高考理科数学一轮复习

合集下载

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确.
索引
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径
为( B )
A.1 cm
B.2 cm
C.3 cm
3 D.2 cm
解析 设圆锥的底面圆的半径为r,母线长为l, 因为侧面展开图是一个半圆, 所以πl=2πr,即l=2r, 所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
得的截面是面积为8的正方形,则该圆柱的表面积为( B )
A.12 2π
B.12π
C.8 2π
D.10π
解析 由题意知,圆柱的轴截面是一个面积为 8 的正方形,则圆柱的高与底面 直径均为 2 2. 设圆柱的底面半径为 r,则 2r=2 2,得 r= 2. 所以圆柱的表面积 S 圆柱=2πr2+2πrh=2π( 2)2+2π× 2×2 2=4π+8π=12π.
索引
训练1 (1)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别
为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.
解析 如图,由正方体棱长为2及M,N分别为BB1,AB 的中点, 得 S△A1MN=2×2-2×12×2×1-21×1×1=32, 又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2, ∴VA1-D1MN=VD1-A1MN=13·S△A1MN·D1A1=31×32×2=1.
角度1 简单几何体的体积
例1 (1)祖暅是我国南北朝时代的伟大科学家,他提出 的“幂势既同,则积不容异”称为祖暅原理,利用
该原理可以得到柱体的体积公式V柱体=Sh,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图

高三理科数学第一轮复习§12.2:排列与组合

高三理科数学第一轮复习§12.2:排列与组合

第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
解析
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合源自解析解析解析
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合
第十二章:计数原理、概率、 随机变量及其分布 §12.2:排列与组合

2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数

2023年高考数学(理科)一轮复习——  任意角和弧度制及任意角的三角函数
索引
考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,

2023年高考数学(理科)一轮复习——二项分布与正态分布

2023年高考数学(理科)一轮复习——二项分布与正态分布
索引
5.(2021·天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一
方猜错,则猜对的一方获胜,否则本次平局.已知每次活动中,甲、乙猜对的
概率分别为65和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影 2
响,则一次活动中,甲获胜的概率为____3____,3 次活动中,甲至少获胜 2 次 20
1 式,得 P(B|A)=PP((AAB))=120=14.
5
索引
法二 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB发生的结果只有(2,4)一种情形,即n(AB)=1. 故由古典概型概率 P(B|A)=nn((AAB))=41.
索引
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机
②P(μ-2σ<X≤μ+2σ)=__0_._9_5_4_5____;
③P(μ-3σ<X≤μ+3σ)=___0_.9_9_7__3___.
索引
常用结论
1.相互独立事件与互斥事件的区别 相互独立事件是指两个试验中,两个事件发生的概率互不影响,计算式为 P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计 算公式为P(A∪B)=P(A)+P(B).
次数的概率分布.( √ )
(3)n 次独立重复试验要满足:①每次试验只有两个相互对立的结果,可以分别 称为“成功”和“失败”;②每次试验“成功”的概率为 p,“失败”的概率
为 1-p;③各次试验是相互独立的.( √ )
(4)正态分布中的参数 μ 和 σ 完全确定了正态分布,参数 μ 是正态分布的期望,
2.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线关于直线x=μ对称 和曲线与x轴之间的面积为1解题.

高三数学理科一轮复习试卷详解

高三数学理科一轮复习试卷详解

高三数学理科一轮复习试卷详解第1页共14页高三单元滚动检测卷数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.单元检测四三角函数、解三角形第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(湖北重点中学第三次月考)已知角α的终边上一点的坐标为(sin 5π6,cos 5π6),则角α的最小正值为( )A.5π6B.5π3C.11π6D.2π32.(河南中原名校高三期中)已知sin 2α=-2425,α∈(-π4,0),则sin α+cos α等于( ) A .-15B.15 C .-75 D.753.(广西贵港市模拟)已知sin(π3-x )=35,则cos(x +π6 )等于( ) A .-35B .-45 C.45 D.354.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( )A .5海里B .53海里第2页共14页C .10海里D .103海里5.(安庆市大观区模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a b =b +3c a,sin C =23sin B ,则tan A 等于( )A. 3B .1 C.33 D .-36.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A 0,ω0,|φ|π2 )的图象(部分)如图所示,则ω,φ分别为( )A .ω=π,φ=π3B .ω=2π,φ=π3C .ω=π,φ=π6D .ω=2π,φ=π67.(泉州模拟)在△ABC 中,若B =60°,AB =2,AC =23,则△ABC 的面积为( )A. 3 B .2 3C.233D.4338.(湖北省教学合作联考)将函数y =3sin 2x -cos 2x 的图象向右平移π4个单位长度,所得图象对应的函数g (x )( )A .有最大值,最大值为3+1B .对称轴方程是x =7π12+k π,k ∈Z C .是周期函数,周期T =π2D .在区间[π12,7π12]上单调递增9.已知函数f (x )=sin 4(ωx +π4)-cos 4(ωx +π4)(ω0)在区间[-π3,π4]上的最小值为-32,则ω的值为( )A.34B.12第3页共14页C .1 D.3210.(龙泉中学模拟)关于函数f (x )=sin(2x -π4),有下列命题:①其表达式可写成f (x )=cos(2x +π4);②直线x =-π8是f (x )图象的一条对称轴;③f (x )的图象可由g (x )=sin 2x 的图象向右平移π4个单位得到;④存在α∈(0,π),使f (x +α)=f (x +3α)恒成立.其中真命题的序号是( )A .②③B .①②C .②④D .③④11.(徐州质检)已知P 1(x 1,y 1),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若sin(θ+π4)=35,则x 1x 2+y 1y 2的值为( ) A.55B .-1010C .-210 D.1010 12.(上饶模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b,则sin C sin A的值为( ) A .2 B.13C .2 3D .3第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 14.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.第4页共14页15.(陕西改编)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ????π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.16.(湖南师大附中月考)将函数f (x )=sin x +cos x 的图象向左平移φ(φ0)个单位长度,所得图象关于原点对称,则φ的最小值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(惠州第三次考试)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A 0,ω0,-π2φπ2),其部分图象如图所示.(1)求函数f (x )的解析式;(2)已知横坐标分别为-1,1,5的三点M ,N ,P 都在函数f (x )的图象上,求sin ∠MNP 的值.18.(12分)(北京)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.19.(12分)(醴陵一中模拟)在△ABC 中,已知A =π4,cos B =255.第5页共14页(1)求cos C 的值;(2)若BC =25,D 为AB 的中点,求CD 的长.20.(12分)已知函数f (x )=sin 2x cos φ+cos 2x sin φ(|φ|π2),且函数y =f (2x +π4)的图象关于直线x =7π24对称.(1)求φ的值;(2)若π3α5π12,且f (α)=45,求cos 4α的值;(3)若0θπ8时,不等式f (θ)+f (θ+π4 )|m -4|恒成立,试求实数m 的取值范围.第6页共14页21.(12分)(广雅中学模拟)已知函数f (x )=A sin(ωx +φ)(A 0,ω0,0φπ),x ∈R 的最大值是1,最小正周期是2π,其图象经过点M (0,1).(1)求f (x )的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且f (A )=35,f (B )=513,求f (C )的值.22.(12分)(河北正定中学月考)已知向量a =(2sin(ωx +2π3),2),b =(2cos ωx ,0)(ω0),函数f (x )=a b 的图象与直线y =-2+3的相邻两个交点之间的距离为π.(1)求函数f (x )在[0,2π]上的单调递增区间;(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )的图象.若y =g (x )在[0,b ](b 0)上至少含有10个零点,求b 的最小值.第7页共14页答案解析1.B2.B [∵α∈(-π4,0),∴sin α+cos α0,∴(sin α+cos α)2=1+sin 2α=125,∴sin α+cos α=15,故选B.] 3.D [cos(x +π6)=cos[π2-(π3-x )]=sin(π3-x )=35.故选D.] 4.C [如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10.在Rt △ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/小时).] 5.C [由sin C =23sin B ,变形得:sin C sin B=23,利用正弦定理化简得:sin C sin B =c b=23,即c =23b ,由a b =b +3c a,整理得:a 2-b 2=3bc ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc=-3bc +23bc 2bc =32,∴A =30°,则tan A =33,故选C.]6.C [由函数的图象可得A =2,根据14T =142πω=56-13=12,求得ω=π. 再由五点法作图可得π×56+φ=π,第8页共14页解得φ=π6,故选C.]7.B [∵在△ABC 中,B =60°,AB =2,AC =23,∴由正弦定理AC sin B =AB sin C得:sin C =AB sin B AC =2×3223=12,∴C =30°,∴A =90°,则S △ABC =12AB AC sin A =23,故选B.]8.D [化简函数得y =3sin 2x -cos 2x =2sin(2x -π6),所以g (x )=2sin(2x -2π3)易求最大值是2,周期是π,由2x -2π3=π2+k π(k ∈Z ),得对称轴方程是x =7π12+k π2(k ∈Z ).根据正弦函数的单调递增区间可得-π2+2k π≤2x -2π3≤π2+2k π(k ∈Z )?π12+k π≤x ≤7π12+k π(k ∈Z ),故选D.] 9.B [f (x )=sin 4(ωx +π4)-cos 4(ωx +π4) =[sin 2(ωx +π4)-cos 2(ωx +π4)][sin 2(ωx +π4)+cos 2(ωx +π4)] =sin 2(ωx +π4)-cos 2(ωx +π4) =-cos(2ωx +π2)=sin 2ωx ,所以2ωx ∈[-2π3ω,π2ω],所以满足-2π3ω≥-π2且-2π3ω=-π3的ω=12 ,故选B.] 10.C [f (x )=sin(2x -π4)=22(sin 2x -cos 2x ).①f (x )=cos(2x +π4)=22(cos 2x -sin 2x ).与原函数不是同一个函数,①错误.②x =-π8时,f (x )=sin[2×(-π8)-π4]=sin(-π2)=-1,函数取得最小值,所以直线x =-π8是f (x )图象的一条对称轴,第9页共14页②正确.③将g (x )=sin 2x 的图象向右平移π4个单位得到图象对应的解析式是y =sin 2(x -π4 )=sin(2x -π2)=-cos 2x ,与f (x )不是同一个函数,③错误.④取α=π2,f (x +α)=f (x +π2)=sin[2(x +π2)-π4]=sin(2x +3π4),f (x +3α)=f (x +3π2)=sin[2(x +3π2)-π4]=sin(2x +3π-π4)=sin(2x +2π+π-π4)=sin(2x +3π4),所以存在α=π2∈(0,π),使f (x +α)=f (x +3α)恒成立,④正确.故选C.]11.C [因为x 1x 2+y 1y 2=OP 1→OP 2→=cos θ,所以cos θ=cos(θ+π4-π4)=22[cos(θ+π4)+sin(θ+π4)].因为θ∈(π2,π),θ+π4∈(3π4,5π4),所以cos(θ+π4)=-45,cos θ=-210.故选C.] 12.D [由正弦定理a sin A =b sin B =c sin C,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B ,化简可得,sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin C sin A=3.] 13.0解析原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限角,所以sin α0,cos α0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 14.-14解析∵2sin B =3sin C ,∴2b =3c ,∴b =32c .第10页共14页代入b -c =14a 得a =2c ,由余弦定理,得cos A =b 2+c 2-a 22bc =-14. 15.8解析由题干图易得y min =k -3=2,则k =5.∴y max =k +3=8.16.3π4解析函数y =sin x +cos x =2sin(x +π4),根据图象平移规律可得平移后图象对应的函数解析式为y =2sin(x +π4+φ),又所得函数图象关于原点对称,∴π4+φ=k π(k ∈Z ),∴φ=k π-π4(k ∈Z ),当k =1时,φ取最小值为3π4. 17.解(1)由图可知,A =1,最小正周期T =4×2=8,所以T =2πω=8,ω=π4. 又f (1)=sin(π4+φ)=1,且-π2φπ2,所以-π4π4+φ3π4,π4+φ=π2,φ=π4. 所以f (x )=sin(π4x +π4).(2)因为f (-1)=sin[π4×(-1+1)]=0,f (1)=sin[π4×(1+1)]=1,f (5)=sin[π4×(5+1)]=-1,所以M (-1,0),N (1,1),P (5,-1),|MN |=5,|MP |=37,|PN |=20,从而cos ∠MNP =5+20-3725×20=-35,由∠MNP ∈(0,π),第11页共14页得sin ∠MNP =1-cos 2∠MNP =45 . 18.解(1)因为f (x )=22sin x -22(1-cos x ) =sin ????x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ????-3π4=-1-22. 19.解(1)∵cos B =255且B ∈(0,π),∴sin B =1-cos 2B =55,cos C =cos(π-A -B )=cos(3π4-B )=cos 3π4cos B +sin 3π4sin B =-*****+2255=-1010. (2)由(1)可得sin C =1-cos 2C =1-(-1010)2=*****,由正弦定理得BC sin A =AB sin C,即2522=AB 31010,解得AB =6.在△BCD 中,CD 2=(25)2+32-2×3×25×255=5,所以CD =5.20.解(1)f (x )=sin(2x +φ),则y =f (2x +π4)=sin(4x +π2+φ)=cos(4x +φ).又y =cos x 的图象的对称轴为x =k π(k ∈Z ),第12页共14页令4x +φ=k π(k ∈Z ),将x =7π24代入可得φ=k π-7π6(k ∈Z ),而|φ|π2,故φ=-π6. (2)由f (α)=45可得sin(2α-π6)=45,而π22α-π62π3,故cos(2α-π6)=-35,故sin 2α=sin[(2α-π6)+π6]=43-310,故cos 4α=1-2sin 22α=243-750. (3)f (θ)+f (θ+π4)=sin(2θ-π6)+cos(2θ-π6) =2sin(2θ+π12),因为0θπ8,所以π122θ+π12π3,故f (θ)+f (θ+π4)2×32=62,故只需|m -4|≥62,即m ≤4-62或m ≥4+62,即实数m 的取值范围是(-∞,4-62]∪[4+62,+∞).21.解(1)因为函数f (x )的最大值是1,且A 0,所以A =1.因为函数f (x )的最小正周期是2π,且ω0,所以T =2πω=2π,解得ω=1,所以f (x )=sin(x +φ).因为函数f (x )的图象过点M (0,1),所以sin φ=1.因为0φπ,所以φ=π2. 所以f (x )=sin(x +π2)=cos x . (2)由(1)得f (x )=cos x ,第13页共14页所以f (A )=cos A =35,f (B )=cos B =513. 因为A ,B ∈(0,π),所以sin A =1-cos 2A =45,sin B =1-cos 2B =1213 . 因为A ,B ,C 为△ABC 的三个内角,所以cos C =cos(π-(A +B ))=-cos(A +B ),所以f (C )=cos C =-cos(A +B )=-(cos A cos B -sin A sin B )=-(35×513-45×1213)=3365. 22.解(1)函数f (x )=a b =4sin(ωx +2π3)cos ωx =[4×(-12)sin ωx +4×32cos ωx ]cos ωx =23cos 2ωx -sin 2ωx=3(1+cos 2ωx )-sin 2ωx=2cos(2ωx +π6)+3,由题意得T =π,∴2π2ω=π,∴ω=1,故f (x )=2cos(2x +π6)+3. 令2k π-π≤2x +π6≤2k π(k ∈Z ),得k π-7π12≤x ≤k π-π12(k ∈Z ),∴y =2cos(2x +π6)+3的单调递增区间为[k π-7π12,k π-π12](k ∈Z ).当k =1时,函数的单调递增区间为[5π12,11π12 ].当k =2时,函数的单调递增区间为[17π12,23π12].∴函数f (x )在[0,2π]上的单调递增区间为[5π12,11π12],[17π12,23π12].(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )=2cos 2x +3的图象.令g (x )=0,得x =k π+5π12或x =k π+7π12,k ∈Z ,第14页共14页∴函数g (x )在每个周期内恰好有两个零点,若y =g (x )在[0,b ](b 0)上至少含有10个零点,则b 不小于第10个零点的横坐标即可,∴b 的最小值为4π+7π12=55π12.。

高三理科数学第一轮复习§1.1: 集合

高三理科数学第一轮复习§1.1: 集合

解析
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
ቤተ መጻሕፍቲ ባይዱ
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析

高考理科数学一轮复习专题训练:数列(含详细答案解析)

高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲集合
◆高考导航·顺风启程◆
最新考纲常见题型1.集合的含义与表示
(1)了解集合的含义、元素与集合的“属于”关系.
(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.
(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用Venn图表示集合的关系及运算. 多以选择题出
现于第1或第2题位置,是高考必考内容,占5分左右.
[知识梳理]
1.集合的相关概念
(1)集合元素的三个特性:确定性、无序性、互异性.
(2)元素与集合的两种元素:属于,记为∈;不属于,记为?.
(3)集合的三种表示方法:列举法、描述法、图示法.
(4)五个特定的集合:
集合自然数集正整数集整数集有理数集实数集
符号N N*或N+Z Q R。

相关文档
最新文档