2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案
2020年普通高等学校招生全国统一考试数学带答案解析

F
为双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的右焦点,A
为
C
的右顶点,B
为
C
上的点,且
BF
垂直于
x
轴.若 AB 的斜率为 3,则 C 的离心率为
.
16.如图,在三棱锥 P–ABC 的平面展开图中,AC=1, AB AD 3 ,AB⊥AC,AB⊥AD,∠CAE=30°,
则 cos∠FCB=
已知函数 f (x) | 3x 1| 2 | x 1| . (1)画出 y f (x) 的图像;
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
(2)求不等式 f (x) f (x 1) 的解集.
选择题答案 一、选择题 1.D 5.D
参考答案
所以E的方程为 x(x2,y2),P(6,t). 若t≠0,设直线CD的方程为x=my+n,由题意可知–3<n<3.
t
t
由于直线PA的方程为y= 9 (x+3),所以y1= 9 (x1+3).
t
t
直线PB的方程为y= 3 (x–3),所以y2= 3 (x2–3).
C. a b2
D. a b2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x y 2 0,
13.若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
.
y 1 0,
14.设 a,b 为单位向量,且 | a b | 1,则 | a b |
.
15.已知
2.B 6.B
3.C 7.C
2020年全国高考(新课标I、II、III卷)真题 理科数学试卷(+答案+全解全析,共3套)

理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干
净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上。写在本试卷上无效.
∵
【详解】
f
(x)
=
x4
−
2x3
,∴
f
′(x)
=
4x3
−
6x2
,∴
f
(1)
=
−1 ,
f
′(1)
=
−2
,
因此,所求切线的方程为 y +1 = −2( x −1) ,即 y = −2x +1.
故选:B.
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为
()
A. 5 −1 4
【答案】D
B. 5 −1 2
C. 5 +1 4
D. 5 +1 2
【分析】
设 CD = a, PE = b ,利用 PO2 = 1 CD ⋅ PE 得到关于 a,b 的方程,解方程即可得到答案. 2
6
(1)证明: PA ⊥ 平面 PBC ; (2)求二面角 B − PC − E 的余弦值.
19.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛 的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;
2020年高考理科数学(全国卷Ⅰ真题)——(含答案和解析)

(一)必考题:共60分.
17.设 是公比不为1的等比数列, 为 , 的等差中项.
(1)求 的公比;
(2)若 ,求数列 的前 项和.
18.如图, 为圆锥的顶点, 是圆锥底面的圆心, 为底面直径, . 是底面的内接正三角形, 为 上一点, .
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
7.设函数 在 的图像大致如下图,则f(x)的最小正周期为()
A. B.
C. D.
【答案】C
【解析】
【分析】
由图可得:函数图象过点 ,即可得到 ,结合 是函数 图象与 轴负半轴的第一个交点即可得到 ,即可求得 ,再利用三角函数周期公式即可得解.
【详解】由图可得:函数图象过点 ,
将它代入函数 可得:
又 是函数 图象与 轴负半轴的第一个交点,
所以 ,解得:
所以函数 的最角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
8. 的展开式中x3y3的系数为()
A.5B.10
C.15D.20
【答案】C
据此结合目标函数 几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
A.0B.1C. D.2
2020全国卷 Ⅰ高考压轴卷数学(文)Word版含解析

2020新课标1高考压轴卷数学(文)一、选择题(本题共12道小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}228023A x x x B x x =+-≥=-<<,,则A∩B= ( ).A. (2,3)B. [2,3)C.[-4,2]D. (-4,3)2.已知(1i)(2i)z =+-,则2||z =( ) A. 2i + B. 3i + C. 5 D. 103.若向量a =13,22⎛⎫- ⎪ ⎪⎝⎭,|b |=23,若a ·(b -a )=2,则向量a 与b 的夹角为( )A.6πB.4π C.3π D.2π 4.已知某几何体的三视图如图所示,则该几何体的体积为A. 8B. 12C. 16D. 245. 甲、乙二人参加普法知识竞答共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲乙两人中至少有一人抽到选择题的概率是( ) A .1115B .1315C .35D .10136.我国古代名著《庄子天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A. 17?,,+1i s s i i i ≤=-=B. 1128?,,2i s s i i i ≤=-=C 17?,,+12i s s i i i≤=-=D. 1128?,,22i s s i i i≤=-=7.已知变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值为( )A. 1B. 2C. 3D. 48. 已知等差数列{}n a 的前n 项和为n S ,47109,a a a ++=14377S S -=,则使n S 取得最小值时n 的值为( ) A .7B .6C .5D .49.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3,23,sin a c b A === cos 6a B π⎛⎫+ ⎪⎝⎭,则b=( ) A. 1B.2C.3D.510..若直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,则41a b +的最小值是( )A. 9B. 4C.12D.1411.已知抛物线2:2(0)C y px p =>的焦点为F ,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C的方程是( ) A. 2y x = B. 22y x = C. 24y x =D. 28y x =12.已知函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,若方程23()(23)()20mf x m f x -++=有5个解,则m 的取值范围是() A. (1,)+∞ B. (0,1)(1,)⋃+∞C. 31,2⎛⎫⎪⎝⎭D. 331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题(本题共4道小题,每小题5分,共20分)13.已知()0,θπ∈,且sin()410πθ-=,则tan2θ=________. 14. 已知双曲线()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,点()0,B b ,双曲线的渐近线上存在一点P ,使得A ,B ,F ,P 顺次连接构成平行四边形,则双曲线C 的离心率e =______.15. 已知数列{}n a 满足12a =,132n n a a +=+,令()13log n a n b +=,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前2020项的和2020S =__________.16.如图,已知六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出下列结论:①PB AE⊥;②直线//BC平面PAE;③平面PAE⊥平面PDE;④异面直线PD与BC所成角为45°;⑤直线PD与平面PAB所成角的余弦值为10.其中正确的有_______(把所有正确的序号都填上)三.解答题(本大题共6小题.解答题应写出文字说明、证明过程或演算步骤)17.(本小题12分)△ABC中,内角A、B、C所对的边分别为a、b、c,已知24sin4sin sin222A BA B-+=+(1)求角C的大小;(2)已知4b=,△ABC的面积为6,求边长c的值.18. (本小题12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,122BC CD AB===,∠ABC=∠BCD=90°,E为PB的中点。
2020高考数学全国真题及答案汇编

2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151
2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案

2020年全国高考数学试题汇编选择填空压轴题一、选择题(本大题共11小题,共54.0分)1.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)2.设集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2},则()A. 对任意实数a,(2,1)∈AB. 对任意实数a,(2,1)∉AC. 当且仅当a<0时,(2,1)∉AD. 当且仅当a≤32时,(2,1)∉A3.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与MN最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 10934.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过√2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A. ①B. ②C. ①②D. ①②③5.袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中红球与丙盒中黑球一样多C. 乙盒中红球不多于丙盒中红球D. 乙盒中黑球与丙盒中红球一样多6. 若2a +log 2a =4b +2log 4b ,则( )A. a >2bB. a <2bC. a >D. a <7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为▵ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π9. 0−1周期序列在通信技术中有着重要应用,若序列a 1a 2…a n …满足a i ∈(0,1)(i =1,2,…),且存在正整数m ,使得a i+m =a i (i =1,2,…)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1,2,…)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2…a n …,C(k)=1m ∑a i a i+k (k =1,2,…,m −1)m i=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k =1,2,3,4)的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…10. 已知<,<.设a =3,b =5,c =8,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b11. 某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛二、不定项选择题(本大题共1小题,共5.0分)12. 信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且P(X =i)=>0(i =1,2,,n),=1,定义X 的信息熵H(X)=−( )A. 若n =1,则H (x )=0B. 若n =2,则H(x)随着的增大而增大C. 若=(i =1,2,,n),则H(x)随着n 的增大而增大D. 若n =2m ,随机变量Y 的所有可能取值为1,2,,m ,且P(Y =j)=+(j =1,2,,m)则H(X)H(Y)三、填空题(本大题共12小题,共60.0分)13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是______.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有______种.15.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为______.②该小组人数的最小值为______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.17.已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为________.18.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是______ ;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是______ .19.设函数f(x)={x 3−3x,x≤a−2x,x>a.①若a=0,则f(x)的最大值为______;②若f(x)无最大值,则实数a的取值范围是______.20.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.21.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p422.关于函数f(x)=x+有如下四个命题:f(x)的图像关于y轴对称.f(x)的图像关于原点对称,f(x)的图像关于直线x=对称.f(x)的最小值为2.其中所有真命题的序号是__________.23. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ 的最小值为______.24. 数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=____.答案和解析1.【答案】A【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.2.【答案】D【解析】【分析】本题考查元素与集合的关系,考查运算求解能力,是中档题.根据题意,取特例判断求解即可.【解答】解:当a=−1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,−x+y>4,x+ y≤2},显然(2,1)不满足,−x+y>4,x+y≤2,所以A不正确;当a=4时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,4x+y>4,x−4y≤2},可知:此时(2,1)∈A,所以B不正确;当a=1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,x+y>4,x−y≤2},显然此时(2,1)∉A,所以C不正确;故选:D.3.【答案】D【解析】【分析】本题考查指数形式与对数形式的互化,属于基础题.根据对数的性质:T=a log a T,可得:3=10lg3≈100.48,将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴MN ≈101731080=1093.故选D.4.【答案】C【解析】【分析】本题考查了方程与曲线,属中档题.将x换成−x方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解答】解:将x换成−x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,−1),当x>0时,方程变为y2−xy+x2−1=0,所以由△=x2−4(x2−1)≥0,解得x∈(0,2√33],所以x只能取整数1,当x=1时,y2−y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(−1,0),(−1,1),故曲线一共经过6个整点,故①正确,当x>0时,由x2+y2=1+xy得x2+y2−1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴√x2+y2≤√2,即曲线C上y轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C上任意一点到原点的距离都不超过√2,故②正确,×2×1=1,在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误,故选C.5.【答案】B【解析】【分析】本题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,属于中档题.取出的两球有四种情况,分别分析三个盒子中球的关系即可得出结果.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选B.6.【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.7.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2>x1)在[0,2k)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.8.【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.9.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.10.【答案】A【解析】【分析】本题主要考查对数与对数函数,借助中间值比较大小.【解答】解:a=log53=ln 3ln 5,b=log85=ln 5ln 8,c=log138=ln 8ln 13,a−b=ln 3ln 5−ln 5ln 8=ln 3⋅ln 8−(ln 5)2ln 5⋅ln 8<(ln 3+ln 82)2−(ln 5)2ln 5⋅ln 8=(ln 24+ln 25)(ln 24−ln 25)4ln 5⋅ln 8<0;c−45=ln 8ln 13−45=5ln 8−4ln 135ln 13=ln 85−ln 1345ln 13>0;b−45=ln 5ln 8−45=5ln 5−4ln 85ln 8=ln 55−ln 845ln 13<0;综上所述,a<b<45<c,即a<b<c,故选A.11.【答案】B【解析】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a−1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题.【解答】解:A选项中,由题意知p1=1,此时H(X)=−1×log21=0,故A正确;B选项中,由题意知p1+p2=1,且p1∈(0,1),H(X)=−p1log2p1−p2log2p2=−p1log2p1−(1−p1)log2(1−p1),设f(x)=−xlog2x−(1−x)log2(1−x),x∈(0,1)则f′(x)=−log2x−1ln2+log2(1−x)+1ln2=log2(1x−1),当x∈(12,1)时,f′(x)<0,当x∈(0,12)时,f′(x)>0,故当p1∈(0,12)时,H(X)随着p1的增大而增大,当p1∈(12,1)时,H(X)随着p1的增大而减小,故B错误;C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n ,故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ), H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j +log 2p 2m+1−jp 2m+1−j m j=1) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(p j +p 2m+1−j )p j (p j +p 2m+1−j )p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p j p 2m+1−j )p 2m+1−j m j=1>0,故D 错误,故答案为AC .13.【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1, 乙企业的污水治理能力为−g(t 2)−g(t 1)t 2−t 1.由图可知,f(t 1)−f(t 2)>g(t 1)−g(t 2),∴−f(t 2)−f(t 1)t 2−t 1>−g(t 2)−g(t 1)t 2−t 1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率小于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值, ∴在t 2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t 3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t 3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案. 本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.14.【答案】16 29【解析】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19−3=16种;②由①知,前两天售出的商品种类为19+13−3=29种,第三天售出但第二天未售出的商品有18−4=14种,当这14种商品属于第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数. 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题. 15.【答案】6 12【解析】解:①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件,此时x 最小为5,y 最小为4,即该小组人数的最小值为12,故答案为:6,12①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,进而可得答案;本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.16.【答案】①130;②15.【解析】【分析】本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,讨论m的范围,可得(m−x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140−10=130(元);②在促销活动中,设订单总金额为m元,当0<m<120时,显然符合题意;当m≥120时,可得(m−x)×80%≥m×70%,即有x≤m8,可得x≤1208=15,则x的最大值为15元.故答案为:130;15.17.【答案】√3−1;2【解析】【分析】本题考查椭圆和双曲线的简单性质,考查计算能力,属于中档题.根据题意,可得正六边形的一个顶点(c2,√3c2),代入椭圆方程,求出椭圆的离心率;再根据双曲线渐近线斜率求出双曲线离心率即可.【解答】解:椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,又椭圆的一个焦点为(c,0),可得正六边形的一个顶点(c2,√3c2),可得:c 24a 2+3c 24b 2=1,可得14e 2+34(1e 2−1)=1,可得e 4−8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即n m =√3,可得:n 2m 2=3,即m 2+n 2m 2=4,可得双曲线的离心率为√m2+n 2m =2.故答案为:√3−1;2.18.【答案】Q 1;p 2【解析】【分析】本题考查的知识点是函数的图象,分析出Q i 和p i 的几何意义,是解答的关键.(1)若Q i 为第i 名工人在这一天中加工的零件总数,则Q i =A i +B i ,是A i B i 连线的中点的纵坐标的2倍,进而得到答案.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率;进而得到答案.【解答】解:(1)设A 1(x A 1,y A 1),B 1(x B 1,y B 1),线段A 1B 1的中点为E(x 1,y 1),则Q 1=y A 1+y B 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率,故p 1,p 2,p 3中最大的是p 2.故答案为:Q 1,p 2.19.【答案】2;(−∞,−1)【解析】【分析】本题考查的知识点是分段函数的应用,函数的最值,难度中档.①将a =0代入,求出函数的导数,分析函数的单调性,可得当x =−1时,f(x)的最大值为2;②根据y =x 3−3x 与y =−2x 有三个交点,结合f(x)无最大值,可得答案.【解答】解:①若a =0,则f(x)={x 3−3x,x ≤0−2x,x >0,则f′(x)={3x 2−3,x ≤0−2,x >0, 当x <−1时,f′(x)>0,此时函数为增函数,当x >−1时,f′(x)<0,此时函数为减函数,故当x =−1时,f(x)的最大值为2;②对于y =x 3−3x ,可知y′=3x 2−3,令y′=3x 2−3=0得x =±1,当x ∈(−∞,−1)∪(1,+∞)时,y′>0,函数单调递增;当x ∈(−1,1)时,y′<0,函数单调递减;且易知y =x 3−3x 与y =−2x 有三个交点,坐标为(0,0),(1,−2),(−1,2),若f(x)无最大值,则a <−1,故答案为:2,(−∞,−1).20.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD =√2AB =√6,∵D 、E 、F 重合于一点,∴AE =AD =√3,BF =BD =√6,∴ △ACE 中,由余弦定理得,∴CE =CF =1,∴在△BCF 中,由余弦定理得.故答案为.21.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.22.【答案】②③【解析】【分析】本题主要考查了三角函数的图象与性质及函数的奇偶性、对称性等有关知识,属于中档题.根据函数奇偶性定义可判断出函数图象的对称性;通过函数图象关于直线对称可得等量关系,进而检验等式是否成立即可;特殊值法可判断出函数的最值.【解答】解:根据题意,易得函数定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−(sinx+1sinx)=−f(x),所以f(x)是奇函数,图象关于原点对称,故①错误,②正确;若函数f(x)关于直线x=π2对称,则有f(π2−x)=f(π2+x),即sin(π2−x)+1sin(π2−x)=sin(π2+x)+1sin(π2+x),通过化简可得等式成立.故③正确;当x=−π2时,f(−π2)=−2<2,故④错误.故答案为②③.23.【答案】16 132 【解析】【分析】 本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题. 以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6,∴C(6,0),∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,∴AD//BC ,设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52, ∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0),∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ , ∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132,第21页,共21页 故答案为:16,132. 24.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题. 对n 取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n =3n −1,当n =2,6,10,14时,a 2+a 4=5,a 6+a 8=17, a 10+a 12=29,a 14+a 16=41因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540−(5+17+29+41), 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,当n 为奇数时,a n+2−a n =3n −1,所以a 3−a 1=2,a 5−a 3=8,a 7−a 5=14⋯a n+2−a n =3n −1,累加得a n+2−a 1=2+8+14+⋯3n −1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a 1,∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1, a 15=140+a 1,因为a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,所以8a 1+392=448,所以a 1=7. 故答案为7.。
2020年高考全国一卷理科数学答案及解析

2020年高考全国一卷理科数学答案及解析2020-12-12【关键字】情况、条件、问题、焦点、建设、建立、了解、研究、位置、关系、检验、倾斜、满足、规划、实现参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A 、-12 B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d)=( a 1+a 1+d) (a 1+a 1+d+a 1+2d+a 1+3d),整理得: 2d+3a 1=0 ; d=-3 ∴a 5=2+(5-1)*(-3)=-10 【考点定位】等差数列 求和5、设函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为: A 、y=-2x B 、y=-x C 、y=2x D 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x )=2*(a-1)x 2=0 ∴a=1 f (x )=x 3+x 求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数 6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、--B 、--C 、-+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2020年北京市普通高等学校招生全国统一考试高考压轴卷数学试题及答案解析

绝密★启用前2020年北京市普通高等学校招生全国统一考试高考压轴卷数学试题一、 选择题(本大题共10小题. 每小题45分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 满足13iz z +=,则||z =( )A .1010B .5C .5D .102.设集合{}1,0,1,2,3A =-,2{|20},B x x x =->则()R A B =I ð( )A .{}1,3-B .{}0,1,2C .{}1,2,3D .{}0,1,2,33.已知定义域为R 的奇函数()f x 满足(2)()f x f x +=,且当01x ≤≤时,3()f x x =,则52f ⎛⎫-= ⎪⎝⎭( ) A .278- B .18- C .18 D .2784.函数()21cos 1x f x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是( ) A . B . C .D .5.已知坐标原点到直线l 的距离为2,且直线l 与圆()()223449x y -+-=相切,则满足条件的直线l 有( )条A .1B .2C .3D .46.函数()sin(2)6f x x π=+的单调递增区间是( ) A .()2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .(),,2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D .(),,2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .60 8.已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 9.已知1a =r ,则“()a a b ⊥+r r r ”是“1a b ⋅=-r r ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件 10.已知随机变量ξ的分布列,则下列说法正确的是( )A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国高考数学试题汇编选择填空压轴题一、选择题(本大题共11小题,共54.0分)1.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)2.设集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2},则()A. 对任意实数a,(2,1)∈AB. 对任意实数a,(2,1)∉AC. 当且仅当a<0时,(2,1)∉AD. 当且仅当a≤32时,(2,1)∉A3.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与MN最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 10934.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过√2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A. ①B. ②C. ①②D. ①②③5.袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中红球与丙盒中黑球一样多C. 乙盒中红球不多于丙盒中红球D. 乙盒中黑球与丙盒中红球一样多6. 若2a +log 2a =4b +2log 4b ,则( )A. a >2bB. a <2bC. a >D. a <7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为▵ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π9. 0−1周期序列在通信技术中有着重要应用,若序列a 1a 2…a n …满足a i ∈(0,1)(i =1,2,…),且存在正整数m ,使得a i+m =a i (i =1,2,…)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1,2,…)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2…a n …,C(k)=1m ∑a i a i+k (k =1,2,…,m −1)m i=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k =1,2,3,4)的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…10. 已知<,<.设a =3,b =5,c =8,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b11. 某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛二、不定项选择题(本大题共1小题,共5.0分)12. 信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且P(X =i)=>0(i =1,2,,n),=1,定义X 的信息熵H(X)=−( )A. 若n =1,则H (x )=0B. 若n =2,则H(x)随着的增大而增大C. 若=(i =1,2,,n),则H(x)随着n 的增大而增大D. 若n =2m ,随机变量Y 的所有可能取值为1,2,,m ,且P(Y =j)=+(j =1,2,,m)则H(X)H(Y)三、填空题(本大题共12小题,共60.0分)13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是______.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有______种.15.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为______.②该小组人数的最小值为______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.17.已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为________.18.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是______ ;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是______ .19.设函数f(x)={x 3−3x,x≤a−2x,x>a.①若a=0,则f(x)的最大值为______;②若f(x)无最大值,则实数a的取值范围是______.20.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.21.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p422.关于函数f(x)=x+有如下四个命题:f(x)的图像关于y轴对称.f(x)的图像关于原点对称,f(x)的图像关于直线x=对称.f(x)的最小值为2.其中所有真命题的序号是__________.23. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ 的最小值为______.24. 数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=____.答案和解析1.【答案】A【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.2.【答案】D【解析】【分析】本题考查元素与集合的关系,考查运算求解能力,是中档题.根据题意,取特例判断求解即可.【解答】解:当a=−1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,−x+y>4,x+ y≤2},显然(2,1)不满足,−x+y>4,x+y≤2,所以A不正确;当a=4时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,4x+y>4,x−4y≤2},可知:此时(2,1)∈A,所以B不正确;当a=1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,x+y>4,x−y≤2},显然此时(2,1)∉A,所以C不正确;故选:D.3.【答案】D【解析】【分析】本题考查指数形式与对数形式的互化,属于基础题.根据对数的性质:T=a log a T,可得:3=10lg3≈100.48,将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴MN ≈101731080=1093.故选D.4.【答案】C【解析】【分析】本题考查了方程与曲线,属中档题.将x换成−x方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解答】解:将x换成−x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,−1),当x>0时,方程变为y2−xy+x2−1=0,所以由△=x2−4(x2−1)≥0,解得x∈(0,2√33],所以x只能取整数1,当x=1时,y2−y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(−1,0),(−1,1),故曲线一共经过6个整点,故①正确,当x>0时,由x2+y2=1+xy得x2+y2−1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴√x2+y2≤√2,即曲线C上y轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C上任意一点到原点的距离都不超过√2,故②正确,×2×1=1,在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误,故选C.5.【答案】B【解析】【分析】本题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,属于中档题.取出的两球有四种情况,分别分析三个盒子中球的关系即可得出结果.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选B.6.【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.7.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2>x1)在[0,2k)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.8.【答案】A【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.9.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.10.【答案】A【解析】【分析】本题主要考查对数与对数函数,借助中间值比较大小.【解答】解:a=log53=ln 3ln 5,b=log85=ln 5ln 8,c=log138=ln 8ln 13,a−b=ln 3ln 5−ln 5ln 8=ln 3⋅ln 8−(ln 5)2ln 5⋅ln 8<(ln 3+ln 82)2−(ln 5)2ln 5⋅ln 8=(ln 24+ln 25)(ln 24−ln 25)4ln 5⋅ln 8<0;c−45=ln 8ln 13−45=5ln 8−4ln 135ln 13=ln 85−ln 1345ln 13>0;b−45=ln 5ln 8−45=5ln 5−4ln 85ln 8=ln 55−ln 845ln 13<0;综上所述,a<b<45<c,即a<b<c,故选A.11.【答案】B【解析】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a−1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题.【解答】解:A选项中,由题意知p1=1,此时H(X)=−1×log21=0,故A正确;B选项中,由题意知p1+p2=1,且p1∈(0,1),H(X)=−p1log2p1−p2log2p2=−p1log2p1−(1−p1)log2(1−p1),设f(x)=−xlog2x−(1−x)log2(1−x),x∈(0,1)则f′(x)=−log2x−1ln2+log2(1−x)+1ln2=log2(1x−1),当x∈(12,1)时,f′(x)<0,当x∈(0,12)时,f′(x)>0,故当p1∈(0,12)时,H(X)随着p1的增大而增大,当p1∈(12,1)时,H(X)随着p1的增大而减小,故B错误;C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n ,故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ), H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j +log 2p 2m+1−jp 2m+1−j m j=1) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(p j +p 2m+1−j )p j (p j +p 2m+1−j )p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p j p 2m+1−j )p 2m+1−j m j=1>0,故D 错误,故答案为AC .13.【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1, 乙企业的污水治理能力为−g(t 2)−g(t 1)t 2−t 1.由图可知,f(t 1)−f(t 2)>g(t 1)−g(t 2),∴−f(t 2)−f(t 1)t 2−t 1>−g(t 2)−g(t 1)t 2−t 1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率小于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值, ∴在t 2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t 3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t 3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案. 本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.14.【答案】16 29【解析】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19−3=16种;②由①知,前两天售出的商品种类为19+13−3=29种,第三天售出但第二天未售出的商品有18−4=14种,当这14种商品属于第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数. 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题. 15.【答案】6 12【解析】解:①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件,此时x 最小为5,y 最小为4,即该小组人数的最小值为12,故答案为:6,12①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,进而可得答案;本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.16.【答案】①130;②15.【解析】【分析】本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,讨论m的范围,可得(m−x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140−10=130(元);②在促销活动中,设订单总金额为m元,当0<m<120时,显然符合题意;当m≥120时,可得(m−x)×80%≥m×70%,即有x≤m8,可得x≤1208=15,则x的最大值为15元.故答案为:130;15.17.【答案】√3−1;2【解析】【分析】本题考查椭圆和双曲线的简单性质,考查计算能力,属于中档题.根据题意,可得正六边形的一个顶点(c2,√3c2),代入椭圆方程,求出椭圆的离心率;再根据双曲线渐近线斜率求出双曲线离心率即可.【解答】解:椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,又椭圆的一个焦点为(c,0),可得正六边形的一个顶点(c2,√3c2),可得:c 24a 2+3c 24b 2=1,可得14e 2+34(1e 2−1)=1,可得e 4−8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即n m =√3,可得:n 2m 2=3,即m 2+n 2m 2=4,可得双曲线的离心率为√m2+n 2m =2.故答案为:√3−1;2.18.【答案】Q 1;p 2【解析】【分析】本题考查的知识点是函数的图象,分析出Q i 和p i 的几何意义,是解答的关键.(1)若Q i 为第i 名工人在这一天中加工的零件总数,则Q i =A i +B i ,是A i B i 连线的中点的纵坐标的2倍,进而得到答案.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率;进而得到答案.【解答】解:(1)设A 1(x A 1,y A 1),B 1(x B 1,y B 1),线段A 1B 1的中点为E(x 1,y 1),则Q 1=y A 1+y B 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率,故p 1,p 2,p 3中最大的是p 2.故答案为:Q 1,p 2.19.【答案】2;(−∞,−1)【解析】【分析】本题考查的知识点是分段函数的应用,函数的最值,难度中档.①将a =0代入,求出函数的导数,分析函数的单调性,可得当x =−1时,f(x)的最大值为2;②根据y =x 3−3x 与y =−2x 有三个交点,结合f(x)无最大值,可得答案.【解答】解:①若a =0,则f(x)={x 3−3x,x ≤0−2x,x >0,则f′(x)={3x 2−3,x ≤0−2,x >0, 当x <−1时,f′(x)>0,此时函数为增函数,当x >−1时,f′(x)<0,此时函数为减函数,故当x =−1时,f(x)的最大值为2;②对于y =x 3−3x ,可知y′=3x 2−3,令y′=3x 2−3=0得x =±1,当x ∈(−∞,−1)∪(1,+∞)时,y′>0,函数单调递增;当x ∈(−1,1)时,y′<0,函数单调递减;且易知y =x 3−3x 与y =−2x 有三个交点,坐标为(0,0),(1,−2),(−1,2),若f(x)无最大值,则a <−1,故答案为:2,(−∞,−1).20.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD =√2AB =√6,∵D 、E 、F 重合于一点,∴AE =AD =√3,BF =BD =√6,∴ △ACE 中,由余弦定理得,∴CE =CF =1,∴在△BCF 中,由余弦定理得.故答案为.21.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.22.【答案】②③【解析】【分析】本题主要考查了三角函数的图象与性质及函数的奇偶性、对称性等有关知识,属于中档题.根据函数奇偶性定义可判断出函数图象的对称性;通过函数图象关于直线对称可得等量关系,进而检验等式是否成立即可;特殊值法可判断出函数的最值.【解答】解:根据题意,易得函数定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−(sinx+1sinx)=−f(x),所以f(x)是奇函数,图象关于原点对称,故①错误,②正确;若函数f(x)关于直线x=π2对称,则有f(π2−x)=f(π2+x),即sin(π2−x)+1sin(π2−x)=sin(π2+x)+1sin(π2+x),通过化简可得等式成立.故③正确;当x=−π2时,f(−π2)=−2<2,故④错误.故答案为②③.23.【答案】16 132 【解析】【分析】 本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题. 以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6,∴C(6,0),∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,∴AD//BC ,设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52, ∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0),∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ , ∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132,第21页,共21页 故答案为:16,132. 24.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题. 对n 取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n =3n −1,当n =2,6,10,14时,a 2+a 4=5,a 6+a 8=17, a 10+a 12=29,a 14+a 16=41因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540−(5+17+29+41), 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,当n 为奇数时,a n+2−a n =3n −1,所以a 3−a 1=2,a 5−a 3=8,a 7−a 5=14⋯a n+2−a n =3n −1,累加得a n+2−a 1=2+8+14+⋯3n −1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a 1,∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1, a 15=140+a 1,因为a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,所以8a 1+392=448,所以a 1=7. 故答案为7.。