→+∞时,g(x)<0,∴g(x)max=g(ln)=ln+1﹣2a•=ln>0,∴>1,即0<a <;故答案为:(0,).28.解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x,则,,y1=1,y2=5,则,φ(A,B)=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则kA﹣kB=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=ex,得y′=ex,φ(A,B)==.t•φ(A,B)<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).29.解:∵数列{an}是各项均不为零的等差数列,Sn为其前n 项和,且.∴,∴,由a1>0,解得a1=1,=3a2,由a2>0,解得a2=3,∴公差d=a2﹣a1=2,an=1+(n﹣1)×2=2n﹣1.∵不等式对任意n∈N*恒成立,∴对任意n∈N*恒成立,∴==≥2+17=25.当且仅当2n=,即n=2时,取等号,∴实数λ的最大值为25.故答案为:25.30.解:设圆心O、点A到直线的距离分别为d,d′,则d=,d′=,根据∠BAC=60°,可得BC对的圆心角∠BOC=120°,且BC=.∴S△OBC=•OB•OC•sin∠BOC=×1×1×sin120°=,∴S1=②.∴=,=∴k=±,m=1故答案为:±.31.解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;对于③,f(x)=ln(x+1)在区间[0,1]只存在一个“中值点”,故③不正确;对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确.故答案为:①④.32.解:∵f(x)=x3﹣3x,∴f′(x)=3(x﹣1)(x+1),当x∈[﹣2,﹣1],f′(x)≥0,x∈(﹣1,1),f′(x)<0;x∈(1,2],f′(x)>0.∴f(x)在[﹣2,﹣1]上是增函数,(﹣1,1)上递减,(1,2)递增;且f(﹣2)=﹣2,f(﹣1)=2,f(1)=﹣2,f(2)=2.∴f(x)的值域A=[﹣2,2];又∵g(x)=ax﹣1(a>0)在[﹣2,2]上是增函数,∴g(x)的值域B=[﹣2a﹣1,2a﹣1];根据题意,有A⊆B。
2023年新高考数学选填压轴题汇编(三)(解析版)
2023年新高考地区数学选填压轴题汇编(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+23【答案】B 【解析】根据题意,作图如下:因为双曲线C 1和抛物线C 2共焦点,故可得a 2+b 2=p 24,又F c ,0 到y =b a x 的距离d =bca 2+b 2=b ,即AF =b ,又A 为BF 中点,则BF =2b ,设点B x ,y ,则2b =x +p 2,解得x =2b -p 2;由a 2+b 2=p 24可得OA =a ,则由等面积可知:12×BF ×OA =12×OF ×y ,解得y =4abp,则B 2b -p 2,4abp ,则x A =b ,y A =2ab p ,又点A 在渐近线y =b a x 上,即b 2a =2abp,即2a 2=pb ,又p 2=4a 2+4b 2,联立得a 4-a 2b 2-b 4=0,即b 2a 2-a 2b 2+1=0,解得b 2a2=5-12,故e 2=1+b 2a2=5+12.故选:B .2.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 【答案】D【解析】∵函数f (x )是定义在R 上的奇函数∴g x =xf x 为定义在R 上的偶函数又∵x 1f x 1 -x 2f x 2 x 1-x 2<0∴g x =xf x 在0,+∞) 上递减,则g x 在-∞,0 上递增mf m -2m -1 f 2m -1 >0即mf m >2m -1 f 2m -1则m <2m -1 解得:m ∈-∞,13∪1,+∞ .故选:D .3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘ B.sin33∘ C.sin36∘ D.sin39∘【答案】B【解析】(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+-1 n -1x 2n -22n -2 !+⋯所以cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1=sin 90∘-180∘π ,由于90∘-180∘π 与33∘最接近,故选:B 4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.1680【答案】B【解析】解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24种,第二步,排黑车,若白车选AF ,则黑车有BE ,BG ,BH ,CE ,CH ,DE ,DG 共7种选择,黑车是不相同的,故黑车的停法有2×7=14种,根据分步计数原理,共有24×14=336种,故选:B5.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0 B.1C.2D.3【答案】C【解析】f (x )=xe x -2a (ln x +x )=e x +ln x -2a (ln x +x ),设t =x +ln x (x >0),t =1+1x>0,即函数在0,+∞ 上单调递增,易得t ∈R ,于是问题等价于函数g t =e t -2at 在R 上有两个零点,g t =e t -2a ,若a ≤0,则g t >0,函数g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若a >0,则x ∈-∞,ln2a 时,g t <0,g t 单调递减,x ∈ln2a ,+∞ 时,g t >0,g t 单调递增.因为函数g t 在R 上有两个零点,所以g t min =g ln2a =2a 1-ln2a <0⇒a >e2,而g 0 =1>0,限定t >1 ,记φt =e t -t ,φ t =e t -1>0,即φt 在1,+∞ 上单调递增,于是φt =e t -t >φ1 =试卷第1页,共3页e -1>0⇒e t>t ,则t >2时 ,e t2>t 2⇒e t>t 24,此时g t >t 24-2at =t 4t -8a ,因为a >e 2,所以8a>4e >1,于是t >8a 时,g t >0.综上:当a >e2时,有两个交点,a 的最小整数值为2.故选:C .6.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2 B.1,32C.32,52D.0,32【答案】D【解析】因为函数为偶函数,且在0,π3 单调递减,所以φ=π2+k πk ∈Z ,而0<φ<π,则φ=π2,于是f (x )=A cos ωx (ω>0),函数在0,π3 单调递减,且在该区间上没有零点,所以0<π3ω≤π2⇒ω∈0,32 .故选:D .7.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-1【答案】A【解析】由题意可知,点F -c ,0 在直线x -y +1=0上,即1-c =0,可得c =1,直线x -y +1=0交y 轴于点C 0,1 ,设点A m ,n ,FC=1,1 ,AC =-m ,1-n ,由FC =2AC 可得-2m =121-n =1 ,解得m =-12n =12,椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为E 1,0 ,则AE =1+12 2+0-12 2=102,又AF =-1+12 2+0-12 2=22,∴2a =AE +AF =10+22,因此,该椭圆的离心率为e =2c 2a =210+22=410+2=410-2 8=10-22.故选:A .8.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-221【答案】D【解析】由题意,作出图形,如图,∵OA =1,OB =2,OA ⋅OB=-1∴OA ⋅OB =1×2cos ∠AOB =2cos ∠AOB =-1,∴cos ∠AOB =-12,由∠AOB ∈0,π 可得∠AOB =2π3,∴AB =OA 2+OB 2-2⋅OA ⋅OB ⋅cos ∠AOB =7,又S △AOB =12⋅OA ⋅OB ⋅sin ∠AOB =12⋅OD ⋅AB =32,则OD =37,∴EO ⋅EA =-OE ⋅ED +DA =-2OE 2=-29⋅OD 2=-29×37=-221.故选:D .9.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2 B.-2+1eC.-1eD.-2-1e【答案】D【解析】由f x =e x -2x 求导得:f (x )=e x -2,于是得f (x 0)=e x 0-2,函数f (x )=e x -2x 图象在点(x 0,f (x 0))处的切线方程为y -(e x 0-2x 0)=(e x 0-2)(x -x 0),整理得:y =(e x 0-2)x +(1-x 0)e x 0,从而得k =e x 0-2,b =(1-x 0)e x 0,k -b =x 0e x 0-2,令g (x )=xe x -2,则g (x )=(x +1)e x ,当x <-1时,g (x )<0,当x >-1时,g (x )>0,于是得g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,则g (x )min =g (-1)=-2-1e,所以k -b 的最小值为-2-1e.故选:D10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1 B.-1C.2D.-3【答案】B【解析】因为f 1+x 为偶函数,所以f x 的图象关于直线x =1对称,所以f 2-x =f x ,又由f 4+x +f -x =0,得f 4+x =-f -x ,所以f 8+x =-f -4-x =-f 6+x ,所以f x +2 =-f x ,所以f x +4 =f x ,故f x 的周期为4,所以f 2023 =f 3 =-f 1 =-1.故选:B .11.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点试卷第1页,共3页A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 【答案】C【解析】先证明一个结论:如图,△ABC 在平面α内的射影为△ABC ,C -AB -C 的平面角为θ,θ∈0,π2 ,则cos θ=S △ABCS △ABC.证明:如图,在平面β内作CE ⊥AB ,垂足为E ,连接EC ,因为△ABC 在平面α内的射影为△ABC ,故CC ⊥α,因为AB ⊂α,故CC ⊥AB ,因为CE ∩AB =E ,故AB ⊥平面ECC .因为EC ⊂平面ECC ,故C E ⊥AB ,所以∠CEC 为二面角的平面角,所以∠CEC =θ.在直角三角形CEC 中,cos ∠CEC =cos θ=ECEC=S △ABCS △ABC .由题设中的第二图可得:cos θ=S △DBCS △DBO.设正六边形的边长为a ,则S △DBC =12a 2×32=34a 2,如图,在△DBO 中,取BD 的中点为W ,连接OW ,则OW ⊥BD ,且BD =3a ,∠BOD =109°28 ,故OW =32a ×1tan54°44,故S △DBO =12×3a ×32a ×1tan54°44 =34a 2×1tan54°44 ,故cos θ=33tan54°44 .故选:C .12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞ B.20212,+∞C.20212,+∞D.2021e 2,+∞【答案】C【解析】令f (x )=ln x -12021x ,则f (x )=1x -12021=2021-x2021x,∴当x ∈(0,2021)时,f (x )>0,当x ∈(2021,+∞)时,f (x )<0,∵f (2021)>0,∴设0<a <2021<b ,则ba=t (t >1),两式相减,得2021ln b a =b -a ,则2021ln t =a (t -1),∴a =2021ln t t -1,b =at =2021t ln tt -1,∴ab =20212⋅t (ln t )2(t -1)2,令g (t )=t (ln t )2-(t -1)2,∴g (t )=(ln t )2+2ln t -2t +2,令h (t )=(ln t )2+2ln t -2t +2,则h (t )=2t(ln t +1-t ),令m (t )=ln t +1-t ,则m (t )=1t-1<0,∴函数m (t )在(1,+∞)上单调递减,∴m (t )<m (1)=0,即h (t )<0,∴h (t )<h 1 =0,∴g (t )<0,∴函数g (t )在(1,+∞)上单调递减,∴g (t )<g 1 =0,∴t (ln t )2-(t -1)2<0,∴t (ln t )2(t -1)2<1,∴ab <20212,∴实数λ的取值范围为20212,+∞ ,故选:C .13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+1【答案】A 【解析】如下图示,因为F 1A =AB ,F 1B⋅F 2B =0,O 是F 1F 2中点,所以A 是F 1B 中点且F 1B ⊥F 2B ,则OA ⊥F 1B ,OF 1=OB =c ,因为直线OA 是双曲线x 2a 2-y 2b2=1的渐近线,所以k OA =-b a ,k F 1B =a b ,直线F 1B 的方程为y =ab (x +c ),联立y =a b (x +c )y =b ax,解得B a 2c b 2-a 2,abc b 2-a 2 ,则|OB |2=a 4c 2b 2-a 2 2+试卷第1页,共3页a 2b 2c 2b 2-a 22=c 2,整理得b 2=3a 2,因为c 2-a 2=b 2,所以4a 2=c 2,e =ca=2.故选:A14.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512 B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,1112【答案】D【解析】 (1)ωπ+π6,2ωπ+π6 ⊆(2k π,2k π+π),k ∈Z ,则{ωx +π6≥2k π2ωπ+π6≤2k π+π ,则{ω≥2k -16ω≤k +512,取k =0 ,∵ω>0, ∴0<k ≤512;(2)ωπ+π6,2ωπ+π6 ⊆(2k π+π,2k π+2π),k ∈Z ,则{ωπ+π6≥2k π+π2ωπ+π6≤2k π+2π ,解得:{ω≥2k +56ω≤k +1112,取k=0 ,∴56≤k ≤1112;综上可知:k 的取值范围是0,512 ∪56,1112,选D .15.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b【答案】A【解析】由题意,可得a =(2+2)12,b =(2+3)13,c =(2+e )1e ,所以令f x =1x ⋅ln 2+x ,(x >0),则fx =x x +2-ln 2+xx 2,令g x =x x +2-ln 2+x ,(x >0),则g x =-x(x +2)2<0,所以g x 在0,+∞ 上单调递减,g x <g 0 =0,所以f x <0恒成立,所以f x 在0,+∞ 上单调递减,因为2<e <3,所以f 2 >f e >f 3 ,即12ln 2+2 >1e ln 2+e >13ln 2+3 ,所以ln (2+2)12>ln (2+e )1e>ln (2+3)13,所以412>(2+e )1e>513,即b <c <a .故选:A .16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >b B.b >c >aC.a >b >cD.a >c >b【答案】D【解析】∵ln c =a ln b ,ln a =b ln c 且a 、b 、c 均为不等于1的正实数,则ln c与ln b同号,ln c与ln a同号,从而ln a、ln b、ln c同号.①若a、b、c∈0,1,则ln a、ln b、ln c均为负数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b;②若a、b、c∈1,+∞,则ln a、ln b、ln c均为正数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b.综上所述,a>c>b.故选:D.17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R上的连续的函数f x 的导函数,f x -f x +2e x<0(e为自然对数的底数),且f2 =4e2,则不等式f x >2xe x的解集为( )A.-2,0∪2,+∞B.e,+∞C.2,+∞D.-∞,-2∪2,+∞【答案】C【解析】设g x =f xe x-2x,则g x =f x -f xe x-2=f x -f x -2e xe x,∵f x -f x +2e x<0,∴g x >0,函数g x 在R上单调递增,又f2 =4e2,∴g2 =f2e2-4=0,由f x >2xe x,可得f xe x-2x>0,即g x >0=g2 ,又函数g x 在R上单调递增,所以x>2,即不等式f x >2xe x的解集为2,+∞.故选:C.18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αeα-3=1,βlnβ-1=e4,其中e是自然对数的底数,则αβ的值为( )A.e3B.2e3C.2e4D.e4【答案】D【解析】因为αeα-3=1,所以αeα=e3,所以α+lnα=3.因为βlnβ-1=e4,所以lnβ+ln lnβ-1=4.联立α+lnα-3=0lnβ-1+ln lnβ-1-3=0 ,所以α与lnβ-1是关于x的方程x+ln x-3=0的两根.构造函数f x =x+ln x-3,该函数的定义域为0,+∞,且该函数为增函数,由于fα =f lnβ-1=0,所以α=lnβ-1,又α+lnα-3=0,所以lnβ-1+lnα-3=0,即lnαβ=4,解得αβ=e4.故选:D.19.(2022·湖北·应城市第一高级中学高三开学考试)已知F c,0(其中c>0)是双曲线x2a2-y2b2=1a>0,b>0的焦点.圆x2+y2-2cx+b2=0与双曲线的一条渐近线l交于A、B两点.已知l的倾斜角为30°.则tan∠AFB=( )A.-2B.-3C.-22D.-23试卷第1页,共3页【答案】C 【解析】如图所示:x 2+y 2-2cx +b 2=0,化为x -c 2+y 2=c 2-b 2=a 2,因为渐近线l 的倾斜角为30°,所以tan30∘=b a =33,圆心F c ,0 到直线y =bax 的距离为:d =bca1+b a2=b ,又AF =BF =a ,所以cos 12∠AFB =b a =33,sin 12∠AFB =63,则tan 12∠AFB =2,所以tan ∠AFB =2tan 12∠AFB1-tan 212∠AFB=2×21-2 2=-22,故选:C20.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3 D.-∞,1【答案】B【解析】假设g x =sin x +e x -e -x -x ,x ∈R ,所以g -x =sin -x +e -x -e x +x ,所以g x +g -x =0,所以g x 为奇函数,而f x =sin x -1 +e x -1-e 1-x -x -1 +3是g x 向右平移1个单位长度,向上平移3个单位长度,所以f x 的对称中心为1,3 ,所以6=f x +f 2-x ,由f x =sin x -1 +e x -1-e 1-x -x +4求导得f x =cos x -1 +e x -1+e 1-x -1=e x -1+1ex -1+cos x -1 -1因为e x -1+1e x -1≥2e x -1⋅1e x -1=2,当且仅当e x -1=1e x -1即x =1,取等号,所以f x ≥0,所以f x 在R 上单调递增,因为f x +f 3-2x <6=f x +f 2-x 得f 3-2x <f 2-x 所以3-2x <2-x ,解得x >1,故选:B 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,3【答案】ACD【解析】在同一坐标系中作出函数y =f x ,y =a 的图象,如图所示:由图象知:若f x =a 有四个不同的实数解,则0<a <1,故A 正确;因为log 2x 1 =log 2x 2 ,即-log 2x 1=log 2x 2,则1x 1=x 2,所以x 1+2x 2=1x 2+2x 2,1<x 2<2,因为y =1x 2+2x 2在1,2 上递增,所以1x 2+2x 2∈3,92,故B 错误;因为x 1+x 2=1x 2+x 2,1<x 2<2,y =1x 2+x 2在1,2 上递增,所以1x 2+x 2∈2,52,而x 3+x 4=8,所以x 1+x 2+x 3+x 4∈10,212 ,故C 正确;因为2x 1+x 2=2x 2+x 2,1<x 2<2,y =1x 2+2x 2在1,2 上递减,在2,2 上递增,则2x 2+x 2∈[22,3),故D 正确;故选:ACD22.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】ABC【解析】A 选项,底面正方形AA 1D 1D 的面积不变,P 到平面AA 1D 1D 的距离为正方体棱长,故四棱锥P -AA 1D 1D 的体积不变,A 选项正确;B 选项,D 1P 与A 1C 1所成角即D 1P 与A C 所成角,当P 在端点A ,C 时,所成角最小,为π3,当P 在AC 中点时,所成角最大,为π2,故B 选项正确;C 选项,由于P 在正方体表面,P 的轨迹为对角线AB 1,AD 1,以及以A 1为圆心2为半径的14圆弧如图,试卷第1页,共3页故P 的轨迹长度为π+42,C 正确;D 选项,FP 所在的平面为如图所示正六边形,故FP 的最小值为6,D 选项错误.故选:ABC .23.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z【答案】ABD【解析】设3x =4y =12z =t ,t >1,则x =log 3t ,y =log 4t ,z =log 12t ,所以1x +1y =1log 3t +1log 4t =log t 3+log t 4=log t 12=1z,A 正确;因为6z3x =2log 12t log 3t =2log t 3log t 12=log 129<1,则6z <3x ,因为3x4y =3log 3t 4log 4t =3log t 44log t 3=log t 64log t 81=log 8164<1,则3x <4y ,所以6z <3x <4y ,B 正确;因为x +y -4z =log 3t +log 4t -4log 12t =1log t 3+1log t 4-4log t 12=log t 3+log t 4log t 3log t 4-4log t 3+log t 4=log t 3-log t 42log t 3log t 4log t 3+log t 4 >0,则x +y >4z ,D 正确.因为1z =1x +1y =x +y xy ,则xy z =x +y >4z ,所以xy >4z 2,C 错误.故选:ABD .24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+1【答案】AC【解析】对于A ,x ∈[k ,k +1),k ∈Z ,有[x ]=k ,则函数y =x -[x ]=x -k 在[k ,k +1)上单调递增,A 正确;对于B ,f 3π2=sin 3π2e 3π2-e -3π2=-1e 3π2-e-3π2∈(-1,0),则f 3π2=-1,B 不正确;对于C ,f (x )=(1+sin2x -1-sin2x )2=2-21-sin 22x =2-2|cos2x |,当0≤|cos2x |≤12时,1≤2-2|cos2x |≤2,1≤f (x )≤2,有[f (x )]=1,当12<|cos2x |≤1时,0≤2-2|cos2x |<1,0≤f (x )<1,有[f (x )]=0,y =[f (x )]的值域为{0,1},C 正确;对于D ,当x =2时,[x ]+1=3,有2<[2]+1,D 不正确.故选:AC25.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.1【答案】AC【解析】A :x 0=0时,x 1=f 0 =0,周期为1,故A 正确;B :x 0=13时,x 1=f 13 =23,x 2=f 23 =23,x 3=⋯=x n =23,所以13不是f x 的周期点.故B 错误;C :x 0=23时,x 1=x 2=⋯=x n =23,周期为1,故C 正确;D :x 0=1时,x 1=f 1 =0,∴1不是f x 周期为1的周期点,故D 错误.故选:AC .26.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 1【答案】ACD 【解析】A :由a n +1=a n a n +1+1,对∀n ∈N *有a n >0,则a n +1=an a n +1+1>1,即任意n ≥2都有a n >1,正确;B :由a n +1(a n +1-1)=a n ,若a n 为常数列且a n >0,则a n =2满足a 1>0,错误;C :由an a n +1=a n +1-1且n ∈N *,当1<a n +1<2时0<an a n +1<1,此时a 1=a 2(a 2-1)∈(0,2)且a 1<a 2,数列a n 递增;当a n +1>2时an a n +1>1,此时a 1=a 2(a 2-1)>a 2>2,数列a n 递减;所以0<a 1<2时数列a n 为递增数列,正确;试卷第1页,共3页D:由C分析知:a1>2时a n+1>2且数列a n递减,即n≥2时2<a n<a1,正确.故选:ACD27.(2022·山东·模拟预测)已知点P在棱长为2的正方体ABCD-A1B1C1D1的表面上运动,点Q是CD的中点,点P满足PQ⊥AC1,下列结论正确的是( )A.点P的轨迹的周长为32B.点P的轨迹的周长为62C.三棱锥P-BCQ的体积的最大值为43D.三棱锥P-BCQ的体积的最大值为23【答案】BD【解析】取BC的中点为E,取BB1的中点为F,取A1B1的中点为G,取A1D1的中点为H,取DD1的中点为M,分别连接QE,EF,FG,GH,HM,MQ,由AC1⊥QE,AC1⊥EF,且QE∩EF=E,所以AC1⊥平面EFGHMQ,由题意可得P的轨迹为正六边形EFGHMQ,其中|QE|=|EF|=2,所以点P的轨迹的周长为62,所以A不正确,B正确;当点P在线段HG上运动时,此时点P到平面BCQ的距离取得最大值,此时V P-BCQ有最大值,最大值为V max=13×12×2×1×2=23,所以C不正确,D正确.故选:BD28.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用已知某个声音信号的波形可表示为f(x)=2sin x+sin2x,则下列叙述不正确的是( )A.f(x)在[0,2π)内有5个零点B.f(x)的最大值为3C.(2π,0)是f(x)的一个对称中心D.当x∈0,π2时,f(x)单调递增【答案】ABD【解析】对于A,由f(x)=2sin x+sin2x=2sin x(1+cos x),令f(x)=0,则sin x=0或cos x=-1,易知f(x)在[0,2π)上有2个零点,A错误.对于B,因为2sin x≤2,sin2x≤1,由于等号不能同时成立,所以f(x)<3,B错误.对于C,易知f(x)为奇函数,函数关于原点对称,又周期为2π,故(2π,0)是f(x)的一个对称中心.对于D,f (x)=2cos x+2cos2x=2(2cos x-1)(cos x+1),因为cos x+1≥0,所以2cos x-1>0时,即:x∈2kπ-π3,2kπ+π3(k∈Z)时,f(x)单调递增,x∈2kπ+π3,2kπ+5π3(k∈Z)时,f(x)单调递减,故D错误.故选:ABD29.(2022·山东·模拟预测)已知函数f(x)=e x,x≥0-x2-4x,x<0,方程f2(x)-t⋅f(x)=0有四个实数根x1,x2,x3,x4,且满足x1<x2<x3<x4,下列说法正确的是( )A.x1x4∈(-6ln2,0]B.x1+x2+x3+x4的取值范围为[-8,-8+2ln2)C.t的取值范围为[1,4)D.x2x3的最大值为4【答案】BC【解析】f2(x)-t⋅f(x)=0⇒f(x)[f(x)-t]=0⇒f(x)=0或f(x)=t,作出y=f(x)的图象,当f(x)=0时,x1=-4,有一个实根;当t=1时,有三个实数根,∴共四个实根,满足题意;当t=4时,f(x)=t只有两个实数根,所以共三个实根,不满足题意,此时与y=e x的交点坐标为(2ln2,4).要使原方程有四个实根,等价于f(x)=t有三个实根,等价于y=f(x)与y=t图像有三个交点,故t∈[1,4),x4∈[0,2ln2),所以x1x4∈(-8ln2,0],故A错误,C正确;又因为x2+x3=-4,所以x1+x2+x3+x4=-8+x4的取值范围为[-8,-8+2ln2)),B正确;因为x2+x3=-4,x2<x3<0,所以x2x3=-x2⋅-x3<-x2+x322=4,故D错误.故选:BC.30.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C:y=x2上两个不同点A,B横坐标分别为x1,x2,以A,B为切点的切线交于P点.则关于阿基米德三角形PAB的说法正确的有( )A.若AB过抛物线的焦点,则P点一定在抛物线的准线上B.若阿基米德三角形PAB为正三角形,则其面积为334C.若阿基米德三角形PAB为直角三角形,则其面积有最小值14D.一般情况下,阿基米德三角形PAB的面积S=|x1-x2|24【答案】ABC【解析】由题意可知:直线AB一定存在斜率,所以设直线AB的方程为:y=kx+m,由题意可知:点A(x1,x21),B(x2,x22),不妨设x1<0<x2,由y=x2⇒y =2x,所以直线切线PA,PB的方程分别为:y-x21=2x1(x-x1),y-x22=2x2(x-x2),两方程联立得:y-x21=2x1(x-x1) y-x22=2x2(x-x2),解得:x=x1+x22 y=x1x2,所以P点坐标为:x1+x22,x1x2,试卷第1页,共3页直线AB 的方程与抛物线方程联立得:y =kx +m y =x 2⇒x 2-kx -m =0⇒x 1+x 2=k ,x 1x 2=-m .A :抛物线C :y =x 2的焦点坐标为0,14 ,准线方程为 y =-14,因为AB 过抛物线的焦点,所以m =14,而x 1x 2=-m =-14,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有|PA |=|PB |,即x 1+x 22-x 1 2+(x 1x 2-x 21)2=x 1+x 22-x 2 2+(x 1x 2-x 22)2,因为 x 1≠x 2,所以化简得:x 1=-x 2,此时A (x 1,x 21),B (-x 1,x 21), P 点坐标为:(0,-x 21),因为阿基米德三角形PAB 为正三角形,所以有|PA |=|AB |,所以(0-x 1)2+(-x 21-x 21)2=-2x 1⇒x 1=-32,因此正三角形PAB 的边长为3,所以正三角形PAB 的面积为12×3×3⋅sin60°=12×3×3×32=334,故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA ⊥PB 时,所以k PA ⋅k PB =-1⇒x 1+x 22-x 1x 1x 2-x 21⋅x 1+x 22-x 2x 1x 2-x 22=-1⇒x 1x 2=-14,直线AB 的方程为:y =kx +14所以P 点坐标为:k 2,-14 ,点 P 到直线AB 的距离为:k 2⋅k +-14 ×(-1)+14 k 2+(-1)2=12k 2+1,|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=[(x 1+x 2)2-4x 1x 2][1+(x 1+x 2)2],因为x 1+x 2=k ,x 1x 2=-14,所以 AB =(k 2+1)(1+k 2)=1+k 2,因此直角PAB 的面积为:12×12⋅k 2+1⋅(k 2+1)=14(k 2+1)3≥14,当且仅当k =0时,取等号,显然其面积有最小值14,故本说法正确;D :因为x 1+x 2=k ,x 1x 2=-m ,所以|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=x 1-x 2 k 2+1,点P 到直线AB 的距离为:x 1+x 22⋅k +(-1)⋅x 1⋅x 2+m k 2+(-1)2=x 1+x 22⋅(x 1+x 2)+(-1)⋅x 1⋅x 2-(x 1x 2)k 2+(-1)2=12⋅(x 1-x 2)2k 2+1,所以阿基米德三角形PAB 的面积S =12⋅x 1-x 2 ⋅k 2+1⋅12⋅(x 1-x 2)2k 2+1=x 1-x 2 34,故本选项说法不正确.故选:ABC31.(2023·江苏·南京市第一中学模拟预测)已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A.x 2f x 1 <x 1f x 2B.x 1+f x 1 <x 2+f x 2C.f x 1 -f x 2 x 1-x 2<0D.当ln x >-1时,x 1f x 1 +x 2f x 2 >2x 2f x 1 【答案】AD【解析】 对于A 选项,因为令g x =f (x )x=ln x ,在0,+∞ 上是增函数,所以当0<x 1<x 2时,g x 1 <g x 2 ,所以f (x 1)x 1<f (x 2)x 2,即x 2f x 1 <x 1f x 2 .故A 选项正确;对于B 选项,因为令g x =f x +x =x ln x +x ,所以g ′x =ln x +2,所以x ∈e -2,+∞ 时,g ′x >0,g x 单调递增,x ∈0,e -2 时,g ′x <0,g x 单调递减.所以x 1+f x 1 与x 2+f x 2 无法比较大小.故B 选项错误;对于C 选项,令f ′x =ln x +1,所以x ∈0,1e时,f ′x <0,f x 在0,1e 单调递减,x ∈1e ,+∞ 时,f ′x >0,f x 在1e ,+∞ 单调递增,所以当0<x 1<x 2<1e 时,f x 1 >f x 2 ,故f (x 1)-f (x 2)x 1-x 2<0成立,当1e <x 1<x 2时,f x 1 <f x 2 ,f (x 1)-f (x 2)x 1-x 2>0.故C 选项错误;对于D 选项,由C 选项知,当ln x >-1时,f x 单调递增,又因为A 正确,x 2f x 1 <x 1f x 2 成立,所以x 1⋅f x 1 +x 2⋅f x 2 -2x 2f x 1 >x 1⋅f x 1 +x 2⋅f x 2 -x 2f x 1 -x 1f x 2 =x 1f x 1 -f x 2 +x 2f x 2 -f x 1 =x 1-x 2 f x 1 -f x 2 >0,故D 选项正确.故选:AD .32.(2023·江苏·南京市第一中学模拟预测)已知a ,b 为正实数,且ab =32a +b -42,则2a +b 的取值可以为( )A.1 B.4C.9D.32【答案】BD【解析】因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42=ab =2ab 2≤2a +b22,当且仅当2a =b 时等号成立,即32a +b -42≤2a +b22,所以2a +b -622a +b +16≥0,所以2a +b ≥42或2a +b ≤22,因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42>0,所以2a +b ≥42或423<2a +b ≤22.所以2a +b ≥32或329<2a +b ≤8.故选:BD .33.(2023·江苏·南京市第一中学模拟预测)下列不等式正确的是( )A.log 23<log 49B.log 23<lg15C.log 812>log 1215D.log 812>log 636【答案】CD【解析】选项A :log 23=log 2232=log 49,故不正确;设f x =log 2x 3x (x ≥1),因为x ≥1,所以f x =ln 3x ln 2x=3ln 2x 3x -2ln 3x2x ln 22x=试卷第1页,共3页ln 2x -ln 3xx ln 22x <0,所以f x 在[1,+∞)上单调递减,所以选项B :f 1 =log 23>log 1015=lg15=f 5 ,故不正确;选项C :f 4 =log 812>f 5 =log 1015>log 1215,故正确;选项D :f 4 =log 812>f 18 =log 3654=log 636,故正确,故选:CD .34.(2022·湖南·长沙一中高三阶段练习)已知函数f (x )=x ln (1+x ),则( )A.f (x )在(0,+∞)单调递增B.f (x )有两个零点C.曲线y =f (x )在点-12,f -12处切线的斜率为-1-ln2D.f (x )是偶函数【答案】AC【解析】由f (x )=x ln (1+x )知函数的定义域为(-1,+∞),f (x )=ln (1+x )+x1+x,当x ∈(0,+∞)时,ln (1+x )>0,x1+x>0,∴f (x )>0,故f (x )在(0,+∞)单调递增,A 正确;由f (0)=0,当-1<x <0时,ln (1+x )<0,f (x )=x ln (1+x )>0,当ln (1+x )>0,f (x )>0,所以f (x )只有0一个零点,B 错误;令x =-12,f -12 =ln 12-1=-ln2-1,故曲线y =f (x )在点-12,f -12 处切线的斜率为-1-ln2,C 正确;由函数的定义域为(-1,+∞),不关于原点对称知,f (x )不是偶函数,D 错误.故选:AC35.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x ln x ,x >00,x =012f x +1 ,x <0,则下列说法正确的有( )A.当x ∈-3,-2 时,f x =18x +3 ln x +3B.若不等式f x -mx -m <0至少有3个正整数解,则m >ln3C.过点A -e -2,0 作函数y =f x x >0 图象的切线有且只有一条D.设实数a >0,若对任意的x ≥e ,不等式f x ≥a x e ax 恒成立,则a 的最大值是e【答案】ACD【解析】对于A :当x ∈-3,-2 ,∴x +3∈0,1 ,f x +3 =x +3 ln x +3 ,∵f x =18f x +3 ,∴f x =18x +3 ln x +3 ,A 正确;对于B :f x <mx +m ,画出y 1=f x 与y 2=mx +m 的图象,根据函数的图象,要想至少有3个正整数解,要满足f 3 <3m +m ,∴m >34ln3,故B 错;对于C :设切点T x 0,y 0 则k AT =f x 0 ,∴x 0ln x 0x 0+1e2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h x =e 2x +ln x +1,当x >0时,h x >0,∴h x 是单调递增函数,∴h x =0最多只有一个根,又h 1e 2 =e 2⋅1e 2+ln 1e2+1=0,∴x 0=1e 2,由f x 0 =-1得切线方程是x +y +1e2=0,故C 正确;对于D .:由题意e ln x ⋅ln x ≥a xe ax .设g x =x ⋅e x x >0 ,则g x =x +1 e x >0,于是g x 在0,+∞ 上是增函数.因为a x >0,ln x >0,所以ax≤ln x ,即a ≤x ln x 对任意的x ≥e 恒成立,因此只需a ≤x ln x min .设f x =x ln x x ≥e ,f x =ln x +1>0x ≥e ,所以f x 在e ,+∞ 上为增函数,所以f x min =f (e )=e ,所以a ≤e ,即a 的最大值是e ,选项D 正确;故选:ACD .36.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线C :y 2=2px (p >0),O 为坐标原点,一条平行于x 轴的光线l 1从点M (5,2)射入,经过C 上的点A 反射后,再经C 上另一点B 反射后,沿直线l 2射出,经过点N .下列说法正确的是( )A.若p =2,则|AB |=4 B.若p =2,则MB 平分∠ABN C.若p =4,则|AB |=8D.若p =4,延长AO 交直线x =-2于点D ,则D ,B ,N 三点共线【答案】ABD【解析】若p =2,则抛物线C :y 2=4x ,A (1,2),C 的焦点为F (1,0),直线AF 的方程为:x =1,可得B (1,-2),|AB |=4,选项A 正确;p =2时,因为|AM |=5-1=4=|AB |,所以∠A MB =∠ABM ,又AM ∥BN ,所以∠A MB =∠MB N ,所以MB 平分∠ABN ,选项B 正确;若p =4,则抛物线C :y 2=8x ,A 12,2 ,C 的焦点为F (2,0),直线AF 的方程为y =-43(x -2),联立抛物线方程求解可得B (8,-8),所以|AB |=252,选项C 不正确;若p =4,则抛物线C :y 2=8x ,A 12,2,延长AO 交直线x =-2于点D ,则D (-2,-8),由C 选项可知B试卷第1页,共3页(8,-8),所以D,B,N三点共线,故D正确.故选:ABD.37.(2022·湖南·长沙市明德中学高三开学考试)已知a>1,x1,x2,x3为函数f(x)=a x-x2的零点,x1<x2<x3,下列结论中正确的是( )A.x1>-1B.x1+x2<0C.若2x2=x1+x3,则x3x2=2+1 D.a的取值范围是1,e2e【答案】ACD【解析】∵a>1,f-1=a-1-1=1a-1<0,f0 =a0-0=1>0 ,∴-1<x1<0 ,故A正确;当0≤x≤1 时,1≤a x≤a,0≤x2≤1 ,f x 必无零点,故x2>1 ,∴x1+x2>0 ,故B错误;当2x2=x1+x3 时,即a x1=x21a x2=x22a x3=x23,两边取对数得x1=2log a-x1x2=2log a x2x3=2log a x3,4log a x2=2log a-x1+2log a x3 ,x22=-x1x3 ,联立方程x22=-x1x32x2=x1+x3解得x23-2x2x3-x22=0 ,由于x2>0,x3>0 ,x3x2=2+1 ,故C正确;考虑f x 在第一象限有两个零点:即方程a x=x2 有两个不同的解,两边取自然对数得x ln a=2ln x 有两个不同的解,设函数g x =x ln a-2ln x ,g x =ln a-2x=ln a x-2ln ax ,则x=x0=2ln a 时,g x =0 ,当x>x0 时,g x >0 ,当x<x0 时,g x <0 ,所以g min x =g x0=2-2ln2ln a,要使得g x 有两个零点,则必须g x0<0,即ln2ln a>1 ,解得a<e2e ,故D正确;故选:ACD.38.(2022·湖北·高三开学考试)关于函数f x =ae x+sin x,x∈-π,π,下列结论中正确的有( )A.当a=-1时,f x 的图象与x轴相切B.若f x 在-π,π上有且只有一个零点,则满足条件的a的值有3个C.存在a ,使得f x 存在三个极值点D.当a =1时,f x 存在唯一极小值点x 0,且-1<f x 0 <0【答案】BCD【解析】对于A ,f (x )=-e x +sin x ,f (x )=-e x +cos x =0,即e x =cos x ,由函数y =e x 、y =cos x 的图像可知方程有两个根:x 1∈-π2,0 ,x 2=0,f (x 2)=-1,f (x 1)=sin x 1-e x 1<0,即斜率为0的切线其切点不在x 轴上,故A 错误;对于B ,f (x )=0⇔a =-sin x e x ,令g (x )=-sin xex ,g (x )=sin x -cos x ex ,x ∈-π,-3π4 、x ∈π4,π ,g (x )>0,g (x )单调递增,x ∈-3π4,π4 ,g (x )单调递减,g (-π)=0,g -3π4 =22e 3π4,g π4 =-22e π4,g (π)=0,结合图像可知满足f (x )=0⇔a =-sin xex 在-π,π 上有且只有一个零点的a 的值有3个:0,22e3π4,-22e π4,故B 正确;对于C ,f (x )=ae x +cos x =0⇔a =-cos xex =h (x ),h (x )=2sin x +π4ex ,可知x ∈-π,-π4 ,h (x )<0,h (x )单调递减,x ∈-π4,3π4 ,h (x )>0,h (x )单调递增, x ∈3π4,π ,h (x )<0,h (x )单调递减,h (-π)=e π,h -π4 =-2e π42,h 3π4 =22e 3π4,h (π)=1e π,故a ∈1e π,22e 3π4时,a =-cos xe x =h (x )有三个实数根,f x 存在三个极值点,故C 正确;对于D ,f (x )=e x +cos x =0⇔e x =-cos x ,由图像可知此方程有唯一实根x 0,因为e 3π2>2,所以1e 3π2<12,1e 3π4<22,f -3π4 =1e3π4-22<0,x 0∈-3π4,-π2 ,f (x 0)=e x 0+sin x 0=sin x 0-cos x 0=2sin x 0-π4,可知-1<f (x 0)<0,故D 正确.故选:BCD .39.(2022·湖北·襄阳五中高三开学考试)已知函数f x =x x -1,x <15ln x x ,x ≥1,下列选项正确的是( )A.函数f x 的单调减区间为-∞,1 、e ,+∞B.函数f x 的值域为-∞,1C.若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则实数a 的取值范围是5e ,+∞ D.若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则实数a 的取值范围是1,5e 【答案】ACD试卷第1页,共3页【解析】对于A 选项,当x <1时,f x =x x -1,则f x =-1x -12<0,当x ≥1时,f x =5ln xx ,则f x =51-ln x x2,由f x <0可得x >e ,所以,函数f x 的单调减区间为-∞,1 、e ,+∞ ,A 对;对于B 选项,当x <1时,f x =1+1x -1<1,当x ≥1时,0≤f x =5ln x x ≤f e =5e,因此,函数f x 的值域为-∞,5e,B 错;对于CD 选项,作出函数f x 的图像如下图所示:若a ≤0,由f 2x -a f x =0可得f x =0,则方程f x =0只有两个不等的实根;若a >0,由f 2x -a f x =0可得f x =0或f x =a 或f x =-a ,由图可知,方程f x =0有2个不等的实根,方程f x =-a 只有一个实根,若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则a >5e,C 对;若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则1≤a <5e,D 对.故选:ACD .40.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f (x )=sin 4x +π3 +cos 4x -π6,则下列结论正确的是( )A.f (x )的最大值为2B.f (x )在-π8,π12上单调递增C.f (x )在[0,π]上有4个零点D.把f (x )的图象向右平移π12个单位长度,得到的图象关于直线x =-π8对称【答案】ACD【解析】因为f (x )=sin π2+4x -π6+cos 4x -π6 =2cos 4x -π6,所以A 正确;当x ∈-π8,π12 时,4x -π6∈-2π3,π6 ,函数f (x )=2cos 4x -π6 在-π8,π12上先增后减,无单调性,故B 不正确;令2cos 4x -π6 =0,得4x -π6=π2+k π,k ∈Z ,故x =π6+k π4,k ∈Z ,因为x ∈[0,π],所以k =0,1,2,3,故C 正确;把f (x )=2cos 4x -π6 的图象向右平移π12个单位长度,得到y =2cos 4x -π12 -π6=。
2023年新高考数学选填压轴题好题汇编(二)
2023年新高考数学选填压轴题好题汇编(二)一、单选题1.(2022·湖南·永州市第一中学高三开学考试)已知a,b∈R,函数f(x)=x,x<013x3-12(a+1)x2+ax,x≥0 ,若函数y=f(x)-ax-b恰有三个零点,则()A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>02.(2022·湖南·永州市第一中学高三开学考试)天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m1-m2=2.5lg E2-lg E1.其中星等为m i的星的亮度为E i i=1,2.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r最接近的是( )(当x 较小时,10x≈1+2.3x+2.7x2)A.1.22B.1.24C.1.26D.1.283.(2022·湖南·长沙一中高三开学考试)已知函数f x =2sin2x-π3,若方程f x =23在(0,π)的解为x1,x2(x1<x2),则sin x1-x2=( )A.-223B.223C.13D.-134.(2022·湖南·长沙一中高三开学考试)2022年北京冬奥会成功举办,更加激发全国人民对冰雪运动的爱好,某地为响应全民冰雪运动的号召,建立了一个滑雪场.该滑雪场中某滑道的示意图如图所示,点A,B分别为滑道的起点和终点,它们在竖直方向的高度差为20m.两点之间为滑雪弯道,相应的曲线可近似看作某三次函数图象的一部分.综合滑行的安全性与趣味性,在滑道的最陡处,滑雪者的身体与地面所成的夹角约为44°.若还要兼顾滑道的美观性与滑雪者的滑雪体验,则A,B两点在水平方向的距离约为( )A.23mB.25mC.27mD.29m5.(2022·湖北·宜都二中高三开学考试)已知a=4ln5π,b=5ln4π,c=5lnπ4,则a,b,c的大小关系是( )A.c<a<bB.a<b<cC.a<c<bD.c<b<a6.(2022·湖北·高三开学考试)已知直线l是曲线y=ln x与曲线y=x2+x的一条公切线,直线l与曲线y=x2 +x相切于点a,a2+a,则a满足的关系式为( )A.a2+1-ln2a+1=0 B.a2+1+ln2a+1=0C.a2-1-ln2a+1=0 D.a2-1+ln2a+1=07.(2022·湖北·高三开学考试)在三棱锥P-ABC中,∠PAC=∠PAB,AC=2AB=4,PA=PB=2,BC =23,则三棱锥P-ABC外接球的表面积为( )A.22πB.26πC.64π3D.68π38.(2022·湖北·襄阳五中高三阶段练习)已知函数f x =x 2-23ax 3(a >0)的定义域为R ,若对于任意的x 1∈3,+∞ ,都存在x 2∈1,+∞ ,使得f x 1 ⋅f x 2 =1,则a 的取值范围是( )A.0,13B.32,+∞C.13,12D.12,329.(2022·湖北·高三阶段练习)已知四面体D -ABC 中,AC =BC =AD =BD =1,则D -ABC 体积的最大值为( )A.4227B.328C.2327D.31810.(2022·湖北·高三阶段练习)恰有一个实数x 使得x 3-ax -1=0成立,则实数a 的取值范围为( )A.-∞,32B.-∞,3322C.322D.-∞,32211.(2022·湖北武汉·高三开学考试)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,过F 2的直线与Γ交于A ,B 两点.若AF 2 =3F 2B ,AB =2AF 1 ,则Γ的离心率为( )A.15B.55C.105D.15512.(2022·湖北武汉·高三开学考试)若x +y -1=e x +2ln y 2,其中x >2,y >2,则下列结论一定成立的是( )A.2x >yB.2e x2>yC.x >yD.2e x >y13.(2022·湖北·宜城市第二高级中学高三开学考试)已知a =e 0.2-1,b =ln1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则( )A.c >a >bB.a >c >bC.b >a >cD.a >b >c14.(2022·湖北·宜城市第二高级中学高三开学考试)已知正实数C 满足:对于任意θ,均存在i ,j ∈Z ,0≤i ≤j ≤255,使得cos 2θ-ij≤C ,记C 的最小值为λ,则( )A.12000<λ<11000B.11000<λ<1500C.1500<λ<1200D.1200<λ<110015.(2022·湖北·宜城市第二高级中学高三开学考试)蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点A ,B ,C ,P ,且球心O 在PC 上,AC =BC =4,AC ⊥BC ,tan ∠PAB =tan ∠PBA =62,则该鞠(球)的表面积为( )A.9π B.18πC.36πD.64π试卷第12页,共61页二、多选题16.(2022·湖南·永州市第一中学高三开学考试)已知函数f x =x 2π+cos x -π4x ∈R ,则下列说法正确的有( )A.直线y =0为曲线y =f (x )的一条切线B.f (x )的极值点个数为3C.f (x )的零点个数为4D.若f (x 1)=f (x 2)(x 1≠x 2),则x 1+x 2=017.(2022·湖南·永州市第一中学高三开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x=-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则( )A.f x 是以4为周期的周期函数 B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +1818.(2022·湖南·长沙一中高三开学考试)已知A (x 1,y 1),B (x 2,y 2)是圆O :x 2+y 2=1上两点,则下列结论正确的是( )A.若AB =1,则∠AOB =π3B.若点O 到直线AB 的距离为12,则AB =32C.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为22D.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为419.(2022·湖南·长沙一中高三开学考试)已知定义在R 上的偶函数f x ,其导函数为f 'x ,当x ≥0时,f 'x +sin2x <0.则( )A.函数g x =f x -cos 2x 的图象关于y 轴对称B.函数g x =f x -cos 2x 在区间0,+∞ 上单调递减C.不等式f x -f x +π2 <cos2x 的解集为-∞,-π4D.不等式f x -f x +π2 <cos2x 的解集为-π4,+∞ 20.(2022·湖南·长沙一中高三开学考试)已知椭圆C :x 2a +y 22=1(a >2)的离心率为33,过点P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP =λPB.动点Q 满足AQ =-λQB ,则下列结论正确的是( )A.a =3B.动点Q 的轨迹方程为2x +3y -6=0C.线段OQ (O 为坐标原点)长度的最小值为31313D.线段OQ (O 为坐标原点)长度的最小值为6131321.(2022·湖北·宜都二中高三开学考试)已知函数f (x )满足∀x ∈R ,有f (x )=f (6-x ),且f (x +2)=f (x -2),当x ∈[-1,1]时,f (x )=ln 1+x 2-x ,则下列说法正确的是( )A.f (2021)=0B.x ∈(2020,2022)时,f (x )单调递增C.f (x )关于点(1010,0)对称D.x∈(-1,11)时,方程f(x)=sinπ2x的所有根的和为3022.(2022·湖北·宜都二中高三开学考试)已知函数f x =e x+1e2x+k.则( )A.当k=0时,f x 是R上的减函数B.当k=1时,f x 的最大值为1+22C.f x 可能有两个极值点D.若存在实数a,b,使得g x =f x+a+b为奇函数,则k=-123.(2022·湖北·高三开学考试)已知双曲线C:x2-y224=1的左、右焦点分别是F1,F2,点P是双曲线C右支上的一点,且PF1⊥PF2,则下列结论正确的是( )A.双曲线C的渐近线方程为y=±26xB.△PF1F2内切圆的半径为2C.PF1+ PF2=12D.点P到x轴的距离为24524.(2022·湖北·高三开学考试)已知函数f x =x-ax-bx-c的三个零点a,b,c满足a<b<c,a+b+c=9ab+bc+ca=24,则( )A.0<a<1B.2<b<4C.4<c<5D.b-4c-4的最小值是-9 425.(2022·湖北·襄阳五中高三阶段练习)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,V=73π3 B.V存在最大值C.当r在区间0,2内变化时,V逐渐减小 D.当r在区间0,2内变化时,V先增大后减小26.(2022·湖北·襄阳五中高三阶段练习)已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),O为坐标原点,过线段AB的中点M且与x轴平行的直线依次交直线OA,OB,l于点P,Q,N.则( )A.若AF=2FB,则直线AB的斜率为22B.PM=NQC.若P,Q是线段MN的三等分点,则直线AB的斜率为22D.若P,Q不是线段MN的三等分点,则一定有PQ>OQ27.(2022·湖北·高三阶段练习)如图,在棱长为2的正方体ABCD-A1B1C1D1中,O为正方体的中心,M为DD1的中点,F为侧面正方形AA1D1D内一动点,且满足B1F⎳平面BC1M,则( )A.若P为正方体表面上一点,则满足△OPA的面积为22的点有12个B.动点F的轨迹是一条线段试卷第12页,共61页C.三棱锥F -BC 1M 的体积是随点F 的运动而变化的D.若过A ,M ,C 1三点作正方体的截面Ω,Q 为截面Ω上一点,则线段A 1Q 长度的取值范围为263,2228.(2022·湖北·高三阶段练习)[多选题]已知抛物线x 2=12y 的焦点为F ,M x 1,y 1 ,N x 2,y 2 是抛物线上两点,则下列结论正确的是( )A.点F 的坐标为18,0B.若直线MN 过点F ,则x 1x 2=-116C.若MF =λNF ,则MN 的最小值为12D.若MF +NF =32,则线段MN 的中点P 到x 轴的距离为5829.(2022·湖北·高三阶段练习)画法几何的创始人--法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率为22,F 1、F 2分别为椭圆的左、右焦点,点A 在椭圆上,直线l :bx +ay -a 2-b 2=0,则( )A.直线l 与蒙日圆相切B.C 的蒙日圆的方程为x 2+y 2=2a 2C.记点A 到直线l 的距离为d ,则d -AF 2 的最小值为43-62 b3D.若矩形MNGH 的四条边均与C 相切,则矩形MNGH 的面积的最大值为8b 230.(2022·湖北武汉·高三开学考试)设函数f x =sin ωx +π3(ω>0),若f x 在[0,2π]有且仅有5个零点,则( )A.f x 在(0,2π)有且仅有3个极大值点B.f x 在(0,2π)有且仅有2个极小值点C.f x 在0,π10单调递增D.ω的取值范围是73,17631.(2022·湖北武汉·高三开学考试)已知数列a n 满足:a 1=1,a n =123a n -1+5a 2n -1+4 n ≥2 ,下列说法正确的是( )A.∀n ∈N ∗,a n ,a n +1,a n +2成等差数列B.a n +1=3a n -a n -1n ≥2C.2n -1≤a n ≤3n -1n ∈N *D.∀n ∈N *,a n ,a n +1,a n +2一定不成等比数列32.(2022·湖北·宜城市第二高级中学高三开学考试)如图,ABCD 是边长为5的正方形,半圆面APD ⊥平面ABCD .点P 为半圆弧AD上一动点(点P 与点A ,D 不重合).下列说法正确的是( )A.三棱锥P -ABD 的四个面都是直角三角形B.三棱锥P 一ABD 体积的最大值为1254C.异面直线PA 与BC 的距离为定值D.当直线PB 与平面ABCD 所成角最大时,平面PAB 截四棱锥P -ABCD 外接球的截面面积为253-2 π433.(2022·湖北·宜城市第二高级中学高三开学考试)双曲线C :x 2a 2-y 2b2=1(a ,b >0)的虚轴长为2,F 1,F 2为其左右焦点,P ,Q ,R 是双曲线上的三点,过P 作C 的切线交其渐近线于A ,B 两点.已知△PF 1F 2的内心I 到y 轴的距离为1.下列说法正确的是( )A.△ABF 2外心M 的轨迹是一条直线B.当a 变化时,△AOB 外心的轨迹方程为x 2+a 2y 2=(a 2+1)24C.当P 变化时,存在Q ,R 使得△PQR 的垂心在C 的渐近线上D.若X ,Y ,Z 分别是PQ ,QR ,PR 中点,则△XYZ 的外接圆过定点34.(2022·湖北·宜城市第二高级中学高三开学考试)已知函数f x =x +1 e x,x <0x +12e x,x ≥0,下列选项正确的是( )A.函数f (x )在(-2,1)上单调递增B.函数f (x )的值域为-1e 2,+∞ C.若关于x 的方程f x 2-a f x =0有3个不相等的实数根,则实数a 的取值范围是1e 2,4eD.不等式f x -ax -a >0在-1,+∞ 恰有两个整数解,则实数a 的取值范围是3e 2,2e三、填空题35.(2022·湖南·永州市第一中学高三开学考试)已知函数f x =ax 2-2x +ln x 有两个不同的极值点x 1,x 2,且不等式f x 1 +f x 2 <x 1+x 2+t 恒成立,则t 的取值范围是__________.36.(2022·湖南·永州市第一中学高三开学考试)已知f x 是定义在R 上的偶函数,且f (x +1)=f (1-x ),当x ∈0,1 时,f x =x ,若函数y =f (x )-log a (x +1)(a >0且a ≠1)有且仅有6个零点,则a 的取值范围是______.37.(2022·湖南·长沙一中高三开学考试)若直线l :y =kx +b 为曲线f x =e x 与曲线g x =e 2⋅ln x 的公切线(其中e 为自然对数的底数,e ≈2.71828⋯),则实数b =___________.38.(2022·湖南·长沙一中高三开学考试)在四棱锥P -ABCD 中,已知底面ABCD 是边长为43的正方形,其顶点P 到底面ABCD 的距离为3,该四棱锥的外接球O 的半径为5,若球心O 在四棱锥P -ABCD 内,则顶点P 的轨迹长度为___________.39.(2022·湖北·宜都二中高三开学考试)已知函数f x =e x sin x -ax 在-π,0 上单调递增,则实数a 的取值范围________.40.(2022·湖北·高三开学考试)记数列a n 的前n 项和为S n ,若a n =2n3n -49,则使得S n 取得最小值时n 的值为________.41.(2022·湖北·襄阳五中高三阶段练习)设a =15,b =2ln sin 110+cos 110 ,c =65ln 65,则a ,b ,c 的大小关系是___________.试卷第12页,共61页42.(2022·湖北·高三阶段练习)有一个棱长为6的正四面体,其中有一半径为64的球自由运动,正四面体内未被球扫过的体积为43.(2022·湖北武汉·高三开学考试)已知正三棱锥的各顶点都在同一球面上,若该球的表面积为36π,则该正三棱锥体积的最大值为___________.44.(2022·湖北·宜城市第二高级中学高三开学考试)如图,经过坐标原点O 且互相垂直的两条直线AC 和BD 与圆x 2+y 2-4x +2y -20=0相交于A ,C ,B ,D 四点,M 为弦AB 的中点,有下列结论:①弦AC 长度的最小值为45;②线段BO 长度的最大值为10-5;③点M 的轨迹是一个圆;④四边形ABCD 面积的取值范围为205,45 .其中所有正确结论的序号为______.45.(2022·湖北·宜城市第二高级中学高三开学考试)已知函数f x =4e ln x -x 2x -e ln x+mx 存在4个零点,则实数m 的取值范围是__________.46.(2022·湖北·宜城市第二高级中学高三开学考试)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆x 2a2+y 2b 2=1a >b >0 上任意一点P x 0,y 0 的切线方程为x 0x a 2+y 0y b 2=1.若已知△ABC 内接于椭圆E :x 2a 2+y 2b 2=1a >b >0 ,且坐标原点O 为△ABC 的重心,过A ,B ,C 分别作椭圆E 的切线,切线分别相交于点D ,E ,F ,则S△DEF S △ABC =______.47.(2022·湖北·襄阳五中高三阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1、F 2,过F 1作圆O :x 2+y 2=a 2的切线l 切圆O 于点B 并与双曲线的右支交于点C ,若BC =CF 2 ,则双曲线的离心率为___________.四、双空题48.(2022·湖北·高三开学考试)已知抛物线C :y 2=2px p >0 的准线l 与x 轴的交点为H ,抛物线C 的焦点为F ,过点H 的直线与抛物线C 交于A x 1,y 1 ,B x 2,y 2 两点,BF =4AF ,则x2x 1=________;若AB 的中点到准线l 的距离为254,则p =_________.49.(2022·湖北·高三阶段练习)已知2a +4a 2+1 b +b 2+1 =1,则2a +b +b 2-4a 24a 2+1-b 2+1的最大值为_______,此时a +b =__________.50.(2022·湖北·高三阶段练习)如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3是全等的等腰直角三角形(OB 1=2,B i i =1,2,3 处为直角顶点),且O ,A 1,A 2,A 3四点共线.若点P 1,P 2,P 3分别是边A 1B 1,A 2B 2,A 3B 3上的动点(包含端点),则OB 1 ⋅OP 3 =________,OB 2 ⋅OP 2的取值范围为_______.试卷第12页,共61页2023年新高考数学选填压轴题好题汇编(二)一、单选题1.(2022·湖南·永州市第一中学高三开学考试)已知a ,b ∈R ,函数f (x )=x ,x <013x 3-12(a +1)x 2+ax ,x ≥0,若函数y =f (x )-ax -b 恰有三个零点,则()A.a <-1,b <0B.a <-1,b >0C.a >-1,b <0D.a >-1,b >0【答案】C【解析】当x <0时,y =f (x )-ax -b =x -ax -b =(1-a )x -b =0,得x =b1-a;y =f (x )-ax -b 最多一个零点;当x ≥0时,y =f (x )-ax -b =13x 3-12(a +1)x 2+ax -ax -b =13x 3-12(a +1)x 2-b ,y ′=x 2-(a +1)x ,当a +1≤0,即a ≤-1时,y ′≥0,y =f (x )-ax -b 在[0,+∞)上递增,y =f (x )-ax -b 最多一个零点.不合题意;当a +1>0,即a >-1时,令y ′>0得x ∈[a +1,+∞),函数递增,令y ′<0得x ∈[0,a +1),函数递减;函数最多有2个零点;根据题意函数y =f (x )-ax -b 恰有3个零点⇔函数y =f (x )-ax -b 在(-∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴b1-a <0且-b >013(a +1)3-12(a +1)(a +1)2-b <0,解得b <0,1-a >0,0>b >-16(a +1)3,∴a >-1.故选C .2.(2022·湖南·永州市第一中学高三开学考试)天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus )在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M .R .Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5lg E 2-lg E 1 .其中星等为m i 的星的亮度为E i i =1,2 .已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是( )(当x 较小时,10x ≈1+2.3x +2.7x 2)A.1.22 B.1.24C.1.26D.1.28【答案】C【解析】若“天津四”的亮度是E ,则“心宿二”的亮度是rE ,∴1.25-1=2.5⋅(lg rE -lg E ),即lg rE E =lg r =110,∴r =100.1≈1+2.3×0.1+2.7×(0.1)2=1.257.故选:C .3.(2022·湖南·长沙一中高三开学考试)已知函数f x =2sin 2x -π3 ,若方程f x =23在(0,π)的解为x 1,x 2(x 1<x 2),则sin x 1-x 2 =( )A.-223B.223C.13D.-13【答案】A【解析】因为x ∈0,π ,所以2x -π3∈-π3,5π3 ,又因为x 1,x 2是sin 2x -π3 =13的两根,结合图象可知x 1+x 22=5π12,所以x 2=5π6-x 1,所以sin x 1-x 2 =sin 2x 1-5π6 =-cos 2x 1-π3 ,又因为x 1<x 2,x 2=5π6-x 1,所以0<x 1<5π12,所以2x 1-π3∈-π3,π2 ,所以cos 2x 1-π3 =223,所以sin x 1-x 2 =-223.故选:A .4.(2022·湖南·长沙一中高三开学考试)2022年北京冬奥会成功举办,更加激发全国人民对冰雪运动的爱好,某地为响应全民冰雪运动的号召,建立了一个滑雪场.该滑雪场中某滑道的示意图如图所示,点A ,B 分别为滑道的起点和终点,它们在竖直方向的高度差为20m .两点之间为滑雪弯道,相应的曲线可近似看作某三次函数图象的一部分.综合滑行的安全性与趣味性,在滑道的最陡处,滑雪者的身体与地面所成的夹角约为44°.若还要兼顾滑道的美观性与滑雪者的滑雪体验,则A ,B 两点在水平方向的距离约为( )A.23m B.25mC.27mD.29m【答案】D【解析】以滑道的最陡处为原点O 建立平面直角坐标系,由题意可知,O 为AB 的中点,设三次函数的解析式为f x =ax 3+bx 2+cx ,其中a ≠0,设点A -x 0,10 ,则B x 0,-10 ,f x =3ax 2+2bx +c ,在滑道最陡处,x =0,则f x 的对称轴为直线x =0,则-b3a=0,可得b =0,则f x =3ax 2+c ,f x =ax 3+cx ,在滑道最陡处,设滑雪者的身体与地面所成角为α,则f 0 =c =tan α+π2 =sin α+π2cos α+π2 =-cos αsin α=-1tan α,所以fx=ax 3-x tan α,f x =3ax 2-1tan α,由图可知f (x 0)=3ax 02-1tan α=0f (x 0)=ax 03-x 0tan α=-10可得2x 0=30tan α,,因为α≈44∘,则2x 0=30tan α≈28.97≈29m .故选:D .5.(2022·湖北·宜都二中高三开学考试)已知a =4ln5π,b =5ln4π,c =5lnπ4,则a ,b ,c 的大小关系是( )A.c <a <bB.a <b <cC.a <c <bD.c <b <a试卷第12页,共61页【答案】B【解析】令f x =ln xx x≥e,可得f x =1x⋅x-ln xx=1-ln xx,当x≥e时,f x ≤0恒成立,所以f x =ln xx在e,+∞上单调递减,所以fπ >f4 >f5 ,即lnππ>ln44>ln55,可得4lnπ>πln4,5ln4>4ln5,所以lnπ4>ln4π,5πln4>4πln5,所以5lnπ4>5ln4π,5ln4π>4ln5π,即c>b,b>a.所以a<b<c.故选:B.6.(2022·湖北·高三开学考试)已知直线l是曲线y=ln x与曲线y=x2+x的一条公切线,直线l与曲线y=x2 +x相切于点a,a2+a,则a满足的关系式为( )A.a2+1-ln2a+1=0 B.a2+1+ln2a+1=0C.a2-1-ln2a+1=0 D.a2-1+ln2a+1=0【答案】C【解析】记y=f(x)=ln x得f (x)=1x,记g(x)=x2+x得g x =2x+1,设直线l与曲线f x =ln x相切于点b,ln b,由于l是公切线,故可得f b =g (a)g(a)-f(b)a-b=g a ,即1b=2a+1a2+a-ln ba-b=g (a)=2a+1化简得a2-1-ln2a+1=0,故选:C7.(2022·湖北·高三开学考试)在三棱锥P-ABC中,∠PAC=∠PAB,AC=2AB=4,PA=PB=2,BC =23,则三棱锥P-ABC外接球的表面积为( )A.22πB.26πC.64π3D.68π3【答案】A【解析】PA2+PB2=AB2⇒PA⊥PB,且∠PAB=45∘,∴∠PAC=∠PAB=45∘,在△PAC中,根据余弦定理得,PC2=AC2+AP2-2AC⋅AP⋅cos∠PAC=16+2-2×4×2×22=10,∴PB2+PC2=2+10=12=BC2,∴PB⊥PC,又PA∩PC=P,PA,PC⊂平面PAC,∴PB⊥平面PAC,故可将三棱锥B -APC 补为直三棱柱BA 1C 1-PAC ,则直三棱柱BA 1C 1-PAC 的外接球即为三棱锥P -ABC 的外接球,设△PAC 外接圆圆心为O 2,△A 1BC 1的外接圆圆心为O 1,则直三棱柱的外接球球心为O 1O 2中点O ,OA 即为外接球的半径.在△PAC 中,根据正弦定理可得2O 2A =PC sin ∠PAC =1022=25,∴O 2A =5,∴OA 2=OO 22+O 2A 2=O 1O 22 2+O 2A 2=22 2+5=112,∴外接球表面积为:4π⋅OA 2=4π×112=22π.故选:A .8.(2022·湖北·襄阳五中高三阶段练习)已知函数f x =x 2-23ax 3(a >0)的定义域为R ,若对于任意的x 1∈3,+∞ ,都存在x 2∈1,+∞ ,使得f x 1 ⋅f x 2 =1,则a 的取值范围是( )A.0,13B.32,+∞C.13,12D.12,32【答案】D【解析】因为f x =x 2-23ax 3,所以f x =2x -2ax 2=2x (1-ax ),f (1)=1-2a3,f (3)=9-18a ,令f x =0,可得x =0或x =1a,当0<a ≤1时,x ∈1,1a ,则f (x )>0,x ∈1a ,+∞ ,则f (x )<0,所以函数f (x )在1,1a 上单调递增,函数f (x )在1a,+∞ 上单调递减,当a >1时,x ∈(1,+∞)时,f (x )<0,所以函数f (x )在(1,+∞)上为减函数,设g (x )=1f (x ),因为对于任意的x 1∈3,+∞ ,都存在x 2∈1,+∞ ,使得f x 1 ⋅f x 2 =1,所以对于任意的x 1∈3,+∞ ,都存在x 2∈1,+∞ ,使得f x 2 =g x 1 ,所以函数g (x )在(3,+∞)上的值域包含与函数f (x )在(1,+∞)上值域,当a ≥1时,9-18a <0,1a≤1函数f (x )在(1,+∞)上为减函数,函数f (x )在(1,+∞)上的值域为-∞,1-2a3 ,函数f (x )在(3,+∞)上的值域为-∞,9-18a ,所以函数g (x )在(3,+∞)上的值域为19-18a ,0,由已知19-18a ,0 ⊆-∞,1-2a3 ,所以1-2a 3≥0,又a ≥1,所以1≤a ≤32,(注:由此可排除A ,B ,C )当0<a ≤13时,1-2a 3≥0,9-18a >0,1a≥3函数f (x )在1,1a 上单调递增,函数f (x )在1a,+∞ 上单调递减,函数f (x )在(1,+∞)上的值域为-∞,1a 2 ,函数f (x )在(3,+∞)上的值域为-∞,1a2 ,试卷第12页,共61页所以函数g (x )在(3,+∞)上的值域为-∞,0 ∪(a 2,+∞),与已知矛盾,当13<a <12时,1-2a 3≥0,9-18a >0,2<1a<3因为函数f (x )在1,1a 上单调递增,函数f (x )在1a,+∞ 上单调递减,所以函数f (x )在(1,+∞)上的值域为-∞,1a2 ,函数f (x )在(3,+∞)上的值域为-∞,9-18a ,所以函数g (x )在(3,+∞)上的值域为-∞,0 ∪19-18a,+∞ ,与已知矛盾,当a =12时,1-2a 3>0,9-18a =0,1a=2x ∈1,2 ,则f (x )>0,x ∈2,+∞ ,则f (x )<0,所以函数f (x )在1,2 上单调递增,函数f (x )在2,+∞ 上单调递减,所以函数f (x )在(1,+∞)上的值域为-∞,4 ,函数f (x )在(3,+∞)上的值域为-∞,0 ,所以函数g (x )在(3,+∞)上的值域为-∞,0 ,-∞,0 ⊆-∞,4 ,满足要求当12<a <1时,1-2a 3>0,9-18a <0,1<1a<2函数f (x )在1,1a 上单调递增,函数f (x )在1a,+∞ 上单调递增所以函数f (x )在(1,+∞)上的值域为-∞,1a 2 ,函数f (x )在(3,+∞)上的值域为-∞,9-18a ,所以函数g (x )在(3,+∞)上的值域为19-18a ,0 ,19-18a ,0 ⊆-∞,1a2 ,满足要求,综上所述,12≤a ≤32,故选:D .9.(2022·湖北·高三阶段练习)已知四面体D -ABC 中,AC =BC =AD =BD =1,则D -ABC 体积的最大值为( )A.4227B.328C.2327D.318【答案】C【解析】设M 为CD 的中点,连接AM ,BM ,设四面体A -BCD 的高为h ,则h ≤AM ,由于AC =BC =AD =BD =1,故△ACD ≌△BCD ,则∠ACD =∠BCD ,设∠ACD =∠BCD =α,α∈0,π2,则AM =BM =BC sin α=sin α,CD =2CM =2BC cos α=2cos α,所以V D -ABC =V A -DBC =13S △BCD ⋅h ≤16CD ⋅BM ⋅AM=13cos αsin 2α=1322cos 2α⋅sin 2α⋅sin 2α≤1322cos 2α+sin 2α+sin 2α3 3=2327,当且仅当平面ACD 与平面BCD 垂直且sin α=2cos α即α=arctan2时取等号,故选:C10.(2022·湖北·高三阶段练习)恰有一个实数x 使得x 3-ax -1=0成立,则实数a 的取值范围为( )A.-∞,32B.-∞,3322C.322D.-∞,322【答案】B【解析】当x =0时,-1=0不成立,所以x =0不是方程的根,故对原方程转化为a =x 2-1x ,故转化为y =a 与f (x )=x 2-1x仅有一个交点,构造f (x )=x 2-1x ,f (x )=2x +1x 2=2x 3+1x 2,当1-32<x <0或x >0时,f (x )>0,当x <1-32时,f x<0,故函数f (x )在-∞,1-32单调递减,在1-32,0和0,+∞单调递增,又f 1-32=3322,当x →-∞时,f (x )→+∞,x →+∞时,f (x )→+∞,且x →0-时,f (x )→+∞,x →0+时,f (x )→-∞,故要使得y =a 与f (x )仅有一个交点,即a 的取值范围是-∞,3322故选:B .11.(2022·湖北武汉·高三开学考试)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,过F 2的直线与Γ交于A ,B 两点.若AF 2 =3F 2B ,AB =2AF 1 ,则Γ的离心率为( )A.15B.55C.105D.155【答案】C【解析】设F 2B =m ,则AF 2 =3m ,AB =2AF 1 =4m .由椭圆的定义可知BF 1 +BF 2 =2a =5m ,所以m =25a ,所以AF 2 =65a ,AF 1 =45a .在△ABF 1中,cos A =AB 2+AF 12-BF 122AB ×AF 1=8a 5 2+4a 5 2-8a 5 228a 5×4a 51=14.所以在△AF 1F 2中,F 1F 22=AF 1 2+AF 2 2-2AF 1 AF 2 cos A ,即4c 2=4a 5 2+4a 5 2-24a 5 2×14整理可得:e 2=c 2a 2=25,所以e =105故选:C 12.(2022·湖北武汉·高三开学考试)若x +y -1=e x +2ln y2,其中x >2,y >2,则下列结论一定成立的是( )A.2x >y B.2e x2>yC.x >yD.2e x >y【答案】D试卷第12页,共61页【解析】因为x +y -1=e x +2ln y2,其中x >2,y >2,所以e x -x =y -1-2ln y 2=2y 2-1-2ln y 2=y 2-1-ln y 2+y 2-ln y2,其中x >2,y >2,令y =x -1-ln x ,y =1-1x =x -1x,故x ∈0,1 时,y =x -1x <0,y =x -1-ln x 单调递减,x ∈1,+∞ 时,y =x -1x>0,y =x -1-ln x 单调递增,所以y =x -1-ln x ≥0,即x -1≥ln x ,当且仅当x =1时等号成立,所以y 2-1>ln y2,y >2,所以e x -x >y 2-lny2故令f x =e x -x ,x >2,则e x -x >y 2-ln y 2等价于f x >f ln y2,因为f x =e x -1>0,x >2,故函数f x =e x -x 在2,+∞ 单调递增,所以f x >f ln y 2 等价于x >ln y 2,即x =ln e x >lny2所以e x >y2,即2e x >y .故选:D13.(2022·湖北·宜城市第二高级中学高三开学考试)已知a =e 0.2-1,b =ln1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则( )A.c >a >b B.a >c >bC.b >a >cD.a >b >c【答案】B【解析】令f (x )=e x -1-tan x =cos x e x -cos x -sin x cos x ,0<x <π4,令g (x )=cos x e x -cos x -sin x ,g (x )=(-sin x +cos x )e x+sin x -cos x =(e x -1)⋅(cos x -sin x ),当0<x <π4时,g (x )>0,g (x )单调递增,又g (0)=1-1=0,所以g (x )>0,又cos x >0,所以f (x )>0,在0,π4成立,所以f (0.2)>0即a >c ,令h (x )=ln (x +1)-x ,h (x )=1x +1-1=-x x +1,h (x )在x ∈0,π2为减函数,所以h (x )<h (0)=0,即ln (x +1)<x ,令m (x )=x -tan x ,m (x )=1-1cos 2x ,m (x )在x ∈0,π2 为减函数,所以m (x )<m (0)=0,即x <tan x ,所以ln (x +1)<x <tan x ,x ∈0,π2成立,令x =0.2,则上式变为ln (0.2+1)<0.2<tan0.2,所以b <0.2<c 所以b <c ,所以b <c <a .故答案为:B .14.(2022·湖北·宜城市第二高级中学高三开学考试)已知正实数C 满足:对于任意θ,均存在i ,j ∈Z ,0≤i ≤j ≤255,使得cos 2θ-ij≤C ,记C 的最小值为λ,则( )A.12000<λ<11000B.11000<λ<1500C.1500<λ<1200D.1200<λ<1100【答案】B【解析】题设等价于对于任意x ∈0,1 ,均存在i ,j ∈Z ,0≤i ≤j ≤255,使得x -i j≤C ,将i j在数轴上表示如下:当x 与上述数轴上的点重合时,易得存在i ,j ∈Z ,0≤i ≤j ≤255使得x -i j =0,又C 为正实数,则x -i j≤C 成立;当x 与上述数轴上的点不重合时,假设在相邻的两个点i 1j 1,i 2j 2之间,则x -i 1j 1 ≤12i 2j 2-i 1j 1,当且仅当x 在相邻的两个点i 1j 1,i 2j 2中点时取等,要使对于任意x ∈0,1 ,均存在i ,j ∈Z ,0≤i ≤j ≤255,使得x -i j ≤C ,则有C ≥12i 2j 2-i 1j 1,又数轴上所有相邻的两个点之间距离最大为1255-0=1-254255=1255,此时x 在相邻的两个点0,1255或254255,1中点,则C ≥12×1255=1510.以下说明数轴上所有相邻的两个点之间距离最大为1255,易得数轴上k 255,k +1255k ∈Z ,0≤k ≤254 两点之间的距离为1255,当k =0或k =254,0,1255和254255,1为相邻的两点,之间的距离为1255;当1≤k ≤253时,则k 255<k254<k +1255,即k 255,k +1255之间必存在点k 254,可得相邻的两点之间的距离小于1255,综上可得数轴上所有相邻的两个点之间距离最大为1255.故λ=1510,故11000<λ<1500.故选:B .15.(2022·湖北·宜城市第二高级中学高三开学考试)蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点A ,B ,C ,P ,且球心O 在PC 上,AC =BC =4,AC ⊥BC ,tan ∠PAB =tan ∠PBA =62,则该鞠(球)的表面积为( )A.9πB.18πC.36πD.64π【答案】C【解析】如图,取AB 的中点M ,连接MP ,由AC =BC =4,AC ⊥BC 得:AB =42,试卷第12页,共61页由tan ∠PAB =tan ∠PBA =62,得:MP =22×62=23,连接CM 并延长,交球O 于点H ,连接PH ,因为PC 球O 的直径,设球的半径为R ,则PH ⊥CH ,MH =12CH =12AB =22,则PH =PM 2-MH 2=12-8=2,所以2R 2=PC 2=CH 2+PH 2=42 2+4=36,解得:R =3,球的表面积为4πR 2=36π.故选:C 二、多选题16.(2022·湖南·永州市第一中学高三开学考试)已知函数f x =x 2π+cos x -π4x ∈R ,则下列说法正确的有( )A.直线y =0为曲线y =f (x )的一条切线B.f (x )的极值点个数为3C.f (x )的零点个数为4D.若f (x 1)=f (x 2)(x 1≠x 2),则x 1+x 2=0【答案】AB 【解析】因为f x =x 2π+cos x -π4x ∈R ,所以f x =2x π-sin x x ∈R ,令f x =0,即2xπ=sin x ,令y 1=sin x ,y 2=2xπ,在同一坐标系中作出两函数的图像,由图像得:当x ∈π2,+∞和x ∈-π2,0 时,sin x <2x π,所以此时f x >0,所以f x 在-π2,0 和π2,+∞ 上单调递增;当x ∈-∞,-π2 和x ∈0,π2 时,sin x >2xπ,所以此时f x <0,所以f x 在-∞,-π2 和0,π2 上单调递减;且f 0 =1-π4,f π2 =π2 2π+cos π2-π4=0,f -π2 =-π2 2π+cos -π2 -π4=0,作出函数f x 的图象如下图所示:对于A 选项:根据函数的图象,知A 选项正确;对于B :由图象得f x =0有3个不同的解,有3个极值点,故B 正确;对于C :当x =π2或x =-π2时,f x =0,所以函数f x 有2个零点,故C 不正确;对于D :因为f -x =-x 2π+cos -x -π4=x 2π+cos x -π4=f x ,所以函数f x 是偶函数,所以函数f x 关于y 轴对称,若f x 1 =f x 2 ,则当x 1=0≠x 2时,f 0 =f x 2 =1-π4,此时即x 1+x 2=x 2≠0,故D 不正确.故选:AB .17.(2022·湖南·永州市第一中学高三开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x=-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则( )A.f x 是以4为周期的周期函数 B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD18.(2022·湖南·长沙一中高三开学考试)已知A (x 1,y 1),B (x 2,y 2)是圆O :x 2+y 2=1上两点,则下列结论正确的是( )A.若AB =1,则∠AOB =π3B.若点O 到直线AB 的距离为12,则AB =32C.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为22D.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为4【答案】AD【解析】对于A ,若AB =1,则可知点O 到AB 的距离为32,从而可知∠AOB =π3,故A 正确;对于B ,若点O 到直线AB 的距离为12,则可知AB 2=32,从而得AB =3,故B 错误;试卷第12页,共61页对于C ,D ,x 1+y 1-12+x 2+y 2-12的值可转化为单位圆上的A x 1,y 1 ,B x 2,y 2 两点到直线x +y -1=0的距离之和,又∠AOB =90∘,所以三角形AOB 是等腰直角三角形,设M 是AB 的中点,则OM ⊥AB ,且OM =22OA =22,则M 在以O 点为圆心,半径为22的圆上,A ,B 两点到直线x +y -1=0的距离之和为AB 的中点M 到直线x +y -1=0的距离的两倍.点O 0,0 到直线x +y -1=0的距离为12=22,所以点M 到直线x +y -1=0的距离的最大值为22+22=2,所以x 1+y 1-1 2+x 2+y 2-12的最大值为2 2.因此x 1+y 1-1 +x 2+y 2-1 的最大值为4.从而可知C 错误,D 正确..故选:AD .19.(2022·湖南·长沙一中高三开学考试)已知定义在R 上的偶函数f x ,其导函数为f 'x ,当x ≥0时,f 'x +sin2x <0.则( )A.函数g x =f x -cos 2x 的图象关于y 轴对称B.函数g x =f x -cos 2x 在区间0,+∞ 上单调递减C.不等式f x -f x +π2 <cos2x 的解集为-∞,-π4D.不等式f x -f x +π2 <cos2x 的解集为-π4,+∞ 【答案】ABC【解析】对于选项A ,由g -x =f -x -cos 2-x =f x -cos 2x ,所以g x 为偶函数,所以函数g x =f x -cos 2x 的图象关于y 轴对称.故A 正确;对于选项B ,由g x =f x -cos 2x 为偶函数.当x ≥0时,g x =f x +sin2x <0,所以g x 在0,+∞ 上单调递减,故g x 在-∞,0 上单调递增.故B 正确;对于C 、D 选项,由f x -f x +π2 <cos2x ,得f x -f x +π2<cos 2x -sin 2x ,所以f x +π2 -sin 2x >f x -cos 2x ,即f x +π2 -cos 2x +π2 >f x -cos 2x ,所以g x +π2 >g x .所以x +π2 <x ,解得x <-π4.所以C 正确,D 错误,故选:ABC .20.(2022·湖南·长沙一中高三开学考试)已知椭圆C :x 2a +y 22=1(a >2)的离心率为33,过点P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP =λPB.动点Q 满足AQ =-λQB ,则下列结论正确的是( )A.a =3B.动点Q 的轨迹方程为2x +3y -6=0C.线段OQ (O 为坐标原点)长度的最小值为31313D.线段OQ (O 为坐标原点)长度的最小值为61313【答案】ABD【解析】对于A :由椭圆C :x 2a +y 22=1(a >2)的离心率为33,得1-2a =33,所以a =3,故A 正确;对于B :设A x 1,y 1 ,B x 2,y 2 ,Q m ,n ,∴AP =1-x 1,1-y 1 ,PB=x 2-1,y 2-1 ,AQ =(m -x 1,n -y 1),QB =(x 2-m ,y 2-n ),由AP =λPB ,AQ =-λQB ,得1-x 1=λx 2-1 ,m -x 1=-λx 2-m ,∴x 1+λx 2=1+λ,x 1-λx 2=m 1-λ ,两式相乘得x 21-λ2x 22=m 1-λ2,同理可得y 21-λ2y 22=n 1-λ2,∴x 213+y 212-λ2x 223+y 222=1-λ2 m 3+n 2,由题意知λ>0且λ≠1,否则与AQ =-λQB矛盾,∴m 3+n 2=1,∴动点Q 的轨迹方程为x3+y 2=1,即直线2x +3y -6=0,故B 正确;对于C 、D :所以线段OQ 长度的最小值即为原点到直线的距离,∴OQ min =64+9=61313,故C 错误,D 正确.故选:ABD .21.(2022·湖北·宜都二中高三开学考试)已知函数f (x )满足∀x ∈R ,有f (x )=f (6-x ),且f (x +2)=f (x -2),当x ∈[-1,1]时,f (x )=ln 1+x 2-x ,则下列说法正确的是( )A.f (2021)=0B.x ∈(2020,2022)时,f (x )单调递增C.f (x )关于点(1010,0)对称D.x ∈(-1,11)时,方程f (x )=sin π2x的所有根的和为30【答案】CD【解析】由题设知:f (-x )=ln (1+x 2+x )=ln11+x 2-x=-ln (1+x 2-x )=-f (x ),故f (x )在x ∈[-1,1]上为奇函数且单调递减,又f (x +2)=f (4-x )=f (x -2),即关于x =2k +1、(2k ,0),k ∈Z 对称,且最小周期为4,A.f (2021)=f (505×4+1)=f (1)=ln (2-1)≠0,错误;B.x ∈(2020,2022)等价于x ∈(0,2),由上易知:(0,1)上递减,(1,2)上递增,故f (x )不单调,错误;C.由上知:f (x )关于(2k ,0)对称且k ∈Z ,所以f (x )关于(1010,0)对称,正确;D.由题意,只需确定f (x )与y =sin πx2在x ∈(-1,11)的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于x =5对称,则x 1+x 6=x 2+x 5=x 3+x 4=10,∴所有根的和为30,正确.故选:CD试卷第12页,共61页。
高考数学选填压轴题练习与答案
高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。
2019-2020年高考压轴卷理科数学含解析
2019-2020年高考压轴卷理科数学含解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( ) A.0 B.1 C.2 D.3 2. 复数21i z ()i=-,则复数1z +在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分也非必要条件4. 设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k+2﹣S k =36,则k 的值为( ) A . 8 B .7 C .6 D . 55.如图是某一几何体的三视图,则这个几何体的体积为( )A .4 B .8 C .16 D .20 6.一个算法的程序框图如图所示,如果输入的x 的值为2014,则输出的i 的结果为( )A.3B.5C.6D.87.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6K-1,6K+2](K∈Z)B. [6k-4,6k-1] (K∈Z)C.[3k-1,3k+2] (K∈Z)D.[3k-4,3k-1] (K∈Z)8. .在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A.B.C.D.9.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则A 点的横坐标为(A)10.已知函数f (x )对任意x ∈R 都有f (x+6)+f (x )=2f (3),y=f (x ﹣1)的图象关于点(1,0)对称,则f (2013)=( )A.10B.-5C.5D.0二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.(3x+)6的展开式中常数项为 (用数字作答).12. 若等边△ABC 的边长为1,平面内一点M 满足,则= .13. 设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( ) A . 4 B .C .1 D .214.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意x ∈[a ,a+2],不等式f (x+a )≥f (3x+1)恒成立,则实数a 的取值范围是 ________ .15. 已知集合A={f (x )|f 2(x )﹣f 2(y )=f (x+y )•f (x ﹣y ),x 、y ∈R},有下列命题: ①若f (x )=,则f (x )∈A ; ②若f (x )=kx ,则f (x )∈A ;③若f (x )∈A ,则y=f (x )可为奇函数; ④若f (x )∈A ,则对任意不等实数x 1,x 2,总有成立.其中所有正确命题的序号是 ______ .(填上所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.在△ABC 中,已知A=4π,cos B =. (I)求cosC 的值;(Ⅱ)若D 为AB 的中点,求CD 的长.17.如图,已知PA ⊥平面ABC ,等腰直角三角形ABC 中,AB=BC=2,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E . (Ⅰ)求证:PC ⊥DE ;(Ⅱ)若直线AB 与平面ADE 所成角的正弦值为,求PA 的值.18. 在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ=. (I )求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(Ⅱ)求随机变量ξ的分布列和数学期望. 19. 设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列, 求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,并求使-184055327n n n T +≤⨯成立的正整数n 的最大值. 20. 给定椭圆C :,称圆心在坐标原点O ,半径为的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是.(1)若椭圆C 上一动点M 1满足||+||=4,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点P (0,t )(t <0)作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为2,求P 点的坐标;(3)已知m+n=﹣(0,π)),是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点(m ,m 2),(n ,n 2)的直线的最短距离.若存在,求出a ,b 的值;若不存在,请说明理由. 21.已知函数f (x )=ax 2﹣(2a+1)x+2lnx (a >0). (Ⅰ) 若a ≠,求函数f (x )的单调区间;(Ⅱ)当<a <1时,判断函数f (x )在区间[1,2]上有无零点?写出推理过程.KS5U2014山东省高考压轴卷理科数学参考答案1.【KS5U 答案】C【KS5U 解析】:由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A ∩B={0,1,2}∩{0,2,4}={0,2}. 所以A ∩B 中元素的个数为2. 故选C .2. 【KS5U 答案】D【KS5U 解析】因为22211()1(1)22i i z ii i i -====----,所以1112z i +=-,所以复数1z +在复平面上对应的点位于第四象限. 3. 【KS5U 答案】A.【KS5U 解析】当//αβ时,由l ⊥平面α得,l β⊥,又直线m ∥平面β,所以l m ⊥。
2023年高考-数学(理科)考试备考题库附带答案9
2023年高考-数学(理科)考试备考题库附带答案第1卷一.全考点押密题库(共50题)1.(单项选择题)(每题 5.00 分) 已知A,B 是球 O 的球面上两点,∠AOB = 90° ,C为该球面上的动点。
若三棱锥 O - ABC 体积的最大值为36,则球 O 的表面积为A. 36πB. 64πC. 144πD. 256π正确答案:C,2.(填空题)(每题 5.00 分) 已知圆锥的顶点为S,母线SA,SB所成角的余弦值为7/8,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.正确答案:40√2π,3.(单项选择题)(每题 5.00 分) 记SN.为等差数列αN}的前n项和.若3S3=S2+S4,α=2,则α5= {A. -12B. -10C. 10D. 12正确答案:B,4.(填空题)(每题5.00 分) 已知函数f(x)=2sinx+sin2x,则f(x)的最小值是_______?正确答案:-3√3/2,5.(单项选择题)(每题 5.00 分) 双曲线x2/α2-y2/b2=1(α>0,b>0)的离心率为√3,则其渐近线方程为A. y=±√2xB. y=±√3xC. y=±√2/2xD. y=±√3/2x正确答案:A,6.(单项选择题)(每题 5.00 分) 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A. 3√3/4B. 2√3/3C. 3√2/4D. √3/2正确答案:A,7.(单项选择题)(每题 5.00 分) 已知集合A=x∣x2-x-2>0},则CRA={A. x∣-12}{D. {x∣x≦-1}∪{x∣x≧2}正确答案:B,8.(单项选择题)(每题 5.00 分) 在△ABC中,cos C/2=√5/5,BC=1,AC=5,则AB=A. 4√2B. √30C. √29D. 2√5正确答案:A,9.(填空题)(每题 5.00 分) 某髙科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料。
新课标高考数学填空选择压轴题汇编理科
高考数学填空选择压轴题试题汇编(理科)目录(120题)第一部分函数导数(47题)······································2/26第二部分解析几何(23题)······································9/33第三部分立体几何(11题)·····································13/34第四部分三角函数及解三角形(10题)··························15/36第五部分数列(10题)········································17/37第六部分概率统计(6题)·····································19/38第七部分向量(7题)·········································21/39第八部分排列组合(6题)······································22/40第九部分不等式(7题)········································23/42 第十部分算法(2题)··········································24/43 第十一部分交叉部分(2题)·····································25/43 第十二部分参考答案············································26/43【说明】:汇编试题来源河南五年高考真题5套;郑州市2011年2012年一模二模三模试题6套;2012年河南省各地市检测试题12套;2012年全国高考文科试题17套。
高考最有可能考的50题(30道选择题+20道压轴题)数学理
高考最有可能考的50题 (数学理课标版)(30道选择题+20道压轴题)一.选择题(30道)1.若集合{|23},M x x =-<<2{|1,}N y y x x R ==+∈,则集合M N = A. (2,)-+∞ B. (2,3)- C. [1,3) D. R2.已知集合{}1A x x =>,{}B x x m =<,且A B =R ,那么m 的值可以是 A .1- B .0 C .1 D .2 3.复数17ii+的共轭复数是a+bi (a,b ∈R ),i 是虚数单位,则ab 的值是 A 、-7 B 、-6 C 、7 D 、64.已知i 是虚数单位,m .n ∈R ,且i 1i m n +=+,则iim n m n +=- (A )1- (B )1(C )i -(D )i5.已知命题11:242x p ≤≤,命题15:[,2]2q x x +∈--,则下列说法正确的是 A .p 是q 的充要条件B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件D .p 是q 的既不充分也不必要条件6.下面四个条件中,使b a >成立的充分而不必要的条件是A.1+>b aB.1->b aC.22b a >D.33b a >7.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的(A) 必要而不充分条件 (B) 既不充分也不必要条件 (C) 充要条件 (D) 充分而不必要条件8.执行右边的程序框图,若输出的S 是127,则条件①可以为 (A )5n ≤(B )6n ≤ (C )7n ≤ (D )8n ≤9.阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞10.要得到函数sin(2)4y x π=+的图象,只要将函数sin 2y x =的图象( )A .向左平移4π单位B .向右平移4π单位C .向右平移8π单位D .向左平移8π单位11.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( )A .332- B .332±C .1-D .1±12.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )A .2 B. D .2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( ) A .30︒ B .60︒ C .90︒ D .120︒14.如图,O 为△ABC 的外心,BAC ,AC ,AB ∠==24为钝角,M 是边BC 的中点,则∙的值( ) A..12 C .6 D .515.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )16.如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( ) A. π23 B. π3 C. π32D. π2第21题图17. A a x a x xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) A ),1[)1,(+∞⋃--∞ B [-1,1] C ),1[]1,(+∞⋃--∞ D (-1,1]18.已知正项等比数列{}n a 满足:1232a a a +=,若存在两项n m a a ,,使得14a a a n m =,则nm 41+的最小值为 ( )A .23 B .35 C .625 D .不存在19.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排 方法的种数为 ( )A .10B .20C .30D .4020.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有 ( ) .6 .8 .12 .16A B C D21.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++= ( ) A .33 B .72 C .84 D .18922.若等比数列}{n a 的前n 项和23-⋅=n n a S ,则=2aA.4B.12C.24D.3623.已知1F 、2F 分别是双曲线22221(0,0)x y aba b -=>>的左、右焦点,P 为双曲线上的一点,若1290F PF ∠=︒,且12F PF ∆的三边长成等差数列,则双曲线的离心率是( ). A.2 B.3 C.4 D.524.长为)1(<l l 的线段AB 的两个端点在抛物线x y =2上滑动,则线段AB 中点M 到y 轴距离的最小值是A .2lB .22lC .4lD .42l25.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A. 2 B. 3 C. 4 D.626.函数f(x)=tan x +x tan 1,x }2002|{ππ<<<<-∈x x x 或的大致图象为( )A B C D27.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( ) ①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立 ④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③B .①②④ C.①③④ D.②③④28.若a 满足4lg =+x x ,b 满足410=+xx ,函数⎪⎩⎪⎨⎧>≤+++=0,20,2)()(2x x x b a x x f ,则关于x 的方程x x f =)(的解的个数是( ) A .1 B .2 C .3 D. 429.已知函数f (x )是R 上的偶函数,且满足f (x+1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2007.5)的值为( ) A .0.5 B .1.5 C .-1.5 D .130.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围( ) A. 9(,2]4-- B.[1,0]- C.(,2]-∞- D.9(,)4-+∞二.填空题(8道)31.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只。
高考理科数学压轴小题特训72题(选择52题填空20题)---含答案与解析
f
x
1
cos
x 2
,1
x
3
x2 , 1 x 1,
,则 g x f x lg x 的零点个数是
室
作 A.9
B.10
C.18
D.20
24.函数 y f (x) 为定义在 R 上的减函数,函数 y f (x 1) 的图像关于点(1,0)对称, x, y
满足不等式 f (x2 2x) f (2 y y 2 ) 0 , M (1, 2), N (x, y) , O 为坐标原点,则当1 x 4 时,
工 OM ON 的取值范围为 ( )
A. 12,
B. 0,3 C.3,12
D. 0,12
25.已知函数
周末班、寒暑假班、全日制、冲刺班 小班教学、一对一教学,名师团队
书上有路勤为径 有径都在为学溪
11.已知函数
f
(x)
2x2 3x(x
a ex
(x
0),
0),
的图象上存在两点关于
y
轴对称,则实数 a
的取值范围
是( )
A.[-3,1] B.(-3,1) C.[ e, 9e3 ]
D.
2
D. e2 2,
9.如图,在
OMN
中,
A,
B
分别是 OM
, ON
的中点,若
OP
xOA
yOB
x,
y
R
,且点
工 y1
P 落在四边形 ABNM 内(含边界),则 x y 2 的取值范围是( )
全国卷Ⅰ2024年高考数学压轴卷理含解析
(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
理科高考数学立体几何选择填空压轴题专练
立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2024年新高考数学选填压轴题汇编二(解析版)
2024年新高考数学选填压轴题汇编(二)一、单选题1.(2023·广东东莞·高三校考阶段练习)已知a=e0.1,b=1110,c=101.9,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】C【解析】由ln a=ln e0.1=0.1,ln b=ln 1110=ln1.1,则ln a-ln b=0.1-ln1.1=0.1-ln1+0.1,令f x =x-ln1+x,f x =1-11+x=x1+x,当x∈0,+∞时,f x >0,则f x 单调递增,即f0.1>f0 =0,故0.1-ln1.1>0,可得ln a>ln b,即a>b;由b10=111010=1+0.110=1+C1100.1+C2100.12+⋯+C10100.110=1+10×0.1+C2100.12+⋯+C10100.110=2+C2100.12+⋯+C10100.110>2,且c10=1.9<2,则b10>c10,即b>c.综上,a>b>c.故选:C.2.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)已知数列a n的前n项和为S n,且a1=4,a n +a n+1=4n+2n∈N*,则使得S n>2023成立的n的最小值为()A.32B.33C.44D.45【答案】D【解析】a n+a n+1=4n+2①,当n≥2时,a n-1+a n=4n-1+2②,两式相减得a n+1-a n-1=4,当n为奇数时,a n为等差数列,首项为4,公差为4,所以a n=4+4n-12=2n+2,a n+a n+1=4n+2中,令n=1得a1+a2=6,故a2=6-4=2,故当n为偶数时,a n为等差数列,首项为2,公差为4,所以a n=2+4n2-1=2n-2,所以当n为奇数时,S n=a1+a3+⋯+a n+a2+a4+⋯+a n-1=n+124+2n+2+n-122+2n-42=n2+n+2,当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=n24+2n+n22+2n-22=n2+n,当n为奇数时,令n2+n+2>2023,解得n≥45,当n为偶数时,令n2+n>2023,解得n≥46,所以S n>2023成立的n的最小值为45.故选:D3.(2023·广东·高三统考阶段练习)数列a n满足a n+1=2a n-14a n+2,且a1=1,则数列a n的前2024项的和S2024=()A.-2536B.-2538C.-17716D.-17718【答案】C【解析】由题意知:a1=1,a2=2-14+2=16,a3=2×16-14×16+2=-14,a4=2×-14-14×-14+2=-32,a5=2×-32-14×-32+2=1,.....,易知数列a n是周期为4的数列,S2024=506×1+16-14-32=-17716.故选:C.4.(2023·广东·高三统考阶段练习)已知a,b,c均大于1,满足2a-1a-1=2+log2a,3b-2b-1=3+log3b,4c-3c-1=4+log4c,则下列不等式成立的是()A.c<b<aB.a<b<cC.a<c<bD.c<a<b 【答案】B【解析】∵2a-1a-1=2+log2a⇒1a-1=log2a,3b-2 b-1=3+log3b⇒1b-1=log3b,4c-3 c-1=4+log4c⇒1c-1=log4c,∴考虑y=1x-1x>1和y=log m x m=2,3,4的图象相交,在同一平面直角坐标系中画出y=log2x、y=log3x、y=log4x与y=1x-1x>1的图象如下:根据图象可知a<b<c.故选:B.5.(2023·广东佛山·高三校考阶段练习)已知函数f(x)=x2-8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f x1=f x2=f x3,则x1+x2+x3的范围是()A.(2,8)B.(-8,4)C.(-6,0)D.(-6,8)【答案】A【解析】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f x 1 =f x 2 =f x 3 ,根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=-8时,则x 1=-6是满足题意的x 1的最小值,且x 1满足-6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A .6.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x 的定义域为R ,设f x 的导数是f x ,且f x ⋅f x +sin x >0恒成立,则()A.f π2<f -π2 B.f π2>f -π2 C.f π2 <f -π2D.f π2 >f -π2 【答案】D【解析】设g x =f 2x -2cos x ,则g x =2f x ⋅f x +2sin x >0,故y =g x 在定义域R 上是增函数,所以g π2 >g -π2,即f 2π2 >f 2-π2 ,所以f π2 >f -π2 .故选:D .7.(2023·湖南长沙·高三湖南师大附中校考阶段练习)若正三棱锥P -ABC 满足AB +AC +AP=1,则其体积的最大值为()A.172B.184C.196D.1108【答案】C【解析】设正三棱锥的底边长为a ,侧棱长为b ,1=AB +AC +AP 2=AB 2+AC 2+AP 2+2AB ⋅AC +2AC ⋅AP +2AB ⋅AP ,=a 2+a 2+b 2+a 2+2ab ⋅b 2+a 2-b 22ab +2ab ⋅b 2+a 2-b 22ab=5a 2+b 2⇒b 2=1-5a 2,设该三棱锥的高为h ,由正弦定理可知:AO =12⋅a sin π3=33a ,所以h =PO =b 2-13a 2,又V P -ABC =13⋅S △ABC ⋅h =13⋅34a 2⋅b 2-13a 2=1123a 4-16a 6.由3a 4-16a 6>0⇒0<a <34设f x =3x 4-16x 60<x <34,f x =12x 3-96x 5=12x 31-8x 2 ,当x ∈0,24 时,fx >0,f x 单调递增,当x ∈24,34时,fx <0,f x 单调递减,y =f x 在0,34 上存在唯一的极大值点x =24,且在x =24时取得最大值为164.故正三棱锥P -ABC 体积的最大值为196,故选:C 8.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是A.0,18B.0,14 ∪58,1C.0,58D.0,18 ∪14,58【答案】D【解析】由题设有f (x )=1-cos 2ωx +12sin ωx -12=22sin ωx -π4,令f x =0,则有ωx -π4=k π,k ∈Z 即x =k π+π4ω,k ∈Z .因为f (x )在区间(π,2π)内没有零点,故存在整数k ,使得k π+π4ω≤π<2π<k π+5π4ω,即ω≥k +14ω≤k 2+58,因为ω>0,所以k ≥-1且k +14≤k 2+58,故k =-1或k =0,所以0<ω≤18或14≤ω≤58,故选:D .9.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=x 2-x 2-a2x -4 在区间-∞,-2 ,3,+∞ 上都单调递增,则实数a 的取值范围是()A.0<a ≤23 B.0<a ≤4C.0<a ≤43D.0<a ≤83【答案】D【解析】设g (x )=x 2-a 2x -4,其判别式Δ=a 24+16>0,∴函数g (x )一定有两个零点,设g (x )的两个零点为x 1,x 2且x 1<x 2,由x 2-a2x -4=0,得x 1=a2-a 24+162,x 2=a2+a 24+162,∴f (x )=a 2x +4,x <x 12x 2-a 2x -4,x 1≤x ≤x 2a 2x +4,x >x 2,①当a ≤0时,f (x )在-∞,x 1 上单调递减或为常函数,从而f (x )在-∞,-2 不可能单调递增,故a >0;②当a >0时,g -2 =a >0,故x 1>-2,则-2<x 1<0,∵f (x )在-∞,x 1 上单调递增,∴f (x )在-∞,-2 上也单调递增,g (3)=-32a -1<0,3<x 2,由f (x )在a 8,x 2和x 2,+∞ 上都单调递增,且函数的图象是连续的,∴f (x )在a 8,+∞ 上单调递增,欲使f (x )在3,+∞ 上单调递增,只需a8≤3,得a ≤83,综上:实数a 的范围是0<a ≤83.故选:D .10.(2023·湖南益阳·高三统考阶段练习)若m >0,双曲线C 1:x 2m -y 22=1与双曲线C 2:x 28-y 2m=1的离心率分别为e 1,e 2,则()A.e 1e 2的最小值为94B.e 1e 2的最小值为32C.e 1e 2的最大值为94D.e 1e 2的最大值为32【答案】B【解析】由题意可得e 21=m +2m ,e 22=8+m 8,则e 1e 2 2=m +2m ⋅8+m 8=54+2m +m8,由基本不等式,e 1e 2 2=54+2m +m 8≥54+214=94,即e 1e 2≥32,当且仅当2m =m 8,即m =4时等号成立,故e 1e 2的最小值为32.故选:B .11.(2023·湖南益阳·高三统考阶段练习)给定事件A ,B ,C ,且P C >0,则下列结论:①若P A >0,P B>0且A ,B 互斥,则A ,B 不可能相互独立;②若P A C +P B C =1,则A ,B 互为对立事件;③若P ABC =P A P B P C ,则A ,B ,C 两两独立;④若P AB=P A -P A P B ,则A ,B 相互独立.其中正确的结论有()A.1个 B.2个C.3个D.4个【答案】B【解析】对于①,若A ,B 互斥,则P AB =0,又P A P B >0,∴P AB ≠P A P B ,∴A ,B 不相互独立,①正确;对于②,∵P A C +P B C =P AC P C +P BCP C=1,∴P AC +P BC =P C ;扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于一点”,则P AC =P A =46=23,P BC =P B =16,P C =56,满足P AC +P BC =P C ,但A ,B 不是对立事件,②错误;对于③,扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于六点”,则P A =46=23,P B =16,P C =0,P ABC =0,P AB =P B =16,满足P ABC =P A P B P C ,此时P AB ≠P A P B ,∴事件A ,B 不相互独立,③错误;对于④,∵A =AB ∪AB ,事件AB 与AB 互斥,∴P A =P AB +P AB,又P AB=P A -P A P B ,∴P A -P AB =P A -P A P B ,即P AB =P A P B ,∴事件A ,B 相互独立,④正确.故选:B .12.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3+3x 2+x +1,设数列a n 的通项公式为a n =-2n +9,则f a 1 +f a 2 +⋯+f a 9 =()A.36B.24C.20D.18【答案】D【解析】f x =x 3+3x 2+x +1=x +1 3-2x +1 +2,所以曲线f x 的对称中心为-1,2 ,即f x +f -2-x =4,因为a n =-2n +9,易知数列a n 为等差数列,a 5=-1,a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5=-2,所以f a 1 +f a 9 =f a 2 +f a 8=f a 3 +f a 7 =f a 4 +f a 6 =4,所以f a 1 +f a 2 +⋯+f a 9 =4×4+2=18.故选:D .13.(2023·湖南长沙·高三长郡中学校联考阶段练习)在矩形ABCD 中,AB =3,AD =4,现将△ABD 沿BD 折起成△A 1BD ,折起过程中,当A 1B ⊥CD 时,四面体A 1BCD 体积为()A.2B.372C.37D.972【答案】B【解析】由题可知A 1B ⊥A 1D ,A 1B ⊥CD ,又A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD ,故A 1B ⊥平面A 1CD ,又A 1C ⊂平面A 1CD ,所以A 1B ⊥A 1C ,即此时△A 1BC 为直角三角形,因为A 1B =CD =3,AD =BC =4,所以A 1C =7,又BC ⊥CD ,A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以CD ⊥平面A 1BC ,所以四面体A 1BCD 的体积为13×3×12×3×7=372.故选:B .14.(2023·湖南长沙·高三长郡中学校联考阶段练习)在三角形ABC 中,AB ⋅AC =0,BC=6,AO=12AB +AC ,BA 在BC 上的投影向量为56BC ,则AO ⋅BC =()A.-12 B.-6C.12D.18【答案】A【解析】由题意,∠BAC =90°,O 为BC 中点,由BA 在BC 上的投影向量为BA cos B ⋅BCBC=56BC,即BAcos B BC=56,又BC =6,所以BA ⋅BC =BA BC cos B =56BC2=30,所以AO ⋅BC =BO -BA ⋅BC =BO ⋅BC -BA ⋅BC=3×6-30=-12.故选:A .15.(2023·湖南株洲·高三株洲二中校考开学考试)如图,在xOy 平面上有一系列点P 1x 1,y 1 ,P 2x 2,y 2 ,⋯,P nx n ,y n ⋯,对每个正整数n ,点P n 位于函数y =x 2x ≥0 的图像上,以点P n 为圆心的⊙P n 都与x 轴相切,且⊙P n 与⊙P n +1外切.若x 1=1,且x n +1<x n n ∈N * ,T n =x n x n +1,T n 的前n 项之和为S n ,则S 20=()A.3940B.4041C.8041D.2041【答案】D【解析】因为⊙P n 与⊙P n +1外切,且都与x 轴相切,所以x n -x n +12+y n -y n +1 2=y n +y n +1,即x n -x n +1 2+y n -y n +1 2=y n +y n +1 2,所以x n -x n +1 2=4y n y n +1=4x 2n x 2n +1,因为x n +1<x n n ∈N * ,所以x n -x n +1=2x n x n +1,所以1x n +1-1x n=2,所以数列1x n 为等差数列,首项1x 1=1,公差d =2,所以1x n=1+n -1 ×2=2n -1,所以x n =12n -1n ∈N * ,所以T n =x n x n +1=12n -1×12n +1=12n -1-12n +1 ×12,所以S n =12×1-13+13-15+⋯+12n -1-12n +1 =12×1-12n +1 =n2n +1n ∈N *所以S 20=2020×2+1=2041,故选:D16.(2023·湖南株洲·高三株洲二中校考开学考试)已知定义在R 上的可导函数f x 满足xf x +f x <xf x ,若y =f x -3 -1e是奇函数,则不等式xf x +3e x +2>0的解集是()A.-∞,-2B.-∞,-3C.-2,+∞D.-3,+∞【答案】B【解析】构造函数g x =x ⋅f x e x ,依题意可知g x =f x +xf x -xf x e x<0,所以g x 在R 上单调递减.由于y =f x -3 -1e是奇函数,所以当x =0时,y =f -3 -1e =0,所以f -3 =1e ,所以g -3 =-3⋅f -3e -3=-3⋅1e e-3=-3e 2,由xf x +3e x +2>0得e x g x +3e x +2>0,即g x >-3e 2=g -3 ,所以x <-3,故不等式的解集为-∞,-3 .故选:B17.(2023·湖南·高三临澧县第一中学校联考开学考试)已知圆台O 1O 2的上底面圆O 1的半径为2,下底面圆O 2的半径为6,圆台的体积为104π,且它的两个底面圆周都在球O 的球面上,则OO 1OO 2=( ).A.3B.4C.15D.17【答案】D【解析】设圆台的高为h ,依题意V =134π+36π+12π h =104π,解得h =6.设O 1O =x ,则22+x 2=62+6-x 2,解得x =173,故OO 1OO 2=1736-173=17.故选:D .18.(2023·湖南·高三临澧县第一中学校联考开学考试)已知sin α-β =13,则当函数f x =79sin x -sin 2α-2β cos x 取得最小值时,sin x =( ).A.-79B.-19C.19D.79【答案】A【解析】依题意,cos 2α-β =1-2sin 2a -β =79,所以f x =sin x cos 2α-2β -cos x sin 2α-2β=sin x -2α-β ,当x -2α-β =-π2+2k πk ∈Z ,即x =2α-β -π2+2k πk ∈Z ,f x 取最小值,此时sin x =-cos 2α-β =-79,故选:A .19.(2023·湖南衡阳·高三衡阳市八中校考开学考试)已知函数f x =4ex 21+ln2x,则不等式f x >e 2x 的解集是()A.0,1B.12e ,14C.1e ,1D.12e ,12【答案】D【解析】不等式4ex 21+ln2x >e 2x 可整理为2ex 1+ln2x >e 2x 2x ,令g x =e xx,定义域为0,+∞ ,则原不等式可看成g 1+ln2x >g 2x ,g x =e x x -1 x 2,令g x >0,解得x >1,令gx <0,解得0<x <1,所以g x 在0,1 上单调递减,1,+∞ 上单调递增,令h x =1+ln2x -2x ,则h x =1x -2=1-2x x ,令h x >0,则0<x <12,令h x <0,则x >12,所以h x 在0,12 上单调递增,12,+∞ 上单调递减,且h 12 =0,所以h x ≤0,即1+ln2x -2x ≤0,即1+ln2x ≤2x ,当0<x <12时,1+ln2x <1,2x <1,所以1+ln2x <2x0<1+ln2x <10<2x <1,解得12e <x <12;当x >12时,1+ln2x >1,2x >1,所以1+ln2x >2x ,不成立;综上可得,不等式f x >e 2x 的解集为12e ,12.故选:D .二、多选题20.(2023·广东东莞·高三校考阶段练习)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A.异面直线AC 与BD 所成角为60°B.点A 到平面BCD 的距离为263C.四面体ABCD 的外接球体积为6πD.动点P 在平面BCD 上,且AP 与AC 所成角为60°,则点P 的轨迹是椭圆【答案】BC【解析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC ,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误.取BD 中点E ,连接AE ,CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF =AB 2-BF 2=236,即点A 到平面BCD 的距离为263,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为V A -BCD =13S △BCD ⋅AF =4×13S △BCD ⋅OF ,所以AF =4OF ,即OF =66,AO =62,所以四面体ABCD 的外接球体积V =43πR 3=43πOA 3=6π,故C 正确;建系如图:A 0,0,263 ,C 0,233,0 ,设P (x ,y ,0),则AP =x ,y ,-263 ,AC =0,233,-263 因为AP ⋅AC =AP AC cos60°,所以233y +249=x 2+y 2+83×129+247×12,即233y +83=x 2+y 2+83,平方化简可得:x 2-y 23-3239y -409-0,可知点P 的轨迹为双曲线,故D 错误.故选:BC .21.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;⋯;第n n ∈N * 次得到数列1,x 1,x 2,x 3,⋯,x k ,2;⋯记a n =1+x 1+x 2+⋯+x k +2,数列a n 的前n 项为S n ,则()A.k +1=2n B.a n +1=3a n -3C.a n =32n 2+3n D.S n =343n +1+2n -3 【答案】ABD【解析】由题意可知,第1次得到数列1,3,2,此时k =1第2次得到数列1,4,3,5,2,此时k =3第3次得到数列1, 5,4,7,3,8,5,7,2,此时k =7第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k =15第n 次得到数列1,x 1,x 2,x 3,⋯,x k ,2此时k =2n -1所以k +1=2n ,故A 项正确;结合A 项中列出的数列可得:a 1=3+3a 2=3+3+9a 3=3+3+9+27a 4=3+3+9+27+81 ⇒a n =3+31+32+⋯+3n (n ∈N *)用等比数列求和可得a n =3+33n -12则a n +1=3+33n +1-1 2=3+3n +2-32=3n +22+32又3a n -3=33+33n -1 2-3=9+3n +22-92-3=3n +22+32所以a n +1=3a n -3,故B 项正确;由B 项分析可知a n =3+33n -1 2=323n +1即a n ≠32n 2+3n ,故C 项错误.S n =a 1+a 2+a 3+⋯+a n=322+332+⋯+3n +12 +32n =321-3n 1-32+32n=3n +24+3n 2-94=343n +1+2n -3 ,故D 项正确.故选:ABD .22.(2023·广东·高三统考阶段练习)已知O 为坐标原点,F 为抛物线E :y 2=2x 的焦点,过点P (2,0)的直线交E 于A ,B 两点,直线AF ,BF 分别交E 于C ,D ,则()A.E 的准线方程为x =-12B.∠AOB =90°C.FA +FB 的最小值为4D.AC +2BD 的最小值为3+3664【答案】ABD【解析】对于A ,由题意p =1,所以E 的准线方程为x =-12,故A 正确:对于B ,设A y 212,y 1 ,B y 222,y 2,设直线AB :x =my +2,与抛物线联立可得y 2-2my -4=0,Δ>0⇒m ∈R ,y 1y 2=-4,所以OA ⋅OB =y 1y 24y 1y 2+4 =0,所以∠AOB =90°,故B 正确;对于C ,FA +FB =y 21+y 222+1≥y 1y 2 +1=5>4,故C 错误;对于D ,设直线AC :x =ty +12,与抛物线联立可得y 2-2ty -1=0,Δ>0⇒t ∈R ,y 1y C =-1,同理y 2y D =-1,所以y C =-1y 1,y D =-1y 2,所以x C =y 2C2=12⋅1y 21,x D =y 2D 2=12⋅1y 22所以AC =x A +x C +1=1+12y 21+1y 21 ,BD =x B +x D +1=1+12y 22+1y 22,y 1y 2=-4,所以AC +2BD =3+916y 21+332y 21≥3+3664,当且仅当y 21=2663时等号成立,故D 正确.故选:ABD .23.(2023·广东·高三统考阶段练习)已知函数f x =ae x -x 2+x ln x -ax ,则()A.当a =0时,f x 单调递减 B.当a =1时,f x >0C.若f x 有且仅有一个零点,则a ≤1 D.若f x ≥0,则a ≥1e -1【答案】ABD【解析】当a =0时,f x =x ln x -x 2,f x =1+ln x -2x x >0 ,设g x =1+ln x -2x ,则g x =1x -2=1-2xx,当x ∈0,12 时,g x >0,f x 单调递增,当x ∈12,+∞ 时,g x <0,f x 单调递减,当x =12时,f x 取得最大值,因为f 12 =1+ln 12-2×12=-ln2<0,所以fx <0,f x 单调递减,故A 正确;当a =1时,f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1t =m x =x -ln x ,则m x =1-1x =x -1x,当x ∈0,1 时,m x <0,m x 单调递减,当x ∈(1,+∞)时,m x >0,m x 单调递增,当x =1时,m x 取得最小值,m 1 =1,所以t =m x ≥1.设h (t )=e t -t -1,h (t )=e t -1,因为t ≥1,所以h (t )=e t -1≥e -1>0,h (t )单调递增,所以h (t )≥h 1 =e -2>0,所以f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1 =xh m (x ) >0,故B 正确;f x =x ae x -ln x -(x -ln x )-a ,若f x =0,则ae x -ln x -(x -ln x )-a =0,设t =m x =x -ln x ≥1,即a =te t -1,设F (t )=t e t -1,则F(t )=(1-t )e t -1e t -12,因为t ≥1,所以(1-t )e t -1<0,F (t )<0,F (t )单调递减,若f x 有且仅有一个零点,则t =1,此时a =1e -1,故C 错误;若f x ≥0,则ae t -t -a ≥0,即a ≥te t -1=F t ,因为F t 单调递减,所以a ≥F (1)=1e -1,故D 正确.故选:ABD .24.(2023·广东佛山·高三校考阶段练习)我们知道,函数y =f (x )的图象关系坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数. 有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数. 现在已知,函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,则()A.f (2)=0B.f (1)=3C.对任意x ∈R ,有f (2+x )+f (2-x )=0D.存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0【答案】ACD【解析】由题意,因为函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,所以函数y =f x +2 为奇函数,所以f x +2 +f -x +2 =0,故C 正确;又y =f x +2 =x 3+m +6 x 2+12+4m +n x +4m +2n +10,则f x +2 +f -x +2 =2m +6 x 2+24m +2n +10 =0,所以m +6=04m +2n +10=0,解得m =-6n =7 ,所以f x =x 3-6x 2+7x +2,f x +2 =x 3-5x ,则f 2 =0,f 1 =4,故A 正确,B 错误;令f 2+x -f 2-x =0,则2x 3-10x =0,解得x =0或±5,所以存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0,故D 正确.故选:ACD .25.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x =sin ωx +φ ω>0 满足f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,则下列结论正确的是()A.f x 0+12 =1B.若x 0=0,则f x =sin πx +π4 C.f x 的最小正周期为4 D.f x 在0,2024 上的零点个数最少为1012个【答案】AC【解析】A ,由题意f x 在x 0,x 0+1 的区间中点处取得最大值,即f x 0+12=1,正确;B ,假设若x 0=0,则f x =sin πx +π4成立,由A 知f 12 =1,而f 12=sin π2+π4 =22≠1,故假设不成立,则错误;C ,f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,令ωx 0+φ=2k π+π4,ωx 0+1 +φ=2k π+3π4,k ∈Z ,则两式相减,得ω=π2,即函数的最小正周期T =2πω=4,故正确;D ,因为T =4,所以函数f x 在区间0,2024 上的长度恰好为506个周期,当f 0 =0,即φ=k π,k ∈Z 时,f x 在区间0,2024 上的零点个数至少为506×2-1=1011个,故错误.故选:AC .26.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知直线y =a 与曲线y =xe x相交于A ,B 两点,与曲线y =ln xx相交于B ,C 两点,A ,B ,C 的横坐标分别为x 1,x 2,x 3.则()A.x 2=ae x 2B.x 2=ln x 1C.x 3=ex 2D.x 1+x 3>2x 2【答案】ACD 【解析】设f x =x e x ,得fx =1-x ex ,令f x =0,可得x =1,当x <1时,f x >0,则函数f x 单调递增,当x >1时,f x <0,则函数f x 单调递减,则当x =1时,f x 有极大值,即最大值f x max =f 1 =1e.设g x =ln x x ,得g x =1-ln xx2,令g x =0,则x =e ,当x <e 时,g x >0,则函数g x 单调递增,当x >e 时,g x <0,则函数g x 单调递减,则当x =e 时,g x 有极大值,即最大值g x max =f e =1e,从而可得0<x 1<1<x 2<e <x 3.由x 2ex 2=a ,得x 2=ae x2,故A 正确;由x 1e x 1=ln x 2x 2,得x 1e x 1=ln x 2e ln x 2,即f x 1 =f ln x 2 ,又0<x 1<1<x 2<e ,得0<ln x 2<1,又f x 在0,1 上单调递增,则x 1=ln x 2,故B 错误;由x 2e x 2=ln x 3x 3,得ln e x2ex 2=ln x 3x 3,即g e x 2=g x 3 .又1<x 2<e <x 3,得e x 2>e ,又g x 在e ,+∞ 上单调递减,则e x 2=x 3,故C 正确;由前面知x 1=ln x 2,e x 2=x 3,得x 1x 3=e x2ln x 2,又由x 2ex 2=ln x 2x 2=a ,得e x2=x 2a ,ln x 2=ax 2,则x 1x 3=x 22,x 1+x 3>2x 1x 3=2x 2.故D 正确.故选:ACD .27.(2023·湖南长沙·高三长郡中学校考阶段练习)由两个全等的正四棱台组合而得到的几何体1如图1,沿着BB 1和DD 1分别作上底面的垂面,垂面经过棱EP ,PH ,HQ ,QE 的中点F ,G ,M ,N ,则两个垂面之间的几何体2如图2所示,若EN =AB =EA =2,则()A.BB 1=22B.FG ⎳ACC.BD ⊥平面BFB 1GD.几何体2的表面积为163+8【答案】ABC【解析】将几何体1与几何体2合并在一起,连接BB 1,FG ,PQ ,EH ,AC ,BD ,记FG ∩PQ =K ,易得K ∈BB 1,对于A ,因为在正四棱台ABCD -EPHQ 中,AB ⎳EP ,F 是EP 的中点,所以AB ⎳EF ,又N 是EQ 的中点,EN =2,所以EQ =4,则EP =4,EF =2,又AB =2,所以AB =EF ,所以四边形ABFE 是平行四边形,则BF =AE =2,同理:B 1F =B 1G =BG =2,所以四形边B 1FBG 是边长为2菱形,在边长为4的正方形EPHQ 中,HE =42,因为F ,G 是EP ,PH 的中点,所以FG ⎳EH ,FG =12EH =22,所以BB 1=222-2222=22,故A 正确;对于B ,因为在正四棱台ABCD -EPHQ 中,面ABCD ⎳面EPHQ ,又面AEHC ∩面ABCD =AC ,面AEHC ∩面EPHQ =EH ,所以AC ⎳EH ,又FG ⎳EH ,所以FG ⎳AC ,故B 正确;对于C ,在四边形EPHQ 中,由比例易得PK =14PQ =2,由对称性可知BK =12B 1B =2,而PB =2,所以PK 2+BK 2=PB 2,则PK ⊥BK ,即PQ ⊥BK ,而由选项B 同理可证BD ⎳PQ ,所以BD ⊥BK ,因为在正方形ABCD 中,BD ⊥AC ,而FG ⎳AC ,所以BD ⊥FG ,因为BK ∩FG =K ,BK ,FG ⊂面BFB 1G ,所以BD ⊥面BFB 1G ,对于D ,由选项A 易知四边形BGB 1F 是边长为2的正方形,上下底面也是边长为2的正方形,四边形ABFE 是边长为2的菱形,其高为22-4-222=3,所以几何体2是由4个边长为2正方形和8个上述菱形组合而成,所以其表面积为4×22+8×2×3=16+163,故D 错误.故选:ABC .28.(2023·湖南长沙·高三长郡中学校考阶段练习)已知随机变量ξ~B (2n ,p ),n ∈N *,n ≥2,0<p <1,记f (t )=P (ξ=t ),其中t ∈N ,t ≤2n ,则()A.2nt =0f (t ) =1 B.2nt =0tf (t ) =2npC.n t =0f (2t )<12<nt =1f (2t -1) D.若np =6,则f (t )≤f (12)【答案】ABD【解析】对于A ,2nt =0f (t )=2nt =0P (ξ=t )=1,所以A 正确;对于B ,因为2nt =0t f (t )=E (ξ)=2np ,所以B 正确;对于C ,当p =q =12时,n t =0f (2t )=nt =1f (2t -1)=12,所以C 错误;对于D ,因为(2n +1)p =12+p ,所以当t =12时,f (t )最大,所以D 正确;证明如下:若ξ~B (n ,p ),则P (ξ=k )P (ξ=k -1)=C k n p k(1-p )n -k C k -1n p k -1(1-p )n -k +1=(n -k +1)pk (1-p ),若P (ξ=k )>P (ξ=k -1),则(n -k +1)pk (1-p )>1,解得k <(n +1)p ,故当k <(n +1)p 时,P (ξ=k )单调递增,当k >(n +1)p 时,P (ξ=k )单调递减,即当(n +1)p 为整数时,k =(n +1)p 或k =(n +1)p -1时,P (ξ=k )取得最大值,当(n +1)p 不为整数,k 为(n +1)p 的整数部分时,P (ξ=k )取得最大值.故选:ABD .29.(2023·湖南长沙·高三长郡中学校考阶段练习)已知ab ≠0,函数f x =e ax +x 2+bx ,则()A.对任意a ,b ,f x 存在唯一极值点B.对任意a ,b ,曲线y =f x 过原点的切线有两条C.当a +b =-2时,f x 存在零点D.当a +b >0时,f x 的最小值为1【答案】ABD【解析】对于A ,由已知ab ≠0,函数f x =e ax +x 2+bx ,可得f x =ae ax +2x +b ,令g x =ae ax +2x +b ,∴g x =a 2e ax +2>0,则g x 即f x =ae ax +2x +b 在R 上单调递增,令f x =ae ax +2x +b =0,则ae ax =-2x -b ,当a >0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:当a <0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:可知y =ae ax ,y =-2x -b 的图象总有一个交点,即f x =ae ax +2x +b =0总有一个根x 0,当x <x 0时,f x <0;当x >x 0时,f x >0,此时f x 存在唯一极小值点,A 正确;对于B ,由于f 0 =1,故原点不在曲线f x =e ax +x 2+bx 上,且f x =ae ax +2x +b ,设切点为(m ,n ),n =e am+m 2+bm ,则fm =ae am+2m +b =n m =e am +m 2+bm m,即ae am+m=e amm,即eam(am-1)+m2=0,令h(m)=e am(am-1)+m2,h (m)=ae am(am-1)+ae am+2m=m(a2e am+2),当m<0时,h (m)<0,h(m)在(-∞,0)上单调递减,当m>0时,h (m)>0,h(m)在(0,+∞)上单调递增,故h(m)min=h(0)=-1,当m→-∞时,e am(am-1)的值趋近于0,m2趋近于无穷大,故h(m)趋近于正无穷大,当m→+∞时,e am(am-1)的值趋近于正无穷大,m2趋近于无穷大,故h(m)趋近于正无穷大,故h(m)在(-∞,0)和(0,+∞)上各有一个零点,即e am(am-1)+m2=0有两个解,故对任意a,b,曲线y=f x 过原点的切线有两条,B正确;对于C,当a+b=-2时,b=-2-a,f x =e ax+x2-(a+2)x,故f x =ae ax+2x-a-2,该函数为R上单调增函数,f 0 =-2<0,f 1 =ae a-a=a(e a-1)>0,故∃s∈(0,1),使得f s =0,即e as=-2as+1+2a,结合A的分析可知,f(x)的极小值也即最小值为f(s)=e as+s2-(a+2)s=-2as+1+2a+s2-(a+2)s,令m(s)=-2as+1+2a+s2-(a+2)s,则m s =2s-a+2a+2,且为增函数,当a<0时,m (0)=-a+2a+2≥22-2>0,当且仅当a=-2时取等号,故当s>0时,m s >m 0 >0,则f(s)在(0,1)上单调递增,故f(s)>f(0)=2a+1,令a=-3,则f(0)=2a+1=13>0,∴f(s)>f(0)>0,此时f(x)的最小值为f(s)>0,f x 无零点,C错误;对于D,当a+b>0时,f x为偶函数,考虑x>0视情况;此时f x=f(x)=e ax+x2+bx,(x>0),f (x)=ae ax+2x+b,结合A的分析可知f (x)=ae ax+2x+b在R上单调递增,f (0)=a+b>0,故x>0时,f (x)>f (0)>0,则f(x)在(0,+∞)上单调递增,故f(x)在(-∞,0)上单调递减,f x为偶函数,故f xmin=f(0)=1,D正确,故选:ABD30.(2023·湖南益阳·高三统考阶段练习)已知函数f x =e x-1,x≥0x2+2x,x<0,则()A.f x 有两个零点B.直线y=x与f x 的图象有两个交点C.直线y=12与f x 的图象有四个交点D.存在两点a,b,-2-a,ba>0,b>0同时在f x 的图象上【答案】ABD【解析】画出f x 的图象,如下:A 选项,f x 有两个零点,即-2和0,A 正确;B 选项,当x ≥0时,f x =e x -1,则f x =e x ,令f x =e x =1,解得x =0,又f 0 =0,故y =e x -1在x =0的切线方程为y =x ,令m x =e x -1-x ,x >0,则m x =e x -1>0,故m x =e x -1-x 在0,+∞ 上单调递增,故m x >m 0 =0,即e x -1>x 在0,+∞ 上恒成立,故y =e x -1在x ∈0,+∞ 上与y =x 只有一个交点,当x <0时,f x =x 2+2x ,联立y =x ,可得x 2+2x =x ,解得x =-1或0(舍去),结合函数图象,可知直线y =x 与f x 的图象有两个交点,B 正确;C 选项,在同一坐标系内画出f x 与直线y =12的图象,可知直线y =12与f x 的图象有2个交点,C 错误;D 选项,点a ,b ,-2-a ,b a >0,b >0 是关于x =-1对称的两点,因为a >0,b >0,故a ,b 是位于第一象限的点,-2-a ,b 位于第二象限,-2-a ,b 在f x =x2+2x ,x <-2上,要想满足a ,b 同时在f x 的图象上,只需g x =x 2+2x ,x >0与h x =e x -1,x >0在第一象限内有交点,因为g 1 =3,h 1 =e -1,故g 1 >h 1 ,又g 3 =15,h 3 =e 3-1,故g 3 <h 3 ,两函数均在0,+∞ 单调递增,故一定存在x 0∈1,3 ,使得g x 0 =h x 0 ,D 正确.故选:ABD31.(2023·湖南益阳·高三统考阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是线段A 1B ,B 1D 1上的点,则下列结论正确的是()A.三棱锥P -CB 1D 1的体积是43B.线段PQ 的长的取值范围是233,23C.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与平面AC 所成的角为π6D.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与直线AC 所成的角为π3【答案】AC【解析】建立如图所示空间直角坐标系:因为棱长为2,所以A 2,0,0 ,B (2,2,0),C (0,2,0),A (2,0,2),D (0,0,2),A B =(0,2,-2),DC =(0,2,-2),AC =(-2,2,0),对于A ,∵A B =(0,2,-2),D C =(0,2,-2),∴A B =D C,则A B ⎳D C,所以A B ⎳D C ,又A B ⊄平面CB D ,D C ⊂平面CB D ,所以A B ⎳平面CB D ,又点P ∈A B ,故点P 到平面CB D 的距离等价于点B 到平面CB D 的距离,所以V P -CB 1D 1=V B -CB 1D 1=V D 1-BCB 1=13×2×2=43,故A 正确;对于B ,设P (2,m ,2-m ),Q (n ,n ,2),m ,n ∈[0,2]则PQ =n -22+n -m 2+m 2=2m 2+2n 2-2mn -2n +4=2m -n 2 2+32n -232+103,故m =n2n =23及m =13n =23时,PQ min =103=303≠233,故B 错误;对于C ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),取平面AC 的法向量n=(0,0,1),设θ为PQ 与平面AC 所成的角,则sin θ=cos PQ , n =PQ ⋅nPQ n=12=22,所以θ=π4,即PQ 与平面AC 所成的角为π4,故C 错误;对于D ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),则PQ ⋅AC =(-1,0,1)⋅(-2,2,0)=2,则cos PQ ,AC =PQ ⋅ACPQ AC=22×22=12,则PQ ,AC =π3,即PQ 与直线AC 所成的角为π3,故D 正确.故选:AD .32.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3-3x ,x <02x-2,x ≥0,若关于x 的方程f 2x -2a +1 f x +a2+a =0有6个不同的实根,则实数a 可能的取值有()A.-12B.12C.34D.2【答案】BC【解析】当x <0时,f x =x 3-3x ,则f x =3x 2-3=3x -1 x +1 ,当x ∈-∞,-1 时,f x >0,f x 单调递增,当x ∈-1,0 时,f x <0,f x 单调递减,作出f x 的图象,如图所示,f 2x -2a +1 f x +a 2+a =f x -a f x -a -1 =0,即f x =a 与f x =a +1共六个不等实根,由图可知f x =2时,x =-1或x =2,即f x =2有两个根,若使f x =a 与f x =a +1共六个不等实根,只需满足0<a <20<a +1<2 ,即0<a <1.故选:BC .33.(2023·湖南长沙·高三长郡中学校联考阶段练习)若数列a n 中任意连续三项a i ,a i +1,a i +2,均满足a i -a i +2 a i +2-a i +1 >0,则称数列a n 为跳跃数列.则下列结论正确的是()A.等比数列:1,-13,19,-127,181,⋯是跳跃数列B.数列a n 的通项公式为a n =cos n π2n ∈N *,数列a n 是跳跃数列C.等差数列不可能是跳跃数列D.等比数列是跳跃数列的充要条件是该等比数列的公比q ∈-1,0 【答案】ACD【解析】对于选项A ,由跳跃数列定义知,等比数列:1,-13,19,-127,181,⋯是跳跃数列,故A 正确;对于选项B ,数列的前三项为a 1=0,a 2=-1,a 3=0,不符合跳跃数列的定义,故B 错误;对于选项C ,当等差数列公差d >0时,它是单调递增数列;公差d <0时,它是单调递减数列;公差d =0时,它是常数列,所以等差数列不可能是跳跃数列,故C 正确;对于选项D ,等比数列a n 是跳跃数列,则a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,整理得q +1 q (q -1)2<0,即-1<q <0,若比数列a n 的公比-1<q <0,则q +1 q (q -1)2<0,可得a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,所以等比数列a n 是跳跃数列,故D 正确.故选:ACD .34.(2023·湖南长沙·高三长郡中学校联考阶段练习)已知函数f x 的定义域为R ,函数f x 的图象关于点1,0 对称,且满足f x +3 =f 1-x ,则下列结论正确的是()A.函数f x +1 是奇函数B.函数f x 的图象关于y 轴对称C.函数f x 是最小正周期为2的周期函数D.若函数g x 满足g x +f x +3 =2,则2024k =1g k =4048【答案】ABD【解析】因为函数f x 的图象关于点1,0 对称,所以f x +1 =-f 1-x ,所以函数f x +1 是奇函数,故A 正确;因为f x +1 =-f 1-x ,所以f x +2 =-f -x ,又f x +3 =f 1-x ,所以f x +3 =-f x +1 ,所以f x +2 =-f x ,所以f -x =f x ,所以f x 为偶函数.故B 正确;因为f x +4 =-f x +2 =f x ,所以f x 是最小正周期为4的周期函数,故C 错误;因为g x +f x +3 =2,所以g x =2-f x +3 ,那么g x +4 =2-f x +7 =2-f x +3 =g x ,所以g x 也是周期为4的函数,g 1 +g 2 +g 3 +g 4 =2-f 4 +2-f 5 +2-f 6 +2-f 7 =8-f 4 +f 5 +f 6 +f 7 ,因为f x +2 =-f x ,所以f 4 +f 6 =0,f 5 +f 7 =0,所以g 1 +g 2 +g 3 +g 4 =8,所以2024i =1g k =506g 1 +g 2 +g 3 +g 4 =4048,故D 正确.故选:ABD .35.(2023·湖南株洲·高三校考阶段练习)如图,在正方体ABCD -A 1B 1C 1D 1中,AD =4,点E ,F 分别为A 1B 1,BC 的中点,点P 满足AP =λAD +μAA 1,λ∈0,1,μ∈ 0,1 ,则下列说法正确的是()A.若λ+μ=1,则四面体PEFD 1的体积为定值B.若λ=12,μ=14,则C 1P ⊥平面EFD 1C.平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为5+42+35D.若λ=1,μ=0,则四面体PEFD 1外接球的表面积为344π9【答案】BD【解析】如图1,取AB 的中点G ,连接DG ,易得D 1E ∥DG ,取CD 的中点H ,连接BH ,易得BH ∥DG ,再取CH 的中点M ,连接FM ,D 1M ,则FM ∥BH ,所以FM ∥D 1E ,则FM 是平面EFD 1与正方体底面ABCD 的交线,延长MF ,与AB 的延长线交于N ,连接EN ,交BB 1于P ,则BB 1=3BP ,且五边形D 1EPFM 即平面EFD 1交正方体ABCD -A 1B 1C 1D 1的截面,由F 是BC 中点且BN ⎳CM 得BN =CM =12CH =12B 1E ,又由BN ⎳B 1E 得BP =12B 1P =13BB 1,从而可计算得ED 1=25,D 1M =5,MF =5,EP =103,PF =2133,所以平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为253+2133+35,故C 错误.对于A ,因为AP =λAD +μAA 1 ,λ+μ=1,所以P ,D ,A 1三点共线,所以点P 在A 1D 上,因为A 1D 与平面EFD 1不平行,所以四面体PEFD 1的体积不为定值,A 错误.对于B ,如图2,以A 为原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系,则AP =12AD+14AA 1 =0,2,1 ,C 1P =C 1A +AP =-4,-2,-3 ,D 1E =2,-4,0 ,EF =2,2,-4 ,则C 1P ⋅D 1E =0,C 1P ⋅EF =0,C 1P是平面EFD 1的一个法向量,所以C 1P ⊥平面EFD 1,故B 正确.对于D ,若λ=1,μ=0,则点P 即点D .易知EG ⎳DD 1,DD 1⊥D 1E (由DD 1⊥平面A 1B 1C 1D 1可得),同理EG ⊥D 1E ,即四边形EGDD 1是矩形,则四面体PEFD 1的外接球与四棱锥F -ED 1DG 的外接球相同,在△GFD 中,GF =22,GD =25,FD =25,在图3四棱锥F -DD 1EG 中,取U 是GF 中点,则DU ⊥GF ,△DGF 的外心T 在DU 上,sin ∠DGU =(25)2-(2)225=31010,则△GFD 外接圆的半径为DT =2531010×12=523,设DE ∩GD 1=S ,取GD 中点Q ,连接QT ,QS ,则QT ⊥GD ,同样由DD 1⊥平面DGF ,QT ⊂平面DGF ,得DD 1⊥QT ,而DG 与DD 1是平面DD 1EG 内两相交直线,因此有TQ ⊥平面DD 1EG ,同理可证SQ ⊥平面DGF ,得SQ ⊥QT ,作矩形SQTO ,可得OT =SQ =12DD 1=2,OS ⊥平面DD 1EG ,OT ⊥平面DGF ,从而知O 是四棱锥F -ED 1DG 的外接球的球心,所以四面体PEFD 1外接球的半径R =OD =DT 2+OT 2=5232+22=863,即四面体PEFD 1外接球的表面积为344π9,D 正确.故选:BD .36.(2023·湖南株洲·高三株洲二中校考开学考试)已知数列a n 满足a 1=1,a n +1=2a n ln a n +1 +1,则下列说法正确的有()A.2a 3a 1+a 2<5 B.a n +1-a 2n ≤a 2n +1C.若n ≥2,则34≤ni =11a i +1<1D.ni =1ln a i +1 ≤2n -1 ln2【答案】BCD【解析】a 2=2a 1ln a 1+1 +1=3,a 3=2a 2ln a 2+1 +1=6ln3+7,则2a 3-5a 1+a 2 =12ln3-6>0,又a 1+a 2>0,所以2a 3a 1+a 2>5,A 不正确.令函数f x =x -ln x -1,则f x =1-1x,则f x 在0,1 上单调递减,在1,+∞ 上单调递增,f x ≥f 1 =0,即x ≥ln x +1,又易得a n 是递增数列,a n ≥a 1=1,故a n ≥ln a n +1,所以a n +1≤2a 2n +1,B 正确.易知a n 是递增数列,所以a n ≥a 1=1,则ln a n +1≥1,a n +1=2a n ln a n +1 +1≥2a n +1,则a n +1+1≥2a n +1 ,即a n +1+1a n +1≥2,所以a n +1a n -1+1⋅a n -1+1a n -2+1⋯⋯⋅a 2a 1≥2n -1,即a n +1≥2n -1a 1+1 =2n ,所以1a n +1≤12n,所以ni =11a i +1≤12+122+⋯+12n =121-12n1-12=1-12n<1,而当n ≥2时,则有ni =11a i +1≥1a 1+1+1a 2+1=34,C 正确.令函数g x =2ln x -x +1x ,则gx =2x -1-1x 2=-x 2+2x -1x 2≤0,所以g x 在0,+∞ 上单调递减,所以当x ≥1时,g x ≤g 1 =0,则ln x ≤12x -1x,所以a n +1≤2a n 12a n -1a n+1+1=a 2n +2a n ,a n +1+1≤a n +1 2,ln a n +1+1 ln a n +1 ≤2,ln a n +1 ln a n -1+1⋅ln a n -1+1 ln a n -2+1 ⋅⋯⋅ln a 2+1ln a 1+1≤2n -1,ln a n +1 ≤2n -1ln a 1+1 =2n -1ln2,所以∑ni =1ln a i +1 ≤(1+2+⋯+2n -1 ln2=2n -1 ln2,D 正确.故选:BCD .37.(2023·湖南·高三临澧县第一中学校联考开学考试)已知函数f x ,g x 是定义在R 上的非常数函数,f x +1 的图象关于原点对称,且f x +g 1-x =4,f x +1 +g x -2 =4,则( ).A.f x 为奇函数 B.f x 为偶函数C.2024k =1f k =0D.2024k =1g k =8096【答案】BCD【解析】因为f x +1 的图象关于原点对称,故f 1+x +f 1-x =0,即f x +f 2-x =0①,f x +1 +g x -2 =4中,用3-x 代替x 得f 4-x +g 1-x =4,而f x +g 1-x =4,故f 4-x +g 1-x =4f x +g 1-x =4,两式相减可得f x =f 4-x ,即f x +2 =f 2-x ②,由①②可得f x =-f x +2 =f x +4 ③,故f x 的周期为4,所以f -x =f 4-x =f x ,故f x 为偶函数,因为f x 不是常数函数,所以f x 不是奇函数,故A 错误,B 正确.由①可得,f x +f x -2 =0,故f 1 +f 3 =0,f 2 +f 4 =0,于是2024k =1f k =506f 1 +f 2 +f 3 +f 4 =0,故C 正确.由f x +g 1-x =4可得f 1-x +g 1-1+x =4,即f 1-x +g x =4,因为f x 为偶函数,且f x =-f x -2 ,所以f -x =-f x -2 ,f 1-x =-f -1+x -2 =。
2024年新高考新题型数学选填压轴好题汇编04(解析版)
2024年新高考新题型数学选填压轴好题汇编04一、单选题1(2024·广东·一模)已知集合A=-12,-13,12,13,2,3,若a,b,c∈A且互不相等,则使得指数函数y =a x,对数函数y=log b x,幂函数y=x c中至少有两个函数在(0,+∞)上单调递增的有序数对(a,b,c)的个数是()A.16B.24C.32D.48【答案】B【解析】若y=a x和y=log b x在(0,+∞)上单调递增,y=x c在(0,+∞)上单调递减,则有A22⋅C12=4个;若y=a x和y=x c在(0,+∞)上单调递增,y=log b x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=log b x和y=x c在(0,+∞)上单调递增,y=a x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=a x、y=log b x和y=x c在(0,+∞)上单调递增,则有A22⋅C12=4个;综上所述:共有4+8+8+4=24个.故选:B.2(2024·广东江门·一模)物理学家本·福特提出的定律:在b进制的大量随机数据中,以n开头的数出现的概率为P b n =log b n+1n.应用此定律可以检测某些经济数据、选举数据是否存在造假或错误.若80n=kP10(n)=log4811+log25k∈N*,则k的值为()A.7B.8C.9D.10【答案】C【解析】80n=k P10(n)=P10(k)+P10(k+1)+⋯+P10(80)=lg k+1k +lg k+2k+1+⋯+lg8180=lg81k,而log4811+log25=lg81lg41+lg5lg2=4lg32lg21+lg5lg2=2lg3=lg9,故k=9.故选:C.3(2024·广东·模拟预测)在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.33468B.3434C.21717D.1734【答案】A【解析】依题意,记BC的中点为F,连接DF,记正△BCD的中心为O,连接AO,因为在正三棱锥A-BCD中,AO⊥底面BCD,在正△BCD中,DF⊥BC,在平面BCD中过F点作z轴⊥底面BCD,则AO⎳z轴,以F点为原点,建立空间直角坐标系,如图,因为在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,所以DF=32CD=32×6=33,2DF=23,AO=AD2-OD2=64-12=213,故B -3,0,0 ,C 3,0,0 ,D 0,33,0 ,O 0,3,0 ,A 0,3,213 ,则E -32,32,13 ,CE =-92,32,13 ,BD =3,33,0 ,所以cos CE ,BD =CE ⋅BDCE BD =-92×3+32×33-92 2+32 2+13×9+27=-33468,则异面直线CE 与BD 所成角的余弦值为33468.故选:A .4(2024·天津滨海新·一模)已知抛物线C 1:y 2=2px p >0 的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为()A.2B.322C.113D.222【答案】D【解析】求得抛物线的焦点和准线,可得EF 的长度,由题意可得p =6a ,求出两曲线交点坐标,代入双曲线方程可得a ,b 的关系,利用离心率公式可求得结果.抛物线y 2=2px 的焦点为F p 2,0 ,准线方程为x =-p2,E -p2,0 ,|EF |=p ,因为线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,所以2a =p 3,即p =6a ,因为两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,所以两个交点为p 2,p 、p2,-p ,将p 2,p 代入双曲线x 2a 2-y 2b 2=1得p 24a 2-p 2b2=1,所以36a 24a 2-36a 2b 2=1,所以9-36a 2b 2=1,所以b 2a2=92,所以双曲线C 2的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=1+92=222.故选:D5(2024·湖南·二模)已知函数f x =sin ωx +3cos ωx ,若沿x 轴方向平移f x 的图象,总能保证平移后的曲线与直线y =1在区间0,π 上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.2,83B.2,103C.103,4 D.2,4【答案】A【解析】由f x =sin ωx +3cos ωx 可得:f x =2sin ωx +π3,若沿x 轴方向平移,考虑其任意性,不妨设得到的函数g x =2sin ωx +φ .令g x =1,即sin ωx +φ =12,x ∈[0,π],取z =ωx +φ,则z ∈[φ,ωπ+φ].依题意知,sin z =12在φ,ωπ+φ 上至少有2解,至多有3解,则须使区间[φ,ωπ+φ]的长度在2π到8π3之间,即2π≤ωπ<8π3,解得2≤ω<83.6(2024·湖南·二模)过点P -1,0 的动直线与圆C :(x -a )2+(y -2)2=4(a >0)交于A ,B 两点,在线段AB 上取一点Q ,使得1PA +1PB =2PQ ,已知线段PQ 的最小值为2,则a 的值为()A.1B.2C.3D.4【答案】A【解析】圆心C a ,2 ,半径为2,则圆C 与x 轴相切,设切点为M a ,0 ,则PM =a +1,则|PM |2=PA PB =(a +1)2,设AB 的中点为D ,连接CD ,则CD ⊥AB ,令圆心C 到直线AB 的距离为d ,则0≤d <2,|PA |+|PB |=|PD |-|AD |+|PD |+|AD |=2|PD |,由1PA +1PB =2PQ ,得PQ =2PA PB PA +PB =(a +1)2|PC |2-d 2=(a +1)2(a +1)2+4-d 2,因此(a +1)2(a +1)2+4-0≤PQ <(a +1)2(a +1)2+4-4,而PQ 的最小值为2,所以a +12a +1 2+4=2,则a =1.故选:A7(2024·高三·浙江宁波·阶段练习)如图1,水平放置的直三棱柱容器ABC -A 1B 1C 1中,AC ⊥AB ,AB =AC =2,现往内灌进一些水,水深为2.将容器底面的一边AB 固定于地面上,再将容器倾斜,当倾斜到某一位置时,水面形状恰好为三角形A 1B 1C ,如图2,则容器的高h 为()A.3B.4C.42D.6【答案】A【解析】在图1中水的体积V =12×2×2×2=4,在图2中水的体积V =VABC -A 1B 1C 1-V C -A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h ,4h =4⇒h =3.8(2024·江西·高考真题)已知F 1、F 2是椭圆的两个焦点,满足MF 1 ⋅MF 2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是A.(0,1) B.0,12C.0,22D.22,1 【答案】C【解析】设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 1 ·MF 2=0所以点M 的轨迹为以原点为圆心,半径为c 的圆.与因为点M 在椭圆的内部,所以c <a ,c <b ,所以c 2<b 2=a 2-c 2,所以2c 2<a 2∴e 2=c 2a2<12,所以e ∈0,22,故选C .9(2024·高二·湖北鄂州·阶段练习)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的焦距为2c ,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1-d 2 ≤c ,则双曲线的离心率的取值范围为()A.1,233B.233,+∞ C.1,2D.2,+∞【答案】C【解析】由题意可知,直线AB 经过双曲线的右焦点,且垂直于x 轴,不妨设A c ,y 0 ,代入椭圆方程c 2a 2-y 02b2=1,又c 2=a 2+b 2,所以y 0=b 2a ,所以A c ,b 2a ,B c ,-b 2a,任取双曲线的一条渐近线为直线bx +ay =0,由点到直线的距离公式可得点A 到渐近线的距离d 1=bc +b 2a 2+b2=bc +b 2c ,点B 到渐近线的距离d 2=bc -b 2a 2+b 2=bc -b 2c ,所以d 1-d 2 =bc +b 2c -bc -b 2c =2b 2c=2b 2c,因为d 1-d 2 ≤c ,所以2b 2c≤c ,因c >0,所以2b 2≤c 2,即2c 2-a 2 ≤c 2,所以c 2≤2a 2,所以c 2a 2≤2,因为双曲线离心率c a >1,所以1<ca≤2,所以双曲线的离心率的取值范围为1,2 .故选:C .10(2024·高二·广东深圳·期末)已知抛物线C :y 2=2px p >0 的焦点为F ,斜率为k 的直线l 经过点F ,并且与抛物线C 交于A 、B 两点,与y 轴交于点M ,与抛物线的准线交于点N ,若AF =2MN,则k =()A.3B.2C.±2D.±3【答案】D【解析】当A 在第一象限时,设准线与x 轴的交点为P ,过A 作准线的垂线,垂足为A ,因为OM ∥PN ,且O 为PF 的中点,所以OM 为三角形PFN 的中位线,即FM =MN ,所以AF =2MN =FN ,又根据抛物线的定义AF =AA ,所以AN =2AF =2AA ,所以在直角三角形AA N 中,∠A AN =60°,所以∠AFx =60°,此时k =3,根据对称性,当A 在第四象限时,k =-3,故选:D .11(2024·湖北·一模)设直线l :x +y -1=0,一束光线从原点O 出发沿射线y =kx x ≥0 向直线l 射出,经l 反射后与x 轴交于点M ,再次经x 轴反射后与y 轴交于点N .若MN =136,则k 的值为()A.32B.23C.12D.2【答案】B【解析】如图,设点O 关于直线l 的对称点为A x 1,y 1 ,则x 12+y12-1=0y 1x 1×-1 =-1得x 1=1y 1=1 ,即A 1,1 ,由题意知y =kx x ≥0 与直线l 不平行,故k ≠-1,由y =kx x +y -1=0 ,得x =1k +1y =k k +1,即P 1k +1,k k +1 ,故直线AP 的斜率为k AP =kk +1-11k +1-1=1k ,直线AP 的直线方程为:y -1=1kx -1 ,令y =0得x =1-k ,故M 1-k ,0 ,令x =0得y =1-1k ,故由对称性可得N 0,1k-1 ,由MN =136得(1-k )2+1k -1 2=1336,即k +1k 2-2k +1k =1336,解得k +1k=136,得k =23或k =32,若k =32,则第二次反射后光线不会与y 轴相交,故不符合条件.故k =23,故选:B 12(2024·湖北·二模)能被3个半径为1的圆形纸片完全覆盖的最大的圆的半径是()A.263B.62C.233D.33+12【答案】C【解析】要求出被完全覆盖的最大的圆的半径,由圆的对称性知只需考虑三个圆的圆心构成等边三角形的情况,设三个半径为1的圆的圆心分别为O 1,O 2,O 3,设被覆盖的圆的圆心为O ,如图,设OO 1=OO 2=OO 3=x ,则O 1H =3x 2,OH =x 2,OA =OH +HA =x 2+1-32x 2=12(x +4-3x 2),又OC =OO 3+O 3C =x +1>OA ,因此圆O 的最大半径为OA ,令f (x )=12(x +4-3x 2),求导得f(x )=4-3x 2-3x 24-3x 2,由f (x )=0,得x =33,当0<x <33时,f (x )>0,当33<x <233时,f (x )<0,因此f (x )在0,33上单调递增,在33,233 上单调递减,f (x )max =f 33 =233,所以被完全覆盖的最大的圆的半径为233,此时O 1O 2=O 2O 3=O 3O 1=1,即圆O 1、圆O 2、圆O 3中的任一圆均经过另外两圆的圆心.故选:C13(2024·高三·浙江嘉兴·期末)已知正实数a ,b ,c 满足a 2-b =2ln ab>0,7b -2b =a +4 c ,则()A.0<c <b <1<aB.0<b <c <1<aC.0<c <b <a <1D.0<b <c <a <1【答案】A【解析】因a >0,b >0,由ln a b >0可得:ab >1,则a >b .由a 2-b =2lnab 化简得:a 2-2ln a =b -2ln b ,分别设函数f x =x 2-2ln x ,g x =x -2ln x .由f(x )=2x 2-1 x,(x >0),则当0<x <1时,f (x )<0,当x >1时,f (x )>0,则f x 在0,1 上递减,在1,+∞ 上递增,故f x min =f 1 =1.又g x =x -2x,(x >0),则当0<x <2时,g (x )<0,当x >2时,g (x )>0,则g x 在0,2 上递减;在2,+∞ 上递增,故g x min =g 2 =2-2ln2.由f x -g x =x 2-x =x x -1 ,则0<x <1时,f x <g x ;x =1时,f x =g x ;x >1时,f x >g x .函数f x 与g x 的图象如图.令f a =f b =k .由于a >b ,则0<b <1,1<a ,排除C ,D ;由于a >1,7b-2b=a +4c>5c,则7b -2b >5c -b .令h x =75 x -25x,其在R 上单调递增.由于0<b <1,则0=h (0)<h b <h (1)=1,则有5c -b <1,即c -b <0得c <b .综上,0<c <b <1<a .故选:A .14(2024·高二·北京西城·期末)在直角坐标系xOy 内,圆C :(x -2)2+(y -2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是()A.-2,2B.-4-2,-4+2C.-2-2,-2+2D.-2+2,2+2【答案】A【解析】连接OP ,设∠POx =θ(即以x 轴正方向为始边,OP 为终边的角),由题意对于直线l :x +y +m =0上任意一点P x ,y ,存在a =x 2+y 2,θ∈R ,使得P a cos θ,a sin θ ,则直线l :x +y +m =0绕原点O 顺时针旋转90°后,点P a cos θ,a sin θ 对应点为P 1a cos θ-π2 ,a sin θ-π2 ,即P 1a sin θ,-a cos θ ,因为P a cos θ,a sin θ 在直线l :x +y +m =0上,所以满足a cos θ+a sin θ+m =0设x 1=a sin θ,y 1=-a cos θ,所以-y 1+x 1+m =0,即P 1a sin θ,-a cos θ 所在直线方程为l 1:x -y +m =0,而圆C :(x -2)2+(y -2)2=1的圆心,半径分别为2,2 ,r =1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,所以圆心C 2,2 到直线l 1:x -y +m =0的距离d =m2≤r =1,解得-2≤m ≤ 2.故选:A .15(2024·山东青岛·一模)已知A (-2,0),B (2,0),设点P 是圆x 2+y 2=1上的点,若动点Q 满足:QP⋅PB =0,QP =λQA |QA |+QB|QB |,则Q 的轨迹方程为()A.x 2-y 23=1B.x 23-y 2=1C.x 25+y 2=1D.x 26+y 22=1【答案】A【解析】由QP ⋅PB=0,可得QP ⊥PB ,而QP =λQA QA +QBQB,可知点P 在∠BQA 的平分线上.圆x 2+y 2=1,圆心为原点O ,半径r =1,连接AQ ,延长BP 交AQ 于点C ,连接OP ,因为∠PQB =∠PQC 且PQ ⊥BC ,所以QB =QC ,且P 为BC 中点,OP ∥AC ,OP =1AC因此,QA -QB =QA -QC =AC =2OP =2,点Q 在以A 、B 为焦点的双曲线上,设双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,可知c =2,a 2+b 2=c 2=4,由2a =QA -QB =2,得a =1,故b 2=3,双曲线方程为x 2-y 23=1.故选:A .16(2024·山东青岛·一模)∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,则f (2024)的值为()A.2B.1C.0D.-1【答案】B【解析】由题意知∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,令x =-1,则f (-1)+f (2)=1-f (-1)f (2),∴f (2)=1显然f (x )=-1时,-1+f (x +3)=1+f (x +3)不成立,故f (x )≠-1,故f (x +3)=1-f (x )1+f (x ),则f (x +6)=1-1-f (x )1+f (x )1+1-f (x )1+f (x )=f (x ),即6为函数f (x )的周期,则f (2024)=f (337×6+2)=f (2)=1,故选:B17(2024·山东聊城·一模)已知P 是圆C :x 2+y 2=1外的动点,过点P 作圆C 的两条切线,设两切点分别为A ,B ,当PA ⋅PB的值最小时,点P 到圆心C 的距离为()A.42 B.32 C.2 D.2【答案】A【解析】设P x ,y ,则OP =x 2+y 2,则PA ⋅PB =PO +OA PO +OB =PO 2+PO ⋅OA +OB +OA ⋅OB ,OA ⋅OB =OA ⋅OBcos ∠AOB =cos ∠AOB =cos2∠POA =2cos 2∠POA -1=2×OA2OP2-1=2x 2+y 2-1,PO ⋅OA =PO ⋅OB =PO ⋅OA cos 180°-∠POA =-PO ⋅OAcos ∠POA=-PO ⋅OA ⋅OA OP=-1,故PA ⋅PB =x 2+y 2-2+2x 2+y2-1≥2x 2+y 2 ⋅2x 2+y 2-3=22-3,当且仅当x 2+y 2=2x 2+y2,即x 2+y 2=2时,等号成立,故当PA ⋅PB的值最小时,点P 到圆心C 的距离为42.故选:A .18(2024·山东聊城·一模)在三棱柱ABC -A 1B 1C 1中,点D 在棱BB 1上,且△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,点M 在棱A 1C 1上,且A 1M =2MC 1,点N 在直线BB 1上,若MN ⎳平面ADC 1,则BB 1NB 1=()【答案】D【解析】如图,连接AB 1,则V A -A 1B 1C 1=13V ABC -A 1B 1C1,又△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,所以V A -DB 1C 1=12V ABC -A 1B 1C 1-13V ABC -A 1B 1C 1=16V ABC -A 1B 1C1,即VA -DB 1C 1=12V A -A 1B 1C1,即V C 1-ADB 1=12V C 1-AA 1B1,设C 1到平面ABB 1A 1的距离为d ,则V C 1-ADB 1=13S △ADB 1⋅d ,V C 1-AA 1B 1=13S △AA 1B1⋅d ,所以S △ADB 1=12S △AA 1B 1=12S △ABB 1,所以D 为BB 1的中点,在AA 1上取点E ,使得A 1E =2AE ,连接EN 、EM ,因为A 1M =2MC 1,所以EM ⎳AC 1,又EM ⊄平面ADC 1,AC 1⊂平面ADC 1,所以EM ⎳平面ADC 1,又MN ⎳平面ADC 1,EM ∩MN =M ,EM ,MN ⊂平面EMN ,所以平面EMN ⎳平面ADC 1,又平面EMN ∩平面ABB 1A 1=EN ,平面ADC 1∩平面ABB 1A 1=AD ,所以AD ⎳EN ,又AE ⎳ND ,所以四边形ADNE 为平行四边形,所以ND =AE =13AA 1=13BB 1,所以B 1N =B 1D -ND =12BB 1-13BB 1=16BB 1,所以BB 1NB 1=6.故选:D19(2024·山东烟台·一模)在平面直角坐标系xOy 中,点A -1,0 ,B 2,3 ,向量OC =mOA +nOB,且m -n -4=0.若P 为椭圆x 2+y 27=1上一点,则PC 的最小值为()A.4510B.10C.8510D.210【答案】A 【解析】设点C (x ,y ),由A -1,0 ,B 2,3 及OC =mOA +nOB ,得(x ,y )=(-m +2n ,3n ),即x =-m +2ny =3n,而m -n -4=0,消去m ,n 得:3x -y +12=0,设椭圆x 2+y 27=1上的点P (cos θ,7sin θ),θ∈R ,则点P 到直线3x -y +12=0的距离d =|3cos θ-7sin θ+12|32+(-1)2=12-4sin (θ+φ)10,其中锐角φ由tan φ=37确定,当sin (θ+φ)=1时,d min =4510,而PC ≥d ,所以PC 的最小值为4510.故选:A 20(2024·山东济宁·一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与y 轴相交于M 点,与双曲线C 在第一象限的交点为P ,若F 1M =2MP ,F 1P ⋅F 2P=0,则双曲线C 的离心率为()A.2B.3C.332D.3+1【答案】D【解析】设∠PF 1F 2=θ,θ为锐角,因为F 1M =2MP ,F 1P ⋅F 2P =0,所以PF 1⊥PF 2,PF 1 =32MF 1 ,∴MF 1 =c cos θ,∴|PF 1|=32|MF 1|=3c2cos θ,又|PF 2|=2c sin θ,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴9c 24cos 2θ+4c 2sin 2θ=4c 2,∴9+16sin 2θcos 2θ=16cos 2θ,∴9+16(1-cos 2θ)cos 2θ=16cos 2θ,∴9-16cos 4θ=0,∴cos 2θ=34,∴cos θ=32(负值舍去),∴θ=30°,∴|PF 1|=32|MF 1|=3c2cos θ=3c ,|PF 2|=2c sin θ=c ,∴双曲线C 的离心率e =2c 2a =|F 1F 2||PF 1|-|PF 2|=2c3c -c=3+1.故选:D .21(2024·山东济宁·一模)设函数f (x )定义域为R ,f (2x -1)为奇函数,f (x -2)为偶函数,当x ∈[0,1]时,f (x )=x 2-1,则f (2023)-f (2024)=()A.-1 B.0C.1D.2【答案】C【解析】因为函数f (x )定义域为R ,f (2x -1)为奇函数,所以f (2x -1)=-f (-2x -1),所以函数f (x )关于点-1,0 中心对称,且f -1 =0,因为f (x -2)为偶函数,所以f (x -2)=f (-x -2),所以函数f (x )关于直线x =-2轴对称,又因为f x =-f -2-x =-f -2+x =--f -4+x ,所以函数f (x )的周期为4,因为当x ∈[0,1]时,f (x )=x 2-1,所以f (2023)=f 4×506-1 =f -1 =0,f (2024)=f 4×506 =f 0 =-1,所以f (2023)-f (2024)=1.故选:C .22(2024·山东淄博·一模)已知F 1,F 2是椭圆和双曲线的公共焦点,P ,Q 是它们的两个公共点,且P ,Q 关于原点对称,∠PF 2Q =2π3,若椭圆的离心率为e 1,双曲线的离心率为e 2,则e 21e 21+1+3e 22e 22+3的最小值是()A.2+33B.1+33C.233D.433【答案】A【解析】如图,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得:PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,∴PF 1 =a 1+a 2,PF 2 =a 1-a 2,设F 1F 2 =2c ,∠PF 2Q =2π3,根据椭圆与双曲线的对称性知四边形PF 1QF 2为平行四边形,则∠F 1PF 2=π3,则在△PF 1F 2中,由余弦定理得,4c 2=a 1+a 2 2+a 1-a 2 2-2a 1+a 2 a 1-a 2 cosπ3,化简得a 21+3a 22=4c 2,即1e 21+3e 22=4,则e 21e 21+1+3e 22e 22+3=11e 21+1+33e 22+1=11e 21+1+33e 22+1 1e 21+1+3e 22+1×16=16×4+3e 22+11e 21+1+31e 21+1 3e 22+1≥16×4+23e 22+11e 21+1×31e 21+1 3e 22+1=16×4+23 =2+33,当且仅当3e 22+1 2=31e 21+121e 21+3e 22=4,即e 21=33+411<1e 22=38-33=24+9337>1时等号成立,故选:A .23(2024·广东茂名·一模)若α∈π4,3π4 ,6tan π4+α +4cos π4-α =5cos2α,则sin2α=()A.2425B.1225C.725D.15【答案】C 【解析】令t =π4+α,t ∈π2,π ,得α=t -π4,则6tan t +4cos π2-t =5cos 2t -π2,即6tan t +4sin t =5sin2t =10sin t cos t ,整理得5cos t +3 cos t -1 =0,且cos t <0,那么cos t =-35,则sin2α=sin 2t -π2 =-cos2t =1-2cos 2t =725.故选:C .二、多选题24(2024·广东江门·一模)已知曲线E :x x 4+y y8=1,则下列结论正确的是()A.y 随着x 增大而减小B.曲线E 的横坐标取值范围为-2,2C.曲线E 与直线y =-1.4x 相交,且交点在第二象限D.M x 0,y 0 是曲线E 上任意一点,则2x 0+y 0 的取值范围为0,4 【答案】AD【解析】因为曲线E :x x 4+y y8=1,当x ≥0,y ≥0时x 24+y 28=1,则曲线E 为椭圆x 24+y 28=1的一部分;当x >0,y <0时x 24-y 28=1,则曲线E 为双曲线x 24-y 28=1的一部分,且双曲线的渐近线为y =±2x ;当x <0,y >0时y 28-x 24=1,则曲线E 为双曲线y 28-x 24=1的一部分,且双曲线的渐近线为y =±2x ;可得曲线的图形如下所示:由图可知y 随着x 增大而减小,故A 正确;曲线E 的横坐标取值范围为R ,故B 错误;因为-1.4>-2,所以曲线E 与直线y =-1.4x 相交,且交点在第四象限,故C 错误;因为2x 0+y 0 =3×2x 0+y 022+12,即点M x 0,y 0 到直线2x +y =0的距离的3倍,当直线2x +y +c =0与曲线x 24+y 28=1x ≥0,y ≥0 相切时,由x 24+y 28=12x +y +c =0,消去y 整理得4x 2+22cx +c 2-8=0,则Δ=22c 2-16c 2-8 =0,解得c =4(舍去)或c =-4,又2x +y =0与2x +y -4=0的距离d =4 2 2+12=43,所以2x 0+y 0 max =3d =4,所以2x 0+y 0 的取值范围为0,4 ,故D 正确;故选:AD25(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【解析】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD26(2024·广东·一模)已知正方体ABCD -A 1B 1C 1D 1的各个顶点都在表面积为3π的球面上,点P 为该球面上的任意一点,则下列结论正确的是()A.有无数个点P ,使得AP ⎳平面BDC 1B.有无数个点P ,使得AP ⊥平面BDC 1C.若点P ∈平面BCC 1B 1,则四棱锥P -ABCD 的体积的最大值为2+16D.若点P ∈平面BCC 1B 1,则AP +PC 1的最大值为6【答案】ACD【解析】令正方体ABCD -A 1B 1C 1D 1的外接球半径为r ,4πr 2=3π,r =32,则BD 1=3,AB =1,连接AB 1,AD 1,B 1D 1,由四边形ABC 1D 1是该正方体的对角面,得四边形ABC 1D 1是矩形,即有AD 1⎳BC 1,而BC 1⊂平面BDC 1,AD 1⊄平面BDC 1,则AD 1⎳平面BDC 1,同理AB 1⎳平面BDC 1,又AB 1∩AD 1=A ,AB 1,AD 1⊂平面AB 1D 1,因此平面AB 1D 1⎳平面BDC 1,令平面ABD 1截球面所得截面小圆为圆M ,对圆M 上任意一点(除点A 外)均有AP ⎳平面BDC 1,A 正确;对于B ,过A 与平面BDC 1垂直的直线AP 仅有一条,这样的P 点至多一个,B 错误;对于C ,平面BCC 1B 1截球面为圆R ,圆R 的半径为22,则圆R 上的点到底面ABCD 的距离的最大值为2+12,因此四棱锥P -ABCD 的体积的最大值为13×1×2+12=2+16,C 正确;对于D ,显然AB ⊥平面BCC 1B 1,在平面BCC 1B 1内建立平面直角坐标系,如图,令点P 22cos θ,22sin θ,而B -12,-12 ,C 112,12,因此AP =1+22cos θ+122+22sin θ+122=2+22(sin θ+cos θ),PC 1=22cos θ-122+22sin θ-122=1-22(sin θ+cos θ),令22(sin θ+cos θ)=x ,AP +PC 1=2+x +1-x =2+x +1-x 2≤22+x 2+1-x 2 =6,当且仅当x =-12取等号,此时22(sin θ+cos θ)=-12,即sin θ+π4 =-12,因此AP +PC 1的最大值为6,D 正确.故选:ACD27(2024·广东·一模)已知偶函数f (x )的定义域为R ,f 12x +1 为奇函数,且f (x )在0,1 上单调递增,则下列结论正确的是()A.f -32<0 B.f 43>0 C.f (3)<0D.f 20243>0【答案】BD【解析】因为f x 为偶函数,所以f -x =f x ;因为f 12x +1 是R 上的奇函数,所以f 1 =0,且f x +22 的图象是由f x 2 的图象向左平移2个单位得到的,所以f x 2 的图象关于2,0 点对称,进一步得f x 的图象关于点1,0 中心对称,即f 1+x =-f 1-x .所以f x +2 =f 1+1+x =-f 1-1+x =-f -x =-f x ,所以f x +4 =-f x +2 =f x .所以函数f x 是周期函数,且周期为4;又f x 在0,1 上单调递增,所以在0,1 上,有f x <0.所以函数的草图如下:由图可知:f -32 >0,故A 错;f 43>0,故B 对;f 3 =0,故C 错;f 20243=f 674+23 =f 4×168+2+23 =f 2+23>0,故D 对.故选:BD 28(2024·广东·模拟预测)已知函数f x 的定义域为R ,f x -1 是奇函数,f x +1 为偶函数,当-1≤x ≤1时,f x =2x +1-13x +1,则()A.f x 的图象关于直线x =1对称B.f x 的图象关于点-1,0 对称C.f x +6 =f xD.f 2021 =-34【答案】ABD【解析】设g x =f x -1 ,因为g x 是奇函数,所以g -x =f -x -1 =-g x =-f x -1 ,即f -1+x +f -1-x =0,即f x 关于-1,0 对称,B 正确;设h x =f x +1 ,因为h x 为偶函数,所以h -x =h x ,即f -x +1 =f x +1 ,f 1+x =f 1-x ,所以f x 的关于直线x =1对称,A 正确;由f x 关于-1,0 对称可得f x +f -2-x =0,由f x 的关于直线x =1对称,可得f x =f 2-x ,两式联立得f 2-x +f -2-x =0,令x =x +2得:f -x +f -4-x =0,即f x +f x -4 =0,令x =x -4,得f x -4 +f x -8 =0,即f x =f x -8 ,故f x 的周期为8,故f x +8 =f x ,C 错误;因为T =8,所以f 2021 =f 252×8+5 =f 5 =f -3 ,又f -1+x +f -1-x =0,令x =-2得f -3 +f 1 =0,f 1 =22-131+1=34,所以f 2021 =f -3 =-f 1 =-34,故D 正确.故选:ABD29(2024·高二·福建三明·期中)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中正确的是()A.异面直线AE 、BF 所成角为定值B.AC ⊥BFC.△AEF 的面积与△BEF 的面积相等D.三棱锥A -BEF 的体积为定值【答案】BD【解析】则A 1,0,0 ,B 1,1,0 ,设E a ,a ,1 ,则F a +24,a +24,1,其中0≤a ≤1-24,AE =(a -1,a ,1),BF =a +24-1,a +24-1,1 ,cos <AE ,BF >=AE ∙BF|AE |∙|BF |=(2a -1)a +24-1 +1(a -1)2+a 2+1∙2a +24-1 2+1.取a =12时,cos <AE ,BF >=442-122,取a =1-24时,cos <AE ,BF >=29-22,∵442-122≠29-22,∴异面直线AE 、BF 所成角不是定值,故A 错误;由正方体的结构特征可知,DD 1⊥AC ,BD ⊥AC ,又BD ∩DD 1=D ,BD ,DD 1⊂平面BDD 1B 1∴AC ⊥平面BDD 1B 1,又BF ⊂平面BDD 1B 1,则AC ⊥BF ,故B 正确;B 到B 1D 1的距离为BB 1=1,A 到B 1D 1的距离大于上下底面中心的连线,则A 到B 1D 1的距离大于1,∴△AEF 的面积大于△BEF 的面积,故C 错误;∵AC ⊥平面BDD 1B 1,∴A 到平面BDD 1B 1的距离为22,△BEF 的面积为定值,∴三棱锥A -BEF 的体积为定值,故D 正确.故选:BD .30(2024·湖南·二模)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,F 是线段A 1B 1的中点,则()A.若点P 满足AP ⊥B 1C ,则动点P 的轨迹长度为42B.三棱锥A -PB 1D 1体积的最大值为163C.当直线AP 与AB 所成的角为45°时,点P 的轨迹长度为π+42D.当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,线段PF 长度最大值为22【答案】CD【解析】对于A ,易知B 1C ⊥平面ABC 1D 1,A ∈平面ABC 1D 1,故动点P 的轨迹为矩形ABC 1D 1,动点P 的轨迹长度为矩形ABC 1D 1的周长,即为42+4,所以A 错误;对于B ,因为V A -PD 1D 1=V P -AB 1D 1,而等边△AB 1D 1的面积为定值23,要使三棱锥P -AB 1D 1的体积最大,当且仅当点P 到平面AB 1D 1的距离最大,易知点C 是正方体到平面AB 1D 1距离最大的点,所以V A -PB 1D 1max =V C -AB 1D 1,此时三棱锥C -AB 1D 1即为棱长是22的正四面体,其高为h =22 2-262=43,所以V =1×1×22×22×3×43=8,B 错误;对于C :连接AC ,AB 1,以B 为圆心,BB 1为半径画弧B 1C,如图1所示,当点P 在线段AC ,AB 1和弧B 1C上时,直线AP 与AB 所成的角为45°,又AC =AB 2+BC 2=4+4=22,AB 1=AB 2+BB 21=4+4=22,弧B 1C 长度14×π×22=π,故点P 的轨迹长度为π+42,故C 正确;对于D ,取A 1D 1,D 1D ,DC ,CB ,BB 1,AB 的中点分别为Q ,R ,N ,M ,T ,H ,连接QR ,QF ,FT ,TM ,MN ,NR ,FH ,HN ,HM ,如图2所示,因为FT ∥D 1C ,FT ⊄平面D 1B 1C ,D 1C ⊂平面D 1B 1C ,故FT ∥平面D 1B 1C ,TM ∥B 1C ,TM ⊄平面D 1B 1C ,B 1C ⊂平面D 1B 1C ,故TM ∥平面D 1B 1C ;又FT ∩TM =T ,FT ,TM ⊂平面FTM ,故平面FTM ∥平面D 1B 1C ;又QF ∥NM ,QR ∥TM ,RN ∥FT ,故平面FTMNRQ 与平面FTM 是同一个平面.则点P 的轨迹为线段MN :在三角形FNM 中,FN =FH 2+HN 2=4+4=22;FM =FH 2+HM 2=4+2=6;NM =2;则FM 2+MN 2=8=FN 2,故三角形FNM 是以∠FMN 为直角的直角三角形;故FP max =FN =22,故FP 长度的最大值为22,故D 正确.故选:CD .31(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,233【答案】ABD【解析】对于A ,△ABC 中,由正弦定理得sin C =2sin B cos A +sin B ,由sin C =sin A +B ,得sin A cos B -cos A sin B =sin B ,即sin A -B =sin B ,由0<A ,B <π,则sin B >0,故0<A -B <π,所以A -B =B 或A -B +B =π,即A =2B 或A =π(舍去),即A =2B ,A 正确;对于B ,若a =3b ,结合A =2B 和正弦定理知a sin A=3b sin2B =b sin B ,cos B =32,又0<A ,B <π,所以可得A =2B =π3,C =π2,B 正确;πππππ3<1.故1tan B -1tan A=1tan B -1-tan 2B 2tan B =1+tan 2B 2tan B >1,C 错误;对于D ,在锐角△ABC 中,由π6<B <π4,22<cos B <32,c a =sin C sin A=sin3B sin2B =sin2B cos B +cos2B sin B sin2B =2cos B -12cos B ,令cos B =t ∈22,32 ,则c a =f t=2t -12t,易知函数f t =2t -12t 单调递增,所以可得c a ∈22,233,D 正确;故选:ABD .32(2024·高二·广东江门·期末)已知抛物线C :y 2=4x 的焦点为F ,直线l :x =-1,过F 的直线交抛物线C 于A x 1,y 1 ,B x 2,y 2 两点,交直线l 于点M ,MA =λ1AF ,MB =λ2BF,则()A.△ABO 的面积的最大值为2 B.y 1y 2=-4C.x 1x 2=1 D.λ1+λ2=0【答案】BCD【解析】设直线AB :x =my +1,由x =my +1y 2=4x得:y 2-4my -4=0.选项A :S △ABO =12OF ·y 1-y 2 =12y 21+y 22 -4y 1y 2=1216m 2+16≥12×4=2,应是最小值为2,故A 错误;选项B :y 1y 2=-4,故B 正确;选项C :x 1=y 214,x 2=y 224,则x 1x 2=(y 1y 2)216=1,故C 正确;选项D :由MA =λ1AF ,MB =λ2BF ,M -1,-2m,得:y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,∴λ1+λ2=-2-2m 1y 1+1y 2=-2-2m ⋅y 1+y 2y 1y 2=-2-2m ⋅4m-4=0,故D 正确.故选:BCD33(2024·高三·黑龙江哈尔滨·阶段练习)已知函数f x =sin ωx +π4ω>0 在区间0,π 上有且仅有3条对称轴,给出下列四个结论,正确的是()A.f x 在区间0,π 上有且仅有3个不同的零点B.f x 的最小正周期可能是2π3C.ω的取值范围是94,134D.f x 在区间0,π15 上单调递增【答案】BD【解析】由函数f x =sin ωx +π4ω>0 ,令ωx +π4=π2+k π,k ∈Z ,则x =(1+4k )π4ω,k ∈Z ,函数f (x )在区间0,π 上有且仅有3条对称轴,即0≤(1+4k )π4ω≤π有3个整数k 符合,由0≤(1+4k)π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k≤4ω,则k=0,1,2,即1+4×2≤4ω<1+4×3,∴9 4≤ω<134,故C错误;对于A,∵x∈(0,π),∴ωx+π4∈π4,ωπ+π4,∴ωπ+π4∈5π2,7π2 ,当ωx+π4∈5π2,3π时,f(x)在区间(0,π)上有且仅有2个不同的零点;当ωx+π4∈3π,7π2时,f(x)在区间(0,π)上有且仅有3个不同的零点,故A错误;对于B,周期T=2πω,由94≤ω<134,则413<1ω≤49,∴8π13<T≤8π9,又2π3∈8π13,8π9,所以f(x)的最小正周期可能是2π3,故B正确;对于D,∵x∈0,π15,∴ωx+π4∈π4,ωπ15+π4,又94≤ω<134,∴ωπ15+π4∈2π5,7π15,又7π15<π2,所以f(x)在区间0,π15上一定单调递增,故D正确.故选:BD.34(2024·高一·辽宁丹东·期中)已知f x 是定义在R上的连续函数,且满足f x+y=f x +f y -2xy,当x>0时,f x >0,设g x =f x +x2()A.若f1 ⋅f-1=-3,则f1 =1 B.g x 是偶函数C.g x 在R上是增函数D.x-1g x >0的解集是-∞,0∪1,+∞【答案】ACD【解析】对选项A:取x=y=0得到f0 =f0 +f0 ,即f0 =0,取x=1,y=-1得到f0 =f1 +f-1+2=0,又f1 ⋅f-1=-3,f1 >0,解得f1 =1,正确;对选项B:取y=-x得到f0 =f x +f-x+2x2,即f x +f-x=-2x2,g x +g-x=f x +x2+f-x+x2=0,函数定义域为R,函数为奇函数,错误;对选项C:设x1<x2,则g x2-g x1=f x2+x22-f x1-x21=f x2-x1+x1+x22-f x1-x21=f x2-x1-2x2-x1x1+x22-x21=f x2-x1-2x2x1+x21+x22=f x2-x1+x1-x22,x>0时,f x >0,故f x2-x1>0,x1-x22>0,故g x2-g x1>0,即g x2>g x1,函数单调递增,正确;对选项D:g0 =f0 +0=0,x-1g x >0,当x>1时,g x >0,则x>0,故x>1;当x=1时,不成立;当x<1时,g x <0,则x<0,故x<0;综上所述:x∈-∞,0∪1,+∞,正确;35(2024·湖北·一模)某数学兴趣小组的同学经研究发现,反比例函数y =1x的图象是双曲线,设其焦点为M ,N ,若P 为其图象上任意一点,则()A.y =-x 是它的一条对称轴B.它的离心率为2C.点2,2 是它的一个焦点D.PM -PN =22【答案】ABD【解析】反比例函数的图象为等轴双曲线,故离心率为2,容易知道y =x 是实轴,y =-x 是虚轴,坐标原点是对称中心,联立实轴方程y =x 与反比例函数表达式y =1x得实轴顶点1,1 ,-1,-1 ,所以a =2,c =2,其中一个焦点坐标应为2,2 而不是2,2 ,由双曲线定义可知PM -PN =2a =22.故选:ABD .36(2024·湖北·一模)已知函数f x =ax 3+bx 2+cx +d 存在两个极值点x 1,x 2x 1<x 2 ,且f x 1 =-x 1,f x 2 =x 2.设f x 的零点个数为m ,方程3a f x 2+2bf x +c =0的实根个数为n ,则()A.当a >0时,n =3B.当a <0时,m +2=nC.mn 一定能被3整除D.m +n 的取值集合为4,5,6,7【答案】AB【解析】由题意可知f x =3ax 2+2bx +c 为二次函数,且x 1,x 2x 1<x 2 为f x 的零点,由f f x =3a f x 2+2bf x +c =0得f x =x 1或f x =x 2,当a >0时,令f x >0,解得x <x 1或x >x 2;令f x <0,解得x 1<x <x 2;可知:f x 在-∞,x 1 ,x 2,+∞ 内单调递增,在x 1,x 2 内单调递减,则x 1为极大值点,x 2为极小值点,若x 1≥0,则-x 1≤0<x 2,因为f x 1 >f x 2 ,即-x 1>x 2,两者相矛盾,故x 1<0,则f x =x 2有2个根,f x =x 1有1个根,可知n =3,若f x 2 =x 2>0,可知m =1,mn =3,m +n =4;若f x 2 =x 2=0,可知m =2,mn =6,m +n =5;若f x 2 =x 2<0,可知m =3,mn =9,m +n =6;故A 正确;当a <0时,令f x >0,解得x 1<x <x 2;令f x <0,解得x <x 1或x >x 2;可知:f x 在x 1,x 2 内单调递增,在内-∞,x 1 ,x 2,+∞ 单调递减,则x 2为极大值点,x 1为极小值点,若x 2≤0,则-x 1>0≥x 2,因为f x 1 <f x 2 ,即-x 1<x 2,两者相矛盾,故x 2>0,若f x =-x >0,即x <0,可知m =1,n =3,mn =3,m +n =4;若f x 1 =-x 1=0,即x 1=0,可知m =2,n =4,mn =8,m +n =6;若f x 1 =-x 1<0,即x 1>0,可知m =3,n =5,mn =15,m +n =8;此时m +2=n ,故B 正确;综上所述:mn 的取值集合为3,6,8,9,15 ,m +n 的取值集合为4,5,6,8 ,故CD 错误;故选:AB .37(2024·湖北·二模)如图,棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,F 为正方形C 1CDD 1内一个动点(包括边界),且B 1F ⎳平面A 1BE ,则下列说法正确的有()A.动点F 轨迹的长度为2B.三棱锥B 1-D 1EF 体积的最小值为13C.B 1F 与A 1B 不可能垂直D.当三棱锥B 1-D 1DF 的体积最大时,其外接球的表面积为252π【答案】ABD【解析】对A ,如图,令CC 1中点为M ,CD 1中点为N ,连接MN ,又正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,可得B 1M ⎳A 1E ,MN ⎳CD 1⎳BA 1,∴B 1M ⎳平面BA 1E ,MN ⎳平面BA 1E ,又B 1M ∩MN =M ,且B 1M ,MN ⊂平面B 1MN ,∴平面B 1MN ⎳平面BA 1E ,又B 1F ⎳平面A 1BE ,且B 1∈平面B 1MN ,∴B 1F ⊂平面B 1MN ,又F 为正方形C 1CDD 1内一个动点(包括边界),∴F ∈平面B 1MN ∩平面C 1CDD 1,而MN =平面B 1MN ∩平面C 1CDD 1,∴F ∈MN ,即F 的轨迹为线段MN .由棱长为2的正方体得线段MN 的长度为2,故选项A 正确;对B ,由正方体侧棱B 1C 1⊥底面C 1CDD 1,所以三棱锥B 1-D 1EF 体积为V =13B 1C 1⋅S △D 1FE =23S △D 1FE ,所以△D 1FE 面积S △D 1FE 最小时,体积最小,如图,∵F ∈MN ,易得F 在N 处时S △D 1FE 最小,此时S △D 1FE =12ND 1⋅D 1E =12,所以体积最小值为13,故选项B 正确;对C ,当F 为线段MN 中点时,由B 1M =B 1N 可得B 1F ⊥MN ,又CC 1中点为M ,CD 1中点为N ,∴MN ⎳D 1C ,而A 1B ⎳D 1C ,∴B 1F ⊥A 1B ,故选项C 不正确;对D ,如图,当F 在M 处时,三棱锥B 1-D 1DF 的体积最大时,由已知得此时FD =FD 1=FB 1=5,所以F 在底面B 1DD 1的射影为底面外心,DD 1=2,B 1D 1=22,DB 1=23,所以底面B 1DD 1为直角三角形,所以F 在底面B 1DD 1的射影为B 1D 中点,设为O 1,如图,设外接球半径为R ,由R 2=OO 12+O 1B 12=OO 12+3,R +OO 1=FO 1=2,可得外接球半径R =524,外接球的表面积为4πR 2=252π,故选项D 正确.故选:ABD .38(2024·湖北·二模)我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数.有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数.已知函数f (x )=42x +2,则下列结论正确的有()A.函数f (x )的值域为(0,2]B.函数f (x )的图象关于点(1,1)成中心对称图形C.函数f (x )的导函数f (x )的图象关于直线x =1对称D.若函数g (x )满足y =g (x +1)-1为奇函数,且其图象与函数f (x )的图象有2024个交点,记为A i (x i ,y i )(i =1,2,⋯,2024),则2024i =1(x i +y i ) =4048【答案】BCD【解析】对于A ,显然f (x )的定义域为R ,2x >0,则0<42x +2<2,即函数f (x )的值域为(0,2),A 错误;对于B ,令h (x )=f (x +1)-1=42x +1+2-1=22x +1-1=1-2x 1+2x ,h (-x )=1-2-x 1+2-x =2x -12x+1=-h (x ),即函数y =f (x +1)-1是奇函数,因此函数f (x )的图象关于点(1,1)成中心对称图形,B 正确;对于C ,由选项B 知,f (-x +1)-1=-[f (x +1)-1],即f (1-x )+f (1+x )=2,两边求导得-f (1-x )+f (1+x )=0,即f (1-x )=f (1+x ),因此函数f (x )的导函数f (x )的图象关于直线x =1对称,C 正确;对于D ,由函数g (x )满足y =g (x +1)-1为奇函数,得函数g (x )的图象关于点(1,1)成中心对称,由选项B 知,函数g (x )的图象与函数f (x )的图象有2024个交点关于点(1,1)对称,因此2024i =1(x i +y i ) =2024i =1x i +2024i =1y i =1012×2+1012×2=4048,D 正确.故选:BCD。
2024年新高考新题型数学选填压轴好题汇编08含答案
2024年新高考新题型数学选填压轴好题汇编08一、单选题1(2024·广东湛江·二模)已知函数f x =2x -1 -a ,g x =x 2-4x +2-a ,则()A.当g x 有2个零点时,f x 只有1个零点B.当g x 有3个零点时,f x 有2个零点C.当f x 有2个零点时,g x 有2个零点D.当f x 有2个零点时,g x 有4个零点2(2024·甘肃定西·一模)在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,∠ABD =60°,PB ,PC 与底面ABCD 所成的角分别为α,β,且α+β=45°,则PAAB =()A.17-22B.15-32C.15-22D.17-323(2024·高三·江西·开学考试)如图,已知圆O 的半径为2,弦长AB =2,C 为圆O 上一动点,则AC ⋅BC的取值范围为()A.0,4B.5-43,5+43C.6-43,6+43D.7-43,7+434(2024·高三·江苏·期末)已知直线l 与椭圆x 29+y 23=1在第二象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点(M ,N 在椭圆外),若AM =BN ,则l 的倾斜角是()A.π6B.π3C.π4D.5π125(2024·湖南娄底·一模)已知圆内接四边形ABCD 中,AD =2,∠ADB =π4,BD 是圆的直径,AC ⋅BD=2,则∠ADC =() A.5π12B.π2C.7π12D.2π36(2024·湖南娄底·一模)若直线ex -4y +e ln4=0是指数函数y =a x (a >0且a ≠1)图象的一条切线,则底数a =()A.2或12B.eC.eD.e 或e7(2024·河北沧州·一模)过点P 1,2 作圆O :x 2+y 2=10相互垂直的两条弦AB 与CD ,则四边形ACBD 的面积的最大值为()A.66B.215C.96D.158(2024·湖南·一模)若不等式e x -1-mx -2n -3≥0对∀x ∈R 恒成立,其中m ≠0,则nm的取值范围为()A.-∞,-ln3e 2B.ln3e 2,+∞ C.-e ,-ln3e 2D.ln3e 2,e 9(2024·湖南·模拟预测)如图所示,面积为π的扇形OMN 中,M ,N 分别在x ,y 轴上,点P 在弧MN 上(点P 与点M ,N 不重合),分别在点P ,N 作扇形OMN 所在圆的切线l 1,l 2,且l 1与l 2交于点Q ,其中l 1与x 轴交于点R ,则NQ +QR 的最小值为()A.4B.23C.6D.210(2024·陕西商洛·模拟预测)设a =sin0.2,b =0.16,c =12ln 32,则()A.a >c >bB.b >a >cC.c >b >aD.c >a >b11(2024·河南信阳·模拟预测)已知数列a n 的前n 项和为S n ,S 1=1,S 2=3,且32a n +1是2a n ,a n +2的等差中项,则使得ni =1i a i>509128成立的最小的n 的值为()A.8B.9C.10D.1112(2024·全国·模拟预测)若关于x 的不等式a (ln x +ln a )≤2e 2x 在(0,+∞)上恒成立,则实数a 的取值范围为()A.(0,e ]B.0,e 2C.(0,e ]D.(0,2e ]13(2024·湖南岳阳·二模)设a =log 23,b =log 35,c =log 58,则()A.a >b >cB.b >a >cC.b >c >aD.c >a >b14(2024·湖南岳阳·二模)已知点A x 1,y 1 ,B x 2,y 2 是圆x 2+y 2=16上的两点,若∠AOB =π2,则x 1+y 1-2 +x 2+y 2-2 的最大值为()A.16B.12C.8D.415(2024·湖南·二模)2024年春节期间,某单位需要安排甲、乙、丙等五人值班,每天安排1人值班,其中正月初一、二值班的人员只安排一天,正月初三到初八值班人员安排两天,其中甲因有其他事务,若安排两天则两天不能连排,其他人员可以任意安排,则不同排法一共有()A.792种B.1440种C.1728种D.1800种16(2024·湖南·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,O 为坐标原点,以F 1F 2为直径的圆与双曲线C 交于点P ,且OP 在OF 1 上的投影向量为35OF 1,则双曲线C 的离心率为()A.2B.3C.4D.517(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且a 2-b 2+c 2+2ac =0,若cos A -C =7210,α∈π4,π2 ,cos α+A cos α+C cos 2α=25,则tan α的值为()A.1B.2C.4D.2或418(2024·湖南常德·三模)设有甲、乙两箱数量相同的产品,甲箱中产品的合格率为90%,乙箱中产品的合格率为80%.从两箱产品中任取一件,经检验不合格,放回原箱后在该箱中再随机取一件产品,则该件产品合格的概率为()A.56B.67C.78D.172019(2024·湖南·模拟预测)有一枚质地均匀点数为1到4的特制骰子,投掷时得到每种点数的概率均等,现在进行三次独立投掷,记X 为得到最大点数与最小点数之差,则X 的数学期望E X =()A.2116B.32C.74D.15820(2024·湖南·模拟预测)已知函数f x 满足f x +8 =f x ,f x +f 8-x =0,当x ∈0,4 时,f x =ln 1+sin π4x ,则函数F x =f 3x -f x 在0,8 内的零点个数为()A.3B.4C.5D.621(2024·高三·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为p 1,p 2,且满足p 1+p 2=43,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若E X =16,则从期望的角度来看,甲、乙两人训练的轮数至少为()A.27B.24C.32D.2822(2024·河南·模拟预测)已知圆O 为△ABC 的外接圆,∠BAC =60°,BC =23,则OB ⋅OC=()A.2B.-2C.4D.-4二、多选题23(2024·广东湛江·二模)已知函数f x 的定义域为R ,f x 不恒为零,且f x +y +f x -y =2f x f y ,则()A.f 0 =1B.f x 为偶函数C.f x 在x =0处取得极小值D.若f a =0,则f (x )=f (x +4a )24(2024·甘肃定西·一模)下列命题为真命题的是()A.x 2-4x -8-x +4+x -1 的最小值是2B.x 2-4x -8-x +4+x -1 的最小值是5C.x 2-4x -8-x +4+x 2-2x -4-x +2的最小值是2D.x 2-4x -8-x +4+x 2-2x -4-x +2的最小值是325(2024·高二·福建福州·期末)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”).比如取正整数m =8,根据上述运算法则得出8→4→2→1→4→2→1.猜想的递推关系如下:已知数列a n 满足a 1=5,a n +1=a n2,a n 为偶数3a n+1,a n为奇数 ,设数列a n的前n 项和为S n ,则下列结论正确的是()A.a 3=8B.a 5=2C.S 10=49D.S 300=72226(2024·高三·江西·期末)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,P 分别是线段C 1D 1,线段C 1C ,线段A 1B 上的动点,且MC 1=NC 1≠0.则下列说法正确的有()A.MN ⊥ABB.直线MN 与AP 所成的最大角为90°C.三棱锥M -DPC 的体积为定值D.当四棱锥P -D 1DBB 1体积最大时,该四棱锥的外接球表面积为12π27(2024·湖南娄底·一模)对于事件A 与事件B ,若A ∪B 发生的概率是0.72,事件B 发生的概率是事件A 发生的概率的2倍,下列说法正确的是()A.若事件A 与事件B 互斥,则事件A 发生的概率为0.36B.P B ∣A =2P A ∣BC.事件A 发生的概率的范围为0.24,0.36D.若事件A 发生的概率是0.3,则事件A 与事件B 相互独立28(2024·湖南娄底·一模)已知函数f x 的定义域和值域均为x ∣x ≠0,x ∈R ,对于任意非零实数x ,y ,x +y ≠0,函数f x 满足:f x +y f x +f y =f x f y ,且f x 在-∞,0 上单调递减,f 1 =1,则下列结论错误的是()A.f 12=2B.2023i =1f12i=22023-2C.f x 在定义域内单调递减D.f x 为奇函数29(2024·高三·湖南长沙·阶段练习)设a ,b 为两个正数,定义a ,b 的算术平均数为A a ,b =a +b2,几何平均数为G a ,b =ab ,则有:G a ,b ≤A a ,b ,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即L p a ,b =a p +bp a p -1+bp -1,其中p 为有理数.下列关系正确的是()A.L 0.5a ,b ≤A a ,bB.L 0a ,b ≥G a ,bC.L 2a ,b ≥L 1a ,bD.L n +1a ,b ≤L n a ,b30(2024·广东广州·模拟预测)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,已知M ,N ,P 分别是棱C 1D 1,AA 1,BC 的中点,Q 为平面PMN 上的动点,且直线QB 1与直线DB 1的夹角为30°,则()A.DB 1⊥平面PMNB.平面PMN 截正方体所得的截面面积为33C.点Q 的轨迹长度为πD.能放入由平面PMN 分割该正方体所成的两个空间几何体内部(厚度忽略不计)的球的半径的最大值为3-3231(2024·湖南·模拟预测)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BC ,CC 1的中点,则下列结论正确的是()A.直线A 1B 与EF 所成的角的大小为60°B.直线AD 1⎳平面DEFC.平面DEF ⊥平面BCC 1B 1D.四面体D -EFC 外接球的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为6π832(2024·湖南·模拟预测)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为A 1,“第一次取得白球”为A 2,“第二次取得黑球”为B 1,“第二次取得白球”为B 2,则()A.P A 1B 1 =P A 2B 2B.P A 1B 2 =P A 2B 1C.P B 1 A 1 +P B 2 A 1 =1D.P B 2 A 1 +P B 1 A 2 >133(2024·河南信阳·模拟预测)已知函数f x =sin ωx +φ ω>0 ,则()A.若ω=3,φ=π3,则将函数f x 的图象向右平移5π18个单位后关于y 轴对称B.若φ=π3,函数f x 在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5C.若直线x =π4为函数f x 图象的一条对称轴,5π3,0 为函数f x 图象的一个对称中心,且f x 在π4,5π6 上单调递减,则ω的最大值为1817D.若f x =12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163 34(2024·河南信阳·模拟预测)已知抛物线C :y 2=2px p >0 的焦点为F ,点M ,N 在抛物线C 上,则()A.若M ,N ,F 三点共线,且MF NF=34,则直线MN 的倾斜角的余弦值为±37B.若M ,N ,F 三点共线,且直线MN 的倾斜角为45°,则△OMN 的面积为22p 2C.若点A 4,4 在抛物线C 上,且M ,N 异于点A ,AM ⊥AN ,则点M ,N 到直线y =-4的距离之积为定值D.若点A 2,2 在抛物线C 上,且M ,N 异于点A ,k AM +k AN =0,其中k AM >1,则sin ∠FMN -sin ∠FNM≤25535(2024·湖南岳阳·二模)已知函数f x 的定义域为R ,对任意x ,y ∈R 都有2f x +y 2 fx -y2=f x +f y ,且f 1 =-1,则下列说法正确的是()A.f -1 =1B.f x +12为奇函数C.f x -f 2-x =0D.f 1 +f 2 +f 3 +⋅⋅⋅+f 2025 =-136(2024·高三·山东菏泽·阶段练习)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为BC 的中点,点P 为正方形A 1B 1C 1D 1内(包含边界)的动点,则()A.满足MP ⎳平面A 1BD 的点P 的轨迹为线段B.若MP =22,则动点P 的轨迹长度为π3C.直线AB 与直线MP 所成角的范围为π6,π2D.满足MP ⊥AM 的点P 的轨迹长度为5237(2024·湖南·二模)已知f x =3sinωx 2cos ωx 2+cos 2ωx 2-12,ω>0,下列结论正确的是()A.若f x 的最小正周期为π,则ω=2B.若f x 的图象向左平移π3个单位长度后得到的图象关于y 轴对称,则ωmin =1C.若f x 在0,2π 上恰有4个极值点,则ω的取值范围为53,136D.存在ω,使得f x 在-π6,π4上单调递减38(2024·湖南·二模)已知函数f x ,g x 的定义域均为R ,g x +1 +f 1-x =1,f x +1 -g x +2 =1,且y =f x 的图像关于直线x =1对称,则以下说法正确的是()A.f x 和g x 均为奇函数B.∀x ∈R ,f x =f x +4C.∀x ∈R ,g x =g x +2D.g -32=039(2024·湖南常德·三模)若函数f (x )=2x sin x -10<x <π2的零点为x 1,函数g (x )=2x cos x -10<x <π2 的零点为x 2,则()A.x 1x 2>π2 B.x 1+x 2<3π4C.cos (x 1+x 2)<0D.cos x 1-sin x 2<040(2024·高三·重庆·开学考试)已知函数f x 是R 上的奇函数,等差数列a n 的前n 项的和为S n ,数列f a n 的前n 项的和为T n .则下列各项的两个命题中,p 是q 的必要条件的是()A.p :f a 5 =0,q :S 9=0B.p :S 10=0,q :f a 5+a 6 =0C.p :a 5=0,q :T 9=0D.p :T 10=0,q :a 5+a 6=041(2024·湖南·模拟预测)已知θ∈R ,双曲线C :x 2cos θ+y 2sin2θ=1,则()A.θ可能是第一象限角B.θ可能是第四象限角C.点1,0 可能在C 上D.点0,1 可能在C 上42(2024·高三·湖南长沙·阶段练习)D ,E 是△ABC 边BC 上的点,其中∠BAD =∠CAE ,BC =3,且BD ⋅BE CD ⋅CE =13.则△ABC 面积的可能取值为()A.934B.332C.33D.73243(2024·山西·模拟预测)在长方体ABCD -A 1B 1C 1D 1中,AD =2AB =2AA 1=4,E 是棱B 1C 1的中点,过点B ,E ,D 1的平面α交棱AD 于点F ,P 为线段D 1F 上一动点(不含端点),则()A.三棱锥P -ABE 的体积为定值B.存在点P ,使得DP ⊥αC.直线PE 与平面BCC 1B 1所成角的正切值的最大值为2D.三棱锥P -BB 1E 外接球的表面积的取值范围是(12π,44π)三、填空题44(2024·广东湛江·二模)已知F 1,F 2是椭圆C 的两个焦点,若C 上存在一点P 满足PF 1 2=19PF 2 2,则C 的离心率的取值范围是.45(2024·高三·河北·开学考试)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P 为第一象限内椭圆上一点,△F 1PF 2的内心为I 1,3 ,且∠F 1PI =30°,则椭圆的离心率为.46(2024·湖南娄底·一模)龙年参加了一闯关游戏,该游戏共需挑战通过m 个关卡,分别为:G 1,G 2,⋯,G m ,记挑战每一个关卡G k k =1,2,⋯,m 失败的概率为a k ,其中a k ∈0,1 ,a 1=13.游戏规则如下:从第一个关卡G 1开始闯关,成功挑战通过当前关卡之后,就自动进入到下一关卡,直到某个关卡挑战失败或全部通过时游戏结束,各关卡间的挑战互相独立:若m =2,设龙年在闯关结束时进行到了第X 关,X 的数学期望E X =;在龙年未能全部通关的前提下;若游戏结束时他闯到第k +1关的概率总等于闯到第k 关k =1,2,⋯,m -1 的概率的一半,则数列a n 的通项公式a n =,n =1,2,⋯,m .47(2024·湖南·一模)如果直线l :kx -y -2k =0和曲线Γ:x 2-4y y =1恰有一个交点,那么实数k 的取值范围是.48(2024·湖南·模拟预测)已知数列a n 为公差不为0的等差数列,a 3=5,且a 2,a 5,a 14成等比数列,设x 表示不超过x 的最大整数,如π =3,-1.5 =-2,记b n =log 2a n ,S n 为数列b n 的前n 项和,则S 100=.49(2024·高三·江苏无锡·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上一点,且PF 2⊥F 1F 2,H 是线段PF 1上靠近F 1的三等分点,且OH ⋅PF 1=0,则C 的离心率为.50(2024·全国·模拟预测)已知空间四面体ABCD 满足AB =AC =DB =DC ,AD =2BC =6,则该四面体外接球体积的最小值为.51(2024·全国·模拟预测)已知等边△ABC 的外接圆O 的面积为36π,动点M 在圆O 上,若MA⋅MB +MB ⋅MC≤λ,则实数λ的取值范围为.52(2024·高三·山东菏泽·阶段练习)若曲线f x ,y =0上两个不同点处的切线重合,则称这条切线为曲线f x ,y =0的“自公切线”,则下列方程对应的曲线中存在“自公切线”的序号为.①y =x 2-2x ;②y =3sin x +4cos x ;③3x 2-xy +1=0;④x 2+y 2-x -x -1=0.53(2024·湖南岳阳·二模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2,其中F 1F 2 =2c ,过F 1的直线l 与椭圆C 交于A 、B 两点,若AF 1 ⋅AF 2 =4c 2,则该椭圆离心率的取值范围是.54(2024·湖南·二模)已知表面积为100π的球面上有四点S ,A ,B ,C ,△ABC 是边长为43的等边三角形,若平面SAB ⊥平面ABC ,则三棱锥S -ABC 的体积的最大值为,55(2024·湖南·二模)已知f x =2x +x -m ,x ∈a ,a +2 ,f (x )max =g m ,若m g m ≥13 =R ,则实数a 的取值范围是,56(2024·湖南常德·三模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线的左、右两支分别相交于M ,N 两点,直线NF 2与双曲线的另一交点为P ,若△NPF 1为等腰三角形,且△NF 1F 2的面积是△PF 1F 2的面积的2倍,则双曲线C 的离心率为.57(2024·高三·全国·阶段练习)设函数f x =1e x+1图象上任意一点处的切线为l 1,总存在函数图象g x =a sin x +x a >0 上一点处的切线l 2,使得l 1⎳l 2,则实数a 的最小值为.58(2024·湖南·模拟预测)过椭圆C :x 2a 2+y 2b2=1(a >b >0)上的动点P 向圆O :x 2+y 2=b 2引两条切线PA ,PB .设切点分别是A ,B ,若直线AB 与x 轴、y 轴分别交于M ,N 两点,则△MON 面积的最小值是.59(2024·四川凉山·一模)定义函数f (x )=max λx ,-λx ,x ∈R ,其中λ>0,符号max {a ,b }表示数a ,b 中的较大者,给出以下命题:①f (x )是奇函数;②若不等式f (x -1)+f (x -2)≥1对一切实数x 恒成立,则λ≥1③λ=1时,F (x )=f (x )+f (x -1)+f (x -2)+⋯+f (x -100)最小值是2450④“xy >0”是“f (x )+f (y )≥f (x +y )”成立的充要条件以上正确命题是.(写出所有正确命题的序号)2024年新高考新题型数学选填压轴好题汇编08一、单选题1(2024·广东湛江·二模)已知函数f x =2x -1 -a ,g x =x 2-4x +2-a ,则()A.当g x 有2个零点时,f x 只有1个零点B.当g x 有3个零点时,f x 有2个零点C.当f x 有2个零点时,g x 有2个零点D.当f x 有2个零点时,g x 有4个零点【答案】D【解析】两个函数的零点个数转化为图象与y =a 的图象的公共点的个数,作出y =2x -1 ,y =x 2-4x +2的大致图象,如图所示.由图可知,当g x 有2个零点时,f x 无零点或只有1个零点;当g x 有3个零点时,f x 只有1个零点;当f x 有2个零点时,g x 有4个零点.故选:D2(2024·甘肃定西·一模)在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,∠ABD =60°,PB ,PC 与底面ABCD 所成的角分别为α,β,且α+β=45°,则PAAB =()A.17-22B.15-32C.15-22D.17-32【答案】D【解析】如图,设AB =a ,PA =b ,因为在矩形ABCD 中,∠ABD =60°,所以AC =BD =2a ,因为PA ⊥底面ABCD ,所以∠PBA ,∠PCA 分别是PB ,PC 与底面ABCD 所成的角,即α=∠PBA ,β=∠PCA ,所以tan α=tan ∠PBA =b a ,tan β=tan ∠PCA =b2a.因为α+β=45°,所以tan (α+β)=tan α+tan β1-tan αtan β=ba+b2a 1-b a ⋅b 2a =1,解得b a =17-32(负根舍去),所以PAAB =17-32.故选:D .3(2024·高三·江西·开学考试)如图,已知圆O 的半径为2,弦长AB =2,C 为圆O 上一动点,则AC ⋅BC的取值范围为()A.0,4B.5-43,5+43C.6-43,6+43D.7-43,7+43【答案】C【解析】取AB 的中点D ,连接CD 、OD ,则AC ⋅BC =AD +DC ⋅BD +DC =AD ⋅BD +AD +BD ⋅DC +DC 2=DC 2-1,又OD =22-12=3,所以CD min =2-3,CD max =2+3,即2-3≤CD ≤2+3,所以AC ⋅BC min =6-43,AC ⋅BC max =6+43.故AC ⋅BC的取值范围为6-43,6+43 .故选:C4(2024·高三·江苏·期末)已知直线l 与椭圆x 29+y 23=1在第二象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点(M ,N 在椭圆外),若AM =BN ,则l 的倾斜角是()A.π6B.π3C.π4D.5π12【答案】A【解析】设l :y =kx +b (k >0,b >0),设A x 1,y 1 ,B x 2,y 2 ,联立y =kx +bx 29+y 23=1,得3k 2+1 x 2+6kbx +3b 2-9=0,由题意知Δ=36k 2b 2-43k 2+1 3b 2-9 =129k 2+3-b 2 >0,所以x 1+x 2=-6kb 3k 2+1,x 1x 2=3b 2-93k 2+1,设AB 的中点为E ,连接OE ,因为AM =BN ,所以AM +AE =BE +BN ,得EM =EN ,又因为N -bk,0 ,M 0,b ,所以E 也是MN 的中点,所以E 的横坐标为x E =x 1+x 22=-b k 2,从而得-6kb 3k 2+1=-b k ,因为A ,B 交在第二象限k >0,解得k =33,设直线l 倾斜角为θ,得tan θ=33,得θ=π6,故A 正确.故选:A .5(2024·湖南娄底·一模)已知圆内接四边形ABCD 中,AD =2,∠ADB =π4,BD 是圆的直径,AC ⋅BD=2,则∠ADC =()A.5π12B.π2C.7π12D.2π3【答案】C【解析】因为AC ⋅BD =2,所以AD +DC ⋅BD =2,易知BD =4,结合图形,AD ·BD =2×4×22=4,∠BCD =90°,则4-DC 2=2,故DC = 2.又BD 是圆的直径,AD =2,∠ADB =π4,所以BD =22,所以在直角三角形BCD 中可得∠BDC =π3,故∠ADC =7π12.故选:C .6(2024·湖南娄底·一模)若直线ex -4y +e ln4=0是指数函数y =a x (a >0且a ≠1)图象的一条切线,则底数a =()A.2或12B.eC.eD.e 或e【答案】D【解析】设切点坐标为x 0,f x 0 ,对函数y =a x ,求导得y =a x ln a ,切线方程ex -4y +e ln4=0化成斜截式为y =e 4x +e ln44,由题设知e4=a x 0ln a >0a x 0=ex 0+e ln44,显然ln a >0,即a >1,由a x 0=e 4ln a ,得e 4ln a =ex 0+e ln44,即1ln a=x 0+ln4,即1=x 0⋅ln a +ln a ln4=ln a x 0+ln4ln a =ln a x⋅4ln a ,即e =a x 0⋅4ln a =e4ln a ⋅4ln a ,化简得4ln a =4ln a ,令ln a =t >0,即4t =4t ,利用指数函数与一次函数的性质,可知t =1或12,即ln a =1或12,解得a =e 或 e.故选:D .7(2024·河北沧州·一模)过点P 1,2 作圆O :x 2+y 2=10相互垂直的两条弦AB 与CD ,则四边形ACBD 的面积的最大值为()A.66B.215C.96D.15【答案】D【解析】如图所示:OP =5,记OM =m ,ON =n ,则m 2+n 2=5,AC =210-m 2,BD =210-n 2,S ACBD =12AC ⋅BD =210-m 2⋅10-n 2≤2×10-m 2+10-n 22=15,当且仅当10-m 2=10-n 2,即m =n =102时,取等号.所以四边形ACBD 的面积的最大值为15.故选:D8(2024·湖南·一模)若不等式e x -1-mx -2n -3≥0对∀x ∈R 恒成立,其中m ≠0,则nm的取值范围为()A.-∞,-ln3e 2B.ln3e 2,+∞ C.-e ,-ln3e 2D.ln3e 2,e 【答案】A【解析】令e x -1-mx -2n -3=0,即e x -1=mx +2n +3,当m <0时,由函数y =e x -1与y =mx +2n +3的图象可知,两函数图象有一个交点,记为x 0,y 0 ,则当x <x 0时,e x -1<mx +2n +3,即e x -1-mx -2n -3<0,不满足题意;当m >0时,令f x =e x -1-mx -2n -3,则f x =e x -1-m ,令f x =0,则x =ln m +1,因为f x =e x -1-m 单调递增,所以当x <ln m +1时,f x <0,f x 单调递减,当x >ln m +1时,f x >0,f x 单调递增,所以x =ln m +1时,f x 有最小值f ln m +1 =-m ln m -2n -3,又e x -1-mx -2n -3≥0对∀x ∈R 恒成立,所以-m ln m -2n -3≥0,即2n ≤-m ln m -3,所以2n m ≤-ln m -3m,当且仅当2n =-m ln m -3时等号成立.令g m =-ln m -3m ,则g m =-1m +3m 2=3-mm 2,当0<m <3时,g m >0,g m 单调递增,当m >3时,g m <0,g m 单调递减,所以当m =3时,g max m =-ln3-1=-ln3e ,所以2n m ≤-ln3e ,即n m ≤-ln3e 2,当且仅当m =3,n ≤-3ln3e 2时等号成立,所以n m 的取值范围为-∞,-ln3e 2 .故选:A9(2024·湖南·模拟预测)如图所示,面积为π的扇形OMN 中,M ,N 分别在x ,y 轴上,点P 在弧MN 上(点P 与点M ,N 不重合),分别在点P ,N 作扇形OMN 所在圆的切线l 1,l 2,且l 1与l 2交于点Q ,其中l 1与x 轴交于点R ,则NQ +QR 的最小值为()A.4B.23C.6D.2【答案】B【解析】解析:因为扇形OMN 的面积为π,即14πOP 2=π,所以OP =2,设∠POM =θ,则在Rt △OPR 中,PR =2tan θ,连接OQ ,根据切线的性质知QN =QP ,∠NOQ =12∠NOP =π4-θ2,则在Rt △NOQ 中,NQ =2tan π4-θ2,所以NQ +QR =PR +2NQ =2tan θ+4tan π4-θ2 ,θ∈0,π2,令α=π4-θ2,则θ=π2-2α,且α∈0,π4,所以原式=2tan π2-2α +4tan α=2tan2α+4tan α=1-tan 2αtan α+4tan α=3tan α+1tan α≥21tan α⋅3tan α=23,当且仅当3tan α=1tan α,即tan α=33时,等号成立,又α∈0,π4 ,所以α=π6=θ=∠POM 时,NQ +QR 取得最小值,为23,故选:B10(2024·陕西商洛·模拟预测)设a =sin0.2,b =0.16,c =12ln 32,则()A.a >c >bB.b >a >cC.c >b >aD.c >a >b【答案】D【解析】设f x =sin x -x -x 2 ,x ∈0,0.2 ,f x =cos x -1+2x ,设g x =f x ,g x =-sin x +2>0,所以g x ≥g 0 =0,所以函数f x 在0,0.2 上单调递增,所以f 0.2 =sin0.2-0.2-0.22 =sin0.2-0.16>f 0 =0,即a >b .根据已知得c =12ln 32=12ln 1.20.8=12ln 1+0.21-0.2,可设h x =12ln 1+x -ln 1-x -sin x ,x ∈ 0,0.2 ,则h x =1211+x +11-x -cos x =11-x 2-cos x >0,所以函数h x 在0,0.2 上单调递增,所以h 0.2 >h 0 =0,即c >a .综上,c >a >b .故选:D .11(2024·河南信阳·模拟预测)已知数列a n 的前n 项和为S n ,S 1=1,S 2=3,且32a n +1是2a n ,a n +2的等差中项,则使得ni =1i a i>509128成立的最小的n 的值为()A.8B.9C.10D.11【答案】D 【解析】∵32a n +1是2a n ,a n +2的等差中项,∴a n +2=3a n +1-2a n ,故a n +2-a n +1=2a n +1-a n ,而a 2-a 1=S 2-2S 1=1≠0,∴a n +2-an +1a n +1-a n=2,故数列a n +1-a n 是首项为1,公比为2的等比数列,则a n +1-a n =2n -1,∴a n =a n -a n -1 +a n -1-a n -2 +⋯+a 2-a 1 +a 1=2n -2+2n -1+⋯+20+1=1-2n -11-2+1=2n -1,记T n =ni =1i a i,则T n =120+221+⋯+n2n -1,2T n =12-1+220+⋯+n2n -2,两式相减可得,T n =12-1+120+121+⋯+12n -2-n 2n -1=21-12 n1-12-n 2n -1=4-2+n 2n -1,即ni =1i a i=4-2+n 2n -1,令4-2+n 2n -1>509128,即2+n 2n -1<3128,设f x =2+x 2x -1x >0 ,则fx =2x -1-2+x ⋅2x -1⋅ln22x -1 2=1-2+x ⋅ln22x -1,∵x >0,∴f x <0,∴f x 在0,+∞ 单调递减,∴2+n 2n -1 是递减数列,∵当n =10时,2+n 2n -1=2+10210-1=3128,∴当n >10时,ni =1i a i >509128,∴使得ni =1i a i>509128成立的最小的n 的值为11.故选:D .12(2024·全国·模拟预测)若关于x 的不等式a (ln x +ln a )≤2e 2x 在(0,+∞)上恒成立,则实数a 的取值范围为()A.(0,e ]B.0,e 2C.(0,e ]D.(0,2e ]【答案】D【解析】依题意得,ax ln ax ≤2xe 2x ,故eln axln ax ≤2xe 2x ,令f x =xe x ,x ∈R ,则f x =x +1 e x ,令f x =0可得x =-1,所以x ∈-∞,-1 时,f x <0,则f x 在-∞,-1 上单调递减,x ∈-1,+∞ 时,f x >0,则f x 在-1,+∞ 上单调递增;且当x <0时,f x <0,当x >0时,f x >0;则由f ln ax ≤f 2x x >0 ,得ln ax ≤2x ,则a ≤e 2xx 令g x =e 2xx ,x ∈0,+∞ ,则g x =2x -1 e 2xx2,故当x ∈0,12 时,g x <0,g x 单调递减,当x ∈12,+∞ 时,g x >0,g x 单调递增,故g x min =g 12=2e ,则a ≤2e ,则实数a 的取值范围为a ∈0,2e .故选:D .13(2024·湖南岳阳·二模)设a =log 23,b =log 35,c =log 58,则()A.a >b >cB.b >a >cC.b >c >aD.c >a >b【答案】A【解析】因为32>23,所以log 232>log 223,即2log 23>3,所以log 23>32,即a >32;因为52<33,所以log 352<log 333,即2log 35<3,所以log 35<32,即b <32;因为82<53,所以log 582<log 553,即2log 58<3,所以log 58<32,即c <32;又因为b -c =log 35-log 58=1log 53-log 58=1-log 53⋅log 58log 53,且2log 53⋅log 58<log 53+log 58=log 524<log 525=2,所以log 53⋅log 58<1,所以b -c >0,所以b >c ;综上所述,a >b >c .故选:A .14(2024·湖南岳阳·二模)已知点A x 1,y 1 ,B x 2,y 2 是圆x 2+y 2=16上的两点,若∠AOB =π2,则x 1+y 1-2 +x 2+y 2-2 的最大值为()A.16B.12C.8D.4【答案】B【解析】因为A (x 1,y 1)、B (x 2,y 2)在圆x 2+y 2=16上,∠AOB =π2,因为|OA |=|OB |=4,则△AOB 是等腰直角三角形,|x 1+y 1-2|+|x 2+y 2-2|表示A 、B 到直线x +y -2=0的距离之和的2倍,原点O 到直线x +y -2=0的距离为d =22=2,如图所示:AC ⊥CD ,BD ⊥CD ,E 是AB 的中点,作EF ⊥CD 于F ,且OE ⊥AB ,|AC |+|BD |=2|EF |,OE =12AB =22,EF ≤OE +d =32,当且仅当O ,E ,F 三点共线,且E ,F 在O 的两侧时等号成立,又EF =12BD +AC ,故BD +AC 的最大值为62|x 1+y 1-2|+|x 2+y 2-2|的最大值为22×32=12.故选:B .15(2024·湖南·二模)2024年春节期间,某单位需要安排甲、乙、丙等五人值班,每天安排1人值班,其中正月初一、二值班的人员只安排一天,正月初三到初八值班人员安排两天,其中甲因有其他事务,若安排两天则两天不能连排,其他人员可以任意安排,则不同排法一共有()A.792种 B.1440种 C.1728种 D.1800种【答案】B【解析】当甲安排在初一或初二时,再安排一人在初二或初一,则有C 12C 14种排法,再利用平均分组分配法将初三到初八分配给剩下的3人,有C 26C 24C 22种排法,所以一共有C 12C 14C 26C 24C 22=720种排法;当甲不安排在初一或初二时,安排两人在初一或初二,有A 24种排法,不考虑甲两天不能连排的情况,有C 26C 24C 22种排法,其中甲两天连排的排法有5C 24C 22种,故初三到初八的值班安排有C 26C 24C 22-5C 24C 22种排法,所以一共有A 24C 26C 24C 22-5C 24C 22 =720种排法;综上可知共有720+720=1440种不同排法.故选:B .16(2024·湖南·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,O 为坐标原点,以F 1F 2为直径的圆与双曲线C 交于点P ,且OP 在OF 1 上的投影向量为35OF 1,则双曲线C 的离心率为()A.2 B.3C.4D.5【答案】D【解析】不妨设点P 在第二象限,如图,因为OP 在OF 1 上的投影向量为35OF 1 ,则P -35c ,y 0 ,又PO 2=r 2=c 2,所以y 20=c 2--35c 2=1625c 2,又P 在双曲线上,∴9c 225a 2-16c 225b2=1,则25a 2b 2+16a 2c 2-9b 2c 2=0,即25a 2c 2-a 2 +16a 2c 2-9c 2-a 2 c 2=0,整理得9c 2-5a 2 c 2-5a 2 =0,所以9e 2-5 e 2-5 =0,解得e 2=5或e 2=59(舍去),∴e = 5.故选:D .17(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且a 2-b 2+c 2+2ac =0,若cos A -C =7210,α∈π4,π2 ,cos α+A cos α+C cos 2α=25,则tan α的值为()A.1 B.2C.4D.2或4【答案】C【解析】由余弦定理得cos B =a 2+c 2-b 22ac =-22⇒B =3π4,A +C =π4,即cos A -C =7210cos A +C =22⇒cos A cos C =325sin A sin C =210,cos α+A cos α+C cos 2α=cos 2αcos A cos C +sin 2αsin A sin Ccos 2α--sin αcos αsin A cos C +sin C cos A cos 2α=325cos 2α+210sin 2α-22sin αcos αcos 2α=325+210tan 2α-22tan α=25,所以tan 2α-5tan α+4=0⇒tan α=1或tan α=4,又α∈π4,π2,所以tan α=4.故选:C18(2024·湖南常德·三模)设有甲、乙两箱数量相同的产品,甲箱中产品的合格率为90%,乙箱中产品的合格率为80%.从两箱产品中任取一件,经检验不合格,放回原箱后在该箱中再随机取一件产品,则该件产品合格的概率为()A.56B.67C.78D.1720【答案】A【解析】设事件B 1表示任选一件产品,来自于甲箱,事件B 2表示任选一件产品,来自于乙箱,事件A 从两箱产品中任取一件,恰好不合格,P A =P A |B 1 P B 1 +P A |B 2 P B 2 =0.1×0.5+0.2×0.5=0.15又P B 1|A =P AB 1 P A =P A |B 1 P B 1 P A=0.1×0.50.15=13P B 2|A =P AB 2 P A =P A |B 2 P B 2 P A=0.2×0.50.15=23,经检验不合格,放回原箱后在该箱中再随机取一件产品,则该件产品合格的概率为13×910+23×810=56.故选:A .19(2024·湖南·模拟预测)有一枚质地均匀点数为1到4的特制骰子,投掷时得到每种点数的概率均等,现在进行三次独立投掷,记X 为得到最大点数与最小点数之差,则X 的数学期望E X =()A.2116B.32C.74D.158【答案】D【解析】X 的所有可能取值为0,1,2,3,记三次得到的数组成数组a ,b ,c ,满足X =0的数组有:1,1,1 ,2,2,2 ,3,3,3 ,4,4,4 ,共4个,所以P X =0 =443=116,满足X =1的数组有:1,1,2 ,1,2,1 ,2,1,1 ,2,2,3 ,2,3,2 ,3,2,2 ,3,3,4 ,3,4,3 ,4,3,3 ,2,2,1 ,2,1,2 ,1,2,2 ,3,3,2 ,3,2,3 ,2,3,3 ,4,4,3 ,4,3,4 ,3,4,4 ,共18个,所以P X =1 =1843=932,满足X =2的数组有:1,1,3 ,1,3,1 ,3,1,1 ,2,2,4 ,2,4,2 ,4,2,2 ,3,3,1 ,3,1,3 ,1,3,3 ,4,4,2 ,4,2,4 ,2,4,4 ,1,2,3 ,1,3,2 ,2,1,3 ,2,3,1 ,3,1,2 ,3,2,1 ,4,2,3 ,4,3,2 ,2,4,3 ,2,3,4 ,3,4,2 ,3,2,4 ,共24个,所以P X =2 =2443=38,满足X =3的数组有:1,2,4 ,1,3,4 ,1,4,4 ,1,4,1 ,1,4,2 ,1,4,3 ,1,1,4 ,2,1,4 ,3,1,4 ,4,1,1 ,4,2,1 ,4,3,1 ,4,1,2 ,4,1,3 ,4,1,4 ,2,4,1 ,3,4,1 ,4,4,1 ,共18个,所以P X =3 =1843=932,所以X 的数学期望E X =0×116+1×932+2×38+3×932=158.故选:D .20(2024·湖南·模拟预测)已知函数f x 满足f x +8 =f x ,f x +f 8-x =0,当x ∈0,4 时,f x =ln 1+sin π4x ,则函数F x =f 3x -f x 在0,8 内的零点个数为()A.3B.4C.5D.6【答案】C【解析】根据题意,函数f x 的周期为8,图象关于点4,0 对称,又f 38-x +f 3x =f 8-3x +f 3x =-f 3x +f 3x =0,所以函数y =f 3x 的图象也关于点4,0 对称,由x ∈0,4 ,f x =ln 1+sin π4x ,∴fx =π4cos π4x 1+sin π4x ,∵0≤π4x <π,sin π4x ≥0,令f x >0,解得0≤x <2,令f x <0,解得2<x <4,所以函数f x 在0,2 上单调递增,在2,4 上单调递减,f 2 =ln2,f 0 =f 4 =0,在同一个坐标系中,作出函数y =f 3x 与y =f x 的图象,如图,由图可得,函数y =f 3x 与y =f x 在0,4 上有两个交点,因为函数y =f 3x 与y =f x 图象均关于点4,0 对称,所以函数y =f 3x 与y =f x 在4,8 上有两个交点,又f 12 =f 4 =0,所以函数F x =f 3x -f x 在0,8 内的零点个数为5.故选:C .21(2024·高三·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为p 1,p 2,且满足p 1+p 2=43,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若E X =16,则从期望的角度来看,甲、乙两人训练的轮数至少为()A.27 B.24 C.32 D.28【答案】A【解析】设每一轮训练过关的概率为p ,则p =p 21p 22+p 21×C 12×p 2×1-p 2 +p 22×C 12×p 1×1-p 1=-3p 21p 22+2p 1p 2p 1+p 2 =-3p 21p 22+2p 1p 2×43=-3p 21p 22+83p 1p 2,0<p 1p 2≤p 1+p 22 2=49,当且仅当p 1=p 2=23时等号成立.函数y =-3x 2+83x 的开口向上,对称轴为x =49,所以0<-3p 21p 22+83p 1p 2≤-3⋅49 2+83⋅49=1627,依题意,X ∼B n ,p ,则E X =n -3p 21p 22+83p 1p 2=16,n =16-3p 21p 22+83p 1p 2≥161627=27,所以至少需要27轮.故选:A22(2024·河南·模拟预测)已知圆O 为△ABC 的外接圆,∠BAC =60°,BC =23,则OB ⋅OC=()A.2B.-2C.4D.-4【答案】B【解析】如图,圆O 的直径为2R =BC sin ∠BAC=2332=4,故OB =OC =R =2,∠BOC =2∠BAC =120°,故OB ⋅OC =OB OC cos120°=2×2×-12=-2.故选:B .二、多选题23(2024·广东湛江·二模)已知函数f x 的定义域为R ,f x 不恒为零,且f x +y +f x -y =2f x f y ,则()A.f 0 =1B.f x 为偶函数C.f x 在x =0处取得极小值D.若f a =0,则f (x )=f (x +4a )【答案】ABD【解析】对于选项A ,令x =y =0,得2f 0 =2f 0 2,解得f 0 =0或f 0 =1,当f 0 =0时,令y =0,则2f x =2f x f 0 ,则f x =0,这与f x 不恒为零矛盾,所以f 0 =1,故选项A 正确,对于选项B ,令x =0,则f 0+y +f 0-y =2f y f 0 ,即f y =f -y ,即f x 为偶函数,所以选项B 正确,对于选项C ,取f x =cos x ,满足题意,此时x =0不是f x 的极小值点,所以选项C 错误,对于选项D ,令y =a ,得f x +a +f x -a =2f x f a ,若f a =0,则f x +a =-f x -a ,则f x =-f x +2a ,则f x +4a =-f x +2a =f x ,所以选项D 正确,故选:ABD .24(2024·甘肃定西·一模)下列命题为真命题的是()A.x 2-4x -8-x +4+x -1 的最小值是2B.x 2-4x -8-x +4+x -1 的最小值是5C.x 2-4x -8-x +4+x 2-2x -4-x +2的最小值是2D.x 2-4x -8-x +4+x 2-2x -4-x +2的最小值是3【答案】BC【解析】设A (0,2),B (-1,1),F (-1,0),P (x ,-4x ),易知点P 的轨迹是抛物线y 2=-4x 的上半部分,抛物线y 2=-4x 的准线为直线x =1,P 到准线的距离d =|x -1|,F 为抛物线y 2=-4x 的焦点,对于AB ,x 2-4x -8-x +4+|x -1|=x 2+(-4x -2)2+d =|PA |+d =|PA |+|PF |≥|AF |=5,所以x 2-4x -8-x +4+|x -1|的最小值为5,故A 错误,B 正确;对于CD ,x 2-4x -8-x +4+x 2-2x -4-x +2=x 2+(-4x -2)2+(x +1)2+(-4x -1)2=|PA |+|PB |≥|AB |=2,所以x 2-4x -8-x +4+x 2-2x -4-x +2的最小值是2,故C 正确,D 错误.故选:BC .25(2024·高二·福建福州·期末)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”).比如取正整数m =8,根据上述运算法则得出8→4→2→1→4→2→1.猜想的递推关系如下:已知数列a n 满足a 1=5,a n +1=a n2,a n 为偶数3a n+1,a n为奇数 ,设数列a n的前n 项和为S n ,则下列结论正确的是()A.a3=8B.a 5=2C.S 10=49D.S 300=722【答案】ABD【解析】因为数列a n 满足a 1=5,a n +1=a n2,a n 为偶数3a n+1,a n为奇数 ,所以a 2=3×5+1=16,a 3=162=8,a 4=82=4,a 5=42=2,a 6=22=1,a 7=3×1+1=4,a 8=42=2,a 9=22=1,a 10=3×1+1=4,所以S 10=5+16+8+4+2+1+4+2+1+4=47,所以AB 正确,C 错误,因为数列a n 中从第4项起以4,2,1循环,而(300-3)÷3=99,所以S 300=(5+16+8)+99×(4+2+1)=722,所以D 正确,故选:ABD26(2024·高三·江西·期末)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,P 分别是线段C 1D 1,线段C 1C ,线段A 1B 上的动点,且MC 1=NC 1≠0.则下列说法正确的有()A.MN ⊥ABB.直线MN 与AP 所成的最大角为90°C.三棱锥M -DPC 的体积为定值D.当四棱锥P -D 1DBB 1体积最大时,该四棱锥的外接球表面积为12π【答案】BCD【解析】对于A ,由MC 1=NC 1≠0,可得D 1C ⎳MN ,因为AB ⎳D 1C 1,所以MN 与AB 不垂直,因此A 不正确;对于B ,因为D 1C ⎳A 1B ,所以MN ⎳A 1B ,因此直线MN 与AP 所成的角就是直线A 1B 与AP 所成的角,当P 为A 1B 中点时,此时AP ⊥A 1B ,直线A 1B 与AP 所成的角最大为90°,因此B 正确:对于C ,由于平面ABB 1A 1⎳平面DCC 1D 1,AP ⊂平面ABB 1A 1,所以V M -DPC =V P -DMC =V P -D 1DC =V A -D 1DC =13×12×2×2×2=43为定值,C 正确:对于D ,VP -BDD 1B 1=2V P -BDD 1=2V D 1-PBD ,由于P 为A 1B 上的点,故D 1到平面A 1BD 的距离为定值,所以D 1到平面PBD 的距离为定值,要使V D 1-PBD 最大,只需要S △PBD 最大,故当P 为A 1点时,四棱锥P -D 1DBB 1体积最大,该四棱锥的外接球即正方体ABCD -A 1B 1C 1D 1的外接球,直径为BD 1=23,所以r =3,故其表面积为12π,因此D 正确.故选:BCD .27(2024·湖南娄底·一模)对于事件A 与事件B ,若A ∪B 发生的概率是0.72,事件B 发生的概率是事件A 发生的概率的2倍,下列说法正确的是()A.若事件A 与事件B 互斥,则事件A 发生的概率为0.36B.P B ∣A =2P A ∣BC.事件A 发生的概率的范围为0.24,0.36D.若事件A 发生的概率是0.3,则事件A 与事件B 相互独立【答案】BCD【解析】对于A ,若事件A 与事件B 互斥,则P A ∪B =P A +P B =3P A =0.72,所以P A =0.24,A ,故A 错误;对于B ,P B |A =P AB P A ,P A |B =P AB P B =P AB 2P A=12P B |A ,故B 正确;对于C ,P A ∪B =P A +P B -P AB =3P A -P AB =0.72,P A =0.24+P AB3,若事件A 与事件B 互斥,则P AB =0,此时P A 取到最小值为0.24,若P A ⊆P B ,此时P AB =P A ,P A 取到最大值为0.36,故C 正确;对于D ,P A =0.3,则P B =0.6,由P A ∪B =P A +P B -P AB ,得P AB =0.3+0.6-0.72=0.18=P A ⋅P B ,则事件A 与事件B 相互独立,故D 正确.故选:BCD .28(2024·湖南娄底·一模)已知函数f x 的定义域和值域均为x ∣x ≠0,x ∈R ,对于任意非零实数x ,y ,x +y ≠0,函数f x 满足:f x +y f x +f y =f x f y ,且f x 在-∞,0 上单调递减,f 1 =1,则下列结论错误的是()A.f 12=2B.2023i =1f12i=22023-2C.f x 在定义域内单调递减 D.f x 为奇函数【答案】BC【解析】对于A ,令x =y =12,则2f 1 f 12=f 12 2,因f 12≠0,故得f 12=2f (1)=2,故A 正确;对于B ,由f x +y f x +f y =f x f y ,令y =x ,则f (2x )=[f (x )]22f (x )=12f (x ),则f12i =f 2×12i +1 =12f 12i +1 ,即f 12i +1 =2f 12i,故f 12i是以f 12 =2为首项,2为公比的等比数列,于是2023i =1f 12i=21-22023 1-2=22024-2,故B 错误;。
高考理科数学总复习压轴题目自选练(一)
所以欲证 f(2-x1)+f(x1)>-1,
只需证 F(x)>F(1), x∈ (0,1),
F′(x)= f′(x)-f′(2- x)= 1+ ln x-x- [1+ln(2- x)-2+x] ,
整理得 F′(x)=ln x-ln(2- x)+2(1-x),x∈(0,1). 2 1-x 2
令 m(x)=F′(x),则 m′(x)= x 2-x >0,x∈(0,1),
中, R2=(R-1)2+22,解得 R=52,
所以球 O 的表面积为
4π×
5 2
2=25π,故选
B.
2x2-4x+1,x>0,
12.已知函数 f(x)= ex, x≤ 0,
则 y= f(x)(x∈ R)的图象上关于坐标
原点 O 对称的点共有 ( )
A.0 对
B.1 对
C.2 对
D.3 对
解析:选 C 由题意知, 函数 y=f(x)(x∈R)的图象上关于
P→F2= (2a- m,-
3m-
3a),所以
P→F1·P→F2= 4m2+6ma- a2=4
3 m+4a
2-143a2.
由于
m∈ [-a,0],可知当
m=-
3 4a
时,
P→F1·P→F2取得最小值,此时
3 yP= 4 a;当
m= 0 时, P→F1·P→F2取得最大值,此时
yP=
S2 3a.则S1=
2 对,故选 C. 16.(2019 ·广东百校联考 )已知双曲线 ax22-by22=1(a>0,b>0)的离心率为 2,F1,
F2 分别是双曲线的左、右焦点,点 M (-a,0), N(0,b),点 P 为线段 MN 上的动 点,当 P→F1·P→F2取得最小值和最大值时,△ PF1F2 的面积分别为 S1,S2,则 SS21= ________.
新课标高考数学填空选择压轴题汇编(理科)
新课标高考数学填空选择压轴题汇编(理科) 高考数学填空选择压轴题试题汇编(理科)目录(120题)第一部分函数导数(47题)・2/26第二部分解析几何(23题)・9/33第三部分立体几何(11题)・13/34第四部分三角函数及解三角形(10题)・15/36 第五部分数列(10题)・17/37 第六部分概率统计(6题)・19/38 第七部分向量(7题)・21/39 第八部分排列组合(6题)・22/40 第九部分不等式(7题)・23/421第十部分算法(2题)・24/43 第十一部分交叉部分(2题)・25/43 第十二部分参考答案・・26/43第一部分函数导数1.【新课标】(12)设点P在曲线y?上,则|PQ|的最小值为( )(A)(B)2(1?ln2) (C)(D)1?ln2 1?ln22(1?ln2)1xe上,点2Q在曲线y?ln(2x)2.【新课标】(12)函数y?1的图像与函数y?2sin?x(?2?x?4)的x?1图像所有交点的横坐标之和等于( )(A)2 (B) 4 (C) 6 (D)8 3.【10年新课标】(11)已知函数?lgx,0<x?10,?若f?x???1??x?6,x>10?2a,b,c互不相等,且f?a??f?b??f?c?,则abc的取值范围是( ) (A)?1,10? (B)?5,6? (C)?10,12?(D)?20,24? 4.【09年新课标】(12)用min{a,b,c}表示a,b,c三个数中的最小值设f (x)=min{, x+2,10-x} (x? 0),则f(x)的最大值为( )(A)4 (B)5 (C)6 (D)7 5.【郑州一模】12.若定义在R 上的偶函数f(x)满足f(x?2)?f(x),2且当x?[0,1]时,f(x)?x,则函数y?f(x)?log3|x|的零点个数是( ) A.多于4个B.4个 6.【郑州二模】C.3个D.2个7.【郑州二模】8.【郑州三模】9.【郑州三模】10.【郑州一模】311.【郑州二模】11. 如图曲线图形(阴影部分)的面积为( ) A. B. C. D.12.【郑州二模】 12. 已知集合,定义函数的外接圆圆心为D,且,则满足条件的函数A. 6 个B. 10 个C. 12 个D. 16 个 13.【郑州三模】14.【北京】14.已知f(x)?m(x?2m)(x?m?3),g(x)?2x?2,若同时满足条件:①?x?R,f(x)?0或g(x)?0;②?x?(??,?4),f(x)g(x)?0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学填空选择压轴题试题汇编(理科)目录(120题)第一部分函数导数(47题)·2/26第二部分解析几何(23题)·9/33第三部分立体几何(11题)·13/34 第四部分三角函数及解三角形(10题)·15/36第五部分数列(10题)·17/37第六部分概率统计(6题)·19/38第七部分向量(7题)·21/39第八部分排列组合(6题)·22/40第九部分不等式(7题)·23/42第十部分算法(2题)·24/43第十一部分交叉部分(2题)·25/43第十二部分参考答案··26/43第一部分函数导数1.【12年新课标】(12)设点P 在曲线12xye 上,点Q 在曲线ln(2)yx 上,则||PQ 的最小值为( )(A )1ln 2(B )2(1ln 2)(C )1ln 2(D )2(1ln 2)2.【11年新课标】(12)函数11y x 的图像与函数2sin(24)y x x的图像所有交点的横坐标之和等于()(A )2 (B) 4 (C) 6 (D)83.【10年新课标】(11)已知函数lg ,010,16,02x x f xx x <>1若a ,b ,c 互不相等,且f af b f c ,则abc 的取值范围是()(A )1,10(B )5,6(C )10,12(D )20,244.【09年新课标】(12)用min{a,b,c}表示a,b,c 三个数中的最小值设f (x )=min{, x+2,10-x} (x0),则f (x )的最大值为()(A )4(B )5(C )6(D )75.【11年郑州一模】12.若定义在R 上的偶函数()(2)()f x f xf x 满足,且当[0,1],(),x f x x 时则函数3()log ||yf x x 的零点个数是()A .多于4个B .4个C .3个D .2个6.【11年郑州二模】7.【11年郑州二模】8.【11年郑州三模】9.【11年郑州三模】10.【12年郑州一模】11.【12年郑州二模】11. 如图曲线和直线所围成的图形(阴影部分)的面积为()A. B.C.D.12.【12年郑州二模】12. 已知集合,定义函数.若点的外接圆圆心为D,且,则满足条件的函数有()A. 6个B. 10个C. 12个D. 16个13.【12年郑州三模】14.【12年北京】14.已知)3)(2()(m xm x m x f ,22)(xx g ,若同时满足条件:①R x ,0)(x f 或0)(x g ;②)4,(x, )(x f 0)(x g 。
则m 的取值范围是______15.【12福建】10.函数)(x f 在],[b a 上有定义,若对任意],[,21b a x x ,有)]()([21)2(2121x f x f x x f ,则称)(x f 在],[b a 上具有性质P 。
设)(x f 在[1,3]上具有性质P ,现给出如下命题:①)(x f 在]3,1[上的图像时连续不断的;②)(2x f 在]3,1[上具有性质P ;③若)(x f 在2x 处取得最大值1,则1)(x f ,]3,1[x;④对任意]3,1[,,,4321x x x x ,有)]()()()([41)2(43214321x f x f x f x f x x x x f 。
其中真命题的序号是()A .①②B .①③C .②④D .③④16.【12福建】15.对于实数b a,,定义运算“”:baab bb a ab a ba,,22,设)1()12()(x x x f ,且关于x 的方程为)()(R m m x f 恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是_____17.【12年湖北】9.函数2()cos f x x x 在区间[0,4]上的零点个数为()A .4B .5C .6D .718.【12年北京】8.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。
m 值为()A.5B.7C.9D.1119.【12年湖南】8.已知两条直线1l :y=m 和2l :y=821m (m >0),1l 与函数2log yx的图像从左至右相交于点A ,B ,2l 与函数2log yx 的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为 a ,b ,当m 变化时,b a的最小值为()A .162 B.82 C.84 D.4420.【12年江苏】13.已知函数2()()f x xax b a b R ,的值域为[0),,若关于x 的不等式()f x c 的解集为(6)m m ,,则实数c 的值为.21.【12年江西】10.如右图,已知正四棱锥S ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SEx x截面下面部分的体积为(),V x 则函数()yV x 的图像大致为()22.【12年辽宁】11. 设函数)(x f x R 满足(),=2-f x f x f x f x ,且当0,1x 时,3=f x x .又函数=cosg x x x ,则函数=-h x g x f x 在13-,22上的零点个数为()A .5B .6C .7D .823.【12年辽宁】12. 若0,+x,则下列不等式恒成立的是()A .21++xex xB .21111-+241+x xxC .21cos 1-2xxD .21ln 1+-8xx x24.【12年山东】(12)设函数f (x )=,g (x )=ax 2+bx 若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是()A.当a<0时,x 1+x 2<0,y 1+y 2>0B. 当a<0时, x 1+x 2>0, y 1+y 2<0C.当a>0时,x 1+x 2<0, y 1+y 2<0D. 当a>0时,x 1+x 2>0, y 1+y 2>025.【12年山东】(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,的坐标为______________26.【12年陕西】14. 设函数ln ,0()21,0x x f x x x,D 是由x 轴和曲线()yf x 及该曲线在点(1,0)处的切线所围成的封闭区域,则2zxy 在D 上的最大值为27.【12年上海】13.已知函数)(x f y 的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y(10x)的图象与x 轴围成的图形的面积为.28.【12天津】(14)已知函数2|1|=1xy x 的图象与函数=2y kx 的图象恰有两个交点,则实数k 的取值范围是 .29.【12年浙江】9.设a >0,b >0.() A .若2223aba b ,则a >b B .若2223aba b ,则a <b C .若2223a b ab ,则a >bD .若2223a bab ,则a <b30.【12年浙江】17.设a R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =______________.31.【12年焦作一模】12.定义在R 上的奇函数()f x ,当0x时,12l o g (1),[0,1)()1|3|,[1,)x x f x x x ,则关于x 的函数()()(01)F x f x a a的所有零点之和为()A .21aB .12aC .21aD .12a32.【12年开封二模】11. 已知函数的定义域为R ,,对任意都有,则()A.B.C.D.33.【12年开封二模】12. 设的定义域为D ,若满足下面两个条件,则称为闭函数.①在D 内是单调函数;②存在,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k 的取值范围是()A.k <lB.C. k >-1D.34.【12年开封二模】16. 设f(x)是定义在R 上的奇函数,且当时,,若对任意的,不等式恒成立,则实数T 的取值范围是. _______35.【12年开封四模】11.已知22(0)(),(1)(0)a xx xf x f x x且函数()y f x x 恰有3个不同的零点,则实数a 的取值范围是()A .[-1,+)B .[-1,0)C .(0,+ )D .[-2,+ ) 36.【12年开封一模】11.由曲线xy=1,直线y=x,y=3所围成的平面图形和面积为( )A.932B .2-ln3 C .4+ln3 D .4-ln337.【12年开封一模】12.已知函数)0(1)1()0(12)(xx f x x x f ,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的前n 项的和S n ,则S 10=()A .210-1 B.29-1 C.45 D.5538.【11年洛阳上期末】11.已知函数f (x )是定义在R 上的以4为周期的函数,”当x ∈(-1,3]时,f (x )=21(1,1](12),(1,3]x x t x x -,---其中t>0.若函数y =()f x x-15的零点个数是5,则t 的取值范围为() A .(25,1)B .(25,65)C .(1,65)D .(1,+∞)39.【12年洛阳二模】12设函数的定义域为R,且对任意的都有.当时,.若在区间上关于X 的方程有五个不同的实数根,则a 的取值范围是()A .(1,2)B .C .D .40.【12年信阳三模】11.已知函数),0)(1(),0(12)(xx f x x f x若方程f(x)=x+a有且只有两个不相等的实数根,则实数a 的取值范围为()A.(-∞,0]B.[0,1)C.(-∞,1)D.[0,+∞)41.【12年信阳三模】12.已知函数y=f(x)是定义在R 上的奇函数,当x ≤0时,f(x)=2x+x 2,若存在正数a,b ,使得当x ∈[a,b ]时,f(x)的值域为[ab 1,1],则a+b =( )A.1B.251 C. 251D.25342.【12年信阳二模】16.f (x )=asin2x +bcos2x ,其中a ,b ∈R ,ab ≠0,若f (x )≤|()6f |对一切x ∈R 恒成立,则①11()12f =0②|7()10f |<|()5f |③f (x )既不是奇函数也不是偶函数④f (x )的单调递增区间是[k π+6,k π+23](k ∈Z )⑤存在经过点(a ,b )的直线与函数f (x )的图象不相交.以上结论正确的是__________(写出所有正确结论的编号)43.【12年许昌一模】12. 设函数的定义域为D,若函数I 满足下列两个条件,则称在定义域D 上是闭函数.①在D 上是单调函数;②存在区间[a,b],使在[a, b]上值域为[a ,b].如果函数为闭函数,则k 的取值范围是( )A.B.C.D.44.【12年许昌一模】16. 已知函数有三个零点分别是,则的取值范围是________.45.【12年六校三模】11.偶函数()(2)(2),[0,2],()2cos,4f x f xf x x f x x 满足且在时则关于x 的方程1()(),[2,6]2xf x x 在上解的个数是() A .lB .2C .3D .446.【12年驻马店二模】12.若f (x )+1=1(1)f x +,当x ∈[0,1]时,f (x )=x ,若在区间(-l ,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是() A .[0,12)B .[12,+∞)C .[0,13)D .(0,12]47.【11年焦作一模】11.已知奇函数f (x )满足f (-1)=f (3)=0,在区间[-2,0)上是减函数,在区间[2,+∞)是增函数,函数F (x )=(),(),0x f x x f x x -<0->,则{x |F (x )>0}=()A .{x |x <-3,或0<x<2,或x>3}B .{x |x<-3,或-1<x<0,或0<x<1,或x>3}C .{x |-3<x <-1,或1<x <3}D .{x |x <-3,或0<x <1,或1<x <2,或2<x <3}第二部分解析几何1.【10年新课标】(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为()(A )22136xy(B )22145xy(C )22163xy(D )22154xy2.【】(11)已知点P 在抛物线x y42上,那么点P 到点)1,2(Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为()(A))1,41((B))1,41((C))2,1((D))2,1(3.【11年郑州一模】11.已知双曲线的方程为22221(0)x y a b ab,它的一个顶点到一条渐近线的距离为23c (c 为双曲线的半焦距长),则双曲线的离心率为()A .632或B .62C .377D .34.【11年郑州一模】16.已知抛物线24,y x 焦点为F ,ABC 三个顶点均在抛物线上,若0FA FB FC 则|FA|+|FB|+|FC|=5.【11年郑州二模】6.【11年郑州三模】7.【12年郑州一模】8.【12年郑州三模】9.【12年安徽】(9)过抛物线24yx 的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF ;则AOB 的面积为()()A 22()B 2()C 322()D 2210.【12年湖北】14.如图,双曲线22221 (,0)xya ba b的两顶点为1A ,2A ,虚轴两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D .则(Ⅰ)双曲线的离心率e;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S 的比值12S S .11.【12年江苏】12.在平面直角坐标系xOy 中,圆C 的方程为228150xy x ,若直线2y kx 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是.12.【12天津】(8)设m ,nR ,若直线(1)+(1)2=0m x n y与圆22(1)+(y 1)=1x 相切,则+m n 的取值范围是()(A )[13,1+3](B)(,13][1+3,+)(C)[222,2+22](D)(,222][2+22,+)13.【12年浙江】16.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的A 1A 2yB 2B 1AO B CD F 1F 2x11距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4)2=2到直线l :y=x 的距离,则实数a =______________.14.【12年重庆】14、过抛物线22yx 的焦点F 作直线交抛物线于,A B 两点,若25,,12ABAF BF 则AF =15.【12年焦作一模】11.已知点P 是双曲线)0,0(,12222ba by ax 右支上一点,12,F F ,分别是双曲线的左、右焦点,I 为21F PF 的内心,若212121F IF IPF IPF SSS成立,则双曲线的离心率为()A .4B .52C .2D .5316.【12年洛阳统考】12.已知P 是双曲线22221(0,0)x y a bab上的点,F 1、F 2是其焦点,双曲线的离心率是12125,0,4PF PF PF F 且若的面积为9,则a+b 的值为()A .5B .6C .7D .817.【12年洛阳统考】16.设圆22:1,:240O xyl xy 直线,点A l ,若圆O 上存在点B ,且30OAB (O 为坐标原点),则点A 的纵坐标的取值范围是18.【11年洛阳上期末】12.设F 1, F 2分别为双曲线2221x a b2y -=(a>0,b>0)的左、右焦点,P 为双曲线右支上任一点。