高考解析几何压轴题精选(含答案)
江苏高考解析几何压轴题30题
1.如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解:(1)由题意得,22c a =,且23a c c +=,解得2,1,a c == 则1b =, 所以椭圆的标准方程为2212x y +=(2)当AB x ⊥轴时,2AB =,又3CP =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则()221,2221k k x±+=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且()()()())222222121212221112k AB x x y y k xx k+=-+-=+-=+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线PC 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()222231112k k PC k k ++=+. 因为2PC AB =,所以(())2222223114211212k k k k k k+++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+.2.已知椭圆2222:1(0)x y M a b a b +=>>的离心率为12,一个交点到相应的准线的距离为3,圆N 的方程为2222()(x c y a c c -+=+为半焦距)直线:(0)l y kx m k =+>与椭圆M 和圆N 均只有一个公共点,分别设为A 、B .(1)求椭圆方程和直线方程; (2)试在圆N 上求一点P ,使22PBPA= BAOxylP C3.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆于另一点M . (1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积;(2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值;②求PB PM ⋅的取值范围.解:(1)由题意(0,1),(0,1)B C -,焦点(3,0)F ,当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为113y+=-, 即313y x =-, 联立,221,431,x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩解得83,1,7x y ⎧=⎪⎪⎨⎪=⎪⎩或0,1x y =⎧⎨=-⎩(舍),即831(,)77M . ………………2分连BF ,则直线BF :113y +=,即330x y +-=,而2BF a ==,2283123|33|377721(3)d +⋅-===+. …4分 故1133222MBFS BF d =⋅⋅=⋅⋅=. ………………………5分 (2)解法一:①设(,2)P m -,且0m ≠,则直线PM 的斜率为1(2)10k m m---==--,则直线PM 的方程为11y x m =--,联立2211,1,4y x mx y ⎧=--⎪⎪⎨⎪+=⎪⎩化简得2248(1)0x x m m ++=,解得22284(,)44m m M m m --++,…8分所以22212412148844m m m k m m m m ---+===--+,21(2)30k m m --==--, 所以1231344k k m m ⋅=-⋅=-为定值. ………10分 ② 由①知,(,3)PB m =-,2322222841212(,2)(,)4444m m m m m PM m m m m m ---+=--+=++++,所以324222212121536(,3)(,)444m m m m m PB PM m m m m ++++⋅=-⋅-=+++, …………………13分 令244m t +=>,故22(4)15(4)367887t t t t PB PM t t t t-+-++-⋅===-+,因87y t t =-+在(4,)t ∈+∞上单调递增,故8874794PB PM t t ⋅=-+>-+=,即PB PM ⋅的取值范围为(9,)+∞.…16分解法二:①设点()000(,)0M x y x ≠,则直线PM 的方程为0011y y x x +=-,令2y =-,得00(,2)1xP y --+. ……7分所以0101y k x -=,()020*******y k x x y +--==-+,所以()()()()2200001222000031313113441y y y y k k x x x y --+-=⋅===--(定值).…10分 ②由①知,00(,3)1x PB y =+,0000(,2)1xPM x y y =+++, 所以()()()()20000000200023212311x y x x PB PM x y y y y y +⎛⎫⋅=+++=++ ⎪+++⎝⎭ =()()()()()()200000200412723211y y y y y y y -+-+++=++.…13分 (第4题图)令()010,2t y =+∈,则()()8187t t PB PM t tt-+⋅==-++,因为87y t t=-++在(0,2)t ∈上单调递减,所以8872792PB PM t t ⋅=-++>-++=,即PB PM ⋅的取值范围为(9,)+∞. ……16分4.如图,已知椭圆12222=+by a x (0>>b a )的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足F λ=1(R ∈λ),M F PO 2⊥,O 为坐标原点. (1)若椭圆方程为14822=+y x ,且),(22P ,求点M 的横坐标;(2)若2=λ,求椭圆离心率e 的取值范围.解:(1)22184x y +=12(2,0),(2,0)F F ∴-21OP F M F M k k k ∴=== ∴直线2F M 的方程为:2)y x =-,直线1F M的方程为:2)y x =+…………4分由2)2)y x y x ⎧=-⎪⎨=+⎪⎩解得:65x =∴点M 的横坐标为65…………6分 (2)设00(,),(,)M M P x y M x y 12F M MP =1002(,)(,)3M M F M x c y x c y ∴=+=+00200212242(,),(,)333333M x c y F M x c y ∴-=-2PO F M ⊥,00(,)OP x y =2000242()0333x c x y ∴-+=即220002x y cx +=…9分联立方程得:2200022002221x y cx x y ab ⎧+=⎪⎨+=⎪⎩,消去0y 得:222222002()0c x a cx a a c -+-=,解得:0()a a c x c +=或 0()a a c x c -=…12分0a x a -<<0()(0,)a a c x a c -∴=∈20a ac ac ∴<-< 解得:12e >,综上,椭圆离心率e 的取值范围为1(,1)2.…15分5.如图,在平面直角坐标系xoy 中,已知椭圆C :)0(12222>>=+b a by a x 的离心率21=e ,左顶点为)0,4(-A ,过点A 作斜率为)0(≠k k 的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的)0(≠k k 都有EQ OP ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求OMAEAD +的最小值.解:(1)因为左顶点为(40)A -,,所以4a =,又12e =,所以2c =.…………………2分 又因为22212b a c =-=,所以椭圆C 的标准方程为2211612x y +=. …………………………4分 (2)直线l 的方程为(4)y k x =+,由2211612(4),x y y k x ⎧+=⎪⎨⎪=+⎩,消元得,22[(4)]11612x k x ++=.化简得,22(4)[(43)1612)]0x k x k +++-=,所以14x =-,222161243k x k -+=+. ………………………6分当22161243k x k -+=+时,222161224(4)4343k k y k k k -+=+=++,所以222161224,4343()D k k k k -+++.因为点P 为AD 的中点,所以P 的坐标为2221612,4343()k k k k -++,则3(0)4OPk k k-=≠.…8分 直线l 的方程为(4)y k x =+,令0x =,得E 点坐标为(0,4)k ,假设存在定点(,)(0)Q m n m ≠,使得OP EQ ⊥, 则1OP EQ k k =-,即3414n kk m --⋅=-恒成立,所以(412)30m k n +-=恒成立,所以412030m n +=⎧⎨-=⎩,,即30m n =-⎧⎨=⎩,, 因此定点Q 的坐标为(3,0)-.…………………………………10分(3)因为OMl ,所以OM 的方程可设为y kx =,由2211612x y y kx⎧+=⎪⎨⎪=⎩,得M点的横坐标为x =,………12分 由OMl ,得2D A E A D A M M x x x x x x AD AE OM x x -+--+==22216128k -+=+=…………14分=≥即k =时取等号,所以当k =时,AD AE OM+的最小值为16分 6.如图,在平面直角坐标系xOy 中,椭圆22221x y a b+=(a >b >0)的两焦点分别为F 1(0),F 2且经过点12).(1)求椭圆的方程及离心率;(2)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设 直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4.①求k 1k 2的值;②求OB 2+解:(1)方法一:依题意,c a 2=b 2+3, (2)分由2213413b b +=+,解得b 2=1(b 2=3-,不合,舍去),从而a 2=4.故所求椭圆方程为:2214x y +=.离心率e .…5分 方法二由椭圆的定义知,2a 4, 即a =2.又因c b 2=1.下略.(2)①设B (x 1,y 1),C (x 2,y 2),则D (-x 1,-y 1),于是k 1k 2=21212121y y y y x x x x -+⋅-+=12222221y y x x --=22212221(1)(1)44x x x x ----=14-.8分 ②方法一由①知,k 3k 4=k 1k 2=14-,故x 1x 2=124y y -.所以,(x 1x 2)2=(-4y 1y 2)2,即(x 1x 2)2=221216(1)(1)44x x --=22221212164()x x x x -++, 所以,2212x x +=4.……… 11分 又2=22221212()()44x x y y +++=222212124x x y y +++,故22121y y +=.所以,OB 2+OC 2=22221122x y x y +++=5.………14分 方法二由①知,k 3k 4=k 1k 2=14-.将直线y =k 3x 方程代入椭圆2214x y +=中,得2123414x k =+.…………………… 9分同理,2224414x k =+.所以,22122234441414x x k k +=+++=22334411414()4k k +++-=4.……… 11分 下同方法一.7.如图,已知椭圆),0(1:2222>>=+b a by a x M 其率心率为,23两条准线之间的距离为C B ,,338分别为椭圆M 的上、下顶点,过点)0)(2,(≠t t T 的直线TC TB ,分别与椭圆M 交于F E ,两点.(第17题)(1)椭圆M 的标准方程;(2)若△TBC 的面积是△TEF 的面积的k 倍,求k 的最大值.解:(1)由题意22c a =,解得2,a c ==1b =,椭圆方程为221x y +=.…………………4分(22244t t ⎫-⎪+⎭到:TC 30x ty t --=的距离d =2131y x t =-,得22436F t x t =+…8分分21619243m m +-≤,…………14分 当且仅当24m =,即t =±=”, 所以k 的最大值为.…………16分 解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x 6分直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x 8分1sin 21sin 2TBC TEF TB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T Fx x x x TB TC TE TF x x x x --=⋅=⋅--……10分 22824436t tt t t t t t =⋅=+-++12分 令21212t m +=>,则22192413k m m m ==+-≤,…………………14分当且仅当24m =,即t =±=”,所以k 的最大值为438.如图,在平面直角坐标系xoy 中,椭圆2222:1(0)x y C a b a b+=>>于A 、B 两点.当直线l 垂直于x 轴且点E 为椭圆C 的右焦点时,弦AB(1)求椭圆C 的方程;(2)若点E的坐标为(2,点AA 与原点O 的直线交椭圆C 于另一点P ,求PAB ∆的面积;(3)是否存在点E ,使得2211EA EB+为定值?若存在,请指出点E 的坐标, 并求出该定值;若不存在,请说明理由.解:(1)由c a =,设3(0)a k k =>,则c =,223b k =, 所以椭圆C 的方程为2222193x y k k +=,因直线l 垂直于x 轴且点E 为椭圆C的右焦点,即A B x x ==,代入椭圆方程,解得y k =±,于是23k =3k =,所以椭圆C 的方程为22162x y +=………………5分 (2)将x =22162x y +=,解得1y =±,因点A在第一象限,从而A , 由点E的坐标为,所以AB k =,直线PA的方程为y x =, 联立直线PA 与椭圆C的方程,解得7()5B -, 又PA 过原点O,于是(1)P -,4PA =,所以直线PA的方程为0x -=,所以点B 到直线PA的距离5h ==,142PAB S ∆=⋅=分(3)假设存在点E ,使得2211EA EB+为定值,设0(,0)E x , 当直线AB 与x轴重合时,有202222012211(6)x EA EB x ++==-, 当直线AB 与x 轴垂直时,222200112662(1)6x EA EBx +==--,由20222001226(6)6x x x +=--,解得0x =,20626x =-,所以若存在点E,此时(E ,2211EA EB +为定值2. ………………12分 根据对称性,只需考虑直线AB过点E ,设11(,)A x y ,22(,)B x y ,又设直线AB的方程为x my =+圆C联立方程组,化简得22(3)30m y ++-=,所以12y y +=,12233y y m -=+,又222222111111(1)EA m y y m y ===++,所以212122222222221212()21111(1)(1)(1)y y y y EA EB m y m y m y y +-+=+=+++, 将上述关系代入,化简可得22112EA EB +=.综上所述,存在点(E ,使得2211EA EB+为定值2……………16分9.如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b +=>>,直线l :12y x =与椭圆E 相交于A ,B两点,AB =C ,D 是椭圆E 上异于A ,B且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N . (1)求,a b 的值;(2)求证:直线MN 的斜率为定值.解:(1)因为e =c a =22,所以c 2=12a 2,即a 2-b 2=12a 2,所以a 2=2b 2.…… 2分故椭圆方程为x 22b 2+y 2b2=1.由题意,不妨设点A 在第一象限,点B 在第三象限.由⎩⎨⎧ y =12x , x 22b 2+y 2b2=1,解得A (233b ,33b ).又AB =25,所以OA =5,即43b 2+13b 2=5,解得b 2=3.故a =6,b =3…5分(2)方法一:由(1)知,椭圆E 的方程为x 26+y 23=1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2. 从而k 1·k CB =y 0-1x 0-2·y 0+1x 0+2=y 02-1x 02-4=3(1-x 026)-1x 02-4=2-x 022x 02-4=-12. 所以k CB =-12k 1. …… 8分 同理k DB =-12k 2.于是直线AD 的方程为y -1=k 2(x -2),直线BC 的方程为y +1=-12k 1(x +2).由⎩⎪⎨⎪⎧y +1=-12k 1(x +2),y -1=k 2(x -2),解得⎩⎨⎧x =4k 1k 2-4k 1-22k 1k 2+1,y =-2k 1k 2-4k 2+12k 1k 2+1.从而点N 的坐标为(4k 1k 2-4k 1-22k 1k 2+1,-2k 1k 2-4k 2+12k 1k 2+1). 用k 2代k 1,k 1代k 2得点M 的坐标为(4k 1k 2-4k 2-22k 1k 2+1,-2k 1k 2-4k 1+12k 1k 2+1).………… 11分所以k MN =-2k 1k 2-4k 2+12k 1k 2+1--2k 1k 2-4k 1+12k 1k 2+14k 1k 2-4k 1-22k 1k 2+1-4k 1k 2-4k 2-22k 1k 2+1=4(k 1-k 2)4(k 2-k 1)=-1.即直线MN 的斜率为定值-1.……… 14分②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA 的斜率不存在,从而C (2,-1).仍然设DA 的斜率为k 2,由①知k DB =-12k 2.此时CA :x =2,DB :y +1=-12k 2(x +2),它们交点M (2,-1-2k 2).BC :y =-1,AD :y -1=k 2(x -2),它们交点N (2-2k 2,-1),从而k MN =-1也成立.由①②可知,直线MN 的斜率为定值-1. ………… 16分方法二:由(1)知,椭圆E 的方程为x 26+y 23=1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2.显然k 1≠k 2. (第18题图)直线AC 的方程y -1=k 1(x -2),即y =k 1x +(1-2k 1).由⎩⎪⎨⎪⎧y =k 1x +(1-2k 1),x 26+y 23=1得(1+2k 12)x 2+4k 1(1-2k 1)x +2(4k 12-4k 1-2)=0. 设点C 的坐标为(x 1,y 1),则2·x 1=2(4k 12-4k 1-2)1+2k 12,从而x 1=4k 12-4k 1-22k 12+1.所以C (4k 12-4k 1-22k 12+1,-2k 12-4k 1+12k 12+1).又B (-2,-1),所以k BC=-2k 12-4k 1+12k 12+1+14k 12-4k 1-22k 12+1+2=-12k 1.………… 8分 所以直线BC 的方程为y +1=-12k 1(x +2).又直线AD 的方程为y -1=k 2(x -2).由⎩⎪⎨⎪⎧y +1=-12k 1(x +2),y -1=k 2(x -2),解得⎩⎨⎧x =4k 1k 2-4k 1-22k 1k 2+1,y =-2k 1k 2-4k 2+12k 1k 2+1.从而点N 的坐标为(4k 1k 2-4k 1-22k 1k 2+1,-2k 1k 2-4k 2+12k 1k 2+1). 用k 2代k 1,k 1代k 2得点M 的坐标为(4k 1k 2-4k 2-22k 1k 2+1,-2k 1k 2-4k 1+12k 1k 2+1).……… 11分所以k MN =-2k 1k 2-4k 2+12k 1k 2+1--2k 1k 2-4k 1+12k 1k 2+14k 1k 2-4k 1-22k 1k 2+1-4k 1k 2-4k 2-22k 1k 2+1=4(k 1-k 2)4(k 2-k 1)=-1.即直线MN 的斜率为定值-1.……………… 14分②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA 的斜率不存在,从而C (2,-1). 仍然设DA 的斜率为k 2,则由①知k DB =-12k 2.此时CA :x =2,DB :y +1=-12k 2(x +2),它们交点M (2,-1-2k 2).BC :y =-1,AD :y -1=k 2(x -2),它们交点N (2-2k 2,-1),从而k MN =-1也成立.由①②可知,直线MN 的斜率为定值-1. ……………… 16分10.在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b +=>>,且经过点,过椭圆的左顶点A 作直线l ⊥x 轴,点M 为直线l 上的动点(点M 与点A 在不重合),点B 为椭圆右顶点,直线BM 交椭圆C 于点P . (1)求椭圆C 的方程;(2)求证:AP ⊥OM ;(3) 试问OP OM ⋅是否为定值?若是定值,请求出该定值;若不是,请说明理由.11.如图,在平面直角坐标系xOy 中,椭圆:E 22221(0)x y a b a b+=>>的左顶点为A ,与x 轴平行的直线与椭圆E 交于B 、C 两点,过B 、C 两点且分别与直线AB 、AC 垂直的直线相交于点D .已知椭圆E 的离心率为545(1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程;(3)求BCD ∆面积的最大值.解:(1)由题意得5c a =245a c c -=,解得3,5a c ==,所以224b a c =-=,所以椭圆E 的标准方程为22194x y +=.……4分 (2)设0000(,),(,)B x y C x y -,显然直线,,,AB AC BD CD 的斜率都存在,设为1234,,,k k k k ,则001200,33y y k k x x ==+-+,00340033,x x k k y y +-=-=, 所以直线,BD CD 的方程为:0000000033(),()x x y x x y y x x y y y +-=--+=++, xyDCOBA消去y 得0000000033()()x x x x y x x y y y +---+=++,化简得3x =,故点D 在定直线3x=上运动.……10分 (3)由(2)得点D 的纵坐标为2000000039(3)D x x y x y y y y --=++=+,又2200194x y +=,所以2200994y x -=-, 则2000000009354(3)4D y x y x y y y y y --=++=+=-,所以点D 到直线BC 的距离h 为00005944D y y y y y -=--=, 将0y y =代入22194x y +=得2314y x =±-,所以BCD ∆面积200119612244ABC y S BC h y ∆=⋅=⨯-⋅220020012712727441242224y y y y -+=-⋅≤⋅=,当且仅当2200144y y -=,即02y =±时等号成立,故02y =±时,BCD ∆面积的最大值为274. ……………16分12.如图,在平面直角坐标系xOy 中,12,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B 的坐标为()0,b ,且∆12BF F 是边长为2的等边三角形.()1求椭圆的方程;()2过右焦点2F 的直线l 与椭圆交于,A C 两点,记∆2ABF ,∆2BCF 的面积分别为12,S S .若122S S =,求直线l 的斜率.13.在平面直角坐标系xOy 中,已知点 (3,4),(9,0)A B - ,C , D 分别为线段OA , OB 上的动点,且满足AC =BD .(1)若AC =4,求直线CD 的方程;(2)证明:∆OCD 的外接圆恒过定点(异于原点O ).解析:(1) 因为(3,4)A -,所以22(3)45OA =-+=,…………………………………1分又因为4AC =,所以1OC =,所以34(,)55C -,由4BD =,得(5,0)D ,…………… 4分所以直线CD 的斜率40153755-=-⎛⎫-- ⎪⎝⎭,所以直线CD 的方程为1(5)7y x =--,即750x y +-=.…………6分(2)设(3,4)(01)C m m m -<≤,则5OC m =.…………………………………………7分则55AC OA OC m =-=-,因为AC BD =,所以5+4OD OB BD m =-=,所以D 点的坐标为(5+4,0)m …8分又设OCD ∆的外接圆的方程为22+0x y Dx Ey F +++=,则有()()2220,916340,54540.F m m mD mE F m m D F ⎧=⎪⎪+-++=⎨⎪++++=⎪⎩…10分解得(54),0D m F =-+=,103E m =--,所以OCD ∆的外接圆的方程为22(54)(103)0x y m x m y +-+-+=,…12分整理得22435(2)0x y x y m x y +---+=,令2243=0,+2=0x y x y x y ⎧+--⎨⎩,所以0,0.x y =⎧⎨=⎩(舍)或2,1.x y =⎧⎨=-⎩(第18题)所以△OCD 的外接圆恒过定点为(2,1)-.…………………………………………14分14.如图,在平面直角坐标系xOy 中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ 斜率为2时,PQ =(1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.解:(1)设00()P x ,∵直线PQ时,PQ =2200)3x x +=,∴202x =…………3分∴22211a b +=,∵2c e a a ===,∴224,2a b ==.∴椭圆C 的标准方程为22142x y +=. …6分 (2)以MN 为直径的圆过定点(F .设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=, ∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++ ,∴002(0,)2y M x + , 直线QA 方程为:00(2)2y y x x =+- ,∴002(0,)2y N x -, ………………9分 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+-,即222000220044044x y y x y y x x +-+=--, …12分 ∵220042x y -=-,∴22220x x y y y ++-=,令0y =,2220x y+-=,解得x = ∴以MN 为直径的圆过定点(F .…16分15.如图,在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的右焦点为(1 0)F ,.分别过O ,F 的两条弦AB ,CD 相交于点E (异于A ,C 两点),且OE EF =. (1)求椭圆的方程;(2)求证:直线AC ,BD 的斜率之和为定值.解(1)由题意,得1c =,c e a ==,故a = 从而2221b a c =-=,所以椭圆的方程为2212x y +=.①………5分 (2)证明:设直线AB 的方程为y kx =, ②直线CD 的方程为(1)y k x =--, ③………7分由①②得,点A ,B 的横坐标为2221k ±+, 由①③得,点C ,D 的横坐标为2222(1)k k ±+, ………9分记11( )A x kx ,,22( )B x kx ,,33( (1))C x k x -,,44( (1))D x k x -,,则直线AC ,BD 的斜率之和为13241324(1)(1)kx k x kx k x x x x x ----+--132413241324(1)()()(1)()()x x x x x x x x k x x x x +--+-+-=⋅--1234123413242()()()()()x x x x x x x x k x x x x --+++=⋅--…13分 2222213242(1)2420212121()()k k k k k k x x x x -⎛⎫---+ ⎪+++⎝⎭=⋅--0=.………16分16.椭圆C 的右焦点为F ,右准线为l ,离心率为3,点A 在椭圆上,以F 为圆心,FA 为半径的圆与l 的两个公共点是,B D .(1)若FBD ∆是边长为2的等边三角形,求圆的方程;(2)若,,A F B 三点在同一条直线m 上,且原点到直线m 的距离为2,求椭圆方程. 解:设椭圆的半长轴是a ,半短轴是b ,半焦距离是c ,由椭圆C 的离心率为3,可得椭圆C 方程是222214x y b b+=,………2分(只要是一个字母,其它形式同样得分,)焦点(3,0)F b ,准线3x =,设点00(,)A x y ,(1)FBD ∆是边长为2的等边三角形,则圆半径为2,且F 到直线l 的距离是3,又F 到直线l 的距离是223a b FM c c c =-==, 所以,33=,3b =,所以33c = 所以,圆的方程是22(33)4x y -+=。
高考解析几何压轴题精选
1、 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A 、若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 、已知m >1,直线2:02m l x my --=,椭圆222:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点、 (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H 、若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围、(6分) 3已知以原点O 为中心,)5,0F为右焦点的双曲线C 的离心率5e =(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4、如图,已知椭圆22221(0)x y a b a b +=>>2,以该椭圆上的点与椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)、一等轴双曲线的顶点就是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 与2PF 与椭圆的交点分别为B A 、与C D 、、(Ⅰ)求椭圆与双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)就是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由、(7分)5、在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B,右焦点为F 。
设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
高中数学解析几何小题压轴题题库题(适用培优)
解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是( ) A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是( ) A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线 ,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D .11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( ) A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为( )A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有( )条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=( )A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为( )A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B 两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为( )A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为( )①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为( )A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为( )A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB 的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为( )A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有( )组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是( )A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则( )A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点, 与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。
高考解析几何压轴题精选(含答案)
1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
高中数学解析几何最难压轴题
高中数学解析几何最难压轴题
高中数学解析几何最难压轴题,也就是最难的题目,是一种考察学生数学知识和技能的综合考查。
这类题目通常包括运用数学知识,解决复杂几何概念、计算、求解几何图形及其相关几何关系等多项内容,以及考查学生对几何图形的解析和抽象思维能力。
高中数学解析几何最难压轴题的一个典型题目如下:已知正方形ABCD中,AB=
3,M为CD边上的点,点P在正方形ABCD的对角线
AC上,且AP=
2,求点M到点P的距离。
解:由正方形ABCD的对角线AC等于根号2AB,可以
得到AC=根号2*3=3√2;因为AP=
2,则PM=AC-AP=3√2-2;由勾股定理得到PM的距离,
答案是1√
2。
从这个典型题目可以看出,高中数学解析几何最难压轴题的解题方法是:首先要搞清楚几何概念,了解几何图形的特性,
并正确运用数学知识,如勾股定理、直角三角形的性质等,结合题目中给出的数据进行计算,最后得出最终答案。
总之,高中数学解析几何最难压轴题,就是一种考查学生综合运用数学知识和抽象思维能力的复杂题目,解题过程中,学生要正确运用数学知识,灵活运用抽象思维能力,以达到最终的正确答案。
压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。
高三数学解析几何压轴题训练——离心率
高三数学解析几何压轴题训练——离心率离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23 D.34[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示] 法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y2m =1,因此点M 的坐标为-c ,2m (a -c )a. 又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m (a -c )a m =a +c a ,解得c a =13,所以椭圆C 的离心率为13.法二:交点法同法一得直线AE 的方程为x -a +y 2m=1,直线BN 的方程为x a +ym =1.又因为直线AE与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n 2m =1,-c a +n m =1,消去n ,解得c a =13,所以椭圆C 的离心率为13.法三:三点共线法 同法一得直线AE 的方程为x -a +y 2m=1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-ca -m -c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =ma -c (x +a ),所以E ⎝ ⎛⎭⎪⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝ ⎛⎭⎪⎫0,ma a +c ,由题意知,2ma a +c =maa -c,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.2.在求解圆锥曲线(椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a 与c 的关系式.[注意] 在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3D .2解析:选A 依题意,不妨设点P 在双曲线的右支上,F 1,F 2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e 1,e 2,则有e 1=|F 1F 2||PF 1|+|PF 2|,e 2=|F 1F 2||PF 1|-|PF 2|,则1e 1+1e 2=2|PF 1||F 1F 2|.在△PF 1F 2中,易知∠F 1F 2P ∈⎝⎛⎭⎫0,2π3, 由正弦定理得|PF 1||F 1F 2|=sin ∠F 1F 2P sin ∠F 1PF 2=23sin ∠F 1F 2P ,所以1e 1+1e 2=43sin ∠F 1F 2P ≤43=433,当且仅当sin ∠F 1F 2P =1,即∠F 1F 2P =π2时取等号,因此1e 1+1e 2的最大值是433.2.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,则双曲线离心率的取值范围为__________.解析:设直线l 的方程为x a +yb =1.由已知,点(1,0)到直线l 的距离d 1与点(-1,0)到直线l 的距离d 2之和s =d 1+d 2=b (a -1)a 2+b 2+b (a +1)a 2+b 2=2ab c ≥45c ,整理得5a c 2-a 2≥2c 2,即5e 2-1≥2e 2,所以25e 2-25≥4e 4,即4e 4-25e 2+25≤0,解得54≤e 2≤5,52≤e ≤ 5.故双曲线离心率的取值范围为52, 5. 答案:52, 5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C.23D.34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.2.已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a.又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.3.已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )A.53B.54C.53或2516D.53或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by=0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±ba x ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0,∴|3b -a |a 2+b2=1,即9b 2-6ab +a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54.综上,e =53或54.4.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53 C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )A.12 B.22 C.32D.33解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-(2α+2β)2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c2a =sin (2α+2β)sin 2α+sin 2β=2sin (α+β)cos (α+β)2sin (α+β)cos (α-β)=cos (α+β)cos (α-β).由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos (α-β)=cos (α-β)sin 2β,2sin2αsin 2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos (α+β)cos (α-β)=22=e ,所以该椭圆的离心率e =22. 6.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5 B. 5 C.53D.54解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C的离心率为e =ca =5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°.设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =b a x ,则ba <1,又e = 1+b 2a2, 所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝⎛⎭⎫1,52 B.⎝⎛⎭⎫52,+∞ C.⎝⎛⎭⎫1,54 D.⎝⎛⎭⎫54,+∞解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b2=1的渐近线方程为y =±b a x ,且“右”区域是由不等式组⎩⎨⎧y <b ax ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2ba ,即b a >12,因此题中的双曲线的离心率e = 1+⎝⎛⎭⎫b a 2∈⎝⎛⎭⎫52,+∞. 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫14,34B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫12,23D.⎝⎛⎭⎫0,12 解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a (a +c ).又13<k <12,所以13<a 2-c 2a (a +c )<12,化简可得13<1-e 21+e <12,从而可得12<e <23. 11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc 2a,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2. 因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c22<c 2,化简得b 2<3a 2, 即c 2-a 2<3a 2,解得ca <2,所以双曲线的离心率的取值范围为(1,2).12.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( )A.53,+∞ B.54,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bca ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54.二、填空题13.设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为A .B ,C是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a ≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧x 24+y 23=1,x 2a 2-y2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧x 2=4a 2,y 2=3(1-a 2),由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·3(1-a 2)=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2.答案: 215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a2,从而a 2>25. 设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2(a 2-9)a 2-25 =a 2-25+400a 2-25+41≥ 2400+41=9,当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53. 答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a2-y 2=1(a >0). 联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1, 消去y ,得(1-a 2)x 2+2a 2x -2a 2=0.∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1, ∴离心率e =c a =a 2+1a =1+1a 2> 1+12=62,且e =1+1a 2≠2, ∴e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞). 答案:⎝⎛⎭⎫62,2∪(2,+∞)。
第13讲 解析几何解答压轴题(原卷版)
第13讲 解析几何解答压轴题1.(内蒙古赤峰市·高三月考(文))已知椭圆2222:1(0)x y E a b a b +=>>,其左,右集点为12,F F ,过点1F 的直线l 与椭圆E 交于,M N 两点、2MNF 的周长为.(1)求椭圆E 的标准方程:(2)过E 右焦点的直线12,l l 互相垂直,且分别交椭圆E 于,A B 和,C D 四点,求AB CD +的最小值2.(河南新乡市·高三二模(理))已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,E 为C 上不同于A ,B 的动点,直线AE ,BE 的斜率AE k ,BE k 满足12AE BE k k ⋅=-,AE BE ⋅的最小值为-4.(1)求C 的方程;(2)O 为坐标原点,过O 的两条直线1l ,2l 满足1//l AE ,2//l BE ,且1l ,2l 分别交C 于M ,N 和P ,Q .试判断四边形MPNQ 的面积是否为定值?若是,求出该定值;若不是,说明理由.3.(天津滨海新区·高三月考)已知椭圆2222:1(0)x y C a b a b+=>>过点()2,1P ,1F 、2F 分别为椭圆C 的左、右焦点,且121PF PF ⋅=-.(1)求椭圆C 的方程;(2)过P 点的直线1l 与椭圆C 有且只有一个公共点,直线2l 平行于OP (O 为原点),且与椭圆C 交于A 、B 两点,与直线2x =交于点M (M 介于A 、B 两点之间). (i )当PAB △面积最大时,求2l 的方程; (ii )求证:||||||||PA MB PB MA ⋅=⋅.4.(山东泰安市·高三月考)已知椭圆()2222:10x y C a b a b+=>>过点()2,1P ,12,F F 分别为椭圆C 的左、右焦点且121PF PF ⋅=-.(1)求椭圆C 的方程;(2)过P 点的直线1l 与椭圆C 有且只有一个公共点,直线2l 平行于OP (O 为原点),且与椭圆C 交于两点A 、B ,与直线2x =交于点M (M 介于A 、B 两点之间). (i )当PAB △面积最大时,求2l 的方程;(ii )求证:PA MB PB MA =,并判断12,l l ,,PA PB 的斜率是否可以按某种顺序构成等比数列.5.(浙江绍兴市·高三一模)已知抛物线21:4C x y =和椭圆222:143x y C +=如图,经过抛物线1C 焦点F的直线l 分别交抛物线1C 和椭圆2C 于A ,B ,C ,D 四点,抛物线1C 在点A ,B 处的切线交于点P .(1)求点P 的纵坐标;(2)设M 为线段AB 的中点,PM 交1C 于点Q ,BQ 交AP 于点T .记TCD QBP ,的面积分别为12S S ,.(i )求证:Q 为线段PM 的中点;(ii )若1287S S =,求直线l 的方程.6.(江苏盐城市·高三二模)已知直线:l y x m +=交抛物线2:4C y x =于,A B 两点.(1)设直线l 与x 轴的交点为T .若=2AT TB ,求实数m 的值;(2)若点,M N 在抛物线C 上,且关于直线l 对称,求证:,,,A B M N 四点共圆.7.(内蒙古赤峰市·高三月考(理))已知椭圆2222:1(0)x y E a b a b +=>>,且过点.(1)求椭圆E 的标准方程;(2)过椭圆E 右焦点的直线12l l 、相互垂直,且分别交椭圆E 于A B 、和C D 、四点,求AB CD +的最小值.8.(全国大联考(理))已知抛物线()2:20C y px p =>的焦点为F ,过点F 且垂直于x 轴的直线与C 交于,A B 两点,AOB (点O 为坐标原点)的面积为2. (1)求抛物线C 的方程;(2)若过点()()0,0E a a >的两直线1l ,2l 的倾斜角互补,直线1l 与抛物线C 交于,M N 两点,直线2l 与抛物线C 交于,P Q 两点,FMN 与FPQ △的面积相等,求实数a 的取值范围.9.(江西八校4月联考(理))已知椭圆E :()222210x y a b a b+=>>.左焦点()1,0F -,点()0,2M 在椭圆E 外部,点N 为椭圆E 上一动点,且NMF 的周长最大值为4. (1)求椭圆E 的标准方程;(2)点B 、C 为椭圆E 上关于原点对称的两个点,A 为左顶点,若直线AB 、AC 分别与y 轴交于P 、Q 两点,试判断以PQ 为直径的圆是否过定点.如果是请求出定点坐标,如果不过定点,请说明理由.10.(天津南开区·高三一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,右顶点为点A ,点E 的坐标为0,4b ⎛⎫ ⎪⎝⎭,延长线段1F E 交椭圆于点M ,2MF x ⊥轴.(1)求椭圆的离心率;(2)设抛物线2245y bx =的焦点为F ,B 为抛物线上一点,365BF b =,直线BF 交椭圆于P ,Q 两点,若22425AP AQ +=,求椭圆的标准方程.11.(四川成都市·高三二模(文))已知椭圆C :()222210x y a b a b +=>>经过点A ⎛ ⎝⎭,其长半轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅰ)设经过点()1,0B -的直线l 与椭圆C 相交于D ,E 两点,点E 关于x 轴的对称点为F ,直线DF 与x 轴相交于点G ,求BEG 与BDG 的面积分别为1S ,2S ,求12S S -的最大值.12.(浙江温州市·高三二模)如图,过点(1,0)F 和点(4,0)E 的两条平行线1l 和2l 分别交抛物线24y x =于,A B 和,C D (其中,A C 在x 轴的上方),AD 交x 轴于点G .(1)求证:点C 、点D 的纵坐标乘积为定值;(2)分别记ABG 和CDG 的面积为1S 和2S ,当1214S S =时,求直线AD 的方程.13.(四川成都市·高三二模(理))已知椭圆C :()222210x y a b a b +=>>经过点1,2A ⎛ ⎝⎭,其长半轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅰ)设经过点()1,0B -的直线l 与椭圆C 相交于D ,E 两点,点E 关于x 轴的对称点为F ,直线DF 与x 轴相交于点G ,求△DEG 的面积S 的取值范围.14.(四省名校联考(文))已知F 是椭圆()2222:10x y C a b a b +=>>的左焦点,焦距为4,且C 过点)P.(1)求C 的方程;(2)过点F 作两条互相垂直的直线12,l l ,若1l 与C 交于,A B 两点,2l 与C 交于,D E 两点,记AB 的中点为,M DE 的中点为N ,试判断直线MN 是否过定点,若过点,请求出定点坐标;若不过定点,请说明理由.15.(辽宁铁岭市·高三一模)已知椭圆方程22143x y +=,直线:4l x =与x 轴相交于点P ,过右焦点F 的直线与椭圆交于A ,B 两点.(1)若过点F 的直线MF 与AB 垂直,且与直线l 交于点M ,线段AB 中点为D ,求证:OD OM k k =. (2)设Q 点的坐标为5,02⎛⎫⎪⎝⎭,直线BQ 与直线l 交于点E ,试问EA 是否垂直EP ,若是,写出证明过程,若不是,请说明理由.16.(广东汕头市·高三一模)在平面直角坐标系xOy 中,P 为坐标原点,)M,已知平行四边形OMNP 两条对角线的长度之和等于4.(1)求动点P 的轨迹方程;(2过)M作互相垂直的两条直线1l 、2l ,1l 与动点P 的轨迹交于A 、B ,2l 与动点P 的轨迹交于点C 、D ,AB 、CD 的中点分别为E 、F ; ①证明:直线EF 恒过定点,并求出定点坐标. ②求四边形ACBD 面积的最小值.17.(聊城市·山东聊城一中高三一模)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,离心率为216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N . (1)求椭圆C 的标准方程和点A 的坐标;(2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.18.(浙江宁波市·高三月考)如图,过椭圆2212x y +=的左右焦点12,F F 分别做直线,AB CD ,交椭圆于,,,A B C D 四点,设直线AB 的斜率为(0)k k ≠(1)求||AB (用k 表示); (2)若直线,AB CD 的斜率之积为12-,求四边形ACBD 面积的取值范围.19.(湖北八市三月联考)已知椭圆()2222:10x y C a b a b+=>>,离心率为12,过椭圆C 的左焦点1F 作不与x 轴重合的直线MN 与椭圆C 相交于,M N 两点,过点M 作直线:2m x a =-的垂线ME ,E 为垂足.(1)求椭圆C 的标准方程;(2)①已知直线EN 过定点P ,求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.20.(河南新乡市·高三一模(理))已知动点P 到点(的距离与到直线x =的距离之比为(1)求动点P 的轨迹C 的标准方程;(2)过点(4,0)A -的直线l 交C 于M ,N 两点,已知点(2,1)B --,直线BM ,BN 分别交x 轴于点E ,F .试问在x 轴上是否存在一点G ,使得0BE GF GE BF ⋅+⋅=?若存在,求出点G 的坐标;若不存在,请说明理由.21.(山西晋中市·高三二模(理))设椭圆2222:1(0)x y C a b a b+=>>,O 为原点,点(4,0)A 是x 轴上一定点,已知椭圆的长轴长等于||OA (1)求椭圆的方程;(2)直线:l y kx t =+与椭圆C 交于两个不同点M ,N ,已知M 关于y 轴的对称点为M ',N 关于原点O 的对称点为N ',若,M N ''满足(1)OA OM ON λμλμ''=++=,求证:直线l 经过定点.22.(辽宁高三一模(理))过点()0,2P 作直线l 交抛物线2:4G x y =于,A B 两点,O 为坐标原点,分别过,A B 点作抛物线G 的切线,设两切线交于Q 点. (1)求证:点Q 在一定直线m 上;(2)设直线,AO BO 分别交直线m 于点,C D . (i )求证:AOB COD S S =△△;(ii )设AOD △的面积为1S ,BOC 的面积为2S ,记12P S S =+,求P 的最小值.23.(内蒙古包头市·高三期末(文))在平面直角坐标系xOy 中,椭圆C :2213x y +=的左顶点为A ,点P 、Q 是椭圆C 上的两个动点.(1)当P 、O 、Q 三点共线时,直线PA 、QA 分别与y 轴交于M ,N 两点,求AM AN ⋅的值; (2)设直线AP 、AQ 的斜率分别为1k ,2k ,当121k k =-时,证明:直线PQ 恒过一个定点R .24.(江西上饶模拟(理))在平面直角坐标系xOy 中,已知点()1,1A -,P 是动点,且直线OP 的斜率与直线OA 的斜率之和等于直线的PA 斜率. (1)求动点P 的轨迹C 的方程;(2)过A 作斜率为2的直线与轨迹C 相交于点B ,点()()0,0T t t >,直线AT 与BT 分别交轨迹C 于点E 、F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=,若存在,求出λ值,若不存在,请说明理由.25.(贵州新高考联盟质检(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,,F F 焦距为椭圆C 的右顶点到点2F 的距离与它到直线:l x =(1)求椭圆C 的标准方程;(2)设O 为坐标原点,,A B 为椭圆C 上不同的两点,点A 关于x 轴的对称点为点.D 若直线BD 的斜率为1,求证:OAB 的面积为定值.26.(浙江丽水市·高三月考)已知抛物线2:E x y =,过抛物线上第一象限的点A 作抛物线的切线,与x轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若1OB OM ⋅≤-,求||||AD AO 的最小值.27.(江苏南通市·高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M 为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMB AMNS S △△为定值.28.(山西运城市·高三期末(理))已知A ,B 是椭圆222:1(1)x E y a a+=>的左、右顶点,C 为E 的上顶点,3AC BC ⋅=-.(1)求椭圆的方程;(2)若M ,N ,P 是椭圆E 上不同的三点,且坐标原点O 为MNP △的重心,试探究MNP △的面积是否为定值?若是,求出这个定值;若不是,说明理由.29.(河南驻马店市·高三期末(文))已知A 为抛物线21:2(0)C y px p =>上异于原点O 的任意一点,当直线OA 的斜率为1时,||OA =.直线:20-+=l my x 交抛物线1C 于P ,Q 两点,射线OP ,OQ 分别交椭圆222:12y C x +=于E ,F 两点. (1)求抛物线1C 的方程;(2)记OEF 和OPQ △的面积分别为1S 和2S ,当218S S =时,求直线l 的斜率.30.(安徽名校期末联考(理))已知D 为圆22:1O x y +=上一动点,过点D 分别作x 轴y 轴的垂线,垂足分别为,A B ,连接BA 延长至点P ,使得||2PA =,点P 的轨迹记为曲线C .(1)求曲线C的方程;M N两点,Q为曲线C上一动点(点,O Q分别位于直线MN两侧),求四(2)作圆O的切线交曲线C于,边形OMQN的面积的最大值.。
压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。
高三数学解析几何压轴题训练——直线与圆
高三数学解析几何压轴题训练——直线与圆一、选择题1.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=18,过圆心(6,6)作直线x +y -2=0的垂线,垂线所在直线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上.又(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为2,圆心坐标为(2,2),所以半径最小的圆的标准方程为(x -2)2+(y -2)2=2.2.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径r =2,因此2+a -1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(2+4)2+(1+1)2-4=6.3.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞ 解析:选C 注意到y ≥1,曲线y =1+4-x 2是圆x 2+(y -1)2=4在直线y =1的上方部分的半圆.又直线kx -y -2k +4=0⇒y -4=k (x -2)知恒过定点A (2,4).如图,由B (-2,1),知k AB =4-12-(-2)=34,当直线与圆相切时,|-1-2k +4|k 2+(-1)2=2,解得k =512,故实数k 的取值范围是⎝⎛⎦⎤512,34.4.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6D .2解析:选B 根据约束条件画出可行域如图中阴影部分所示.设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10,所以|AB |min =214-10=4.5.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .100解析:选B 设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得D =-8,E =6,F =0.所以圆M 的方程为x 2+y 2-8x +6y =0, 即(x -4)2+(y +3)2=25.令y=0,得x2-8x=0,解得x=0或x=8.令x=0,得y2+6y=0,解得y=0或y=-6.所以S(8,0),T(0,-6).而圆心(4,-3)在直线ST上,所以PS⊥PT.即|PS|2+|PT|2=(2r)2=100.所以|PS|·|PT|≤12(|PS|2+|PT|2)=50.所以(|PS|·|PT|)max=50.6.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0解析:选B当直线l的斜率不存在时,直线l的方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0.7.若过点P(2,1)的直线l与圆C:x2+y2+2x-4y-7=0相交于两点A,B,且∠ACB =60°(其中C为圆心),则直线l的方程是()A.4x-3y-5=0 B.x=2或4x-3y-5=0C.4x-3y+5=0 D.x=2或4x-3y+5=0解析:选B由题意可得,圆C的圆心为C(-1,2),半径为23,因为∠ACB=60°,所以△ABC为正三角形,边长为23,所以圆心C到直线l的距离为3.若直线l的斜率不存在,则直线l的方程为x=2,与圆相交且圆心C到直线l的距离为3,满足条件;若直线l的斜率存在,不妨设l:y-1=k(x-2),则圆心C到直线l的距离d=|3k+1|k2+1=3,解得k=43,所以此时直线l 的方程为4x -3y -5=0. 8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2.当k >2时,|OA ―→+OB ―→|>33|AB ―→|.又直线与圆x 2+y 2=4有两个不同的交点,故k <22,综上,k 的取值范围为[2,22).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0间距等于1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求的圆的半径的取值范围是(4,6).10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 法一:(排除法)由圆心在x 轴上,可排除A 、B ,又圆过(0,1)点,故圆的半径大于1,排除D ,选C.法二:(待定系数法)设圆的方程为(x -a )2+y 2=r 2,圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43.11.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,|PO |=2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴|PO |min =|MO |-1,|PO |max =|MO |+1, ∵|MO |=a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,则l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,又|PQ |=29-d 2,所以S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.二、填空题13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:法一:由题意,设M (2+cos θ,2+sin θ),则N (2+cos θ,-2-sin θ),将N 的坐标代入kx +y +3=0,可得sin θ-k cos θ=2k +1.因为sin θ-k cos θ=k 2+1sin(θ-φ),其中tan φ=k ,所以|2k +1|≤k 2+1,即3k 2+4k ≤0,解得-43≤k ≤0,故k 的最小值为-43. 法二:圆(x -2)2+(y -2)2=1关于x 轴对称的圆的方程为(x -2)2+(y +2)2=1. 问题转化为直线kx +y +3=0与圆(x -2)2+(y +2)2=1有公共点N . 所以|2k -2+3|k 2+1≤1,即|2k +1|≤k 2+1,解得-43≤k ≤0,故k 的最小值为-43.答案:-4314.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:415.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的距离为322,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2.答案:3+ 216.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两条平行直线和圆有一个,两个或三个不同的公共点,则称两条平行线和圆“相切”,已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆x 2+y 2+2x -4=0相切,则a 的取值范围是________.解析:圆的标准方程为(x +1)2+y 2=5, 圆心(-1,0),r =5,两直线分别与圆相切时对应的a 的边界值为:|-2+a 2+1|5=5时,a =±6; |a -2|5=5时,a =-3或a =7, 所以a 的边界值分别为-3,7,±6.由题意可知,两平行直线中必有一条与圆相切,另一条与圆相离,相切,相交三种情况都满足题意,故a ∈[]-3,-6∪[]6,7.答案:[]-3,-6∪[]6,7。
高考数学压轴大题解析几何
高考数学压轴大题-解析几何1. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.I 求双曲线C 的离心率e 的取值范围:II 设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.解:I 由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得1-a 2x 2+2a 2x -2a 2=0. ① 双曲线的离心率II 设)1,0(),,(),,(2211P y x B y x A由于x 1+x 2都是方程①的根,且1-a 2≠0,2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.Ⅰ求椭圆C 的方程;Ⅱ过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆O 为原点的面积的最大值及相应的直线l 的方程.解:Ⅰ设椭圆的长轴为2a ,a 2=+22==c =2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x Ⅱ 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -即 044)32(22=--+my y m . 由韦达定理得:∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t ∴221y y -=41448)12(482++=+tt t t .又令tt t f 14)(+=, 易知)(t f 在1,+∞上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316∴OMN S ∆ 的面积有最大值332.直线l 的方程为1-=x .3. 椭圆E 的中心在原点O,焦点在x 轴上,离心率e过点C 1,0的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ 2λ≥.Ⅰ若λ为常数,试用直线l 的斜率kk ≠0表示三角形OAB 的面积. Ⅱ若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.Ⅲ若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a ba >b >0,由e =caa 2=b 2c 2得a 2=3 b 2,故椭圆方程为x 2+3y 2= 3b 2. ① Ⅰ∵直线l :y = kx +1交椭圆于Ax 1,y 1,Bx 2,y 2两点,并且CA =BC λ λ≥2, ∴x 11,y 1 =λ1x 2,y 2, 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ②把y = kx 1代入椭圆方程,得3k 21x 26k 2x 3k 23b 2= 0, 且 k 2 3b 21b 2>0 ,∴x 1x 2= 22631k k +, ③x 1x 2=2223331k b k -+, ④∴O A B S ∆=12|y 1y 2| =12|λ1|·| y 2| =|1|2λ+·| k |·| x 21|.联立②、③得x 21=22(1)(31)k λ-+,∴O A B S ∆=11λλ+-·2||31k k + k ≠0.ⅡO AB S ∆=11λλ+-·2||31k k + =11λλ+-·113||||k k + ≤11λλ+-λ≥2. 当且仅当3| k | =1||k ,即k=,O AB S ∆取得最大值,此时x 1x 2= 1. 又∵x 11= λ x 21,∴x 1=11λ-,x 2= 1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合故此时椭圆的方程为x 2+3y 2=221(1)λλ+-λ≥2.Ⅲ由②、③联立得:x 1=22(1)(31)k λλ--+1, x 2=22(1)(31)k λ-+1,将x 1,x 2代入④,得23b =224(1)(31)k λλ-+1.由k 2=λ1得23b =24(1)(32)λλλ-- 1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1符合时,椭圆短半轴长取得最大值, 此时椭圆方程为x 2 3y 2 = 3.4. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. I 求椭圆的离心率;II 设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:I 设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得II 证明:由I 知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由I 知.21,23,23222221c b c a c x x ===+又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.5. 已知椭圆2212x y +=的左焦点为F,O 为坐标原点.I 求过点O 、F,并且与椭圆的左准线l 相切的圆的方程;II 设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G,求点G 横坐标的取值范围.解:I 222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上;设1(,),2M t -则圆半径由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=II 设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F,∴方程有两个不等实根; 记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得∴点G 横坐标的取值范围为1(,0).2-6. 已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为 I 证明线段AB 是圆C 的直径;II 当圆C 的圆心到直线X-2Y=0的距离的最小值为5时,求p 的值; I 证明1:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=设Mx,y 是以线段AB 为直径的圆上的任意一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--= 整理得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 证明2:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=12120x x y y ∴⋅+⋅= (1)设x,y 是以线段AB 为直径的圆上则 即2112211(,)y y y y x x x x x x x x --⋅=-≠≠-- 去分母得: 1212()()()()0x x x x y y y y --+--=点11122122(,),(,),(,)(,)x y x y x y x y 满足上方程,展开并将1代入得: 故线段AB 是圆C 的直径 证明3:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅= 12120x x y y ∴⋅+⋅= (1)以线段AB 为直径的圆的方程为展开并将1代入得: 221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 II 解法1:设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x-2y=0的距离为d,则当y=p 时,d=2p ∴=. 解法2: 设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =-设直线x-2y+m=0到直线x-2y=0则2m =± 因为x-2y+2=0与222y px p =-无公共点,所以当x-2y-2=0与222y px p =-仅有一个公共点时,该点到直线x-2y=0将2代入3得222220y py p p -+-= 2244(22)0p p p ∴∆=--= 解法3: 设圆C 的圆心为Cx,y,则 圆心C 到直线x-2y=0的距离为d,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅= 当122y y p +=时,d=2p ∴=.11、如图设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.1若6ED DF =,求k 的值; 2求四边形AEBF 面积的最大值. 11.Ⅰ解:依题设得椭圆的方程为2214xy +=, 直线AB EF ,的方程分别为22x y +=,(y kx k => 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中1x < 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=, 解得23k =或38k =. 6分 Ⅱ解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为. 12分解法二:由题设,1BO =,2AO =. 设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+9分===当222x y =时,上式取等号.所以S的最大值为 12分12、已知椭圆(222:13x y E a a +=>的离心率12e =. 直线x t =0t >与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .1 求椭圆E 的方程;2 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.12、1解:∵椭圆()222:133x y E a a+=>的离心率12e =, 12=. …… 2分 解得2a =. ∴ 椭圆E 的方程为22143x y +=. …… 4分 2解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分 ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即0t <<.∴弦长||AB ===. …… 8分∴ABC ∆的面积12S =⋅ …… 9分7=. …… 12分=,即7t =时,等号成立. ∴ ABC ∆. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即07t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得2y =±,∴弦长||AB =. …… 8分 ∴ABC ∆的面积12S =⋅ …… 9分7=. ……12分=,即7t=时,等号成立. ∴ABC∆.15、已知椭圆∑:12222=+byax>>ba的上顶点为)1,0(P,过∑的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆∑上,该菱形对角线BD所在直线的斜率为1-.⑴求椭圆∑的方程;⑵当直线BD过点)0,1(时,求直线AC的方程;⑶本问只作参考......,.不计入总分.....当3π=∠ABC时,求菱形ABCD面积的最大值.15、解:⑴依题意,1=b……1分,解12222=+byac……2分,得aby2||=……3分,所以122=ab,2=a……4分,椭圆∑的方程为1422=+yx……5分;⑵直线BD:1)1(1+-=-⨯-=xxy……7分,设AC:bxy+=……8分,由方程组⎪⎩⎪⎨⎧=++=1422yxbxy得0)1(24522=-++bbxx……9分,当05)1(454)2(222>-=-⨯⨯-=∆bbb时……10分,),(11yxA、),(22yxC的中点坐标为54221bxx-=+,5222121bbxxyy=++=+……12分,ABCD是菱形,所以AC的中点在BD上,所以1545+=bb……13分,解得35-=b,满足052>-=∆b,所以AC的方程为35-=xy……14分;⑶本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用因为四边形ABCD为菱形,且3π=∠ABC,所以BCACAB==,所以菱形ABCD的面积223ACS⨯=,由⑵可得2122122122122)(2)(2)()(xxxxyyxxAC+=-=-+-=222212532532)1(548)58(28bbbxx⨯-=-⨯⨯--⨯=-,因为5||<b,所以当且仅当0=b时,菱形ABCD的面积取得最大值,最大值为531653223=⨯;。
压轴题经典题-解析几何部分
压轴题经典题——解析几何部分22.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。
如图,已知直线L :)0(1:12222>>=++=b a by a x C my x 过椭圆的右焦点F ,且交椭圆C 于A 、B 两点,点A 、F 、B 直线2:a x G =上的射影依次为点D 、K 、E 。
(1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线L 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(3)连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由。
22.解:(1)易知)0,1(,332F b b 又=∴=…………2分41222=+=∴=∴c b a c13422=+∴y x C 的方程为椭圆 …………4分(2))1,0(mM y l -轴交于与 0)1(144096)43(012431),(),,(222222211>+=∆=-++∴⎩⎨⎧=-++=m my y m y x my x y x B y x A 由设 321121m y y =+∴(*) …………6分1111111111),1()1,(my y x my x --=∴--=+∴=λλλ又由同理2211my --=λ…………8分38322)11(122121-=--=+--=+∴y y m λλ 3821-=+∴λλ…………10分(3))0,(),0,1(2a k F =先探索,当m=0时,直线L ⊥ox 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 中点N且)0,21(2+a N …………11分猜想:当m 变化时,AE 与BD 相交于定点)0,21(2+a N …………12分证明:设),(),,(),,(),,(12222211y a D y a E y x B y x A 当m 变化时首先AE 过定点N)0)()1()1()2(21)(21(0)21(21)(2121,21)1(0)1(40)1(2)(012222222222222222212121222121222121222222222222222222=+-⋅-=+-⋅-+-⋅-=-+-=----+-=---=---=>>-+=∆=-+++⎩⎨⎧=-++=b m a mb mb a b m a a b m b m a mb a y my y y a my a a y my y y a K K a y K my a y K a b m a b a a b y mb y m b a b a y a x b my x EN AN ENAN 这是而又即∴K AN =K EN ∴A 、N 、E 三点共线同理可得B 、N 、D 三点共线∴AE 与BD 相交于定点)0,21(2+a N …………18分22.(本小题14分)已知椭圆9x 2+2y 2=18上任意一点P ,由P 向x 轴作垂线段PQ ,垂足为Q ,点M 在线段PQ 上,且2=,点M 的轨迹为曲线E.(Ⅰ)求曲线E 的方程;(Ⅱ)若过定点F (0,2)的直线交曲线E 于不同的两点G ,H (点G 在点F ,H 之间),且满足λλ求FH =的取值范围.22.解:(I )设点P (x 0,y 0),是椭圆上一点,则Q (x 0,0),M (x ,y )由已知得:x 0=x ,y 0=3y 代入椭圆方程得9x 2+18y 2=18即x 2+2y 2=2为曲线E 的方程.……………………………………4分 (II )设G (x 1,y 1),H (x 2,y 2)当直线GH 斜率存在时,设直线GH 的斜率为k则直线GH 的方程为:y=kx+2,……………………………………5分代入x 2+2y 2=2,得:(21+k 2)x 2+4kx+3=0 由△>0,解得:k 2>23…………………………………………6分 y x y x k kx x k k x x λ=-=-=+=⋅+-=+又有分),2,(),2,(7)1(213,2142211221221222122121,)1(xx x x x x x x λλλ=⋅+=+∴=∴λλ2122221)1(x x x x x ⋅==++∴……………………………………(2) ∴将(1)代入(2)整理得:λλ22)1()211(316+=+k………………9分分且即分121,331316214,316)1(411316)211(3164,23222 ≠<<∴<++<<+<∴<+<∴>λλλλλλkk又∵0<λ<1,∴31<λ<1………………13分 当直线GH 斜率不存在时,直线GH 的方程为x 31,0== ∴λ=31 ∴所求λ的范围为31≤λ<1…………………………14分 22.(本小题满分14分)已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点.(Ⅰ)若椭圆的离心率为33,焦距为2,求线段AB 的长; (Ⅱ)若向量OA 与向量OB 互相垂直(其中O 为坐标原点),当椭圆的离心率 ]22,21[∈e 时,求椭圆的长轴长的最大值. 22.解:(Ⅰ)33,22,33===a c c e 即 2,322=-==∴c ab a 则 ∴椭圆的方程为12322=+y x …………………………………………………………2分 联立⎪⎩⎪⎨⎧+-==+112322x y y x 消去y 得:03652=--x x 设),(),,(2211y x B y x A 则53,562121-==+x x x x 2122122212214)(])1(1[)()(||x x x x y y x x AB -+-+=-+-=∴538512)56(22=+= ……………………………………………………………6分(Ⅱ)设),(),,(2211y x B y x AOB OA ⊥ 0=⋅∴OB OA ,即02121=+y y x x由⎪⎩⎪⎨⎧+-==+112222x y b y a x 消去y 得0)1(2)(223222=-+-+b a x a x b a 由0)1)((4)2(222222>-+=-=∆b b a a a 整理得122>+b a ……………8分又22222122221)1(2b a b a x x b a a x x +-=+=+1)()1)(1(21212121++-=+-+-=∴x x x x x x y y由02121=+y y x x 得:01)(22121=++-x x x x012)1(22222222=++-+-∴ba ab a b a 整理得:022222=-+b a b a ……………………………………………………10分222222e a a c a b -=-=∴代入上式得221112e a -+= )111(2122e a -+=∴ …………………………………………12分2221≤≤e21412≤≤∴e 431212≤-≤∴e 211342≤-≤∴e 3111372≤-+≤∴e 23672≤≤∴a 适合条件122>+b a 由此得26642≤≤a 62342≤≤∴a 故长轴长的最大值为6 …………………………………………………………… 14分 22.(本小题满分14分)如图,已知圆O :422=+y x 与y 轴正半轴交于点P ,A (-1,0),B (1,0),直线l 与圆O 切于点S (l 不垂直于x 轴),抛物线过A 、B 两点且以l 为准线。
解析几何中的定值与定点问题-玩转压轴题(解析版)
专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。
解析几何-2024高考压轴小题(原卷版)
解析几何-2024高考压轴小题一.选择题(共14小题) 1.已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (2,1)为椭圆内一点,以M 为中点的弦与椭圆交于点A ,B ,与x 轴交于点P ,线段AB 的中垂线与x 轴交于点G ,当△GPM 面积最小时,椭圆的离心率为( ) A .12B .√22C .√32D .√332.已知F 双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,A 1,A 2分别是双曲线C 的左右顶点,过F 作双曲线渐近线的垂线与该渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P ,若|MP |=|MA 2|,且k A 2P +k A 2M =0,则C 的离心率为( ) A .√2 B .√3C .2D .√53.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为√6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则|HG |的取值范围为( ) A .[2√2,4]B .[√3,2)C .[2,4√33)D .[2√2,4√63)4.已知双曲线4x 2−y 23=1的左、右焦点分别为F 1,F 2,点M 是双曲线右支上一点,满足MF 1→•MF 2→=0,点N 是线段F 1F 2上一点,满足F 1N →=λF 1F 2→.现将△MF 1F 2沿MN 折成直二面角F 1﹣MN ﹣F 2,若使折叠后点F 1,F 2距离最小,则λ=( ) A .15B .25C .35D .455.已知圆C 1:(x +3)2+y 2=a 2(a >7)和C 2:(x ﹣3)2+y 2=1,动圆M 与圆C 1,圆C 2均相切,P 是△MC 1C 2的内心,且S △PMC 1+S △PMC 2=3S △PC 1C 2,则a 的值为( ) A .9 B .11C .17或19D .196.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 且斜率为k (k ≠0)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若|AB|≥√3|DF|,则双曲线的离心率取值范围是( ) A .(1,2√33]B .(1,√3]C .[√3,+∞)D .[2√33,+∞)7.点A (x 0,y 0)(x 0>1,y 0<0),B ,C 均在抛物线y 2=4x 上,若直线AB ,AC 分别经过两定点(﹣1,0),M (1,4),则BC 经过定点N .直线BC ,MN 分别交x 轴于D ,E ,O 为原点,记|OD |=a ,|DE |=b ,则a 2a+1+b 2b+3的最小值为( )A .12B .14C .13D .158.已知双曲线E :x 2a 2−y 2b 2=1,其左右顶点分别为A 1,A 2,P 在双曲线右支上运动,若∠A 1P A 2的角平分线交x 轴于D 点,A 2关于PD 的对称点为A 3,若仅存在2个P 使直线A 3D 与E 仅有一个交点,则E 离心率的范围为( ) A .(1,√2)B .(√2,2)C .(√2,+∞)D .(2,+∞)9.正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,点P 在三棱锥C 1﹣BCD 的表面运动,且A 1P =√153,则点P 轨迹的长度是( ) A .√3+2√66π B .2√3+√66π C .√3+√66π D .2√3+√63π10.已知抛物线C :y 2=2px 的焦点F 与双曲线16x 2﹣2y 2=1的右焦点重合,斜率为k 的直线l 与C 的两个交点为A ,B .若|AF |+|BF |=4,则k 的取值范围是( ) A .(−∞,−√155)∪(√155,+∞) B .(−√155,0)∪(0,√155) C .(−∞,−√153)∪(√153,+∞) D .(−√153,0)∪(0,√153) 11.设双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,M (0,3b ),若直线l 与E 的右支交于A ,B 两点,且F 为△MAB 的重心,则直线l 斜率的取值范围为( ) A .(√133,√3)∪(√3,+∞) B .(2√139,√3)∪(√3,+∞)C .(−∞,−√6)∪(−√6,−2√139) D .(−∞,−√6)∪(−√6,−2√133) 12.已知F 1,F 2分别为双曲线C :x 22−y 26=1的左、右焦点,过F 2的直线与双曲线C 的右支交于A ,B 两点(其中点A 在第一象限).设点H ,G 分别为△AF 1F 2,△BF 1F 2的内心,则|HG |的取值范围是( ) A .[2√2,4) B .[2,4√63) C .(4√33,2√2] D .[2√2,4√63) 13.已知双曲线C :x 24−y 212=1的左焦点为F ,左顶点为A ,T 为左准线上动点,则∠FTA的最大值为( ) A .π12B .π6C .π4D .π314.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且F1P>F2P,线段F1P的垂直平分线过F2.若椭圆的离心率为e1,双曲线的离心率为e2,则2e1+e22的最小值为()A.√6B.3C.6D.√3二.多选题(共5小题)(多选)15.已知抛物线C:y2=4x的焦点为F,A,B为C上两个相异的动点,分别在点A,B处作抛物线C的切线l1,l2,l1与l2交于点P,则()A.若直线AB过焦点F,则点P一定在抛物线C的准线上B.若点P在直线x+y+4=0上,则直线AB过定点(4,﹣2)C.若直线AB过焦点F,则△ABP面积的最小值为1D.若|AB|=4,则△ABP面积的最大值为1(多选)16.在平面直角坐标系中,定义d(A,B)=max{|x1﹣x2|,|y1﹣y2|}为两点A(x1,y1)、B(x2,y2)的“切比雪夫距离”,又设点P及l上任意一点Q,称d(P,Q)的最小值为点P到直线l的“切比雪夫距离”,记作d(P,l),给出下列四个命题,正确的是()A.对任意三点A、B、C,都有d(C,A)+d(C,B)≥d(A,B)B.已知点P(2,1)和直线l:x﹣2y﹣2=0,则d(P,l)=8 3C.到定点M的距离和到M的“切比雪夫距离”相等的点的轨迹是正方形.D.定点F1(﹣c,0)、F2(c,0),动点P(x,y)满足|d(P,F1)﹣d(P,F2)|=2a (2c>2a>0),则点P的轨迹与直线y=k(k为常数)有且仅有2个公共点.(多选)17.画法几何的创始人——法国数学家加斯帕尔•蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C:x22+y2=1.F1,F2分别为椭圆的左、右焦点,直线l的方程为x+√2y−3=0,M为椭圆C的蒙日圆上一动点,MA,MB分别与椭圆相切于A,B两点,O为坐标原点,下列说法正确的是()A.椭圆C的蒙日圆方程为x2+y2=3B.记点A到直线l的距离为d,则d﹣|AF2|的最小值为4√3 3C.一矩形四条边与椭圆C相切,则此矩形面积最大值为6D .△AOB 的面积的最小值为23,最大值为√22(多选)18.已知抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴交于点M(−32,0),过点F 作不垂直于x 轴的直线l 与C 交于A ,B 两点.设P 为x 轴上一动点,Q 为AB 的中点,且AB ⊥PQ ,则( ) A .抛物线C 的方程为y 2=3x B .|AB |+3|BF |的最小值为272C .|AB |>2|PF |D .|BF |(|MA |+|MB |)=2|MB ||PF |(多选)19.已知点P (1,a )(a >1)在抛物线C :y 2=2px (p >0)上,过P 作圆(x ﹣1)2+y 2=1的两条切线,分别交C 于A ,B 两点,且直线AB 的斜率为﹣1,若F 为C 的焦点,M (x ,y )为C 上的动点,N 是C 的准线与坐标轴的交点,则( ) A .p =1 B .p =2 C .|MN||MF|的最大值是√2D .|MN||MF|的最大值是√32三.填空题(共5小题)20.若直线y =kx +m (k ≠0)与圆E :x 2+y 2=34相切于点P ,且交椭圆M :x 24+y 2=1于A ,B 两点,O 为坐标原点,射线OP 与椭圆M 交于点Q ,设△OAB 的面积与△QAB 的面积分别为S 1,S 2,S 1的最大值为 ;当S 1取得最大值时,S 1+S 2S 1的值为 .21.已知点A (0,1),C (0,5),动点M 在函数y =14x 2的图像上,动点N 在以C 为圆心半径为2的圆上,则|MN|+12|NA|的最小值为 . 22.已知平面上两定点A 、B ,则所有满足|PA||PB|=λ(λ>0且λ≠1)的点P 的轨迹是一个圆心在直线AB 上,半径为|λ1−λ2|⋅|AB|的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为3的正方体ABCD ﹣A 1B 1C 1D 1表面上动点P 满足|P A |=2|PB |,则点P 的轨迹长度为 .23.已知实数x ,y 满足:(x +2)2+(y ﹣1)2=1,若|2x ﹣y +a |﹣|1﹣2x +y |的值仅与a 有关,则实数a 的取值范围是 . 24.如图,椭圆x 2a 2+y 2b 2=1与双曲线x 2m 2−y 2n 2=1(m >0,n >0)有公共焦点F 1(﹣c ,0),F 2(c ,0)(c >0),椭圆的离心率为e 1,双曲线的离心率为e 2,点P 为两曲线的一个公共点,且∠F 1PF 2=60°,则1e 12+3e 22= ;I 为△F 1PF 2的内心,F 1,I ,G 三点共线,且GP →•IP →=0,轴上点A ,B 满足AI →=λIP →,BG →=μGP →,则λ2+μ2的最小值为 .。
高考数学压轴题:平面解析几何
高考数学压轴题:平面解析几何一、解答题(共35小题)1.已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C . (Ⅰ)若1k =,且10||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且1273||,(4OP PF PF O ==为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由.3.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.4.已知椭圆2222:1(0)x y C a b a b+=>>2,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线60x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<时,求实数t 取值范围. 7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M 处的切线与椭圆相交所得弦长为57,求椭圆方程.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由. .12.(2019•秦淮区三模)如图,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,以椭圆C左顶点T为圆心作圆222:(2)(0)T x y r r++=>,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求TM TN的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:OR OS为定值.13.(2016•益阳模拟)已知以点(1,2)A-为圆心的圆与直线1:270l x y++=相切.过点(2,0)B-的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与1l相交于点P.()I求圆A的方程;(Ⅱ)当219MN=l的方程;(Ⅲ)BQ BP是否为定值,如果是,求出定值;如果不是,请说明理由.14.(2019•上海)已知椭圆22184x y +=,1F ,2F 为左、右焦点,直线l 过2F 交椭圆于A ,B两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ∠=︒时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F ABF MNS S=,若存在,求出直线l 的方程;若不存在,请说明理由.15.(2019•新课标Ⅲ)已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.16.(2019•新课标Ⅱ)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G . ()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.17.(2019•浙江)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12SS的最小值及此时点G的坐标.18.(2019•新课标Ⅲ)已知曲线2:2xC y=,D为直线12y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以5(0,)2E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.19.(2018•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的离5A的坐标为(,0)b,且||||62FB AB=(Ⅰ)求椭圆的方程;(Ⅱ)设直线:(0)l y kx k=>与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若||52(||4AQAOQ OPQ=∠为原点),求k的值.20.(2018•江苏)如图,在平面直角坐标系xOy中,椭圆C过点1(3,)2,焦点1(3F0),2(3F0),圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若OAB∆26,求直线l的方程.21.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.22.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018•上海)设常数2t >.在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线2:8(0,0)y x x t y Γ=.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP ∆的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.24.(2018•新课标Ⅱ)设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.25.(2017•上海)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.26.(2017•天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.()I 求椭圆的方程和抛物线的方程;()II 设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点(B B 异于)A ,直线BQ 与x 轴相交于点D .若APD ∆,求直线AP 的方程.27.(2017•山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程.(Ⅱ)如图,动直线1:l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上的一点,直线OC的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且||:||2:3MC AB =,M 的半径为||MC ,OS ,OT 是M 的两条切线,切点分别为S ,T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.28.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .29.(2017•新课标Ⅰ)已知椭圆2222:1(0)x y C a b a b+=>>,四点1(1,1)P ,2(0,1)P ,33(1,)P -,43(1,)P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.30.(2016•浙江)如图,设椭圆222:1(1)x C y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a ,k 表示)(Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.31.(2016•天津)设椭圆2221(3)3x y a a +=>的右焦点为F ,右顶点为A .已知113||||||eOF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点(B B不在x轴上),垂直于l的直线与l交于点M,与y 轴于点H,若BF HF⊥,且MOA MAO∠∠,求直线l的斜率的取值范围.32.(2016•四川)已知椭圆2222:1(0)x yE a ba b+=>>的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线:3l y x=-+与椭圆E有且只有一个公共点T.(Ⅰ)求椭圆E的方程及点T的坐标;(Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得2||||||PT PA PBλ=,并求λ的值.33.(2016•山东)平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的离心率是3,抛物线2:2E x y=的焦点F是C的一个顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.()i求证:点M在定直线上;()ii直线l与y轴交于点G,记PFG∆的面积为1S,PDM∆的面积为2S,求12SS的最大值及取得最大值时点P的坐标.34.(2016•新课标Ⅱ)已知椭圆22:13x yEt+=的焦点在x轴上,A是E的左顶点,斜率为(0)k k>的直线交E于A,M两点,点N在E上,MA NA⊥.(Ⅰ)当4t=,||||AM AN=时,求AMN∆的面积;(Ⅱ)当2||||AM AN=时,求k的取值范围.35.(2016•新课标Ⅰ)设圆222150x y x++-=的圆心为A,直线l过点(1,0)B且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明||||EA EB+为定值,并写出点E的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2020年高考数学复习之挑战压轴题(解答题):平面解析几何综合题(35题)参考答案与试题解析一、解答题(共35小题)1.(2016•南昌校级二模)已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C .(Ⅰ)若1k =,且||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程. 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)若1k =,联立直线和椭圆方程,结合相交弦的弦长公式以及||AB =可求实数a 的值;(Ⅱ)根据2AC CB =关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.【解答】解:设1(A x ,1)y ,2(B x ,2)y , (Ⅰ)由2213y x x y a=+⎧⎨+=⎩得24210x x a ++-=, 则1212x x +=-,1214ax x -=,则123|||24AB x x a -=-=2a =. (Ⅱ)由2213y kx x y a=+⎧⎨+=⎩,得22(3)210k x kx a +++-=, 则12223k x x k +=-+,12213ax x k -=+, 由2AC CB =得1(x -,121)2(y x -=,21)y -, 解得122x x =-,代入上式得: 122223k x x x k +=-=-+,则2223kx k =+,1222133||3||||||322323||||AOB k S OC x x x k k k ∆=-====++ 当且仅当23k =时取等号,此时2223k x k =+,22122224222(3)3k x x x k =-=-⨯=-+, 又1221136a ax x k --==+, 则1263a -=-,解得5a =.所以,AOB ∆,此时椭圆的方程为2235x y +=. 【点评】本题主要考查椭圆方程的求解,利用直线方程和椭圆方程构造方程组,转化为根与系数之间的关系是解决本题的关键.2.(2017•河南模拟)已知椭圆2222:1(0)x y C a b a b+=>>,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且123||(4OP PF PF O =为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由. 【考点】3K :椭圆的标准方程;4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】11:计算题;15:综合题;16:压轴题【分析】(1)设出P 的坐标,利用||OP 的值求得0x 和0y 的关系式,同时利用1234PF PF =求得0x 和0y 的另一关系式,进而求得c ,通过椭圆的离心率求得a ,最后利用a ,b 和c 的关系求得b ,则椭圆的方程可得.(2)设出直线l 的方程,与椭圆方程联立消去y ,设1(A x ,1)y ,2(B x ,2)y ,则可利用韦达定理表示出12x x +和12x x ,假设在y 轴上存在定点(0,)M m ,满足题设,则可表示出MA MB ,利用0MA MB =求得m 的值.【解答】解:(1)设0(P x ,0)y ,1(,0)F c -,2(,0)F c ,则由220074OP x y =+=; 由1234PF PF =得00003(,)(,)4c x y c x y -----=,即2220034x y c +-=. 所以1c =又因为222,1c a b a ===所以. 因此所求椭圆的方程为:2212x y +=.(2)动直线l 的方程为:13y kx =-,由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22416(21)039k x kx +--=.设1(A x ,1)y ,2(B x ,2)y . 则121222416,3(21)9(21)k x x x x k k +==-++. 假设在y 轴上存在定点(0,)M m ,满足题设,则1122(,),(,)MA x y m MB x y m =-=-. 21212121212()()()MA MB x x y m y m x x y y m y y m =+--=+-++21212121111()()()3333x x kx kx m kx kx m =+----+-+221212121(1)()()339k x x k m x x m m =+-+++++222216(1)1421()9(21)33(21)39k k k m m m k k +=--++++++ 222218(1)(9615)9(21)m k m m k -++-=+ 由假设得对于任意的,0k R MA MB ∈=恒成立, 即221096150m m m ⎧-=⎨+-=⎩解得1m =.因此,在y 轴上存在定点M ,使得以AB 为直径的圆恒过这个点, 点M 的坐标为(0,1)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和推理的能力.3.(2016•衡阳三模)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】3K :椭圆的标准方程;KH :直线与圆锥曲线的综合 【专题】11:计算题;16:压轴题【分析】(1)由题意知2a =,b c =,22b =,由此可知椭圆方程为22142x y +=.(2)设0(2,)M y ,1(P x ,1)y ,()()110,,2,OP x y OM y ==则,直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=,然后利用根与系数的关系能够推导出OM OP 为定值.(3)设存在(,0)Q m 满足条件,则MQ DP ⊥.2000220048(2,),(,)88y yMQ m y DP y y =--=-++,再由()220022004802088y y MQ DP m y y ⋅=---=++得,由此可知存在(0,0)Q 满足条件.【解答】解:(1)2a =,b c =,222a b c =+,22b ∴=;∴椭圆方程为22142x y +=(4分)(2)(2,0)C -,(2,0)D ,设0(2,)M y ,1(P x ,1)y , ()()110,,2,OP x y OM y ==则直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=(6分)21204(8)128y x y -=-+,∴201202(8)8y x y -=-+,∴012088y y y =+,∴20022002(8)8(,)88y y OP y y -=-++(8分) ∴2220002220004(8)84324888y y y OP OM y y y -+=-+==+++(定值)(10分)(3)设存在(,0)Q m 满足条件,则MQ DP ⊥(11分)2000220048(2,),(,)88y yMQ m y DP y y =--=-++(12分)则由()220022004802088y y MQ DP m y y ⋅=---=++得,从而得0m =∴存在(0,0)Q 满足条件(14分)【点评】本题考查直线和椭圆的位置关系,解题时要认真审题,仔细解答.4.(2016•天津一模)已知椭圆2222:1(0)x y C a b a b+=>>,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N(Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.【考点】1K :圆锥曲线的实际背景及作用;3K :椭圆的标准方程【专题】15:综合题;31:数形结合;34:方程思想;4R :转化法;5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)根据椭圆的简单几何性质,求出a 、b 的值即可;(Ⅱ)当直线l 的斜率存在时,求出直线RA 、RB 的斜率之和即可证明结论成立; (Ⅲ)讨论直线l 的斜率是否存在,利用弦长公式以及转化法、基本不等式等求出||||AB MN 的取值范围.【解答】解:(Ⅰ)因为椭圆C 长轴长等于圆22:(2)4R xy +-=的直径, 所以24a =,2a =; ⋯(1分)2,得22222212c a b e a a -===,所以222142b b a ==,得22b =;⋯(2分)所以椭圆C 的方程为22142x y +=;⋯(3分)(Ⅱ)当直线l 的斜率存在时,设l 的方程为1y kx =+,与22142x y +=联立,消去y ,得22(12)420k x kx ++-=; 设1(A x ,1)y ,2(B x ,2)y , 则122412k x x k +=-+,122212x x k =-+,⋯(5分) 由(0,2)R ,得 121222RA RB y y k k x x --+=+121211kx kx x x --=+12112()k x x =-+ 12122x x k x x +=-2241220212k k k k -+=-=-+.⋯(7分)所以直线RA ,RB 的斜率之和等于零;⋯(8分)(Ⅲ)当直线l的斜率不存在时,||AB =||4MN =,||||8AB MN =;⋯(9分) 当直线l的斜率存在时,||AB =12||x x =-12()x x +4(12k k =-+ 22328k += ||MN ==⋯(11分)所以22328||||12k AB MN k+=+⨯241k +=;因为直线l 过点(0,1)P ,所以直线l 与椭圆C 和圆R 均交于两点, 令212k t +=,则1t , 所以22(21)(21)1||||4242482t t AB MN t t -+==-<, 又2124y t =-在1t 时单调递增, 所以1||||446AB MN =, 当且仅当1t =,0k =等号成立;⋯(13分)综上,||||AB MN 的取值范围是.⋯(14分)【点评】本题考查了圆锥曲线的综合应用问题,也考查了数形结合思想、方程思想的应用问题,考查了计算能力与分析问题、解决问题的能力,是综合性题目.5.(2015•大庆一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.【考点】3K :椭圆的标准方程;4K :椭圆的性质 【专题】11:计算题;15:综合题;16:压轴题【分析】(Ⅰ)由题意知12c e a ==,能够导出2243a b =.再由b C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=,再由根与系数的关系证明直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)分MN 的斜率存在与不存在两种情况讨论,当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.再由根据判别式和根与系数的关系求解OM ON 的取值范围;当过点Q 直线MN 的斜率不存在时,其方程为1x =,易得M 、N 的坐标,进而可得OM ON 的取值范围,综合可得答案. 【解答】解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===.即2243a b =.又因为b =所以24a =,23b =.故椭圆C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-. 由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=.①设点1(B x ,1)y ,2(E x ,2)y ,则1(A x ,1)y -. 直线AE 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.易知△0>.所以22843M N m x x m +=+,2241243M N m x x m -=+,22943M N m y y m =-+.则2225125334344(43)M N M N m OM ON x x y y m m +=+=-=--++. 因为20m ,所以21133044(43)m --<+.所以5[4,)4OM ON ∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N 或3(1,)2M 、3(1,)2N -.此时54OM ON =-.所以OM ON 的取值范围是5[4,]4--.【点评】本题综合考查椭圆的性质及其应用和直线 与椭圆的位置关系,解题时要认真审题,注意公式的灵活运用.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a ba b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<t 取值范围. 【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题【分析】(Ⅰ)由题意知c e a ==所以22222212c a b e a a -===.由此能求出椭圆C 的方程.(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y ,由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=再由根的判别式和嘏达定理进行求解. 【解答】解:(Ⅰ)由题意知2c e a ==,所以22222212c a b e a a -===.即222a b =.(2分)又因为1b ==,所以22a =,故椭圆C 的方程为2212x y +=.(4分)(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y , 由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=.△422644(21)(82)0k k k =-+->,212k <.(6分) 2122812k x x k +=+,21228212k x x k-=+12(OA OB tOP x x +=∴+,12)(y y t x +=,)y , ∴21228(12)x x k x t t k +==+,1212214[()4](12)y y k y k x x k t t t k +-==+-=+ 点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++,22216(12)k t k ∴=+.(8分) 25||PA PB -<,∴12|x x -,∴22121220(1)[()4]9k x x x x ++-< ∴422222648220(1)[4](12)129k k k k k -+-<++,22(41)(1413)0k k ∴-+>,∴214k >.(10分) ∴21142k <<,22216(12)k t k =+,∴222216881212k t k k ==-++, ∴2t -<<2t <<,∴实数t 取值范围为26(2,(,2)-.(12分) 【点评】本题考查椭圆方程的求法和求实数t 取值范围.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用根的判别式和韦达定理进行解题.7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M处的切线与椭圆相交所得弦长为57,求椭圆方程.【考点】4K :椭圆的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)首先,得到点M 的坐标,然后,代入,得到212b a ac =+,从而确定其斜率关系;(Ⅱ)首先,得到1(2A c -,30)(,)2cM c ,然后,可以设外接圆圆心设为0(P x ,0),结合圆的性质建立等式,然后,利用弦长公式求解即可.【解答】解:(Ⅰ)由题意2(,)b M c a-------------(1分)因为1(,0)A a -,所以212b a ac =-------------+(2分)将222b a c =-代入上式并整理得112a c e a -=-=(或2)a c =----------(3分) 所以12e =------------(4分) (Ⅱ)由(Ⅰ)得2a c =,3b c =(或22221)43x y c c+=------------(5分)所以1(2A c -,30)(,)2cM c ,外接圆圆心设为0(P x ,0)由1||||PA PM =222003(2)()()2c x c x c +-+-----------(6分) 解得:08cx =-------------(7分)所以34238PMck c c ==------------+(8分)所以△1A MN 外接圆在M 处切线斜率为34-,设该切线与椭圆另一交点为C则切线MC 方程为33()24c y x c -=--,即3944cy x =-+------------(9分)与椭圆方程2223412x y c +=联立得22718110x cx c -+=------------(10分) 解得1211,7cx c x ==------------(11分)由弦长公式12|||MC x x =-115|77c c -=------------(12分)解得1c =------------(13分)所以椭圆方程为22143x y +=------------(14分)【点评】本题重点考查了椭圆的标准方程、简单几何性质、直线与椭圆的位置关系、弦长公式等知识,属于中档题.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 【考点】KH :直线与圆锥曲线的综合 【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)利用两点间的距离公式可得c ,再利用椭圆的标准方程及其性质即可得出a ,b ;(Ⅱ)把直线l 的方程与椭圆的方程联立可得根与系数的关系,再利用以AB 为直径的圆过椭圆的右顶点D ,可得1AD BD k k =-,即可得出m 与k 的关系,从而得出答案.【解答】解:(Ⅰ)左焦点(,0)c -到点(2,1)P∴=,解得1c =.又12c e a ==,解得2a =,2223b a c ∴=-=. ∴所求椭圆C 的方程为:22143x y +=.(Ⅱ)设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,△22226416(34)(3)0m k k m =-+->,化为2234k m +>.∴122834mkx x k-+=+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+. 以AB 为直径的圆过椭圆的右顶点(2,0)D ,1AD BD k k =-,∴1212122y y x x =---,1212122()40y y x x x x ∴+-++=,∴2222223(4)4(3)1640343434m k m mkk k k --+++=+++. 化为2271640m mk k ++=,解得12m k =-,227km =-.,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0)与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7. 综上可知,直线l 过定点,定点坐标为2(,0)7.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、圆的性质、两点间的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.【考点】4K :椭圆的性质【专题】15:综合题;34:方程思想;49:综合法;5D :圆锥曲线的定义、性质与方程【分析】(1)先由离心率得到a ,b 的关系,再由求出b ,再由直线l 垂直于x 轴时,||AB =求得关于a ,b 的另一方程,联立求得a ,b 的值,则椭圆的标准方程可求;(2)设AB 的方程(1)y k x =-,将直线的方程代入椭圆的方程,消去x 得到关于y 的一元二次方程,再结合根系数的关系,利用向量坐标公式及函数的单调性即可求得直线AB 的斜率的取值范围,从而求得弦长||AB 的取值范围.【解答】解:(1)由题意可得,c e a ==,即2212c a =,∴22212a b a -=,则222a b =,①把1x =代入22221x y a b +=,得y =则2212b a a-=,② 联立①②得:22a =,21b =.∴椭圆C 的方程为2212x y +=;(2)如图,当直线l 的斜率存在时,设直线l 方程为(1)y k x =-, 联立22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,得222(12)20k y ky k ++-=. 设1(A x ,1)y ,2(B x ,2)y ,则21212222,1212k k y y y y k k --+==++,③ 由||||MA MB λ=,得AM MB λ=,1(1x ∴-,12)(1y x λ-=-,2)y ,则12y y λ-=,④把④代入③消去2y 得:241212k λλ=+-+,当1[2λ∈,2]时,2412[012k λλ=+-∈+,1]2. 解得:272k . 22221212222221144||1()4(12)12k k k AB y y y y k k k k +=++-=+++2222211922222(1)22(1)(2,]112122k k k k k+==-=-∈+++.∴弦长||AB 的取值范围为92[2,]8.【点评】本题主要考查了椭圆的定义和标准方程、直线与圆锥曲线的综合问题、平面向量的运算等.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,突出考查了数形结合、函数与方程、等价转化等数学思想方法.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标. 【考点】JE :直线和圆的方程的应用 【专题】15:综合题【分析】(1)因为直线l 过点(4,0)A ,故可以设出直线l 的点斜式方程,又由直线被圆1C 截得的弦长为圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线1l 与2l 的点斜式方程,由于两直线斜率为1,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线1l 与2l 的方程. 【解答】解:(1)由于直线4x =与圆1C 不相交;∴直线l 的斜率存在,设l 方程为:(4)y k x =-(1分)圆1C 的圆心到直线l 的距离为d ,l 被1C 截得的弦长为1d ∴==(2分)d =(247)0k k +=即0k =或724k =-∴直线l 的方程为:0y =或724280x y +-=(5分)(2)设点(,)P a b 满足条件,由题意分析可得直线1l 、2l 的斜率均存在且不为0,不妨设直线1l 的方程为()y b k x a -=-,0k ≠ 则直线2l 方程为:1()y b x a k-=--(6分)1C 和2C 的半径相等,及直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等, 1C ∴的圆心到直线1l 的距离和圆2C 的圆心到直线2l 的距离相等1|5(4)|a b +--=(8分)整理得|13||54|k ak b k a bk ++-=+--13(54)k ak b k a bk ∴++-=±+--即(2)3a b k b a +-=-+或(8)5a b k a b -+=+- 因k 的取值有无穷多个,所以2030a b b a +-=⎧⎨-+=⎩或8050a b a b -+=⎧⎨+-=⎩(10分)解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或32132a b ⎧=-⎪⎪⎨⎪=⎪⎩这样的点只可能是点15(2P ,1)2-或点23(2P -,13)2(12分) 【点评】在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到一个关于x 的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由..【考点】4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 结合向量条件及向量运算得出关于a ,c 的等式,从而求得椭圆的离心率即可;(2)由(1)知a ,c 的一个方程,再利用AQF ∆的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;(3)由(Ⅱ)知直线:(1)l y k x =-,将直线的方程代入椭圆的方程,消去y 得到关于x 的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P 且m 的取值范围.【解答】解:(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 知20(,),(,)F A c b AQ x b =-=-2F A AQ ⊥,∴22000,b cx b x c--==-,由于12220F F F Q +=即1F 为2F Q 中点.故2222223b c c b c a c c-+=-∴==-,故椭圆的离心率12e =,(3分)(2)由(1)知12c a =,得12c a =于是21(2F a ,30)(,0)2Q a -, AQF ∆的外接圆圆心为1(2a -,0),半径1||2r FQ a ==所以1|3|22a a --=,解得2a =,1c ∴=,3b 所求椭圆方程为22143x y +=,(6分)。
高考数学解析几何压轴题
2.圆锥曲线1.(2017·福建厦门第一中学期中)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限内的交点,且||MF =53. (1)求C 1的方程;(2)已知菱形ABCD 的顶点A ,C 在椭圆C 1上,顶点B ,D 在直线7x -7y +1=0上,求直线AC 的方程. 解 (1)设M (x 1,y 1)(x 1>0,y 1>0),椭圆的左、右焦点分别为F 1,F 2,由题意知点F 2即为点F (1,0).由抛物线的定义,|MF 2|=53⇒x 1+1=53⇒x 1=23, 因为y 21=4x 1, 所以y 1=263,即M ⎝⎛⎭⎫23,263, 所以|MF 1|=⎝⎛⎭⎫23+12+⎝⎛⎭⎫2632=73,由椭圆的定义得2a =|MF 1|+|MF 2|=73+53=4⇒a =2, 所以b =a 2-c 2=3,所以椭圆C 1的方程为x 24+y 23=1. (2)因为直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,所以AC ⊥BD ,设直线AC 的方程为y =-x +m ,代入椭圆C 1的方程,得7x 2-8mx +4m 2-12=0,由题意知,Δ=64m 2-28(4m 2-12)>0⇔-7<m <7.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8m 7,y 1+y 2=2m -(x 1+x 2)=-8m 7+2m =6m 7, 所以AC 中点的坐标为⎝⎛⎭⎫4m 7,3m 7,由四边形ABCD 为菱形可知,点⎝⎛⎭⎫4m 7,3m 7在直线BD 上,所以7·4m 7-7·3m 7+1=0⇒m =-1∈()-7,7. 所以直线AC 的方程为y =-x -1,即x +y +1=0.2.(2017·湖南师大附中月考)已知椭圆C 的中心在原点,离心率为22,其右焦点是圆E :(x -1)2+y 2=1的圆心. (1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点M ,N .试推断是否存在点P ,使|MN |=143?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c , 因为椭圆的右焦点是圆E 的圆心,所以c =1, 因为椭圆的离心率为22,则c a =22,即a =2c =2, 从而b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)设点P (x 0,y 0)(x 0<0),M (0,m ),N (0,n ),则直线PM 的方程为y =y 0-m x 0x +m , 即(y 0-m )x -x 0y +mx 0=0.因为圆心E (1,0)到直线PM 的距离为1, 即|y 0-m +x 0m |(y 0-m )2+x 20=1,即(y 0-m )2+x 20=(y 0-m )2+2x 0m (y 0-m )+x 20m 2,即(x 0-2)m 2+2y 0m -x 0=0,同理可得,(x 0-2)n 2+2y 0n -x 0=0.由此可知,m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两个实根,所以m +n =-2y 0x 0-2,mn =-x 0x 0-2, |MN |=|m -n |=(m +n )2-4mn =4y 20(x 0-2)2+4x 0x 0-2=4x 20+4y 20-8x 0(x 0-2)2. 因为点P (x 0,y 0)在椭圆C 上,则x 202+y 20=1, 即y 20=1-x 202, 则|MN |=2x 20-8x 0+4(x 0-2)2=2(x 0-2)2-4(x 0-2)2=2-4(x 0-2)2, 令2-4(x 0-2)2=143, 则(x 0-2)2=9,因为x 0<0,则x 0=-1,y 20=1-x 202=12,即y 0=±22, 故存在点P ⎝⎛⎭⎫-1,±22满足题设条件. 3.已知点P 是椭圆C 上任意一点,点P 到直线l 1:x =-2的距离为d 1,到点F (-1,0)的距离为d 2,且d 2d 1=22,直线l 与椭圆C 交于不同的两点A ,B (A ,B 都在x 轴上方),且∠OF A +∠OFB =180°.(1)求椭圆C 的方程;(2)当A 为椭圆与y 轴正半轴的交点时,求直线l 的方程;(3)对于动直线l ,是否存在一个定点,无论∠OF A 如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.解 (1)设P (x ,y ),则d 1=|x +2|,d 2=(x +1)2+y 2, ∴d 2d 1=(x +1)2+y 2|x +2|=22,化简得,x 22+y 2=1, ∴椭圆C 的方程为x 22+y 2=1. (2)A (0,1),F (-1,0),∴k AF =1-00-(-1)=1, 又∵∠OF A +∠OFB =180°,∴k BF =-1,直线BF 的方程为y =-(x +1)=-x -1,代入x 22+y 2=1,解得⎩⎪⎨⎪⎧ x =0y =-1(舍),⎩⎨⎧ x =-43,y =13.∴B ⎝⎛⎭⎫-43,13, k AB =1-130-⎝⎛⎭⎫-43=12, ∴直线AB 的方程为y =12x +1,即直线l 的方程为x -2y +2=0. (3)方法一 ∵∠OF A +∠OFB =180°,∴k AF +k BF =0.设A (x 1,y 1),B (x 2,y 2),直线AB 方程为y =kx +b ,将直线AB 的方程y =kx +b 代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2kbx +b 2-1=0.∴x 1+x 2=-2kb k 2+12,x 1x 2=b 2-1k 2+12, ∴k AF +k BF =y 1x 1+1+y 2x 2+1=kx 1+b x 1+1+kx 2+b x 2+1=(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)(x 1+1)(x 2+1)=0, ∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=2kx 1x 2+(k +b )(x 1+x 2)+2b=2k ×b 2-1k 2+12-(k +b )×2kb k 2+12+2b =0, ∴b -2k =0,∴直线AB 的方程为y =k (x +2),∴直线l 总经过定点M (-2,0),方法二 由于∠OF A +∠OFB =180°,∴点B 关于x 轴的对称点B 1在直线AF 上.设A (x 1,y 1),B (x 2,y 2),B 1(x 2,-y 2),直线AF 方程为y =k (x +1).代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2k 2x +k 2-1=0. ∴x 1+x 2=-2k 2k 2+12,x 1x 2=k 2-1k 2+12, ∴k AB =y 1-y 2x 1-x 2, 直线AB 的方程为y -y 1=y 1-y 2x 1-x 2(x -x 1), 令y =0,得x =x 1-y 1(x 1-x 2)y 1-y 2=x 2y 1-x 1y 2y 1-y 2. 又∵y 1=k (x 1+1),-y 2=k (x 2+1),∴x =x 2y 1-x 1y 2y 1-y 2=x 2×k (x 1+1)+x 1×k (x 2+1)k (x 1+1)+k (x 2+1)=2x 1x 2+x 1+x 2x 1+x 2+2=2×k 2-1k 2+12-2k 2k 2+122-2k 2k 2+12=-2. ∴直线l 总经过定点M (-2,0).4.(2017·广西南宁二中、柳州高中、玉林高中联考)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=3FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意可设直线AB :x =my +1,设A (x 1,y 1),B (x 2,y 2),将直线AB 与抛物线联立⎩⎪⎨⎪⎧ x =my +1y 2=4x⇒y 2-4my -4=0, 由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4, ∵AF →=3FB →,∴y 1=-3y 2,∴m 2=13,∴直线AB 的斜率为3或- 3.(2)S 四边形OACB =2S △AOB =2·12||OF ||y 1-y 2=||y 1-y 2=(y 1+y 2)2-4y 1y 2=16m 2+16≥4, 当m =0时,四边形OACB 的面积最小,最小值为4.5.(2017·惠州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎫1,22在椭圆C 上,所以2a =||AF 1+||AF 2=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9且-3<t <3. 由PM →=NQ →,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. (也可由PM →=NQ →知四边形PMQN 为平行四边形而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.) 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围[-1,1]矛盾. 因此点Q 不在椭圆上,即椭圆上不存在满足题意的Q 点.6.(2017·河南开封月考)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.解 (1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1. (2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0),∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1kx . ⎩⎪⎨⎪⎧ y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4, S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4), (4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85. 综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85.。
7.3 解析几何(压轴题)
7.3解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验·对方向1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1.因此点P的轨迹方程为x2+y2=2.F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P-,Q-,R-.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=----=-b=k2.所以AR∥FQ.l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.由题设可得|b-a|--,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).(x≠1).当AB与x轴不垂直时,由k AB=k DE可得-而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.新题演练提能·刷高分1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.B(x,y),则AB的中点D,y>0.∵C(0,1),则-,在☉C中,∵DC⊥DB,∴=0,∴-+y=0,即x2=4y(y>0).∴点B的轨迹E的方程为x2=4y(y>0).E的方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2).∵y=,∴y'=,∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2).由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.∵点P在这两条切线上,∴2(y1-1)=tx1,2(y2-1)=tx2,即直线MN的方程为2(y-1)=tx,故直线2(y-1)=tx过定点C(0,1).2.(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.设P(x,y),∵A(-2,0),B(2,0),∴k1=,k2=,-又k1k2=-,∴-=-,∴=1(x≠±2),∴轨迹C的方程为=1(x≠±2).(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故△△ ,S=△△=S△PQO,当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×--; 当直线PQ的斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,Δ=144(k2+1)>0,--故|PQ|=|x1-x2|=-, 点O到直线PQ的距离d=,S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6---,故S的最大值为.3.(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).①设W(x0,y0),证明:<1;②求四边形QRST的面积的最小值.r,由于D在圆内,圆P与圆C内切,则|PC|=2-r,|PD|=r,|PC|+|PD|=2>|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b=-=1,E的方程为+y2=1.(2),垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,同理得|RT|=2,∴S QSRT=|QS|·|RT|=,当且仅当2k2+1=k2+2,即k=±1时等号成立.综上所述,当k=±1时,四边形QRST的面积取得最小值.4.(2018福建福州3月质检)设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.(1)求E的方程;(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.设点M(x,y),A(x1,y1),则Q(x1,0),因为2,所以2(x1-x,-y)=(0,-y1),所以---解得由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为+y2=1.(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).由得(1+4k2)x2+8kx=0.设B(x1,y1),P(x2,y2),因此x1=0,x2=-,|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=, 由-得3y2+2y-5+=0(-1≤y≤1),(*)依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,设f(x)=3x2+2x-5+(-1<x<1),因为函数f(x)的对称轴为x=-,要使函数f(x)的图象在(-1,1)与x轴有两个不同的交点, 则---整理得--即--所以解得k∈----,所以k的取值范围为----.命题角度2直线与圆锥曲线的位置关系高考真题体验·对方向1.(2018全国Ⅰ·19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;为坐标原点,证明:∠OMA=∠OMB.F(1,0),l的方程为x=1.由已知可得,点A的坐标为或-.所以AM的方程为y=-x+或y=x-.l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=--,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0.从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.2.(2018全国Ⅱ·19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.A,B且与C的准线相切的圆的方程.由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.(2018全国Ⅲ·20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差.A(x1,y1),B(x2,y2),则=1,=1.两式相减,并由--=k得·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P-,||=.于是||=-=--=2-.同理||=2-.所以||+||=4-(x1+x2)=3.故2||=||+||,则||,||,||成等差数列,设该数列的公差为d,则2|d|=|||-|||=|x1-x2|=-.②将m=代入①得k=-1.所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.4.(2017全国Ⅲ·20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB 为直径的圆.(1)证明:坐标原点O在圆M上;过点P(4,-2),求直线l与圆M的方程.A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为-=-1,所以OA⊥OB.故坐标原点O在圆M 上.(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-.5.(2017北京·18)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=-,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1),直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=-=-=-=--=0,所以y1+=2x1.故A为线段BM的中点.6.(2017天津·19)设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.设F的坐标为(-c,0).依题意,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=-,故D-.所以|AD|=1--.又因为△APD的面积为,故,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-3=0.新题演练提能·刷高分1.(2018河北唐山一模)已知椭圆Γ:=1(a>b>0)的左焦点为F,上顶点为A,长轴长为2,B为直线l:x=-3上的动点,M(m,0),AM⊥BM.当AB⊥l时,M与F重合.(1)求椭圆Γ的方程;BM交椭圆Γ于P,Q两点,若AP⊥AQ,求m的值.依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),=-1,由AF⊥BF,得k AF·k BF=-又b2+c2=6,解得c=2,b=.所以,椭圆Γ的方程为=1.(2)由(1)得A(0,),依题意,显然m≠0,所以=-,又AM⊥BM,所以k BM=,所以直线BM的方程为y=(x-m),设P(x1,y1),Q(x2,y2).-联立有(2+3m2)x2-6m3x+3m4-12=0,x1+x2=,x1x2=-.|PM|·|QM|=|(x1-m)(x2-m)|=|x1x2-m(x1+x2)+m2|=-=-,|AM|2=2+m2,由AP⊥AQ得,|AM|2=|PM|·|QM|,所以-=1,解得m=±1.2.(2018河南郑州一模)已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l的方程.解(1)C:x2+y2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心C为(-1,1).∵F,0,∴|CF|=-,解得p=6.∴抛物线的方程为y2=12x.(2)设直线l为x=my+t(t≠0),A(x1,y1),B(x2,y2).联立可得y2-12my-12t=0.∴y1+y2=12m,y1y2=-12t.∵OA⊥OB,∴x1x2+y1y2=0,即(m2+1)y1y2+mt(y1+y2)+t2=0.整理可得t2-12t=0,∵t≠0,∴t=12.∴直线l的方程为x=my+12,故直线l过定点P(12,0).∴当CN⊥l时,即动点M经过圆心C(-1,1)时到动直线l的距离取得最大值.=-,∴m=,k MP=k CP=---此时直线l的方程为x=y+12,即为13x-y-156=0.3.(2018甘肃第一次诊断性考试)椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且∠APF2=∠BPF2,求直线AB 的方程.由题意可得|PF2|==3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,所以椭圆E的方程为=1.(2)易知点P的坐标为(2,3).因为∠APF2=∠BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由--可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,∴x1+2=-.同理,直线PB的方程为y-3=-k(x-2),可得x2+2=---,∴x1+x2=-,x1-x2=-,k AB=--------,∴满足条件的直线AB的方程为y+1=(x-1),即为x-2y-3=0.命题角度3圆锥曲线的最值、范围问题高考真题体验·对方向1.(2017山东·21)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程.(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T,求∠SOT的最大值并求取得最大值时直线l的斜率.由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程-得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-.所以|AB|=|x1-x2|=.由题意可知圆M的半径r为r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立方程得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t>1,∈(0,1),因此--=--≥1,当且仅当,即t=2时等号成立,此时k1=±,所以sin ,因此.所以∠SOT最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为k1=±.2.(2016全国Ⅱ·20)已知椭圆E:=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;2|AM|=|AN|时,求k的取值范围.设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×.(2)由题意t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=-得x1=-,故|AM|=|x1+.由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.t>3等价于-----<0,即--<0.由此得--或--解得<k<2.因此k的取值范围是(,2).3.(2016全国Ⅰ·20)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为:=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由-得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=-,所以|MN|=|x1-x2|=.过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2-=4.故四边形MPNQ的面积S=|MN||PQ|=12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8.新题演练提能·刷高分1.(2018江西南昌一模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.依题意F,当直线AB的斜率不存在时,|y1y2|=-p2=-4,p=2.当直线AB的斜率存在时,设AB:y=k-,由-化简得y2-y-p2=0.由y1y2=-4,得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),B,则E(-1,t).又由y1y2=-4,可得A-.因为k EF=-,AD⊥EF,所以k AD=,故直线AD:y+-.由---化简得y2-2ty-8-=0,所以y1+y0=2t,y1y0=-8-.所以|AD|=·|y1-y0|=-.设点B到直线AD的距离为d,则d=---.所以S△ABD=|AD|·d=≥16,当且仅当t4=16,即t=±2.当t=2时,直线AD的方程为x-y-3=0,当t=-2时,直线AD的方程为x+y-3=0.2.(2018山东济南一模)在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B 两点.(1)若直线OA,OB的斜率之积为-,证明:直线l过定点;(2)若线段AB的中点M在曲线C2:y=4-x2(-22)上,求的最大值.A(x1,y1),B(x2,y2),由题意可知直线l的斜率存在,设直线l的方程为y=kx+m,由得x2-4kx-4m=0, Δ=16(k2+m)>0,x1+x2=4k,x1x2=-4m,k OA·k OB==-,由已知:k OA·k OB=-,所以m=1,所以直线l的方程为y=kx+1,所以直线l过定点(0,1).M(x0,y0),则x0==2k,y0=kx0+m=2k2+m,将M(x0,y0)代入C2:y=4-x2(-2<x<2),得2k2+m=4-(2k)2,∴m=4-3k2.∵-2<x0<2,∴-2<2k<2,∴-<k<.∵Δ=16(k2+m)=16(k2+4-3k2)=32(2-k2)>0,∴-<k<,故k的取值范围是k∈(-.|AB|=-,将m=4-3k2代入,得|AB|=4-≤4-=6当且仅当k2+1=2-k2,即k=±时取等号,所以|AB|的最大值为63.(2018山东青岛一模)已知O为坐标原点,点A,B在椭圆C:+y2=1上,点E-在圆D:x2+y2=r2(r>0)上,AB的中点为Q,满足O,E,Q三点共线.(1)求直线AB的斜率;(2)若直线AB与圆D相交于M,N两点,记△OAB的面积为S1,△OMN的面积为S2,求S=S1+S2的最大值.设A(x1,y1),B(x2,y2),AB的中点Q(x0,y0).∵点A,B在椭圆C上,∴相减得-+(y1-y2)(y1+y2)=0.∴k AB=-=-.-∵x0=,y0=,∴k AB=-.∵E-,∴k OE=-.∵O,E,Q三点共线,∴k OQ=k OE=-,∴k AB=-=1.(2)∵点E-在圆D上,∴r2=-.∴圆D的方程为x2+y2=.设直线AB的方程:y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0得m2<3.x1+x2=-,x1x2=-,则|AB|=--.设O到直线AB的距离为d,d=,∴|MN|=2-=2-.∴S=S1+S2=|AB|·d+|MN|·d=-×2-|m|--=--,∴当m2=<3时,即m=±时,S max=.4.(2018广东珠海3月质检)已知抛物线C1:y2=2px(p>0),圆C2:x2+y2=4,直线l:y=kx+b与抛物线C1相切于点M,与圆C2相切于点N.(1)若直线l的斜率k=1,求直线l和抛物线C1的方程;F为抛物线C1的焦点,设△FMN,△FON的面积分别为S1,S2,若S1=λS2,求λ的取值范围.由题设知l:x-y+b=0,且b>0,由l与C2相切知,C2(0,0)到l的距离d==2,得b=2,∴l:x-y+2=0.将l与C1的方程联立消x得y2-2py+4p=0,其Δ=4p2-16p=0得p=4∴C1:y2=8x.综上,l:x-y+20,C1:y2=8(2)不妨设k>0,根据对称性,k>0得到的结论与k<0得到的结论相同.此时b>0,又知p>0,设M(x1,y1),N(x2,y2),由消y得k2x2+2(kb-p)x+b2=0,其Δ=4(kb-p)2-4k2b2=0得p=2kb,从而解得M,由l与C2切于点N知C2(0,0)到l:kx-y+b=0的距离d==2,得b=2,则p=4k,故M.由得N,故|MN|=M-x N|=.F到l:kx-y+b=0的距离d0==2k2+2,∴S1=S△FMN=|MN|d0=,又S2=S△FON=|OF|·|y N|=2k,∴λ=(k2+1)=2k2++3≥2+3.当且仅当2k2=即k=时取等号,与上同理可得,k<0时亦是同上结论.综上,λ的取值范围是[3+2,+∞).命题角度4圆锥曲线的定值、定点问题高考真题体验·对方向1.(2017全国Ⅰ·20)已知椭圆C:=1(a>b>0),四点P1(1,1),P2(0,1),P3-,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l 过定点.P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为---.则k 1+k 2=- --=-1,得t=2,不符合题设.从而可设l :y=kx+m (m ≠1). 将y=kx+m代入 +y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-,x 1x 2=-.而k 1+k 2= --= - - =-.由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0. 即(2k+1)· -+(m-1)·-=0.解得k=-. 当且仅当m>-1时,Δ>0,于是l :y=-x+m ,即y+1=-(x-2), 所以l 过定点(2,-1). 2.(2016北京·19)已知椭圆C :=1(a>b>0)的离心率为,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN|·|BM|为定值.解得a=2,b=1. 所以椭圆C 的方程为+y 2=1. (1)知,A (2,0),B (0,1).设P (x 0,y 0),则 +4=4.当x 0≠0时,直线PA 的方程为y= -(x-2).令x=0,得y M =--,从而|BM|=|1-y M |=-.直线PB的方程为y=-x+1.令y=0,得x N=--,从而|AN|=|2-x N|=-.所以|AN|·|BM|=--=----=----=4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.3.(2015全国Ⅱ·20)已知椭圆C:=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.由题意有-=1,解得a2=8,b2=4.所以C的方程为=1.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入=1,得(2k2+1)x2+4kbx+2b2-8=0.故x M=-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.新题演练提能·刷高分1.(2018福建厦门第一次质检)设O为坐标原点,椭圆C:=1(a>b>0)的左焦点为F,离心率为.直线l:y=kx+m(m>0)与C交于A,B两点,AF的中点为M,|OM|+|MF|=5.(1)求椭圆C的方程;(2)设点P(0,1),=-4,求证:直线l过定点,并求出定点的坐标.F1,则OM为△AFF1的中位线.∴OM=AF1,MF=AF,∴|OM|+|MF|==a=5,∵e=,∴c=2,∴b=∴椭圆C的方程为=1.A(x1,y1),B(x2,y2),联立消去y,整理得(1+5k2)x2+10mkx+5m2-25=0.∴Δ>0,x1+x2=-,x1x2=-,∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=--=-.∵P(0,1),=-4,∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4,∴--+5=0,整理得3m2-m-10=0,解得m=2或m=-(舍去).∴直线l过定点(0,2).2.(2018安徽合肥第二次质检)已知点A(1,0)和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.(1)求动点B的轨迹方程;(2)已知点P(2,0),Q(2,-1),经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.(1)解如图,设以线段AB为直径的圆的圆心为C,取A'(-1,0).依题意,圆C内切于圆O,设切点为D,则O,C,D三点共线,∵O为AA'的中点,C为AB中点,∴A'B=2OC.∴|BA'|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA'|=2,∴动点B的轨迹是以A,A'为焦点,长轴长为4的椭圆,设其方程为=1(a>b>0), 则2a=4,2c=2,∴a=2,c=1,∴b2=a2-c2=3,∴动点B的轨迹方程为=1.当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆=1相切,与题意不符.②当直线l的斜率存在时,设直线l的方程为y+1=k(x-2).由-消去y整理得(4k2+3)x2-(16k2+8k)x+16k2+16k-8=0.∵直线l与椭圆交于M,N两点,∴Δ=(16k2+8k)2-4(4k2+3)(16k2+16k-8)>0,解得k<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=-,∴k PM+k PN=--------=2k---=2k----=2k---=2k----=2k+3-2k=3(定值).3.(2018北京丰台期末)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=-1的距离相等,记点P的轨迹为C.(1)求C的方程;(2)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C 相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.因为动点P到点F(1,0)的距离和它到直线x=-1的距离相等,所以动点P的轨迹是以点F(1,0)为焦点,直线x=-1为准线的抛物线.设C的方程为y2=2px,则=1,即p=2.所以C的轨迹方程为y2=4x.(2)设A,m,则B+2,0,所以直线AB 的斜率为k= -=-.设与AB 平行,且与抛物线C 相切的直线为y=-x+b ,由-得my 2+8y-8b=0, 由Δ=64+32mb=0得b=-,所以y D =-,所以点D,-.当,即m ≠±2时,直线AD 的方程为y-m=-x-,整理得y=-(x-1),所以直线AD过定点(1,0).当,即m=±2时,直线AD 的方程为x=1,过定点(1,0).综上所述,直线AD 过定点(1,0).4.(2018四川德阳二诊)已知长度为3 的线段AB 的两个端点A ,B 分别在x 轴和y 轴上运动,动点P 满足=2 ,设动点P 的轨迹为曲线C. (1)求曲线C 的方程;(2)过点(4,0)且斜率不为零的直线l 与曲线C 交于M ,N 两点,在x 轴上是否存在定点T ,使得直线MT 与NT 的斜率之积为常数.若存在,求出定点T 的坐标以及此常数;若不存在,请说明理由. 设P (x ,y ),A (m ,0),B (0,n ),由于=2 ,所以(x ,y-n )=2(m-x ,-y )=(2m-2x ,-2y ),即 - - - 所以又|AB|=3 ,所以m 2+n 2=18,从而+9y 2=18. 即曲线C的方程为=1. (2)由题意设直线l 的方程为:x=my+4,M (x 1,y 1),N (x 2,y 2), 由得(m 2+4)y 2+8my+8=0, 所以--故x 1+x 2=m (y 1+y 2)+8= , x 1x 2=m 2y 1y 2+4m (y 1+y 2)+16= - ,假设存在定点T (t ,0),使得直线MT 与NT 的斜率之积为常数,则k MT ·k NT =- -=.---当t2-8=0,且t-4≠0时,k MT·k NT为常数,解得t=±2.显然当t=2时,常数为;当t=-2时,常数为-,所以存在两个定点T1(2,0),T2(-2,0),使得直线MT与NT的斜率之积为常数,当定点为T1(2,0)时,常数为;当定点为T2(-2,0)时,常数为-.命题角度5圆锥曲线的探究、存在性问题高考真题体验·对方向1.(2015全国Ⅰ·20)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点. (1)当k=0时,分别求C在点M和N处的切线方程;轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2), 即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=--=-.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.2.(2015全国Ⅱ·20)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C 有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M=-,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由-得,即x P=.将点的坐标代入l的方程得b=-,因此x M=-.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×-,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.3.(2014山东·21)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A 的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF 为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,①证明直线AE过定点,并求出定点坐标;②△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.由题意知F,设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+-,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)①由(1)知F(1,0).设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1.由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0, 由题意Δ==0,得b=-.设E(x E,y E),则y E=-,x E=.当≠4时,k AE=--=---,可得直线AE的方程为y-y0=-(x-x0),由=4x0,整理可得y=-(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).②由①知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=-.设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.所以点B到直线AE的距离为d=-==4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.新题演练提能·刷高分1.(2018山西太原一模)已知椭圆C:=1(a>b>0)的左顶点为A,右焦点为F2(2,0),点B(2,-在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.依题意,c=2.∵点B(2,-)在C上,∴=1.∵a2=b2+c2,∴a2=8,b2=4,∴椭圆方程为=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),则F(-x1,-y1),联立消去y化简得(1+2k2)x2-8=0,解得x1=,y1=.∵A(-2,0),∴AE所在直线方程为y=·(x+2),∴M0,,同理可得N0,-,=-x0,,=-x0,-,由=0,得-4=0.∴x0=2或x0=-2.∴存在点P,使得无论非零实数k怎么变化,总有∠MPN为直角,点P坐标为(2,0)或(-2,0).2.(2018山东菏泽一模)已知抛物线E的顶点为平面直角坐标系xOy的坐标原点O,焦点为圆F:x2+y2-4x+3=0的圆心F.经过点F的直线l交抛物线E于A,D两点,交圆F于B,C两点,A,B 在第一象限,C,D在第四象限.(1)求抛物线E的方程;(2)是否存在直线l使2|BC|是|AB|与|CD|的等差中项?若存在,求直线l的方程;若不存在,请说明理由.∵圆F的方程为(x-2)2+y2=1,∴圆心F的坐标为(2,0),半径r=1.根据题意设抛物线E的方程为y2=2px(p>0),∴=2,解得p=4.∴抛物线E的方程为y2=8x.(2)∵2|BC|是|AB|与|CD|的等差中项,|BC|=2r,∴|AB|+|CD|=4|BC|=4×2r=8.∴|AD|=|AB|+|BC|+|CD|=10r=10.讨论:若l垂直于x轴,则l的方程为x=2,代入y2=8x,解得y=±4.此时|AD|=8,不满足题意; 若l不垂直于x轴,则设l的斜率为k(k≠0),此时l的方程为y=k(x-2),由-得k2x2-(4k2+8)x+4k2=0.设A(x1,y1),B(x2,y2),则x1+x2=.∵拋物线E的准线方程为x=-2,∴|AD|=|AF|+|DF|=(x1+2)+(x2+2)=x1+x2+4.∴+4=10,解得k=±2.当k=±2时,k2x2-(4k2+8)x+4k2=0化为x2-6x+4=0.∵(-6)2-4×1×4>0,∴x2-6x+4=0有两个不相等的实数根.∴k=±2满足题意.∴存在满足要求的直线l:2x-y-4=0或2x+y-4=0.3.(2018山西晋城一模)已知直线l1是抛物线C:x2=2py(p>0)的准线,直线l2:3x-4y-6=0,且l2与抛物线C没有公共点,动点P在抛物线C上,点P到直线l1和l2的距离之和的最小值等于2.(1)求抛物线C的方程;(2)点M在直线l1上运动,过点M作抛物线C的两条切线,切点分别为P1,P2,在平面内是否存在定点N,使得MN⊥P1P2恒成立?若存在,请求出定点N的坐标,若不存在,请说明理由.解(1)作PA,PB分别垂直l1和l2,垂足为A,B,抛物线C的焦点为F0,,由抛物线定义知|PA|=|PF|,所以d1+d2=|PA|+|PB|=|PF|+|PB|,易知d1+d2的最小值即为点F到直线l2的距离,故d=--=2,∴p=2,所以抛物线C的方程为x2=4y.(2)由(1)知直线l1的方程为y=-1,当点M在特殊位置(0,-1)时,易知两个切点P1,P2关于y轴对称,故要使得MN⊥P1P2,点N必须在y轴上.故设M(m,-1),N(0,n),P1x1,,P2x2,,抛物线C的方程为y=x2,求导得y'=x,所以切线MP1的斜率k1=x1,直线MP1的方程为y-x1(x-x1),又点M在直线MP1上,所以-1-x1(m-x1),整理得-2mx1-4=0,同理可得-2mx2-4=0,故x1和x2是一元二次方程x2-2mx-4=0的两根,由韦达定理得-=x2-x1,·(-m,n+1)=(x2-x1)[-4m+(n+1)(x2+x1)]=(x2-x1)[-4m+2m(n+1)]=m(x2-x1)(n-1),可见n=1时,=0恒成立,所以存在定点N(0,1),使得MN⊥P1P2恒成立.4.(2018河北衡水中学七调)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P为该双曲线上异于顶点的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,且点A,C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得||+||=?若存在,求出点P的坐标;若不存在,请说明理由.由题意知,椭圆离心率e=,即a=c,又2a+2c=4(+1),所以a=2,c=2,所以b2=a2-c2=4,所以椭圆的标准方程为=1.所以椭圆的焦点坐标为(±2,0).又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为=1.(2)设P(x0,y0)(x0≠±2),则,因为点P在双曲线=1上,所以=1.-设A(x1,y1),B(x2,y2),直线PF1的方程为y=k(x+2),所以直线PF2的方程为y=(x-2),联立得(2k2+1)x2+8k2x+8k2-8=0,所以x1+x2=-,x1·x2=-,所以|AB|=----.同理可得|CD|=.由题知||+||=|·||·cos θ(θ=∠F1PF2), 即cos θ=.因为=||||cos θ,即(-2-x0)(2-x0)+(-y0)(-y0)=-,又因为=4,所以2(-4)=-----,所以=8,=4.即存在满足题意的点P,且点P的坐标为(±2±2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)5,0F为右焦点的双曲线C 的离心率5e =(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为21).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
(6分)6.如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.(6分)7.设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)(6分)8.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.(6分)9.设F 1,F 2是椭圆14922=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则三角形∆PF 1F 2的面积等于______________.(3分)10.在平面直角坐标系XOY 中,给定两点M (-1,2)和N (1,4),点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标为___________________。
(3分) 11.若正方形ABCD 的一条边在直线172-=x y 上,另外两个顶点在抛物线2x y =上.则该正方形面积的最小值为 .(3分)12.已知0C :122=+y x 和1C :)0(12222>>=+b a by a x 。
试问:当且仅当a ,b 满足什么条件时,对1C 任意一点P ,均存在以P 为顶点、与0C 外切、与1C 内接的平行四边形?并证明你的结论。
(4分)13. 设曲线C 1:1222=+y ax (a 为正常数)与C 2:y 2=2(x+m)在x 轴上方公有一个公共点P 。
(1)实数m 的取值范围(用a 表示);(2)O 为原点,若C 1与x 轴的负半轴交于点A ,当0<a<21时,试求⊿OAP 的面积的最大值(用a 表示)。
(5分)14.已知点)2,0(A 和抛物线42+=x y 上两点C B ,使得BC AB ⊥,求点C 的纵坐标的取值范围.(4分)15.一张纸上画有半径为R 的圆O 和圆内一定点A ,且OA =a . 拆叠纸片,使圆周上某一点A / 刚好与A 点重合,这样的每一种拆法,都留下一条直线折痕,当A /取遍圆周上所有点时,求所有折痕所在直线上点的集合.(6分) 16.(04,14)在平面直角坐标系xoy 中,给定三点4(0,),(1,0),(1,0)3A B C -,点P 到直线BC 的距离是该点到直线AB ,AC 距离的等比中项。
(Ⅰ)求点P 的轨迹方程;(Ⅱ)若直线L 经过ABC ∆的内心(设为D ),且与P 点的轨迹恰好有3个公共点,求L 的斜率k 的取值范围。
(5分) 17.过抛物线2x y =上的一点A (1,1)作抛物线的切线,分别交x 轴于D ,交y 轴于B.点C 在抛物线上,点E 在线段AC 上,满足1λ=EC AE ;点F 在线段BC 上,满足2λ=FCBF,且121=+λλ,线段CD 与EF 交于点P.当点C 在抛物线上移动时,求点P 的轨迹方程.(6分)18.参数方程练习题(13分)1.直线12+=x y 的参数方程是( )。
A.⎩⎨⎧+==1222t y t x B. ⎩⎨⎧+=-=1412t y t x C. ⎩⎨⎧-=-=121t y t x D. ⎩⎨⎧+==1sin 2sin θθy x 2.方程⎪⎩⎪⎨⎧=+=21y t t x 表示的曲线是( )。
A.一条直线 B.两条射线 C.一条线段 D.抛物线的一部分3.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( )。
A.042=+-y xB. 042=-+y xC. 042=+-y x ]3,2[∈xD. 042=-+y x ]3,2[∈x 4.直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是( )。
A.43-≤k B. 43-≥k C. R k ∈ D. R k ∈但0≠k5.圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x ,直线的方程为⎩⎨⎧-=-=1612t y t x ,则直线与圆的位置关系是( )。
A.过圆心B.相交而不过圆心C.相切D.相离6.参数方程⎪⎩⎪⎨⎧-==1112t t y t x (t 为参数)所表示的曲线是( )。
A B C D 7.+-==θθsin 1cos x ;如果曲线C 与直线+x 有公共点,那么实数的取值范围为 。
8.(2011广东)已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩和⎪⎩⎪⎨⎧==ty tx 245(t R ∈),它们的交点坐标为 。
9.已知x 、y 满足4)2()1(22=++-y x ,求y x S -=3的最大值和最小值。
答案:1. 解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B 本题主要考察抛物线的定义及几何性质,属容易题x y x y 0 xy 0 x y2.(Ⅰ)解:因为直线:l 202m x my --=经过22(1,0)F m -,所以2212m m -=,得22m =,又因为1m >,所以2m =,故直线l 的方程为2202x -=。
(Ⅱ)解:设1122(,),(,)A x y B x y 。
由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x得222104m y my ++-= 则由2228(1)804m m m ∆=--=-+>,知28m <,且有212121,282m m y y y y +=-=-。
由于12(,0),(,0),F c F c -,故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1121(,),(,),3333x y x y G h 2221212()()99x x y y GH --=+设M 是GH 的中点,则1212(,)66x x y y M ++,由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)所以21082m -<即24m <又因为1m >且0∆>所以12m <<。
所以m 的取值范围是(1,2)。
3.【解析】(Ⅰ)由题意知,椭圆离心率为ca=2,得2a c =,又22a c +=4(21),所以可解得22a =2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=。
4.5.(1)设点P (x ,y ),则:F (2,0)、B (3,0)、A (-3,0)。
由422=-PB PF ,得2222(2)[(3)]4,x y x y -+--+= 化简得92x =。
故所求点P 的轨迹为直线92x =。
(2)将31,221==x x 分别代入椭圆方程,以及0,021<>y y 得:M (2,53)、N (13,209-) 直线MTA 方程为:0352303y x -+=+-,即113y x =+,直线NTB 方程为:032010393y x --=---,即5562y x =-。
联立方程组,解得:7103x y =⎧⎪⎨=⎪⎩,所以点T 的坐标为10(7,)3。
(3)点T 的坐标为(9,)m 直线MTA 方程为:03093y x m -+=-+,即(3)12m y x =+,直线NTB 方程为:03093y x m --=--,即(3)6my x =-。
分别与椭圆15922=+y x 联立方程组,同时考虑到123,3x x ≠-≠, 解得:2223(80)40(,)8080m m M m m -++、2223(20)20(,)2020m mN m m --++。