2017-2018学年高中数学 复习课(二)统计教学案 苏教版必修3
高中数学第2章统计2.3总体特征数的估计2.3.1平均数及其估计教学案苏教版必修3(2021学年)
2017-2018学年高中数学第2章统计 2.3 总体特征数的估计 2.3.1 平均数及其估计教学案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第2章统计 2.3 总体特征数的估计 2.3.1 平均数及其估计教学案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第2章统计2.3 总体特征数的估计 2.3.1 平均数及其估计教学案苏教版必修3的全部内容。
2.3.1 平均数及其估计预习课本P65~68,思考并完成1.什么叫一组数据的平均数?2.平均数有哪些计算方法?错误!1.平均数的概念一组数据的总和除以数据的个数所得的商就是这组数据的平均数(或均值),一般记为:错误!=错误!.[点睛](1)平均数反映了一组数据的集中趋势,它是一组数据的“重心”,是度量一组数据波动大小的基准.(2)用样本平均数可估计总体平均数.(3)用平均数可以比较两组数据的总体情况,如成绩、产量等.2.平均数的计算(1)定义法:已知x1,x2,x3,…,x n为某样本的n个数据,则这n个数据的平均数为错误!=\f(x1+x2+x3+…+x n,n)。
(2)利用平均数性质:如果x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,…,mxn +a的平均数是m错误!+a.(3)加减常数法:数据x1,x2,…,xn都比较大或比较小,且x1,x2,…,xn在固定常数a 附近波动,将原数据变化为x1±a,x2±a,…,x n±a,新数据的平均数为错误!′,则所求原数据的平均数为错误!′±a。
2017-2018学年高中数学 第2章 统计 2.2 总体分布的估计教学案 苏教版必修3
2.2 总体分布的估计某制造商为2013年全运会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下40.03 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96问题1:上述20个数据中最大值与最小值分别是多少,它们相差多少? 提示:最大值为40.03,最小值为39.95,其差为0.08.问题2:将上述数据分组统计,分组情况为[39.95,39.97),[39.97,39.99),[39.99,40.01),[40.01,40.03],求各组个数.提示:各组数据的个数为2,4,10,4. 问题3:试求出各组数据所占的比例? 提示:分别为0.10,0.20,0.50,0.20.问题4:能否用一个直观图来表示问题2中各组数据的分布情况? 提示:可以.1.频率分布表(1)定义:当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.(2)绘制的步骤:①求全距,决定组数和组距,组距=全距组数.②分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间. ③登记频数,计算频率,列出频率分布表. 2.频率分布直方图(1)定义:我们用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图. (2)绘制步骤: ①先制作频率分布表.②建立直角坐标系:把横轴分成若干段,每一段对应一个组的组距,并标上一些关键点. ③画矩形:在横轴上,以连结相邻两点的线段为底,以纵轴上频率组距为高作矩形,这样得一系列矩形,就构成了频率分布直方图.3.频率分布折线图(1)定义:把频率分布直方图中各相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图.(2)总体分布密度曲线:频率折线图的优点是它反映了数据的变化趋势,如果将样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线.1.在频率分布表中,除最后一个区间是闭区间,其他区间均为左闭右开区间,这样做的目的是为了不重不漏,避免丢失样本数据.2.在频率分布直方图中,各个小矩形的面积之和为1.3.频率分布直方图直观地显示了数据分布信息,从而为分析估计总体提供了依据. 4.频率分布折线图反映了数据的变化趋势,可用来对数据进行估计和预测.[例1] 从某校参加 2016年全国高中数学联赛预赛的600名同学中,等可能抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,依次写出在①、②、③处的数值; (2)补全在区间[70,140]上的频率分布直方图;(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?[思路点拨] 根据频率分布表作出频率分布直方图. [精解详析] (1)50 0.04 0.10. (2)如图:(3)成绩不低于110分的同学能参加决赛的频率为0.08+0.04+0.02=0.14,所以估计该校能参加决赛的人数大约为600×0.14=84. [一点通] 1.在列频率分布表时,全距、组距、组数有如下关系: (1)若全距组距为整数,则全距组距=组数.(2)若全距组距不为整数,则全距组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.1. 从全校参加科技知识竞赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高的比是1∶3∶6∶4∶2,最右边一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)列出频率分布表.解:(1)由于各组的组距相等,所以各组的频率与各小长方形的高成正比且各组频率的和等于1,那么各组的频率分别为116,316,616,416,216.设该样本容量为n,则6n=216,所以样本容量为n=48.49;(3)求样本数据不足0的频率.解:(1)频率分布表如下:(2)频率分布直方图如图所示:(3)样本数据不足0的频率为7+11+15+40200=0.365.[例2] (12分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,绘制出频率分布直方图(如图所示),第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少? [思路点拨] (1)利用频率等于对应小长方形面积来确定;(2)满足条件的频率之和即为达标率.[精解详析] (1)由题中可知第二小组[100,110)对应的频率组距为0.008,而组距为10, 故频率为0.008×10=0.08,分)设样本容量为为n ,则12n=0.08,∴n =分)(2)根据频率分布直方图,次数在110以上共有四组. 估计该校全体高一学生的达标率为:1-0.04-0.08=分)[一点通] 1.频率分布直方图的性质:(1)因为小矩形的面积=组距×频率/组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数/相应的频率=样本容量.2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.3.观察新生婴儿的体重(单位:g),其频率分布直方图如下图所示,则新生婴儿体重在[2 700,3 000)内的频率为________.解析:由图可知当新生婴儿体重在[2 700,3 000),而组距为300,所以频率为0.001×300=0.3.答案:0.34.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是________.解析:依题意,设第2小组的频率为2x ,则有6x =1-(0.037+0.013)×5,得2x =0.25,即第2小组的频率为0.25,因此报考飞行员的学生人数是120.25=48.答案:485.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地居民调查了10 000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人做进一步调查,则在[2.5,3](小时)时间段内应抽出的人数是________.解析:抽出的100人中平均每天看电视的时间在[2.5,3](小时)时间内的频率是0.5×0.5=0.25,所以这10 000人中平均每天看电视的时间在[2.5,3](小时)时间内的人数是10 000×0.25=2 500,抽样比是10010 000=1100,则在[2.5,3](小时)时间段内应抽出的人数是2 500×1100=25.答案:251.频率分布表和频率分布直方图都是用来描述样本数据情况的,是相同数据的两种不同的表达方式.2.频率分布表在数量表示上比较确切,但不够直观、形象,用它来分析数据分布的总体趋势不太方便,而频率分布直方图能够表示大量数据,非常直观、形象地表明分布的规律,使我们能够看到在分布表中看不清楚的数据模式.但是直方图会丢失一些信息,如原始数据不能在图中表示出来.课下能力提升(十一)一、填空题1.如图是容量为100的样本的频率分布直方图,试根据图形中的数据填空.(1)样本数据在范围[6,10)内的频率为________;(2)样本数据落在范围[10,14)内的频数为________.解析:(1)样本数据在[6,10)内频率为0.08×4=0.32.(2)在[10,14)内的频数为0.09×4×100=36.答案:(1)0.32 (2)362.为了调查某厂工人生产某种产品的能力,随机抽查了20名工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如下图,则这20名工人中一天生产该产品数量在[55,75)的人数是________.解析:由题意得,这20名工人中一天生产该产品数量在[55,75)的人数是20×[(0.040200人在一天,C,D四处数________.解析:设A 处的数据为x ,则C 处的数据为x -4, 则x +x -4+8+52+20+4=200,x =60, 则B 处数据为60200=0.3.答案:0.35.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________. 解析:设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,h =0.04.志愿者年龄在[25,35)的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.答案:0.04 440 二、解答题6.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106).已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是多少?解:产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则36n=0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.7.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.(1)求频率分布直方图中x 的值;(2)计算一年中空气质量为良和轻微污染的总天数. (77128, 31 825+2365+71 825+31 825+=73×5) 解:(1)由图可知+89 125)×50=1-1239 125×50,解得x =11918 250;219天.从这个水库中多个不同位置捕捞出100(如图所(1)求出各组相应的频率;(2)估计数据落在[1.15,1.30]中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中还有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.解:(1)由频率分布直方图和频率=组距×(频率组距)可得下表(2)0.30+0.15+0.02=中的概率约为0.47.(3)由分层抽样中每个个体被抽到的概率相同知:设水库中鱼的总条数为N ,则120N =6100,即N =2 000,故水库中鱼的总条数约为2 000条.第2课时 茎叶图2016年CBA 新赛季,山东队某队员在该赛季各场比赛的得分情况如下:15,21,20,19,23,26,25,20问题1:利用这些数据能否直接判断出该运动员发挥水平?提示:可以,但会存在偏差.问题2:能否利用频率分布直方图来分析这些数据?提示:由于样本数据较少,一般不用直方图.问题3:由于数据较少,可否有更快捷的作图方式来分析数据?提示:有.1.茎叶图的制作方法(1)画“茎”:“茎”表示两位数的十位数字,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,再画上竖线作为分界线.(2)添“叶”:“叶”画在分界线的另一侧表示两位数的个位数字,共茎的叶一般按从小到大(或从大到小)的顺序同行列出.2.茎叶图刻画数据的优缺点(1)茎叶图刻画数据的优点:①所有的信息都可以从茎叶图中得到.②茎叶图便于记录和表示.(2)茎叶图刻画数据的缺点:当样本数据很多时,茎叶图的效果就不是很好了.1.茎叶图画茎时可以画成纵向的,也可画成横向的.2.茎叶图表示数据时也可以表示三位数据,此时茎表示前两位,叶表示最后一位.3.茎叶图主要是针对样本数据不多或数据位数较少时,便于快速记录分析;样本数据较多或数据位数较多时,不方便使用.[例1] 某中学甲、乙两名同学最近几次的数学考试成绩情况如下:甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.[思路点拨] 确定茎与叶,作出茎叶图,并判断比较.[精解详析] 甲、乙两人数学成绩的茎叶图,如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,大多集中在80~100之间,中位数是98分;甲同学的得分情况除一个特殊得分外,也大致对称,多集中在70~90之间,中位数是88分,但分数分布相对于乙来说,趋向于低分阶段.因此,乙同学发挥比较稳定,总体得分情况比甲同学好.[一点通] 绘制茎叶图关键是分清茎和叶,一般地说数据是两位数的,十位上数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要合理的选择茎和叶.1.某次运动会甲、乙两名射击运动员射击成绩如下:(单位:环)甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1 用茎叶图表示甲、乙二人成绩.解:中间数字表示成绩的整环数,旁边数字表示小数点后的数字.2.某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示.(2)进行分析,得出什么结论?解:(1)如图:(2)电脑杂志上每个句子的字数集中在10~30之间,而报纸上每个句子的字数集中在20~40之间,可看出电脑杂志上每个句子的平均字数比报纸上的少,说明它作为科普读物需要通俗易懂、简明.[例2] (12分)为缓解车堵现象,解决车堵问题,北京市交通局调查了甲、乙两个交通站的车流量,在2016年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由.[思路点拨] 根据茎叶图中的数据分析并作出判断.[精解详析] (1)(4分) 乙交通站的车流量的中位数为36+372= (8分) (2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙. (12分)[一点通] 对于茎叶图要首先分清楚茎叶所表示的意义及叶的排放规律,它也直观地表3.本例中条件不变,试计算甲、乙两交通站的车流量在[10,40]之间的频率.4天,6天,4.从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下: 甲品种:271 273 280 285 285 287 292294 295 301 303 303 307 308 310 314319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312313 315 315 316 318 318 320 322 322324 327 329 331 333 336 337 343 356由以上数据设计了茎叶图如图所示根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①________________________________________________________________________;②________________________________________________________________________.解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大部分集中在312~337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于310等,通过分析可以得到答案.答案:①甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中②甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)茎叶图能够展示数据的分布情况,它的茎是指中间的一列数,叶是从茎的旁边生长出来的数.用茎叶图表示数据有两个最大优点:一是原始数据没有丢失,二是便于记录和表示.课下能力提升(十二)一、填空题1.在茎叶图中比40大的数据有________个.解析:由茎叶图中知比40大的有47、48、49,共3个.答案:32.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12、13、14、154.在如图所示的茎叶图中落在[20,40]上的频数为________.解析:由茎叶图中给出了12个数据,其中在[20,40]上有8个.答案:85.某中学高一(1)甲、乙两同学在高一学年度的考试成绩如下:从茎叶图中可得出________同学成绩比较好.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲二、解答题6.某中学高二(1)班甲、乙两名同学自上高中以来每次数学考试成绩情况如下(单位:分):甲的得分:81,75,91,86,89,71,65,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101;画出甲乙两人数学成绩的茎叶图,请根据茎叶图对两个人的成绩情况进行比较.解:甲、乙两人数学成绩的茎叶图如图所示:从这个茎叶图可以看出,乙同学的得分集中在98分附近,数据分布是大致对称的;甲同学的得分集中在86分附近,分数数据分布也是大致对称的,但较分散.所以乙同学发挥比较稳定,得分情况好于甲.7.50辆汽车经过某一段公路的时速记录如图所示:将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图以及频率分布折线图;(3)根据上述结果,估计汽车时速在哪组的几率最大?解:(1)由茎叶图知,数据最大值为33,最小值为13,分为7组,组距为3,则频率分布表为:(2)频率分布直方图及频率分布折线图如图所示:(3)汽车时速在[21.5,24.5)内的几率最大,为0.22.8.茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T ←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。
高中数学第2章统计2.4线性回归方程教学案苏教版必修3(1)(2021学年)
2017-2018学年高中数学第2章统计 2.4线性回归方程教学案苏教版必修3(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第2章统计 2.4线性回归方程教学案苏教版必修3(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第2章统计 2.4 线性回归方程教学案苏教版必修3(1)的全部内容。
2.4 错误!预习课本P74~75,思考并完成以1.变量间有哪些常见关系?2.什么叫散点图?怎样作出散点图?3。
什么叫线性回归方程?错误!1.变量间的常见关系(1)函数关系:变量之间的关系可以用函数表示,是一种确定性关系.(2)相关关系:变量之间有一定的联系,但不能完全用函数来表达.[点睛]函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系,如试验田的施肥量x与水稻的产量y.当自变量x每取一确定值时,因变量y的取值带有一定的随机性,即还受其他环境因素的影响.2。
散点图(1)概念:将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,用来表示两个变量的一组数据的图形叫做散点图.(2)作法:建立平面直角坐标系,用横坐标表示一个变量,用纵坐标表示另一个变量,将给出的数据所表示的点在坐标系内描出,即可得到散点图.[点睛]对于散点图要注意以下几点.①若所有的样本点都落在某一函数曲线上,则变量间具有函数关系.②若所有的样本点都落在某一函数曲线附近,则变量间就具有相关关系.③若散点图中的点的分布没有什么规律,则这两变量之间不具有相关关系,它们之间是相互独立的.3.线性相关关系能用直线错误!=bx+a近似表示的相关关系叫线性相关关系.4.线性回归方程(1)概念:设有n对观察数据如下:当a,b使Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bxn-a)2取得最小值时,就称方程错误!=bx+a为拟合这n对数据的线性回归方程,该方程所表示的直线称为回归直线.(2)用回归直线进行数据拟合的一般步骤①作出散点图,判断散点是否在一条直线附近.②如果散点在一条直线附近,用公式错误!求出a,b,并写出线性回归方程.错误!1.下列各组变量是相关关系的是________.(1)电压U与电流I;(2)圆面积S与半径R;(3)粮食产量与施肥量;(4)广告费支出与商品销售额.解析:(1)(2)中两个变量间是函数关系,(3)(5)中两个变量之间有关系,但不能用函数表达,是相关关系.答案:(3)(4)2.5名学生的化学和生物成绩如下表所示:判断化学和生物成绩之间是否具有相关关系________(填“具有”“不具有").答案:具有[典例]在下列各个量与量的关系中:①正方体的表面积与棱长之间的关系;②某同学的数学成绩和物理成绩之间的关系;③家庭的收入与支出之间的关系;④某户家庭用电量与水费之间的关系.其中是相关关系的为________________.[解析] ①正方体的表面积与棱长之间的关系是确定的函数关系;④某户家庭用电量与水费之间无任何关系.②③中,都是非确定的关系,但自变量取值一定时,因变量的取值带有一定的随机性.[答案]②③判断两个变量是否具有相关关系,主要有两种方法:一是根据相关关系的定义进行判断,看这两个变量是否具有不确定性.二是利用散点图,看散点图中的点是否都落在某一函数曲线附近.[活学活用]关于人体的脂肪含量(百分比)与年龄关系的研究中,得到如下一组数据:年龄2327394145495053脂肪9。
高中数学 第二章 统计教学案2苏教版必修3
教学目标:
1、掌握统计的基础知识;
2、能利用相关知识 解决简单的问题。
教学重难点:统计的应用
教学过程
集体备课部分(学生活动部分)
自学评价:
1.用系统抽样的方法从某校400名学生中抽取容量为20的一个样本,将400名学生随机编为1﹣400号,按编号顺序平均分为20各组(1﹣20号,21﹣40号,…381﹣4 00号),若第1组中用抽签的方法确定抽出的号码为12,则第14组抽取的号码为.
2. 某地区为了解岁的 老人的日平均睡眠时间(单位:),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:
序号
分组
(睡眠时间)
组中值()
频数
(人数)
频率()
1
6
2
10
3
20
4
10
5
4
在上述统计数据的分析中这50位老人的睡眠平均值为
互动探究:
例1.
已知等差数列{an}的公差为d,若a1,a2,a3,a4,a5的方差为8,则d的值为.
(1)估计这所学校高三年级全体 男生身高在180cm以上(含180cm)的人数 ;
(2)若从身高属于第六组和第八组的所有男生中随机抽取 两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.
个性备课部分
当堂检测
某校甲、乙两个班级各有5名编号为1,2 ,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生
1号
2号Βιβλιοθήκη 3号4号5号甲班
6
7
7
8
7
乙班
6
7
6
7
9
则以上 两组数据的方差中较小的一个为★.
苏教版高中高二数学必修3《统计》教案及教学反思
苏教版高中高二数学必修3《统计》教案及教学反思一、教学目标通过本节课的学习和思考,让学生了解并掌握以下知识:1.了解概率统计是什么,以及它在我们日常生活中的应用;2.掌握二项分布的概念、性质和应用,能够利用二项分布进行实际问题的解决;3.掌握泊松分布的基本知识和特点,能够根据实际情况选择不同的分布模型;4.能够利用中心极限定理解决实际问题和对数据进行分析。
二、教学内容1. 概率统计(1)概念概率统计是概率论和统计学的组合,它主要研究随机现象的规律和规律的应用问题。
(2)应用在我们的生活和工作中,概率统计有着非常重要的应用。
例如:天气预报、金融风险分析、质量控制、医学诊断等等。
2. 二项分布(1)概念二项分布是把n个相同的独立的伯努利试验重复进行,且每次试验只有两个结果时的概率分布。
(2)性质二项分布具有以下性质:•试验次数n确定时,二项分布仅由成功概率p确定;•二项分布是离散分布,其取值只能是非负整数;•二项分布是对称的当且仅当p=0.5.(3)应用二项分布的应用非常广泛,例如:球类比赛的胜负、某种产品的合格率、股票价格上涨或下跌的概率等。
3. 泊松分布(1)概念泊松分布是一种离散分布,它适用于表示单位时间或空间内某事件发生次数的概率分布。
(2)特点泊松分布的特点:•事件出现次数的概率与时间长度成正比,与时间长度无关;•事件的发生是独立的,且在一段时间内发生的次数是有限的;•很多的小概率事件会造成一个大概率事件。
(3)应用泊松分布广泛应用于解决人群中非病因的死亡率、单位时间内某机器失效的次数、电话交换机接到电话的数量等问题。
4. 中心极限定理(1)概念中心极限定理是数理统计学的基本定理,它表明在适当的条件下,大量独立随机变量之和的分布趋近于正态分布。
(2)应用中心极限定理常被应用于测量样本的均值和方差,通过对均值和方差的估计抽取出随机变量,从而推断总体的均值和方差。
三、教学方法本节课的教学采用多媒体辅助教学的方式,老师通过讲授理论知识,观看视频,模拟实验等多种形式将重点难点知识点讲透彻,深入学生的思想中。
2017-2018学年苏教版高中数学必修3全册课导学案含答案
2017-2018学年数学苏教版必修3全册导学案目录1.1算法的含义导学案练习1.2.1顺序结构导学案练习1.2.2选择结构导学案练习1.2.3循环结构导学案练习1.3基本算法语句导学案练习1.4 算法案例(2)导学案练习1.4算法案例(1)导学案练习1.4算法案例(3)导学案练习2.1抽样方法(一)导学案练习2.1抽样方法(三)导学案练习2.1抽样方法(二)导学案练习2.2总体分布的估计(一)导学案练习2.2总体分布的估计(二)导学案练习2.3总体特征数的估计(一)导学案练习2.3总体特征数的估计(二)导学案练习2.4线性回归方程(一)导学案练习 2.4线性回归方程(二)导学案练习 3.1.1 随机现象导学案练习3.1.2 随机事件的概率导学案练习 3.2 古典概型(一)导学案练习 3.2 古典概型(二)导学案练习3.3 几何概型(一)导学案练习3.3 几何概型(二)导学案练习3.4 互斥事件及其发生的概率(一)导学案练习3.4 互斥事件及其发生的概率(二)导学案练习第一章算法初步1.1算法的含义【新知导读】1.什么是算法?试从日常生活中找3个例子,描述它们的算法.2.我们从小学到初中再到高中所学过的许多数学公式是算法吗?【范例点睛】例1.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤.从下列选项中选出较好的一种算法A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播.B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播.D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶.思路点拨:从四个答案所给出的步骤是否合理、最少需要花费多少时间入手,进行判断.易错辨析:选择A很大程度上是受人们的通常的习惯所影响,即起床后首先应该洗脸刷牙再做其他的事情.方法点评:作为完成过程的算法来说,要讲究一个优劣之分,也即完成这个过程用时最少的是一个好算法,所以.应选C.例2.一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(不用砝码)将假银元找出来吗?思路点拨:最容易想到的解决这个问题的一种方法是:把9枚银元按顺序排成一列,先称前2枚,若不平衡,则可找出假银元;若平衡,则2枚银元是真的,再依次与剩下的银元比较,就能找出假银元.这种算法最少要称1次,最多要称7次,是不是还有更好的办法,使得称量次数少一些?我们可以采用下面的方法:1.把银元分成3组,每组3枚.2.先将两组分别放在天平的两边.如果天平不平衡,那么假银元就在轻的那一组;如果天平平衡,则假银元就在未称的第3组里.3.取出含假银元的那一组,从中任取两枚银元放在天平的两边,如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元.方法点评:经分析发现,这种算法只需称量2次,这种做法要明显好于前一种做法.从以上两个问题中可以看出,同一个问题可能存在着多种算法,其中一些可能要比另一些好.在实际问题和算法理论中,找出好的算法是一项重要的工作. 【课外链接】1.设计一个算法,求840与1764的最大公因数.思路点拨:该算法是在对自然数进行素因数分解的基础上设计的.解答这个问题需要按以下思路进行.首先,对两个数分别进行素因数分解:75328403⨯⨯⨯=, 2227321764⨯⨯=.其次,确定两数的公共素因数:7,3,2.接着,确定公共素因数的指数:对于公共素因数22,2是1764的因数,32是840的因数,因此22是这两个数的公因数,这样就确定了公共素因数2的指数为2.同样,可以确定出公因数3和7的指数均为1.这样,就确定了840与1764的最大公因数为847322=⨯⨯【随堂演练】1.算法是指 ( ) A .为解决问题而编写的计算机程序 B.为解决问题而采取的方法和步骤 C .为解决问题而需要采用的计算机程序 C.为解决问题而采用的计算方法 2.看下面的四段话,其中不是解决问题的算法的是( ) (A )从济南到北京旅游,先坐火车,再坐飞机抵达(B )解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1 (C )方程x 2-1=0有两个实根(D )求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为153.方程⎩⎨⎧=+=+1043732y x y x 的解集是_______________4.买一个茶杯1.5元,现要写出计算买n 个茶杯所需要的钱数的一个算法,则这个算法中必须要用到的一个表达式为_______________ 5.设计算法,判断97是否为素数.6.设计算法,求1356和2400的最小公倍数.7.有两个瓶子A 和B ,分别盛放醋和酱油,要求将它们互换(即A 瓶原来盛醋,现改盛酱油;B 瓶则相反)8.设计算法,将三个数按从大到小的顺序排列.9.有13个球看上去一模一样,但其中一个质量不同(它比其他12个略重),现在有一个天平(没有砝码),要求给出一种操作方法,把这个球找出来.参考答案 1.1算法的含义【新知导读】1.对一类问题的机械的、统一的求解方法称为算法 2.是 【随堂演练】1.B 2.C 3.⎩⎨⎧==12y x 4.1.5n5.S1 对两个数分别进行素因数分解:1356=22×3×113 2400=25×3×52S2 确定两数的所有素因数:2,3,5,113S3 确定素因数的指数:2的指数为5,3的指数为1,5的指数为2, 113的指数为1 S4 输出结果[1356,2400]=25×3×52×113. 6. S1 引入第三个空瓶即C 瓶; S2 将A 瓶中的醋装入C 瓶中; S3 将B 瓶中的酱油装入A 瓶中; S4 将C 瓶中的醋装入B 瓶中; S5 交换结束。
高中数学 第2章 统计章末复习课学案 苏教版必修3-苏教版高一必修3数学学案
第2章统计章末复习课网络构建核心归纳1.关于抽样方法(1)用随机数表法抽样时,对个体所编号码位数要相同,当问题所给位数不同时,以位数较多的为准,在位数较少的数前面添“0”凑齐位数.(2)两种抽样方法的异同点类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相同从总体中逐个抽取总体中的个体数较少分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.关于用样本估计总体(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)平均数反映了样本数据的平均水平,而标准差反映了样本数据的波动程度.要点一抽样方法的运用1.抽样方法有:简单随机抽样、分层抽样.2.两种抽样方法比较【例1】 某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.解析 由从高一年级学生中抽出20人知抽样比为20400=120,所以从高二年级学生中抽取的人数为360×120=18,所以从高三年级学生中抽取的人数为55-20-18=17. 答案 17【训练1】 某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A.660 B.720 C.780D.800解析 由已知条件,抽样比为13780=160,从而35600+780+n =160,解得n =720.答案 B要点二 用样本的频率分布估计总体分布此类问题通常要对样本数据进行列表、作图处理.这类问题采用的图表主要有:条形图、直方图、频率折线图、扇形图等.它们的主要优点是直观,能够清楚表示总体的分布走势. 【例2】 某制造商生产一批直径为40 mm 的乒乓球,现随机抽样检查20个,测得每个球的直径(单位:mm ,保留两位小数)如下:40.03 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.0140.02 39.98 40.00 39.99 40.00 39.96 (1)完成下面的频率分布表,并画出频率分布直方图;分组 频数 频率 频率组距 [39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为 10 000个,试根据抽样检查结果估计这批产品的合格个数. 解 (1)频率分布表和频率分布直方图如图分组 频数 频率 频率组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03]4 0.20 10 合计201.0050(2)∵抽样的20个产品中在[39.98,40.02]范围内有17个, ∴产品合格率为1720×100%=85%.∴10 000×85%=8 500(个).故根据抽样检查结果,可以估计这批产品的合格数为8 500个.【训练2】 有一个容量为100的样本,数据的分组及各组的频数如下: [12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18; [21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图;(3)估计小于30的数据约占多大百分比. 解 (1)样本的频率分布表如下:分组 频数 频率 累积频率 [12.5,15.5) 6 0.06 0.06 [15.5,18.5) 16 0.16 0.22 [18.5,21.5) 18 0.18 0.40 [21.5,24.5) 22 0.22 0.62 [24.5,27.5) 20 0.20 0.82 [27.5,30.5) 10 0.10 0.92 [30.5,33.5] 8 0.08 1.00 合 计1001.00(2)频率分布直方图如图.(3)小于30的数据约占90%.要点三 用样本的数字特征估计总体的数字特征为了从整体上更好地把握总体的规律,我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体相应的数字特征作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是把样本数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,处于中间位置的数,如果数据的个数是偶数,中间两个数据的平均数;平均数就是所有样本数据的平均值,用x -表示;标准差是反映样本数据分散程度大小的最常用统计量,其计算公式是s =1n[x 1-x-2+x 2-x-2+…+x n -x-2].【例3】 汽车行业是碳排放量比较大的行业之一,若规定CO 2排放量超过130 g/km 的M 1型新车将受到惩罚(视为排放量超标),某检测单位对甲、乙两品牌M 1型新车分别抽取5辆进行CO 2排放量检测,记录如下(单位:g/km):经测算发现,乙品牌车CO 2排放量的平均值为乙=120 g/km. 若乙品牌车比甲品牌车的CO 2排放量的稳定性要好,求x 的取值范围. 解 ∵x -甲=80+110+120+140+1505=120,∴x -甲=x -乙=120,由x -乙=100+120+x +y +1605=120,得x +y =220.5s 2甲=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2=3 000, 5s 2乙=(100-120)2+(120-120)2+(x -120)2+(y -120)2+(160-120)2=2 000+(x -120)2+(y -120)2.由乙品牌车比甲品牌车的CO 2排放量的稳定性好,得5s 2乙<5s 2甲,即2 000+(x -120)2+(y -120)2<3 000.又∵x +y =220,∴x 2-220x +11 700<0, 解得90<x <130,即x 的取值范围为{x |90<x <130}.【训练3】 某校高一(1),(2)班各有49名学生,两班在一次数学测验中的成绩统计如下表所示:(1)高一(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算是上游了”.(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议. 解 (1)由中位数可知85分排在25名之后,从名次上讲,85分不能算是上游.(2)高一(1)班成绩的中位数是87分,说明高于87分的人占一半,而平均数为79分,标准差又很大,说明低分也很多,两极分化严重,建议加强对学习困难者的帮助.高一(2)班成绩的中位数和平均数都是79分,标准差又小,说明学生成绩之间的差别较小,学习很差的学生少,但学习优异的学生也很少,建议采取措施提高优秀率.。
2017-2018学年高中数学第2章统计2.4线性回归方程教学案苏教版必修3
2.4 线性回归方程房地产涨价一直是受关注的民生问题之一,以下是某房地产开发商在2013年前两季度销售的新楼盘中的销售价格y(单位:万元)与房屋面积x(单位:m2)的数据.问题1:在平面直角坐标系中,以x为横坐标,y为纵坐标作出表示以上数据的点.提示:问题2:从上图中发现x,y有何关系?是函数关系吗?提示:从图中发现x逐渐增大时,y逐渐增大,但有个别情况.不是函数关系.1.变量间的常见关系(1)函数关系:变量之间的关系可以用函数表示,是一种确定性关系.(2)相关关系:变量之间有一定的联系,但不能完全用函数来表达.2.散点图从一个统计数表中,为了更清楚地看出变量x与变量y是否有相关关系,常将x的取值作为横坐标,将y的相应取值作为纵坐标,将表中数据构成的数对所表示的点在坐标系内标出,我们称这样的图形叫做散点图.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:问题1:判断气温与杯数是否有相关关系? 提示:作散点图可知具有相关关系.问题2:若某天的气温是-5℃,能否根据这些数据预测小卖部卖出热茶的大体杯数? 提示:可以.根据散点图作出一条直线,求出直线方程后可预测.1.线性相关关系:能用直线y ^=bx +a 近似表示的相关关系. 2.线性回归方程: 设有n 对观察数据如下:当a ,b 使Q =(y 1-bx 122n n a )2取得最小值时,就称方程y ^=bx+a 为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线.3.用回归直线进行数据拟合的一般步骤: (1)作出散点图,判断散点是否在一条直线附近. (2)如果散点在一条直线附近,用公式⎩⎪⎨⎪⎧b =∑i =1nx i y i -n x y ∑i =1nx 2i-n x2=∑i =1nx i -xy i -y∑i =1nx i -x2a =y -b x求出a ,b ,并写出线性回归方程.1.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系,如试验田的施肥量x 与水稻的产量y .当自变量x 每取一确定值时,因变量y 的取值带有一定的随机性,即还受其他环境因素的影响.2.用最小平方法求回归直线的方程的前提是先判断所给数据具有线性相关关系(可用散点图判断).否则求出的线性回归方程是无意义的.[例1] 关于人体的脂肪含量(百分比)与年龄关系的研究中,得到如下一组数据:(1)将上表中的数据制成散点图;(2)你能从散点图中发现年龄与脂肪含量近似成什么关系吗?(3)若成线性相关关系,请你画一条直线近似地表示这种线性关系.[思路点拨] 作出散点图判断相关关系.[精解详析] (1)以年龄作为x轴,脂肪含量为y轴,可得相应散点图,如图所示.(2)从散点图可以发现,年龄与脂肪含量之间具有线性相关关系,且是正相关的.(3)画出的一条直线如上图.[一点通]判断变量间有无线性相关关系,一种常用的简便可行的方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量是线性相关的.1.根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________.(填“是”或“否”)解析:从散点图看,形状呈团状,无任何规律,故不具有线性相关关系.答案:否2.5名学生的数学成绩和化学成绩如下表:解:以x 轴表示数学成绩,y 轴表示化学成绩,可得相应的散点图如右图所示.由散点图可知,两者之间具有线性相关关系且是正相关.[例2] (12分)假设关于某设备的使用年限x 和所支出的维修费用y (单位:万元)有如下的统计资料:若由资料知y (1)线性回归方程y ^=bx +a 的系数a ,b ; (2)使用年限为10年时,试估计维修费用是多少.[思路点拨] 根据公式求b ,代入a =y -b x 求a 并判断.[精解详析] (1)∵x =4,y =5,∑i =15x 2i =90,∑i =15x i y i =112.3,∴b =∑i =15x i y i -5x y∑i =15x 2i -5x 2=112.3-5×4×590-5×42=1.23. (6分)a =y -b x =5-1.23×4=0.08.(8分)(2)线性回归方程是y ^=1.23x +0.08,当x =10时,y ^=1.23×10+0.08=12.38, 所以估计使用10年时维修费用是12.38万元. (12分)[一点通]1.求线性回归方程的一般步骤是:(1)画出散点图,判断是否具有相关关系.(2)计算x ,y ,∑i =1nx 2i ,∑i =1nx i y i .(3)代入公式计算b 、a 的值. (4)写出线性回归方程.2.利用回归直线可以预测,若回归直线方程为y ^=bx +a ,则x =x 0处的估计值为y ^=bx 0+a .(注意:估计值并不一定是真实值.)3.本例条件不变,试探究:(1)所求的回归直线必过(x ,y )点吗?(2)若设备的使用年限x 每增加一年,则所支出的维修费用y 如何变化? 解:(1)由线性回归方程 y ^=1.23x +0.08,又x =4,y =5,验证知必过(x ,y )点.(2)由线性回归方程知,使用年限每增加一年维修费用就提高1.23万元.4.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y ^=bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.解析:x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a ,∴a =60. ∴y =-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68. 答案:685.以下是江苏省某城镇收集到的新房屋的销售价格y 和房屋的大小x 的数据:(1)(2)求回归方程;(3)估算一下96 m 2的房价. 解:(1)散点图如图所示.(2)n =5,∑i =15x i =545,x =109,∑i =15y i =116,y =23.2,∑i =15x 2i =60 975,∑i =15x i y i =12 952.b =5i =1x i y i -5x y5i =1x 2i -5x2=12 952-5×109×23.260 975-5×1092=154785≈0.196 2,a =y -b x =23.2-154785×109≈1.816 6. ∴回归直线方程为y ^=0.196 2x +1.816 6. (3)当x=96时,y ^≈20.7.因此,96 m 2的新房屋大约为20.7万元.用线性回归方程估计总体的一般步骤:(1)作出散点图,判断散点是否在一条直线附近;(2)如果散点在一条直线附近,用公式求出a 、b ,并写出线性回归方程; (3)根据线性回归方程对总体进行估计.课下能力提升(十四)一、填空题1.已知x ,y 之间的一组数据为:则回归直线y ^=bx +a 必过点________.解析:x =32,y =4,∴y ^=bx +a 必过点(32,4).答案:(32,4)2.对某台机器购置后的运营年限x (x =1,2,3…)与当年利润y 的统计分析知具备线性相关关系,回归方程为y =10.47-1.3x ,估计该台机器使用________年最合算.解析:只要预计利润不为负数,使用该机器就算合算,即y ≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算.答案:83.已知某工厂在2013年每月产品的总成本y (万元)与月产量x (万件)之间有线性相关关系,回归方程为y ^=1.215x +0.974,若月产量增加4万件时,则估计成本增加________万元.解析:由y ^1=1.215x 1+0.974, y ^2=1.215(x 1+4)+0.974,得y ^2-y ^1=1.215×4=4.86(万元). 答案:4.864.下表是广告费用与销售额之间的一组数据:销售额y (千元)与广告费用x (千元)之间有线性相关关系,回归方程为y ^=2.3x +a (a 为常数),现要使销售额达到6万元,估计广告费用约为________千元.解析:x =7,y =41.6,则a =y -2.3x =41.6-2.3×7=25.5. 当y =6万元=60千元时,60=2.3x +25.5,解得x =15(千元). 答案:155.下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x (单位:吨)与相应的生产能耗y (单位:×103kJ)几组对应的数据:根据上表提供的数据,求出y 关于x 的线性回归方程y =0.7x +0.35,那么表中t 的值为________.解析:由y =0.7x +0.35,得2.5+t +4+4.54=0.7×3+4+5+64+0.35,故11+t4=3.5,即t =3. 答案:3 二、解答题6.一台机器由于使用时间较长,生产的零件有一些会有缺损,按不同转速生产出来的零件有缺损的统计数据如下表所示.(1)(2)如果y 与x 线性相关,求出回归直线方程. 解:(1)如下图.(2)由(1)知y 和x 线性相关.设回归直线方程为y ^=bx +a . 由题意,得x =12.5,y =8.25,4i =1x 2i =660,4i =1x i y i =438.所以b =438-4×12.5×8.25660-4×12.52≈0.73,a ≈8.25-0.73×12.5≈-0.88, 所以y ^=0.73x -0.88.7.某企业的某种产品产量与单位成本数据如下:(1)(2)指出产量每增加1 000件时,单位成本下降多少?(3)假定产量为6 000件时,单位成本是多少?单位成本为70元时,产量应为多少件? 解:(1)设x 表示每月产量(单位:千件),y 表示单位成本(单位:元),作散点图.由散点图可知y 与x 间具有线性相关关系, 设线性回归方程为:y ^=bx +a .∵b =∑i =16x i y i -6x y∑i =16x 2i -6x 2≈-1.82,a =y -b x ≈77.37,∴线性回归方程为y ^=-1.82x +77.37.(2)由线性回归方程知,产量每增加1 000件,单位成本下降1.82元. (3)当x =6时,y =-1.82×6+77.37=66.45, 故当产量为6 000件时,单位成本为66.45元. 当y =70时,x ≈4.049.故当单位成本为70元时,产量约为4 049件.8.一台机器由于使用时间较长,但还可以用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表为抽样试验结果.(1)(2)如果y 与x 有线性相关关系,求线性回归方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?解:(1)画出散点图,如图.(2)x =12.5,y =8.25,∑i =14x i y i =438,∑i =14x 2i =660,所以b =∑i =14x i y i -4x y∑i =14x 2i -4x 2=438-4×12.5×8.25660-4×12.52≈0.728 6, a =y -b x ≈8.25-0.728 6×12.5=-0.857 5.所以线性回归方程为y ^=0.728 6x -0.857 5. (3)要使y ^≤10,则0.728 6x -0.857 5≤10,x ≤14.901 9.所以机器的转速应控制在15 rad/s 以下.。
2017-2018学年高一数学苏教版必修三教学案:第2章 2.2 总体分布的估计
2.在频率分布直方图中,各个小矩形的面积之和为 1. 3.频率分布直方图直观地显示了数据分布信息,从而为分析估计总体提供了依据. 4.频率分布折线图反映了数据的变化趋势,可用来对数据进行估计和预测.
(2)频率分布直方图如图所示:
7+11+15+40 (3)样本数据不足 0 的频率为 200 =0.365.
[例 2] (12 分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测 试,将所得数据整理后,绘制出频率分布直方图(如图所示),第二小组频数为 12.
(1)第二小组的频率是多少?样本容量是多少? (2)若次数在 110 以上(含 110 次)为达标,试估计该校全体高一学生的达标率是多少? [思路点拨] (1)利用频率等于对应小长方形面积来确定;(2)满足条件的频率之和即为达 标率.
频率 [精解详析] (1)由题中可知第二小组[100,110)对应的组距为 0.008,而组距为 10, 故频率为 0.008×10=0.08,(4 分)
12 设样本容量为为 n,则 n =0.08,∴n=150.(8 分) (2)根据频率分布直方图,次数在 110 以上共有四组. 估计该校全体高一学生的达标率为:
2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律
能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超
过 100,按照数据的多少常分为 5~12 组,一般样本容量越大,所分组数越多.
1. 从全校参加科技知识竞赛的学生试卷中,抽取一个样
2
2
则第六组的频率为________. 15
高中数学必修三《统计复习课》优秀教学设计
第二章:统计复习课学习目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差.二.知识梳理回顾本章知识共分为三个单元:1.随机抽样:三种方法------简单随机抽样、系统抽样、分层抽样2.用样本估计总体:两种方法------用样本的频率a:分布估计总体分布、用样本的数字特征估计总体的数字特征.①用样本的频率分布估计总体分布:频率分布直方图的特征.画茎叶图的步骤.②用样本的数字特征估计总体的数字特征:利用频率分布直方图估计众数、中位数、平均数.b:标准差,方差.3.变量间的相关关系:变量之间的相关关系:确定性的函数关系.带有随机性的变量间的相关关系.两个变量的线性相关:a、散点图的概念.b、正相关与负相关的概念.c、线性相关关系.d、线性回归方程. ※ 典型例题1.在一次有奖明信片的100 000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用_______抽样法.3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.5.有一个样本容量为50的样本数据分布如下,[)5.15,5.12 3;[)5.18,5.15 8;[)5.21,5.18 9;[)5.24,5.21 11;[)5.27,5.2410;[)5.30,5.27 6;[)5.33,5.30 3.估计小于30的数据大约占有( ) A.9400 B.600 C.8800 D.1200※ 动手试试1.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A .甲班10名学生的成绩比乙班10名学生的成绩整齐B .乙班10名学生的成绩比甲班10名学生的成绩整齐C .甲、乙两班10名学生的成绩一样整齐D .不能比较甲、乙两班10名学生成绩的整齐程度2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ). A .3.5 B .-3 C .3 D .-0.53.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数不变,方差改变D .平均数改变,方差不变三、总结提升本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
高中数学 第二章 统计教案 苏教版必修3
第2章统计§2.1抽样方法2.1.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.过程与方法通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题、解决问题的能力.3.情感态度与价值观通过身边事例研究,体会抽样调查在生活中的应用.●重点难点重点:掌握简单随机抽样的特点及常见的两种方法(抽签法、随机数表法).难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性.通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才是比较科学的,结论才是可靠的,通过学生的实际操作,逐步引导学生总结出随机抽样的概念,体会随机抽样在处理现实问题中的必要性和重要性,让学生在概念中找关键词使之加深对概念的理解,并归纳实施步骤从而强化重点.教学时充分让学生自己分析、判断,自主学习、合作交流.采用讨论发现法教学,通过抓阉等游戏尽可能的让学生动手操作,体验并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性,从而化解难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,在教法上,建议教师采用“启发—探究—讨论”式教学模式,以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.运用由浅入深的问题形式,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力,增长才干.由于本节课内容实例多,信息容量大,文字多,采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,从而大大提高学生的学习兴趣.●教学流程创设问题情境,引出问题:要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?⇒引导学生结合初中学习过的抽样知识,观察、比较、分析,得出简单随机抽样的概念.⇒通过引导学生回答所提问题理解简单随机抽样的条件、特征及讨论由简单抽样能够解决的问题.⇒通过例1及其变式训练,使学生理解简单随机抽样的概念与解决问题的方法.⇒通过例2及其变式训练,使学生掌握利用抽签法设计抽样方案问题的解题策略.⇒通过例3及其变式训练阐明随机数表法的原理,使学生明确用随机数表法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体把握这两种抽样设计的优缺点及应用范围.课标解读1.理解简单随机抽样的概念.(重点) 2.学会两种简单随机抽样的方法.(重点) 3.能合理地从总体中抽取样本.(难点)简单随机抽样【问题导思】要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?【提示】从中抽取一定数量的罐头作为检验的样本.一般地,从个体数为N的总体中逐个不放回地抽取n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.抽签法和随机数表法都是简单随机抽样.抽签法【问题导思】假设在你们班选派3个人参加学校的某项活动,为了体现选派的公平性,用什么方法确定具体人选?【提示】抽签法.抽签法的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.随机数表法【问题导思】当总体的个数较多时,怎么抽取质量比较高的样本?【提示】随机数表法随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.简单随机抽样的判断下列抽取样本的方式是否属于简单随机抽样,并说明理由.(1)从全班50名同学中,选出3名三好学生.(2)从无限多个个体中,选出100个个体作样本.(3)从100件产品中选5件检验质量,抽取一件检验后放回,再抽一件,共抽五次.(4)从全班同学中选两名参观世博会,将全班同学的学号写在大小相同的纸片上,放入箱子里搅拌均匀后,一次取出两张,由纸片上的学号确定人选.【思路探究】根据简单随机抽样的特点逐一判断即可.【自主解答】(1)不是简单随机抽样,选三好学生时,不是每位学生被选上的机会都相等.(2)不是简单随机抽样,因为总体N无限,不符合简单随机抽样的定义.(3)不是简单随机抽样,因为是有放回抽样.(4)不是简单随机抽样,因为一次取了两张纸片,不是逐个抽取.1.简单随机抽样的特点是:(1)总体有限;(2)不放回抽取;(3)逐个抽取;(4)机会均等,不满足其中任何一条都不是简单随机抽样.2.判断一种抽样是不是简单随机抽样,评判的惟一标准就是其特征,尤其是总体有限容易被忽视,如本例中的(4),容易误判为简单随机抽样.判断下列抽取样本的方法是否是简单随机抽样:(1)从8台电脑中不放回地逐个随机抽取2台进行质量检验(假设8台电脑已经编号,对编号随机抽取).(2)某班50名同学,指定年龄最小的5个人参加某项活动;(3)从20个零件中一次性抽出3个进行质量检测.【解】(1)是简单随机抽样,简单随机抽样就是从有限个个体中逐个不放回地抽取个体构成样本.(2)不是简单随机抽样,因为每个个体被抽到的机会不是均等的.(3)不是简单随机抽样,因为不是逐个抽取的.抽签法的应用从某班46名学生中随机选出5名参加某项活动.请用抽签法设计抽样方案.【思路探究】按抽签法的步骤进行抽样.【自主解答】第一步,编号.一般用正整数1,2,3,…,46来给总体中所有的个体编号;第二步,写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步,均匀搅拌.把上述号签放在同一个容器内均匀搅拌;第四步,抽取.从容器中逐个连续地抽取5次,得到一个容量为5的样本.1.一个抽样能否用抽签法关键看两点:一是制签方便,二是易被搅匀.这就要求总体中个体数量不多.2.采用抽签法最重要的是保证每个个体等可能的被抽取,这就要求把号签搅匀.3.若个体中已有编号如考号、学号、标签号码等,可不必重新编号.从40件产品中抽取10件进行质量检验,写出抽取样本的步骤.【解】第一步将40件产品按1,2,…,40进行编号;第二步将1~40这40个号码写在形状、大小均相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步依次从箱中抽取10个号签;第五步将抽到的10个号签上的号码对应的产品取出,即得样本.随机数表法有一批机器,编号为1,2,3, (112)请用随机数表法抽取10台入样,写出抽样过程.【思路探究】各机器的编号位数不一致,需将编号进行调整.【自主解答】第一步将原来的编号调整为001,002,003, (112)第二步在随机数表中,任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读;第三步从数“3”开始,向右读,每次读三位,凡是不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步对应原来的编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.1.随机数表的构成与特点:随机数表是由0,1,2,…,9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通常根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.2.随机数表的产生方法并不唯一,如抽签法、抛掷骰子法、计算机生成法,编号时号码的位数一定要一致.读数时,读取的每个数的位数与编号的位数也要一致.3.使用随机数表法时,选取开始读的数是随机的,读数的方向也是随机的.因选取开始读的数不同,读数方向不同,所以抽取的样本号码可能不一致,但均符合抽样的公平性、等可能性.只要按随机数表法的步骤抽取,都是符合要求的、正确的.某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?【解】简单随机抽样分两种:抽签法和随机数表法.尽管此题总体中的个体数不算少,但依题意其操作过程却是等可能的.法一首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用抽签法,则做1 200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,得到一个容量为50的样本.法二首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用随机数表法,则在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取四位,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读.一直到取够50个为止.忽视抽样方法步骤出错某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.【错解】第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.【错因分析】设计方案时,没有按照抽签法的一般步骤进行方案设计,不符合简单随机抽样的特点.【防范措施】 1.设计方案时步骤要合理、正确.2.方案的设计要符合简单随机抽样的等可能性.3.正确掌握抽签法的步骤.【正解】第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.1.抽签法与随机数表法都要求被抽取样本的总体的个体数有限,都是从总体中逐个地进行抽取,都是不放回抽样.2.当总体中的个体数较多,样本容量较小时,抽签法将总体的编号“搅拌均匀”比较困难,因此用此种方法产生的样本代表性差的可能性很大,而随机数表法中每个个体被抽到的可能性相等,用这种方法产生的样本代表性较好.3.简单随机抽样每个个体入样的可能性都相等.1.简单随机抽样的常用方法有________和________.随机地选定随机数表读数,选定开始读取的数后,读数的方向可以是________.【解析】根据简单随机抽样的分类及随机数表法的操作步骤可知.【答案】抽签法随机数表法任意的2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是________.①要求总体的个数有限②从总体中逐个抽取③这是一种不放回抽样④每个个体被抽到的机会不一样,与先后顺序有关【解析】简单随机抽样除了具有特点①②③外,还具有等可能性,每个个体被抽到的机会相等,与先后顺序无关,故只有④不正确.【答案】④3.某校有教学班100个,每班50人,要求每班选派2人参加“学生代表大会”,在该问题中,样本容量是________.【解析】N=100×50=5 000,抽取比例250=1 25.∴n=5 000×125=200.【答案】2004.从20名学生中要抽取5名进行问卷调查,写出抽样的过程.【解】①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌;④依次从箱子中取出5个号签,按这5个号签上的号码抽取学生,即得样本.一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.(2013·苏州高一检测)采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.(2013·江西高考改编)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816657208026314070243699728019832049234493582003623486969387481 【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.(教师用书独具)中央电视台希望在春节联欢晚会播出一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把春节联欢晚会收视率调查表放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快反馈到我的电脑中,这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一个住户发一份是否在除夕那天晚上看中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案是否能够获得比较准确的收视率?为什么?【思路点拨】判断的标准是所有可能看电视的人群是否有相同的的机会被抽中.【规范解答】调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是上网而且登录该网址的人群,那些不能上网的人,或者不登录该网址的人就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种方案都有一定的片面性,不能得到比较准确的收视率.1936年,美国进行总统选举.竞选的是民主党的罗斯福和共和党的兰登,罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人中谁能当选,采用了大规模的模拟选举.他们以电话簿上的地址和俱乐部成员名单上的地址发出100万封信,收到回信20万封.在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力.他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统.这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊.试分析这次调查失败的原因.【解】统计不当的原因,其中之一是选取了不适当的样本作为统计调查的基础,如果抽样时使用了不适当的方法,往往得到错误的结论.失败的原因:①抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取.1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭受沉重打击.“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,“喝了富人的血”,但广大的美国人民从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.②样本容量相对太小也是导致估计出现偏差的一个原因,因为样本容量越大,估计才越准确,发出的信不少,但回收率太低.2.1.2 系统抽样(教师用书独具)●三维目标1.知识与技能(1)理解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感态度与价值观:(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,合作探讨、相互交流的能力,概括归纳的能力.●重点难点重点:系统抽样的定义及操作步骤;难点:系统抽样中的处理办法.(教师用书独具)●教学建议在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力.让学生体会学数学的成就感.通过师生的互动,理解系统抽样概念.●教学流程创设问题情境,引出问题:从500名学生中抽取50名学生调查对老师的意见除了用简单随机抽样外还有其他方法吗?⇒引导学生结合前面学习过的简单随机抽样的知识,观察、比较、分析,得出系统抽样的概念.⇒通过引导学生回答所提问题,理解系统抽样的应用条件、应用范围及由系统抽样能够解决的问题.⇒通过例1及其变式训练,使学生掌握系统抽样概念问题的解题方法.⇒通过例2及其变式训练,使学生掌握简单的系统抽样的方案设计问题的解题策略.⇒通过例3及其变式训练阐明需剔除个体的系统抽样的方法,使学生明确抽样方法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.。
【配套K12】2017_2018版高中数学第二章统计章末复习课学案苏教版必修3
第二章 统计学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据;2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体的数字特征;3.能利用散点图对两个变量是否相关进行初步判断,能用线性回归方程进行预测.知识点一 抽样方法1.当总体容量较小,样本容量也较小时,可采用__________________________. 2.当总体容量较大,样本容量较小时,可用______________________________. 3.当总体容量较大,样本容量也较大时,可用____________________________. 4.当总体由差异明显的几部分组成时,可用______________________________. 知识点二 用样本估计总体用样本频率分布估计总体频率分布时,通常要对给定的一组数据作频率____________与频率______________.当样本只有两组数据且样本容量比较小时,用________刻画数据比较方便. 知识点三 样本的数字特征样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括________、__________和____________;另一类是反映样本波动大小的,包括极差、__________及__________. 知识点四 变量间的相关关系1. 两个变量之间的相关关系的研究,通常先作变量的____________,根据散点图判断这两个变量最接近于哪种确定性关系(函数关系). 2.求回归方程的步骤:(1)先把数据制成表,从表中计算出x ,y ,∑ni =1x 2i ,∑ni =1x i y i . (2)计算a ,b .公式为⎩⎨⎧b =∑ni =1x i y i -n x y ∑ni =1x 2i-n x 2,a =y -b x .(3)写出回归方程y ^=bx +a.类型一 抽样方法的应用例1 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?反思与感悟三种抽样方法并非截然分开,有时你中有我,我中有你,它们都能保证个体被抽到的机会相等.跟踪训练1 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为________.类型二用样本的频率分布估计总体分布例2 有1个容量为100的样本,数据(均为整数)的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计小于30的数据约占多大百分比.反思与感悟借助图表,可以把抽样获得的庞杂数据变得直观,凸显其中的规律,便于信息的提取和交流.跟踪训练2 为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为________.类型三用样本的数字特征估计总体的数字特征例3 甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.反思与感悟 样本的数字特征就像盲人摸到的象的某一局部特征,只有把它们结合起来才能看到全貌.跟踪训练3 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩好?谁的各门功课发展较平衡?类型四 线性回归方程的应用例4某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程y ^=bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?(注:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x )反思与感悟 散点图经最小平方法量化为线性回归方程后,更便于操作(估计、预测),但得到的值仍是估计值.跟踪训练4 2017年元旦前夕,某市统计局统计了该市2016年10户家庭的年收入和年饮食支出的统计资料如下表:(1)如果已知y 与x 成线性相关关系,求线性回归方程; (2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑10i =1x i y i =117.7,∑10i =1x 2i =406)1.某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成等差数列,且共回收了1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份,则在D 单位抽取的问卷是________份. 2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为________________.3.随机抽取某学校甲、乙两班各10名同学的一模数学成绩,获得数学成绩的茎叶图如图,则根据茎叶图可估计一模数学平均成绩较高的班级是________.4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.1.应用抽样方法抽取样本时,应注意以下几点:(1)用随机数表法抽样时,对个体所编的号码位数要相等.当问题所给位数不相等时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.(2)用系统抽样法抽样时,如果总体容量N 能被样本容量n 整除,抽样间隔为k =Nn,如果总体容量N 不能被样本容量n 整除,先用简单随机抽样法剔除多余个体,抽样间隔为k =[N n ]([N n]表示取N n的整数部分).2.用样本的频率分布估计总体分布利用样本的频率分布表和频率分布直方图对总体情况作出估计,有时也利用频率分布折线图和茎叶图对总体情况作出估计.直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式,这样根据样本的频率分布,我们可以大致估计出总体的分布.但是,当总体的个体数较多时,所需抽样的样本容量也不能太小,随着样本容量的增加,频率分布折线图会越来越接近于一条光滑曲线,统计中称这条曲线为总体密度曲线,它能给我们提供更加精细的信息.在样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留原始信息,而且可以随时记录,这给数据的记录和表示都带来方便.3.用样本的数字特征估计总体的数字特征为了从整体上更好地把握总体的规律, 我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体的数字特征作出估计.平均数就是所有样本数据的平均值,用x表示;标准差是反映样本数据分散程度大小的最常用统计量,有时也用标准差的平方s2—方差来代替标准差,实质一样.4.线性回归方程的应用分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘法求出线性回归方程,并利用线性回归方程进行估计和预测.答案精析知识梳理知识点一1.抽签法 2.随机数表法 3.系统抽样法4.分层抽样法知识点二分布表分布直方图茎叶图知识点三众数中位数平均数方差标准差知识点四1.散点图题型探究例1 解用分层抽样抽取.∵20∶100=1∶5,∴105=2,705=14,205=4,即从副处级以上干部中抽取2人,一般干部中抽取14人,干事中抽取4人.∵副处级以上干部与干事人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部采用00,01,…,69编号,然后用随机数表法抽取14人.跟踪训练1 8解析分层抽样的原理是按照各部分所占的比例抽取样本,设从高二年级抽取的学生数为n,则3040=6n,得n=8.例2 解(1)样本的频率分布表如下:(2)频率分布直方图如图:(3)小于30的数据占0.06+0.16+0.18+0.22+0.20+0.10=0.92=92%. 跟踪训练2 54解析 [4.7,4.8)之间频率为0.32,[4.6,4.7)之间频率为1-0.62-0.05-0.11=1-0.78=0.22.∴a =(0.22+0.32)×100=54.例3 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同,又s 2甲>s 2乙, 所以乙机床加工零件的质量更稳定.跟踪训练3 解 甲的平均成绩为x 甲=74,乙的平均成绩为x 乙=73.所以甲的平均成绩好. 甲的方差是s 2甲=15[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是s 2乙=15×[72+(-13)2+(-3)2+72+22]=56.因为s 2甲>s 2乙,所以乙的各门功课发展较平衡. 例4 解 (1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b =0.7,∴a =1.05,∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时. 跟踪训练4 解 (1)依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑10i =1x i y i =117.7, ∑10i =1x 2i =406, ∴b =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈0.17, a =y -b x ≈0.81,∴y ^=0.17x +0.81.∴所求的线性回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81 =2.34(万元).可估计大多数年收入为9万元的家庭每年饮食支出约为2.34万元.当堂训练 1.60解析 由题意依次设在A ,B ,C ,D 四个单位回收的问卷数分别为a 1,a 2,a 3,a 4,则30a 2=1501 000,∴a 2=200,又a 1+a 2+a 3+a 4=1 000,即3a 2+a 4=1 000,∴a 4=400,设在D 单位抽取的问卷数为n ,则n 400=1501 000,解得n =60.2.y ^=12x +88解析 由已知得x =176,y =176,利用公式可得a ,b . 3.甲班解析 根据茎叶图可看出所有的数据,茎上是百位数和十位数,再利用求平均数的公式,求出成绩的平均数,由茎叶图可计算甲班10名同学的平均成绩是(129+112+115+101+104+108+95+97+82+77)÷10=1 020÷10=102,乙班10名同学的平均成绩是(121+124+117+103+103+105+91+88+89+76)÷10=1 017÷10=101.7.所以由此估计甲班的数学平均成绩大于乙班的数学平均成绩. 4.50解析 由频率分布直方图,得低于60分的频率为(0.01+0.005)×20=0.3. ∴该班学生人数n =150.3=50.。
2017-2018学年高中数学苏教版3教学案:复习课(二)统计含解析
复习课(二)统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3。
分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例] (1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为错误!=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B卷的有10人.(2)设应从高二年级抽取x名学生,则x50=310,∴x=15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20.[答案](1)10 (2)15 (3)200,20[类题通法](1)系统抽样中,易忽视抽取的样本数也就是分段的段数,当N n不是整数时,注意剔除.(2)分层抽样中,易忽视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为错误!=25。
2017-2018学年高中数学第2章统计2.1抽样方法教学案苏教版必修3
入门答辩——辨析问题解疑惑h新知自解——自读教材找关键V某年,国家农业部在湖南对由袁隆平院士培育种植的 定从108亩水稻中抽取出2亩进行验收,结果亩产超过 为人类的生存发展作出了巨大贡献.问题1:根据所学过的统计知识, 108亩超级水稻的亩产量作为考察对象应叫什么?提示:总体.■问题2:这108亩超级水稻中的每一亩水稻的亩产量作为考察对象叫什么? 提示:个体. 一 一 …问题3:从108亩水稻中抽取的2亩的亩产量作为验收的标准其含义是什么? 提示:样本. 问题4:抽取的水稻亩数含义是什么? 提示:样本容量.问题5:你有公平公正的简捷的抽取方法吗? 提示:有.1.简单随机抽样从个体数为N 的总体中逐个不放回地取出 n 个个体作为样本(n <N ),如果每个个体都有 相同的机会被取到,那么这样的抽样方法称为简单随机抽样.Z^kA2•两种常用的简单随机抽样抽签法和随机数表法是简单随机抽样的两种常用方法,其实施步骤如下:(1) 抽签法的实施步骤:① 将总体中的N 个个体编号;② 将这N 个号码写在形状、大小相同的号签上; ③ 将号签放在同一箱中,并搅拌均匀; ④ 从箱中每次抽出 1个号签,连续抽取 k 次; ⑤ 将总体中与抽到的号签的编号一致的k 个个体取出.(2) 随机数表法的实施步骤:①将总体中的个体编号(每个号码位数一致);2.1抽样方法108亩超级水稻进行产量验收, 决900公斤,又创造了新的世界纪录,自主学习 梳理主干7入门專静预习导引区② 在随机数表中任选一个数作为开始; ③ 从选定的数开始按一定的方向读下去,若得到的号码在编号中, 则取出;若得到的号码不在编号中或前面已经取出,则跳过^如此继续下去,直到取满为止;④ 根据选定的号码抽取样本.[归纳・升华・领悟]1 •简单随机抽样是一种最简单、最基本的抽样方法•我们使用的是不放回抽样,常用 的简单随机抽样方法有抽签法和随机数表法.2•抽签法的优点是简单易行,缺点是当总体的容量非常大时,不方便.3.随机数表法,当总体容量稍大时,比抽签法简便.4 •简单随机抽样每个个体被抽到的可能性都相等.突破竜点I高韦为标把握憩点考向[例1]下列抽取样本的方法中,属于简单随机抽样的是 _______________________①从无限多个个体中抽取 10个个体作为样本② 盒子里有25个零件,从中选出 5个零件进行质量检验,在抽样时,从中任意拿出一z 丄个零件进行检验后,再把它放回盒子里,直到抽检完5个零件为止③ 从某班50名学生的学号中随机逐个抽取5个学号作为样本[思路点拨]根据简单随机抽样的概念及特征去判断. [精解详析]选项 判断 原因分析① 否 总体中个体有无限多个,不符合“有限”的特征 ② 否 是有放回的抽样,不符合“不放回”的特征 ③是符合简单随机抽样的特征[答案]③[一点通]解决此类问题的关键是看给出的问题是否与简单随机抽样的概念及特征相 符,即①总体数量有限,②等可能性,③逐个抽取,④不放回抽样.课堂互动区简单随机抽样的判断总结规律I提炼技法 悅在学有所悟师生扶驴吏欣更曲1 •下列问题中,最适合用简单随机抽样方法抽样的是①某电影院有32排座位,每排有40个座位,座位号是1〜40,有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈②从10台电冰箱中抽出3台进行质量检查③某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本④某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田的平均产量解析:①的总体容量较大,用简单随机抽样比较麻烦;②的总体容量较小,用简单随机抽样比较方便;③由于学校各类人员对这一问题的看法可能差异很大,不宜用简单随机抽样;④总体容量较大,并且各类田地的产量差别很大,也不宜用简单随机抽样.答案:②2•下列抽样中是简单随机抽样的是 _________________ .①从100个号签中一次取出5个作为样本②某连队从200名党员官兵中,挑选出50名最优秀的官兵参加救灾工作③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签④从某班56名(30名男生,26名女生)学生中随机抽取2名男生,2名女生参加乒乓球混双比赛解析:①不是逐个抽取,所以不是简单随机抽样;②④不满足等可能抽样,所以不是简单随机抽样;③是简单随机抽样.答案:③抽签法的应用[例2]学校举办元旦晚会,需从每班选10名男生,8名女生参加合唱节目,某班有男生32人,女生28人,试用抽签法确定该班参加合唱的同学.[思路点拨]编号、制签、均匀搅拌、抽签、定样本.[精解详析]第一步,将32名男生从0到31编号.第二步,用相同的纸条做成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个容器中摇匀,不放回地逐个从中抽出10个号签.第四步,相应编号的男生参加合唱.第五步,运用相同的办法从28名女生中选出8人,则此8名女生参加合唱.[一点通]禾U用抽签法抽取样本时应注意以下问题:(1) 编号时,若已有编号可不必重新编号,另外,编号也有随机性.(2) 号签要求大小、形状完全相同.(3) 号签要搅拌均匀.(4)要逐一不放回抽取.3. ________________________________________ 下列抽样实验中,适合用抽签法的有.① 从某厂生产3 000件产品中抽取600件进行质量检验② 从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③ 从甲、乙两工厂生产的两箱 (每箱15件)产品中抽取6件进行质量检验 ④ 从某厂生产的3000件产品中抽取10件进行质量检验解析:①④中总体容量较大,不适合.③中甲、乙两厂生产的产品质量可能差异明显. -答案:②4. 要从某厂生产的 30台机器中随机抽取 3台进行测试.请用抽签法设计抽样方案. 解:第一步,将30台机器编号,号码是 01,02, (30)第二步,将30个号码分别写在形状、大小相同的30张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀. 第四步,从袋子中逐个抽取3个号签,并记录上面的号码.第五步,所得3个号码对应的3台机器就是要抽取的对象•[例3] (12分)国家七部委联合下发公告,禁止生产企业在面粉生产中添加增白剂.了检验某公司生产的 800袋面粉质量是否达标,现从 800袋面粉中抽取80袋进行检验•写出用随机数表法抽取样本的过程.[思路点拨] 将编号统一调整为三位数,再根据随机数表法的抽样步骤进行.[精解详析]第一步,将800袋面粉编号,号码为 001,002,…,亍旧泓臥 ①分)I第二步,在随机数表中,任选一个数作为开始,如选第 3行第6列的数之〔4分) /第三步,从选定的数 2开始向右读(读数的方向还可以向左、向下、位数227,由于227<799,说明号码227在总体内,将它取出;继续向右读,得到 665,由 于665<799,说明665在总体中,将它取出;按照这种方法继续向右读,依次下去,直到将 样本的80个号码全部取出为止.筑分)第四步,对照号码,把对应编号的面粉抽出,这样就得到一个容量为 80的样本.(12 分)[一点通]在利用随机数表法抽样的过程中注意: (1) 编号要求位数相同;(2)第一个数字的抽取是随机的;附机数表法的应用向上),得到一个三(3)读数的方向是任意的且事先定好的.305•本例中,若对抽取的80袋面粉检验后有78袋合格,那么这批面粉的合格率为多少?若从800袋中再任抽取一袋,其不合格的可能性是多少?其中任抽取一袋不合格的可能性为2.5%.6.总体由80个个体组成,利用随机数表法随机选取10个个体组成一个样本.解:按随机数表法的一般步骤解决问题. 第一步,将总体中的每个个体进行编号: 00,01, (79)第二步,从随机数表中任意一个位置起,向下(读数方向任意选取)读数,选取两位数字,满足编号范围的留下(重复的数值去掉),直至把10个编号选完; 第三步,找到10个编号对应的个体组成样本.[右法-规律-少结] ------------------------------------1.抽签法虽简单易行,但当总体的容量较大时,费时费力不方便, 若号签搅拌不均匀, 可能导致抽样的不公平.2. 随机数表法可有效避免号签搅拌不均匀的问题,尤其是样本总数较大时此法优于抽签法.栏目功能I提速提能*让学生趣热打铁谓化所学, 甌球速度又竦准度,歩步为营步步星课下能力提升(八)一、填空题1.为了了解某校高一学生的期末考试情况,要从该年级700名学生中抽取120名学生进行数据分析,则在这次考查中,考查总体数为 _____________________ ,样本容量是 ___________ .答案:7001202. 一个总体共有30个个体,用简单随机抽样的方法从中抽取一个容量为7的样本,则某个特定个体入样的可能性是 ________________ .解析:每个个体被抽取的可能性为 丄解:合格率:78 80X 100% 97答案:7训练提能区3. 下列抽样中:30答案:③4•某工厂共有n 名工人,为了调查工人的健康情况, 从中随机抽取对象,若每位工人被抽到的可能性为£则n =20名工人作为调查CjT解析:•. •简单随机抽样为机会均等的抽样,20 1n = 5,即 n = 100.答案:1005.某工厂的质检人员对生产的100件产品,采用随机数表法抽取 10件检查,对 100件产品采用下面编号方法:①01, 02,03 ,…,100;②001,002,003 ,…100;③00,01,02,…,99.其中最恰当的序号是解析:只有编号时数字位数相同,才能达到随机等可能抽样. 位数字否则的话,由①是先选二 ②③的编号位数相同, 可以采用随过程.解:本题中总体容量较大, 样本的容量较小,故可选用随机数表法来抽取含 3个个体的样本,其抽样过程如下:第一步,将3 000辆汽车进行编号,号码是 0 001 , 0 002 , 0 003 ,……,3 000.第二步,在随机数表中任选一个数作为开始,如选第5行第11列的数3.第三步,从选定的数 3开始向右读,依次得满足条件的号码为 2 231,0 990,0 618.第四步,把编号为 2 231,990,618的汽车取出,即得到一个容量为3的样本.7.某师范大学为支援西部教育事业发展,计划从应届毕业生中选出一批志愿者.现从 符合报名条件的18名志愿者中,选取 6人组成志愿小组,请用抽签法设计抽样方案.解:第一步,将18名志愿者编号,号码为 1,2,3, (18)① 从无限多个个体中抽取 100个个体作为样本;② 盒子里有80个零件,从中选出 5个零件进行质量检验,在抽样时,从中任意拿出一 个零件进行质量检验后,再把它放回盒子里;③ 从8台电脑中不放回地随机抽取 2台进行质量检验(假设8台电脑已编好号,对编号 随机抽取)• 其中属于简单随机抽样的是 _______________解析:根据总体的个数有限,可知①不是简单随机抽样;根据抽样是不放回地逐个抽取 可知②不是简单随机抽样;只有③是简单随机抽样.第二步,将号码分别写在18张大小、形状都相同的纸条上,揉成团,制成号签.第三步,将制好的号签放入一个不透明的袋子中,并搅拌均匀.第四步,从袋子中依次抽取6个号签,并记录上面的编号.第五步,所得号码对应的志愿者就是志愿小组的成员.&说出下列抽取样本时运用了哪种抽样方法?并说明原因.设一个总体中的个体数N= 345,要抽取一个容量为n= 15的样本,现采用如下方法:从随机数表中任意选取三列构成三位数字号码,从中依次取出不同的三位数字号码,当数在001〜345之间时,该号码抽入样本;当数在401〜745之间时,则该数减去400的号码抽入样本中,其余的000,346〜400,746〜999的号码都不要;当某号码已抽入样本中, 而再次遇到该号码被抽入样本时,只算一次.解:运用了简单随机抽样中的随机数表法. 简单随机抽样的要求是给个体编号,逐个不放回抽取,操作的个体数量不宜太多,每个个体被抽取的机会均等, 只有符合这些特点才是简单随机抽样.本题虽然取数时,设计了特别的规则, 但是从随机数表中任意取数符合简单 随机抽样的每个特点,所以本题运用了简单随机抽样法中的随机数表法.第2课时系统抽样I入门答轉——辨析问题解疑惑||新知自解——宜读教材找关堆■ i自主学习 梳理主干 «MufwKu护贰以勿入门零輛%某年元旦国家邮政局发行有奖贺卡有 1 000 000个有机会中奖(编号000 000〜999 999), 邮政部门按照随机抽取的方式确定后两位是24的作为中奖号码.问题1:确定中奖号码的抽样方法是抽签法吗? 提示:不是.问题2:中奖号码的后两位确定为24后中奖人的号码有何特点?提示:后两位是 24的号码间隔都是100. 问题3:该抽样方法公平吗?提示:因为后两位 24是随机抽取的,所以此抽样方法公平.1•系统抽样的概念将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本, 这样的抽样方法称为系统抽样.预习导引区4十2 •系统抽样的实施步骤假设从容量为 N 的总体中抽取容量为 n 的样本,其步骤为:(1) 采用随机的方式将总体中的 N 个个体编号; NNN(2) 将编号按间隔k 分段,当-是整数时,取k =-;当-不是整数时,从总体中剔除一些n ------- n n ------------N ,个体,使剩下的总体中个体的个数N 能被n 整除,这时取k =〒,并将剩下的总体重新编(3)在第一段中用简单随机抽样确定起始的个体编号I ;⑷ 按照一定的规则抽取样本,通常将编号为I , I + k , I + 2k ,…,I + (n — 1)k 的个体抽出.[归纳.升华,领悟] ----------------------------------- .1 •系统抽样比简单随机抽样更容易实施,可节约抽样成本.2 •系统抽样是等可能性抽样,每个个体被抽到的可能性相等.3•系统抽样适用的条件是当总体中个体差异不大且总体的容量较大.对系统抽样概念的理解Jig A[例1]下列抽样中最适宜用系统抽样的是 ___________________ •①某市的4个区共有2 000名学生,且4个区的学生人数之比为 3 : 2 : 8 : 2,从中抽取200名学生入样[思路点拨]根据系统抽样的概念及特征可作出判断. [精解详析]选项判断原因分析突破竜点 -* 总结规律1高帚为标1提炼技法把握兢点眷向 霽在学有所悟②从某厂生产的2 000个电子元件中随机抽取 5个入样 ③从某厂生产的 2 000个电子元件中随机抽取 200个入样④从某厂生产的 20个电子元件中随机抽取 5个入样帅生共导吏敌更曲丄施乳"射"时 课堂互动区[答案]③[一点通]解决此类问题的关键是抓住系统抽样适用的条件,同时与简单随机抽样进行比较,然后再作判断.1 •某报告厅有50排座位,每排有60个座位(编号1〜60),—次报告会坐满了观众,会后留下座号为18的所有观众进行座谈•这种抽样方法是_______________________ •解析:由条件可知符合系统抽样的特征.答案:系统抽样2. 某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额. 采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售金额组成一个调查样本•这种抽样方法是什么抽样?解:上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,以后各个组抽15+ 50n( n€ N)号,符合系统抽样的特点.故上述抽样方法是系统抽样系统抽样的应用[例2](12分)2016年中秋节前,为保证月饼的质量,某市质检局决定对某品牌月饼进行抽样检查•从1 000盒该品牌的月饼中抽取容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.[思路点拨]按系统抽样的方法进行.[精解详析]适宜用系统抽样,抽样过程如下:(1) 随机地将这1 000盒月饼编号为1,2,3,…,1 000. (3分)(2) 将总体按编号顺序均分成50部分,每部分包括20个个体. (6分)(3) 在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18. (9分)(4) 以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998. (12 分)[一点通]1 •解决系统抽样问题中两个关键的步骤为:(1) 分组的方法应依据抽取比例而定,每组抽取一个样本.(2) 起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.2•当总体中的个体数不能被样本容量整除时,需要先在总体中剔除一些个体.3.高三某班有学生56人,学生编号依次为1,2,3,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为6,34,48的同学都在样本中, 那么样本中另一位同学的编号应该是解析:由于系统抽样的样本中个体编号是等距的,且间距为56/4 = 14,所以样本编号应为6,20,34,48.答案:204.将参加数学夏令营的100名同学编号为001,002,…取一个容量为25的样本,且第一段中随机抽得的号码为004, 100.现采用系统抽样方法抽则在046至078号中,被抽中的人数为解析:抽样距为4,第一个号码为004,故001〜100中是4的整数倍的数被抽出,在046 至078 号中有048,052,056,060,064,068,072,076答案:85•从某厂生产的883辆同一型号的家用轿车中随机抽取40辆测试某项性能.现在用系统抽样的方法进行抽样,请写出抽样过程.解:采用系统抽样法的步骤如下:第一步,将883辆轿车随机编号:001,002, (883)第二步,用随机数表法从总体中随机抽取3个编号,剔除这3个个体,将剩下的880r 1个个体重新随机编号,分别为001,002,…,880,并分成40段,每段22个编号;第三步,在第一段001,002,…,022中用简单随机抽样法随机抽取一个个体编号作为起始号(例如008);第四步,把起始号依次加上866);22,即可获得抽取的样本的个体编号(例如008,030,-, 第五步,由以上编号的个体即可组成抽取的样本.[方法-规律•小结]系统抽样的特点:(1) 适用于总体的个数较多且均衡的情况;(2) 它是从总体中等间距地进行抽取;(3) 它是一种不放回的抽样;⑷每一个个体被抽到的可能性相等.在抽样时,只要第一组抽取的个体确定了,后面各组中要抽取的个体依照事先确定好的规则就自动地被抽出了,因此特别简单易行.栏目功能I提速提能*让学生聂热打铁剂化所学, 甌练連度又竦准度,歩步为营歩歩厲一、填空题1 •若总体中含有1 645个个体,现在要采用系统课下能力提升(九)抽样,从中抽取一个容量为35的样本,编号后应均分为_____________ 段,每段有___________ 个个体.1 645解析:因为肓=47,故采用系统抽样法时,编号后分成35段,每段47个个体.答案:35 472•从2 013个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为解析:先从2 013个个体中剔除13个,则分段间隔为2-20°= 100.答案:1003•一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m那么在第k小组中抽取的号码个位数字与讨k的个位数字相同,若m= 6,则在第7组中抽取的号码是 ___________________ •解析:第7组中号码的十位数字为 6.又m^ k = 6 + 7= 13,由规定知抽取号码的个位数字为3,所以抽取号码为63.答案:634.某企业利用系统抽样的方法抽取一个容量为60的样本,若每一个职工入样的可能性为0.2,则该企业的职工人数为_______________ .解析:系统抽样中,每个个体被抽到是等可能的,设该企业职工人数为n,则石=0.2 ,故n= 300.答案:3005•某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1〜50号,并分组,第一组1〜5号,第二组6〜10号,……,第十组46〜50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_________________ 的学生.解析:•••组距为5,二(8 —3) X 5+ 12= 37.答案:37二、解答题6.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为乙从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告. 你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量. 由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.7•下面给出某村委会调查本村各户收入情况所作的抽样过程,阅读并回答问题.本村人口:1 200人,户数:300,每户平均人口数4人;应抽户数:30户;、一1 200 A •抽样间隔:30 = 40 ;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+ 40= 52,编号为52的户为第二样本户;……(1) 该村委会采用了何种抽样方法?(2) 说明抽样过程中存在哪些问题,并修改.i //S(3) 抽样过程中何处应用了简单随机抽样?解:⑴系统抽样.(2)本题是对该村各户收入情况进行抽样而不是对该村各人收入情况抽样,故抽样间隔jr jF J■-宀、「300应为30 = 10.其他步骤相应改为:确定随机数字:任取一张人民币,编号的最后一位为 2 ;确定第一样本户:编号为002的户为第一样本户;确定第二样本户:2+ 10= 12,编号为012号的户为第二样本户;(3) 在确定随机数字时,应用的是简单随机抽样,即任取一张人民币,记下编号的最后一位.& 一个总体中有1 000个个体,随机编号为0,1,2,3,…,999,以编号顺序将其平均分成10个小组,组号依次为0,1,2,3,…,9,要用系统抽样方法抽取一容量为10的样本,规定:如果在第0小组中随机抽取的号码为x,那么依次错位地得到后面各组中的号码,即第k小组中抽取的号码的后两位数字与x+ 33k的后两位数字相同.(1) 当x= 24时,写出所抽取样本的10个号码;(2) 若所抽取样本的10个号码中有一个号码的后两位数字是87,求x的取值范围.解:(1)当x = 24时,所抽取样本的10个号码依次为24,157,290,323,456,589,622,755,888,921.(2)当k= 0,1,2,…,9 时,33k 的值依次为0,33,66,99,132,165,198,231,264,297.由所抽取样本的10个号码中有一个号码的后两位数字是87,可得x的取值可能为87,54,21,88,55,22,89,56,23,90.所以x 的取值范围是{21,22,23,54,55,56,87,88,89,90} .第3课时分层抽样入门答辩——辨析问题解疑惑||新如自解——自读敖材找关惟卜入门售解食品安全关系人民的健康,2016年初,某市的食品管理局决定在全市范围内进行食品安全大检查•某超市有四类食品,其中粮食类、植物油类、动物性食品及果蔬类分别有40种、20种、30种、30种,现在从中抽取一个容量为20的样本进行食品安全检测.问题1: 上述问题中总体中的个体特征有何特点?提示:个体中存在明显的差异.问题2:若采用抽签法或系统抽样法会出现什么结果?提示:抽取的样本可能会过度集中到某一类食品中,不具有代表性.问题3:为使抽取的样本更加合理,有广泛的代表性,可有不同于抽签法与系统抽样的方法吗?提示:有.可分不同类别进行抽取.1.分层抽样的概念当总体由差异明显的几个部分组成时, 为了使样本更客观地反映总体情况, 我们常常将总体中的个体按不同的特点分成层次比较分明的几部分, 然后按各部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分的各个部分称为“层”.。
2017_2018版高中数学第二章统计2_3_1平均数及其估量学案苏教版必修3
跟踪训练2 解 平均数为39.96×0.1+39.98×0.2+40×0.5+40.02×0.2=39.996.
例3 解 (1)公司职工月工资的平均数为
=
= ≈2 091(元).
假设把所有数据从大到小排序,那么取得中位数是1 500元,众数是1 500元.
梳理
知识点二
试探 在频率散布内外,已看不到原始数据,但可用各区间的组中值近似地表示.
梳理x1p1+x2p2+…+xnpn
题型探讨
例1n<m
解析 = ,
= ,
= ,
则 = = + .
由题意知0< < ,∴n<m.
跟踪训练1 解 平均数是 = (1.50×2+1.60×3+1.65×2+1.70×3+1.75×4+1.80×1+1.85×1+1.90×1)
= ≈1.69(m).
例2 解 方式一 总睡眠时刻约为6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2=739(h).
故平均睡眠时刻约为7.39 h.
方式二 求组中值与对应频率之积的和.
6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).
3.样本容量为100的频率散布直方图如下图,依照样本频率散布直方图,那么平均数为________.
4.某高校有甲,乙两个数学建模爱好班,其中甲班40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,那么该校数学建模爱好班的平均成绩是______分.
1.能反映整体某种特点的量称为整体特点数,如平均数,中位数,使整体特点数通常难以取得,故常以样本特点数估量整体特点数.
2017_2018版高中数学第二章统计2_3_2方差与标准差学案苏教版必修3
3.(1) +bs2(2)a a2s2
(3)a +ba2s2
4.(1)7(2)2
解析(1) = (7+8+7+9+5+4+9+10+7+4)= =7.
(2)s2= [(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.∴命中环数标准差为2.
试计算甲、乙两组数据的方差和标准差.
反思与感悟 计算方差(或标准差)时要先计算平均数.
跟踪训练2 求出跟踪训练1中的甲、乙两运动员射击成绩的标准差,结合跟踪训练1的条形图体会标准差的大小与数据离散程度的关系.
类型三 标准差及方差的应用
例3 甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):
因为0.244>0.02,因此由这组数据能够以为甲种水稻的产量比较稳固.
当堂训练
1.②
解析 ①中平均值和方差是数据的两个特点,不存在这种关系;③中求和后还需取平均数;④中方差越大,射击越不平稳,水平越低.
2.
解析 由题意知这组数据平均数是
=91,
解得x=4.
因此这组数据的方差是s2= [(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]= (16+9+1+0+1+9+0)
跟踪训练3 解 甲品种的样本平均数为10,样本方差为
[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.
乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.244.
高中数学 第二章 统计复习与小结教案 苏教版必修3
第2章统计教学目标:1.结合具体的实际问题情境,理解随机抽样的必要性和重要性.2.学会用简单随机抽样方法从总体中抽取样本;3.通过对实际问题的分析,了解分层抽样和系统抽样方法.教学重点、难点:1.简单随机抽样,分层抽样和系统抽样的准确应用;2.会列频率分布表,画频率分布直方图,频率折线图,茎叶图;3.计算数据的标准差和方差;4.利用散点图直观认识变量间的相关关系.能根据给出的线性回归方程的系数公式建立线性回归方程.教学方法:讲练结合.教学过程:一、复习统计相关知识点1.抽样方法.(1)简单随机抽样(2)系统抽样(3)分层抽样2.样本分布估计总体分布.(1)频率分布表(2)直方图(3)折线图(4)散点图(5)茎叶图3.样本特征数估计总体特征数.(1)平均数(2)方差(标准差)(3)众数(4)中位数二、数学运用例1 在一次有奖明信片的100000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.例2 某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.例3 某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是①__________②______________.例4 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆.例5 两名跳远运动员在10次测试中的成绩分别如下(单位:m):甲:5.58 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19乙:6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21试估计哪位运动员的成绩比较稳定.例6 如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)练习:1.如图,是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案)注:每组可含最低值,不含最高值.(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?2.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高),分组情况如下:(1)求出表中a,m的值.(2)画出频率分布直方图和频率折线图.三、归纳小结根据简单随机抽样,分层抽样和系统抽样的特点准确应用;会列频率分布表,画频率分布直方图,能够根据数据的平均数及方差对总体估计.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例](1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案] (1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易忽视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人).答案:163.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180.答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。
江苏考卷在这一部分的考查形式主要是填空题,解决这部分考题,关键要掌握各类图表构成的要件及意义.[考点精要]1.频率分布表的特点(1)表中所有频数之和等于样本容量. (2)表中所有频率之和为1. (3)各小组的频率=各小组的频数样本容量.2.频率分布直方图特点(1)纵轴上的点表示频率除以组距.(2)每一个小矩形面积等于这一小组的频率. (3)所有小矩形面积之和为1. 3.茎叶图(1)所有信息都可以从图中得到. (2)同一组数据中的相同数据要一一列出.[典例] (1)对一批产品的长度(单位:毫米)进行抽样检测, 如图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上为一等品, 在区间[15,20)和[25,30)上为二等品, 在区间[10,15)和[30,35]上为三等品. 用频率估计概率, 现从该批产品中随机抽取1件, 则其为二等品的概率是____________.统计图表的识读(2)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.(3)(全国卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图.给出下列结论①逐年比较,2008年减少二氧化硫排放量的效果最显著;②2007年我国治理二氧化硫排放显现成效;③2006年以来我国二氧化硫年排放量呈减少趋势.其中正确结论的序号为________.[解析](1)由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-50.25+0.04×5=0.45,故任取1件为22,22,27,29共4个,[答案](1)0.45(2)0.4(3)①②③[类题通法](1)解决该类问题时,应正确理解图表中各个量的意义,通过图表掌握信息是解决该类问题的关键.(2)各种统计图表的构成要熟悉;条形图和直方图不要混淆.[题组训练]1.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.解析:(1)由(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,得x=0.004 4.(2)数据落在[100,250)内的频率可求得为0.7,∴月用电量在[100,250)内的户数为100×0.7=70.答案:(1)0.004 4(2)702.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析:周长在[80,90)的频率为0.015×10=0.15,周长在[90,100)的频率为0.025×10=0.25,故符合要求的树木有(0.15+0.25)×60=24.答案:243.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,则购物的人数在[30,35)上的班数有________个.解析:在[30,35)中有30,33,34共3个. 答案:3样本的数字特征也是各类考试的重点内容之一:其中方差及平均数是考查的热点,但也要适当关注众数、中位数等.江苏考卷这一部分内容都考基础题,难度不大,考查形式以填空题为主,处理时首先要熟记相关公式及相关特征数的作用,其次要注意运算的准确性.(2)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s 2=______.样本的数字特征(3)(安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.[解析] (1)由茎叶图可知这组数据由小到大依次为8,9,12,15,18,20,20,23,23,28,31,32,所以中位数为20+202=20.(2)由题意知:x -甲=15(6+7+7+8+7)=7,x -乙=15(6+7+6+7+9)=7,s 2甲=15[(6-7)2+(8-7)2]=25,s 2乙=15[(6-7)2+(6-7)2+(9-7)2]=65,∵25<65,∴s 2=25. (3)由样本数据x 1,x 2,…,x 10的标准差s =8,得s 2=64,故数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.[答案] (1)20 (2)25(3)16[题组训练]1.(广东高考)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.解析:由条件知x =x 1+x 2+…+x n n=5, 则所求均值x 0=2x 1+1+2x 2+1+…+2x n +1n =2(x 1+x 2+…+x n )+n n =2x +1=2×5+1=11.答案:112.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该数据的方差s 2=________.解析:x =15(10+6+8+5+6)=7,∴s 2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165.答案:1653.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则x 甲________x 乙,m 甲________m 乙(填“>”“<”).解析:可求x甲=34516,x 乙=45716,∴x 甲<x 乙,又可求m 甲=20,m 乙=29,∴m 甲<m 乙. 答案:< <1.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________.解析:由系统抽样的特点知,从号码003开始每间隔60050=12人抽出1个, 设抽出的第n 个号码为a n ,则a n =3+12(n -1),n ∈N *, 由a n ≤300知n ≤25; 由a n ≤495知n ≤42,所以第一营区被抽取的人数为25,第二营区被抽取的人数为42-25=17,第三营区被抽取的人数为50-42=8.答案:25,17,82.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.解析:抽样比为624=14,∴丙组中应抽取城市数为8×14=2.答案:23.从总体中抽取的样本数据共有m 个a ,n 个b ,p 个c ,则总体的平均数x 的估计值为________.解析:因为总体平均数x 的估计值就是样本平均数,故x =ma +nb +pcm +n +p .答案:ma +nb +pcm +n +p4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,若甲运动员的中位数为a ,乙运动员的众数为b ,则a -b =________.解析:由茎叶图可知,a =19,b =11,∴a -b =8.答案:85.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是______________.解析:由茎叶图知中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.答案:46,45,566.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.解析:低于60分的频率是(0.005+0.01)×20=0.3,所以该班学生人数是150.3=50.答案:507.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数和方差分别为________,________.解析:∵中位数为5,∴5=4+x2,∴x =6.x =-1+0+4+6+7+146=5,s 2=16∑i =16 (x i -x )2=16[(5+1)2+(5-0)2+(5-4)2+(5-6)2+(5-7)2+(5-14)2]=2423.答案:5 24238.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二________.50,所以第三组人数为50×0.36=18,有疗82,84,84,86,86,86,88,88,88,88.若B 样本数据A ,B 两样本的下列数字特征对应相同的是________(填序号).①众数 ②平均数 ③中位数 ④标准差解析:对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.答案:④10.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)解析:设x1≤x2≤x3≤x4,根据已知条件得到x1+x2+x3+x4=8,且x2+x3=4,所以x1+x4=4,又因为14[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2]=1,所以(x1-2)2+(x2-2)2=2,又因为x1,x2,x3,x4是正整数,所以(x1-2)2=(x2-2)2=1,所以x1=1,x2=1,x3=3,x4=3.答案:1,1,3,311.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.解:(1)由已知可设每组的频率为2x,4x,17x,15x,9x,3x.则2x+4x+17x+15x+9x+3x=1,解得x=0.02.则第二小组的频率为0.02×4=0.08,样本容量为12÷0.08=150.(2)次数在110次以上(含110次)的频率和为17×0.02+15×0.02+9×0.02+3×0.02=0.88.则高一学生的达标率约为0.88×100%=88%.(3)在这次测试中,学生跳绳次数的中位数落在第四组.因为中位数为平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标.12.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)算得的结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13, x 乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.13.某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.解:(1)设分数在[70,80)内的频率为x ,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x =1,可得x =0.3,所以频率分布直方图如图所示.(2)平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).14.某种产品的广告支出x 与销售额y (单位:百万元)之间有如下的对应关系(1)假定y 与x (2)若实际销售额不少于60百万元,则广告支出应该不少于多少?解:(1)x =15(2+4+5+6+8)=5, y =15(30+40+60+50+70)=50, 5i =1x 2i =22+42+52+62+82=145. 5i =1x i y i =2×30+4×40+5×60+6×50+8×70=1 380. ∴b =5i =1x i y i -5x y 5i =1x 2i -5x 2=1 380-5×5×50145-5×52=6.5, a =y -bx -=50-6.5×5=17.5,∴线性回归方程为y ^=6.5x +17.5.(2)由线性回归方程得y ^≥60,即6.5x +17.5≥60,∴x ≥8513≈6.54, ∴广告费用支出应不少于6.54百万元.。