线面垂直判断定理
线面定理性质
线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
线面垂直、面面垂直的性质与判定定理
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则CDE是二面角 - AB 的平面角
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
8
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β
a l
A α
符号语言:
α
Aa
β
a⊥β
B
12
例3 , a , a ,判断a与位置关系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I bbll Nhomakorabeab 又a
线面垂直
a // b 性质
b
a //
a
面面垂直性质 13
变式:
思考:已知平面,,直线a,且 , AB, a //, a AB,试判断直线a与平面的位置关系。
2、会利用“转化思想”解决垂直问题
面面关系
线面关系
线线关系
空间问题平面化 面面平行
线面平行
线线平行
面面垂直
线面垂直
线线垂直
16
线l在平面α内,那么直线l与平面β的位
置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
6
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
7
证明问题:
已知: , AB,CD ,且CD AB. 求证:CD
线面、面面平行和垂直的八大定理
线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平ab a //面平行。
符合表示:a// b2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:aa//a // bab二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
n // b m // aa b M //mnN符号表示:2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
//符号表示:l l// d (更加实用的性质:一个平d面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直a c线垂直这个平面。
符号表示: a b ab c M$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直aoApoa oA A2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平 面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、 判定定理:经过一个平面的垂线的平面与该平面垂直。
a , a2、 性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一 个平面。
, b, a ,a b a 符号表示:a PA。
线面垂直面面垂直的性质与判定定理课件
学习目标
学习者能够理解面面 垂直的性质与判定定 理的基本概念。
学习者能够通过实际 案例分析,提高解决 实际问题的能力。
学习者能够掌握面面 垂直的性质与判定定 理的应用方法。
02
线面垂直的性质
定义与性质
01
02
03
定义
线面垂直是指一条直线与 某一平面内的任意一条直 线都垂直。
性质1
线面垂直,则该直线与平 面内任意直线都垂直,且 线段与平面所成的角为直 角。
06
实例分析
线面垂直实例
总结词
线面垂直的判定定理
详细描述
若一条直线与平面内两条相交直线都垂直,则该 直线与该平面垂直。
实例
一个长方体,其一条棱与底面垂直,则该棱与底 面所在的平面垂直。
面面垂直实例
总结词
面面垂直的判定定理
详细描述
若两个平面内各有一条相交直线互相垂直,则这两个平面互相垂直 。
实例
证明2
根据判定定理2,如果一个平面$alpha$与另一个平面$beta$的垂线$c$平行,那么可以证明平面$alpha$与平面 $beta$垂直。设过直线$c$作平面$gamma$与$beta$相交于直线$d$,由于$c parallel d$,且$c perp beta$ ,则$d perp beta$。又因为直线$d$在平面$alpha$内,所以平面$alpha perp beta$。
平面与平面垂直的判定定理证明
假设平面β内有一条直线m与平面α垂直,那么可以通过平面的性质证明平面β与平面α 互相垂直。
05
面面垂直的判定定理
判定定理
判定定理1
如果一个平面内的两条相交直线与另一个平面垂直,则这两 个平面垂直。
线面垂直_面面垂直的性质定理
l α 符号表 αβ l β 示:
线线 垂直 线面 垂直
C A
l
B D
面面 垂直
(2)若 PDA 45,求证:MN 面PCD
P E N A M B D
例3 如图,已知 PA 矩形ABCD所在平面,M、 N分别是AB、PC的中点求证: (1)MN CD;
β B பைடு நூலகம் l A a
C
练1. 四边形ABCD中,AD∥BC, AD=AB,∠BCD=450, ∠BAD=900,将△ABD沿BD折起,使平面ABD⊥平面 BCD,构成四面体ABCD. 求证:平面ADC⊥平面ABC A
A
D
D
B
C
B
C
练2.平面四边形ABCD中,AB=BC=CD=a, ∠B=90°,∠DCB=135°,沿对角线AC将 四边形折成直二面角. (1)证明:AB⊥面BCD; (2)求面ABD与面ACD所成的角.
2.已知两个平面垂直,下列命题为真命题的是____ ①一个平面内已知直线必垂直于另一个平面内的任意 一条直线. ②一个平面内的已知直线必垂直于另一个平面的无数 条直线. ③一个平面内的任一条直线必垂直于另一个平面 ④过一个平面 内任意一点作交线的垂线,则此垂线必 垂直于另一个平面.
例1 a
如图已知平面α、β,α⊥β,α∩β = l , 直线a⊥β, α,试判断直线a与平面α的位置关系.
a b
α
直线与平面垂直的性质定理.
垂直于同一个平面的两条直线平行 线面垂直的性质定理: 反证法 已知:a⊥α, b⊥α, 求证:a // b
证明: 假设 a与b不平行. 记直线b和α的交点为o, 则可过o作 b’∥a. ∵a⊥α , ∴b’⊥α. ∴过点o的两条直线 b和 b’都垂直平面α , 这不可能! ∴ a∥ b
线面垂直、面面垂直的性质与判定定理
a
l
a
a l
作用: 面面垂直线面垂直
垂直体系
判定
判定
线线垂
线面垂直 面面垂直
直
定义
性质
问题2 , a , a ,判断a与位置关系
α
a
a //
l
问题3: β
思考:已知平面,,直线a,且 , AB,
a //, a AB,试判断直线a与平面的位置关系。
α
Aa
β
a⊥β
符号语言:
ab
a ,b a / /b
α
线面垂垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
∵BC 平面SBC
A
C
∴AD⊥BC
∵SA⊥平面ABC,BC 平面ABC
B
∴SA⊥BC
“从已知想性质,从求证
∵SA∩AD=A,
想判定”这是证明几何问
∴BC⊥平面SAB
题的基本思维方法.
∵AB 平面ABC ∴AB⊥BC
课堂小结
1、证题原则:注从已意知想辅性助质,线从求的证作想判用定
B
例3 , a , a ,判断a与位置关系
证明:设 l
α a //
在α内作直线b⊥l
b
a
l
β
b
bl
l
b 又a
线面垂直
a // b 性质
线面、面面平行和垂直的八大定理
线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
线面垂直 面面垂直的性质与判定定理
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
符号语言:
ab
a ,b a//b
α
线面垂直关 系
线线平行关 系
平面与平面垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I b b
l
l
b
α 发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
线面垂直、面面垂直的性质与判定定理
α 发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则CDE是二面角 - AB 的平面角
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
面面关系
线面关系
线线关系
空间问题平面化 面面平行
线面平行
线线平行
面面垂直
线面垂直
线线垂直
直线l在平面α内,那么直线l与平面β
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
证明问题:
已知: , AB,CD ,且CD AB. 求证:CD
a // b 性质
b
a //
a
面面垂直性质
变式:
思考:已知平面,,直线a,且 , AB, a //, a AB,试判断直线a与平面的位置关系。
ห้องสมุดไป่ตู้
a⊥β α
b
a
B
γ
证明:过a作平面γ交于b, 因为直线a//,所以a//b
直线与平面垂直的性质
温故知新
直线与平面垂直定义:
如果直线 l 与平面 内
的任意一条直线都垂直, 我们说直线 l 与平面
线面垂直面面垂直的性质定理
例1 已知M是菱形ABCD所在平面外一点,且 MA=MC,
求证:AC⊥平面BDM。
精选课件
例2 已知AB、CD是两条不在同一个平面内 的线段,且AC=AD,BC=BD, 求证:AB⊥CD。
精选课件
线面垂直的性质定理: 垂直于同一个平面的两条直线平行
符号语言:a ,b a//b
推论:如果两条平行直线中的一条垂直于一个平 面,那么另一条也垂直于这个平面。
例3、已知直线PA垂直正方形ABCD所在的平面,A 为垂足。 求证:平面PAC平面PBD。
P
A
D
O
B
C
精选课件
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β
符号语言:
a
l
A α
a
l
a
作用: 面面垂直线a 面 l垂直
何时用:已知面面垂直时. 关键:在一个平面内作精选(课找件 )出垂直于交线的直线.
精选课件
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选课件
例4:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
证明:过点A作AE⊥PB,垂足 P 为E,
∵平面PAB⊥平面PBC,
平面PAB∩平面PBC=PB,
∴AE⊥平面PBC
A
C
∵BC 平面PBC ∴AE⊥BC
∵PA⊥平面ABC,BC 平面ABC
B
∴PA⊥BC
∵PA∩AE=A,∴BC⊥平面PAB
a b , a b
精选课件
平面与平面垂直 (1)平面和平面垂直的定义 两个平面相交,如果它们所成的二面角是直二面角, 就说这两个平面互相垂直.
线面垂直的判定与性质
线面垂直线面垂直●知识点1.直线和平面垂直定义直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面. 判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面. 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 3.三垂线定理和它的逆定理. 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直. 逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直. ●题型示例【例1】 如图所示,已知点S 是平面ABC 外一点,外一点, ∠ABC =90°,SA ⊥平面ABC ,点A 在直线SB 和SC 上的上的 射影分别为点E 、F ,求证:EF ⊥SC . 【解前点津】 用分析法寻找解决问题的途径,假设用分析法寻找解决问题的途径,假设 EF ⊥SC 成立,结合AF ⊥SC 可推证SC ⊥平面AEF ,这样,这样 SC ⊥AE ,结合AE ⊥SB ,可推证AE ⊥平面SBC ,因此证明,因此证明 AE ⊥平面SBC 是解决本题的关键环节.由题设SA ⊥平面ABC , ∠ABC =90°,可以推证BC ⊥AE ,结合AE ⊥SB 完成AE ⊥平⊥平 面SBC 的证明. 【规范解答】【解后归纳】 题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键. 例1题图题图【例2】 已知:M ∩N =AB ,PQ ⊥M 于Q ,PO ⊥N 于O ,OR ⊥M 于R ,求证:QR ⊥AB . 【解前点津】 由求证想判定,欲证线线垂直,方法有(1)a ∥b ,a ⊥c Þb ⊥c ;(2)a ⊥α,b ÌαÞa ⊥b ;(3)三垂线定理及其逆定理. 由已知想性质,知线面垂直,可推出线线垂直或线线平行. 【解后归纳】 处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”. 所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上. 所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线. 【例3】 已知如图(1)所示,矩形纸片AA ′A ′1A 1,B 、C 、B 1、C 1 分别为AA ′,A 1A ′的三等分点,将矩形纸片沿BB 1,CC 1折成如图(2)形状(正三棱柱),若面对角线AB 1⊥BC 1,求证:A 1C ⊥AB 1. 【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C ,题设,题断有对答性,可在ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理自然想到题断AB 1与A 1C垂直用同法(对称原理)例3题图解(1) 转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了. 【解后归纳】 证线线垂直主要途径是:证线线垂直主要途径是: (1)三垂线正逆定理,(2)线面,线线垂直互相转化. 利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务. 证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法. 【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 . 【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6, AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3, ∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论. 例4题图题图●对应训练 分阶提升 一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:表示直线,给出下列四个命题:①M b M a b a ^Þþýü^// ②b a M b M a //Þþýü^^ ③Þþýü^^b a M a b ∥M ④Þþýü^b a M a //b ⊥M . 其中正确的命题是其中正确的命题是 ( ) A.①②①② B.①②③①②③ C.②③④②③④ D.①②④①②④ 2.下列命题中正确的是下列命题中正确的是 ( ) A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF 4.设a 、b 是异面直线,下列命题正确的是是异面直线,下列命题正确的是 ( ) A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直都垂直C.过a 一定可以作一个平面与b 垂直垂直D.过a 一定可以作一个平面与b 平行平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m Ìα和m ⊥γ,那么必有那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m ∥β且l ⊥m D.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为的距离为 ( ) A.1 B.2 C.552 D.553 7.有三个命题:有三个命题:①垂直于同一个平面的两条直线平行;①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直都不垂直 其中正确命题的个数为其中正确命题的个数为 ( ) A.0 B.1 C.2 D.3 8.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是,则下面正确的结论是 ( ) 第3题图题图A.α与β必相交且交线m∥d 或m 与d 重合重合 B.α与β必相交且交线m ∥d 但m 与d 不重合不重合 C.α与β必相交且交线m 与d 一定不平行一定不平行 D.α与β不一定相交不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是的序号是 ( ) A.①②③①②③ B.①②④①②④ C.②③④②③④ D.①③④①③④ 10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是其中正确的命题是 ( ) A.③与④③与④B.①与③①与③C.②与④②与④D.①与②①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是′的面积是 . 12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件满足条件时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形) 13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可) 三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. (1)求证:VC ⊥AB ; (2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC 所成角的大小. 第11题图题图第12题图题图第13题图题图第14题图题图15.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面P AD . (2)求证:MN ⊥CD . (3)若∠PDA =45°,求证:MN ⊥平面PCD . 16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,AD =2,侧棱PB =15,PD =3. (1)求证:BD ⊥平面P AD . (2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小. 17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P . 第15题图题图第16题图题图522+BC AC 52×5354122++CD PC 333定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB . 14.(1)证明:∵H 为△VBC 的垂心, ∴VC ⊥BE ,又AH ⊥平面VBC , ∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC . (2)解:由(1)知VC ⊥AB ,VC ⊥BE , ∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC , ∴AB ⊥面DEC . ∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,的平面角, ∴∠EDC =30°,∵AB ⊥平面VCD , ∴VC 在底面ABC 上的射影为CD . ∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE , ∴VC ⊥面ABE ,∴VC ⊥DE , ∴∠CED =90°,故∠ECD=60°, ∴VC 与面ABC 所成角为60°. 15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE . ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD . (2)∵P A ⊥平面ABCD , ∴P A ⊥AB . 又AD ⊥AB ,∴AB ⊥平面P AD . ∴AB ⊥AE ,即AB ⊥MN . 又CD ∥AB ,∴MN ⊥CD . (3)∵P A ⊥平面ABCD ,∴P A ⊥AD . 又∠PDA =45°,E 为PD 的中点. ∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD , ∴MN ⊥平面PCD . 16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,°, 故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,°,即AD ⊥BD 在△PDB 中,PD =3,PB =15,BD =12, ∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D , ∴BD ⊥平面P AD . (2)由BD ⊥平面P AD,BD 平面ABCD . ∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E , 又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD所成的角. 第15题图解题图解第16题图解题图解∴∠PDE =60°,∴PE =PD sin60°=23233=´. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF , ∴∠PFE 是二面角P —BC —A 的平面角. 又EF =BD =12,在Rt △PEF 中,中,tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan 43. 17.连结AC 1,∵11112263A C CC MC AC===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°. ∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M . 由三垂线定理知AB 1⊥A 1M . 点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2. 又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD , ∴NP ⊥平面ABCD . (2)∵NP ∥DD ′∥CC ′,′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM , ∴∠MCD 为该二面角的平面角. 在Rt △MCD 中可知中可知∠MCD =arctan21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高. ∵三棱锥D ′—BCM 体积为h S D D S 213131=¢×,6 1。
第8.4讲 线面垂直的判定定理(艺考生专用)
★谨以此案赠送给有梦想的学子第8.4讲 线面垂直的判定定理◆知识精要1.线面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理⑴判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.⑵判定定理二:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.⑶判定定理三:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.⑷判定定理四:两个相交平面都和第三个平面垂直,则交线垂直于第三个平面.◆现在就考考你,不要介意呀!1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥⇒⎭⎬⎫⊥//; ②b a M b M a //⇒⎭⎬⎫⊥⊥;③⇒⎭⎬⎫⊥⊥b a M a b ∥M ; ④⇒⎭⎬⎫⊥b a M a //b ⊥M .其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面.B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面.C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线.D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面.3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有 ( )A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF4.设a、b是异面直线,下列命题正确的是 ( )A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有 ( )A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若1=BC,2=AC,1=PC,则P到AB的距离为 ( )A.1B.2C.552D.553第3题图7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为 ( )A.0B.1C.2D.38.d是异面直线a、b的公垂线,平面α、β满足a⊥α,b⊥β,则下面正确的结论是 ( )A.α与β必相交且交线m∥d或m 与d重合B.α与β必相交且交线m∥d但m与d不重合C.α与β必相交且交线m与d一定不平行D.α与β不一定相交9.设l、m为直线,α为平面,且l⊥α,给出下列命题①若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题...的序号是 ( )A.①②③B.①②④C.②③④D.①③④10.已知直线l⊥平面α,直线m平面β,给出下列四个命题:①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②3.线面垂直的证明方法例1如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.例2如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3.求证:BD⊥平面PAD.◆我们用向量法来证明线面垂直,你会发现,这个方法真是太简单了,好好享受证明的快感吧.例3如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.考考你,试试身手吧.1.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.图1-42.[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.3.[2014·浙江卷] 如图1-5,在四棱锥A -BCDE中,平面ABC⊥平面BCDE,∠CDE =∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.3.线面垂直的性质定理线面垂直的性质定理一:如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的任意一条直线;线面垂直的性质定理二:如果两条直线垂直于同一个平面,那么这两条直线平行. 线面垂直的性质定理三:如果两条平行线中一条垂直于一个平面,那么另一条也平行这个平面.说明:线面垂直的最大应用就是来证明线线垂直.显摆一下,我是看好你呀!1. 判断下列命题是否正确,并说明理由.⑴两条平行线中的一条垂直于某条直线,则另一条也垂直于这条直线;( ) ⑵两条平行线中的一条垂直于某个平面,则另一条也垂直于这个平面;( ) ⑶两个平行平面中的一个垂直于某个平面,则另一个也垂直与这个平面;( ) ⑷垂直于同一条直线的两条直线互相平行;( ) ⑸垂直于同一条直线的两个平面互相平行;( ) ⑹垂直于同一个平面的两个平面互相平行. ( ) 2. 下列四个命题中错误的是( ).A.,a b a αα⊥⊥⇒∥bB.,a a α⊥∥b b α⇒⊥C.,a b α⊥∥,a b α⇒⊥D.,a a b b α⊥⊥⇒∥α3. 平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是( ). A.平面ABC 必平行于α B.平面ABC 必垂直于αC.平面ABC 必与α相交D.存在ABC ∆的一条中位线平行于α或在α内 4. 已知平面α和平面β相交,a 是α内一条直线,则有( ).A.在β内必存在与a 平行的直线B.在β内必存在与a 垂直的直线C.在β内不存在与a 平行的直线D.在β内不一定存在与a 垂直的直线 5. 直线a α⊥,直线b β⊥,且α∥β,则a ___b .6. 设直线,a b 分别在正方体''''ABCD A B C D -中两个不同的平面内,欲使//a b ,,a b 应满足________________________.(至少写出2个不同答案)7.如图12-5,在三棱锥中,PA PB=,AB BC⊥,若M是PC的中点,试确定AB 上点N的位置,使得MN AB⊥.图12-58. 如图所示,已知点S是平面ABC外一点,ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC .9.已知,如图矩形ABCD,过A作SA⊥面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课本、导学案、纸、双色笔
拿出你的激情!
成武一中数学高效课堂研究组
21班导学案反馈
★优秀小组: 7组、11组、3组、9组、6组、 ★优秀个人:刘清华 刘颖
张乾
姚子明
张冬梅 鹿盼
…
2.3.1直线与平面垂直的判定
学习目标
1.理解直线与平面垂直的定义;
2.初步掌握直线与平面垂直的判定定理;
3.能够运用判定定理证明简单线学们观察图片,说出旗杆
与地面、大桥桥柱与水面是什么位置关系? 你能再举出一些类似的例子吗?
大漠孤烟直 如何定义一条直线与一个平面垂直?
探究一:将一本书打开直立在桌面上,观察书脊 (想象成一条直线)与桌面的位置关系呈什么状 态?
(3)如果将图3中的两条相交直线m,n的位置改变一下,仍保证l m,
二、线面垂直的判定定理 吗? l n,如图4,你认为直线 l 还垂直于平面 一条直线与一个平面内的两条相交直线都
B n
垂直,则该直线与此平面垂直。
l
A
即:m α m nα m∩n=B l ⊥α l⊥m 简记:线线垂直 l⊥n 直
l
A
直线 l 的垂面
P
C
C
B
B
判断(1)如果一条直线垂直于一个平面内的
这条直线与这个平面垂直。
一条 无数条
直线,则
画直线与平面垂直时,通常把直线画成与表示平 面的平行四边形的一边垂直 平面,则这条直线垂直于这 (2)如果一条直线垂直于一个
个平面内的所有直线。
l a
l a
A
B
α
C
思考: (1)书脊AB与桌面上经过B点的直线有什么关系? (2)书脊AB与桌面上不过B点的直线有什么关系? 依据是什么? (3)书脊AB与桌面上的任意直线有什么关系?
如果直线 l 与平面 内的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直, 记作 l .
平面 的垂线 垂足
合作探究 展示学案 例1、变式1、 例2、变式2。
1.展示人员书写认真迅速、脱稿展示!
2.非展示同学:互查知识对错后讨论错误原因。
3.点评人员点评声音洪亮、语言清晰并能拓展 用彩笔补充【书写2分+正误3分= 满分5分】
4.其它同学:认真倾听、积极思考重点内容记好笔记。 有不明白或有补充的要大胆提出。
线面垂
关键:线不在多,相交则行
巩固练习
判断下列命题是否正确,正确的在( )内打“√” 错的打“×” (1)若一条直线与一个三角形的两条边垂直, 则这条直线垂直于三角形所在的平面。( √ ) (2)若一条直线与一个平行四边形的两条边垂直, 则这条直线垂直于平行四边形所在的平面。( ) × (3)若一条直线与一个梯形的两腰垂直, 则这条直线垂直于梯形所在的平面。( ) √ (4)若一条直线与一个平面不垂直,则这个平面内 没有与这条直线垂直的直线。( ) ×
展示点评、质疑拓展
问题 例1
展示 小组
位置
点评
非展示同学任务
9组 10组 8组
前黑 5组 板
变式1 例2
在学案上整理所有 探究内容并针对学 习中疑问问题准备
变式2
11组
后黑 板
提出质疑。
1组
课堂小结
(1)本节课你学会了哪些判断直线与平面垂直的方法?
请用自己的语言表述。
1. 定义 2. 定理
(2)直线与平面垂直的判定定理中体现了那些数学思
合作探究二
内容:完成导学案上的探究二问题 要求: 1. 小组同学先独立完成实验,针对存在疑问的地 方进行讨论。 2.讨论完后整理讨论结果;准备举手发言。
如图,准备一块三角形的纸片,做一个试验:
A
m n
l
A A
A A
A
o
CC
D
D
B
B B
D
D
C C
C
B
D
B
C
过 ABC 的顶点A翻折纸片,得到折痕 AD,将翻折后的纸片竖起放置在桌面 上 (BD,DC于桌面接触). (1)折痕AD与桌面垂直吗?不一定 (2)如何翻折才能使折痕 AD 与桌面所在 平面 垂直.
想方法?
定理
线线垂直
定义
线面垂直
平面问题
空间问题
学科班长表扬本节课优秀小组和优秀个人
优秀小组:
优秀个人: