初中八年级(下)期中数学试卷
人教版八年级下册数学《期中检测试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
部编版八年级数学下册期中试卷(完美版)
部编版八年级数学下册期中试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤7 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .439.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若28n 是整数,则满足条件的最小正整数n 为________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、A6、A7、C8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、752、22()1y x =-+3、74、x >15、46、2.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、53、-4≤a<-3.4、(1)略;(2)45°;(3)略.5、(1)略(2)略6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
八年级数学下学期期中测试卷(含答案)
八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题
河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查中,适合采用抽样调查的是( )A .调查本班同学的数学小测成绩B .调查一批学生饮用奶的微量元素的含量C .为保证载人航天器成功发射,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检2.如图,在平面直角坐标系中,☆盖住的点的坐标可能是( )A .(3,1)-B .(3,1)--C .(3,1)D .(3,1)- 3.在同一平面直角坐标系内,直线3y x =与直线5y kx =-互相平行,则k 的值( ) A .3- B .13 C .3 D .5-4.一根蜡烛原来长cm a ,点燃后燃烧的时间为t min ,剩余蜡烛的长为cm y ,(cm)y 与(min)t 之间的函数图像正确的是( )A .B .C .D .5.下列说法正确的是( )A .在圆的面积公式2S r π=中,常量是π、r ,变量是SB .加工100个零件,工作效率p 与时间t 之间的关系式是100=pt ,p 、t 都是变量C .以固定的速度0v 向上抛一个小球,小球的高度(m)h 与小球运动的时间t (s )之间的关系式是20 4.9h v t t =-,常量是4.9,变量是h 、tD .在匀速运动公式S vt =中,常量是t ,变量是S 、v6.王老师对本班50名学生的年龄进行了统计,列出如下的统计表,则本班13岁的人数是( )A .30人B .25人C .20人D .18人 7.已知一次函数(31)4=-+-y m x m 图像经过原点,则下列结论正确的是( ) A .4m =- B .2m = C .4m =± D .4m =8.为了了解某校初中学生寒假规范书写情况,随机抽取80名学生20天的每日一篇练字纸,在这个问题中,样本容量是( )A .80B .20C .1600D .1600篇的练字纸 9.在画某一次函数的图像时,小红列表如右图,则下列各点不在其图像上的是( )A .(5,8)-B .(3,6)-C .(7,4)-D .(15,13)- 10.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围( )A .2k <-B .2k >-C .0k >D .0k <11.在平面直角坐标系中,已知点(4,0)A -,O 为坐标原点.若要使OAB V 是直角三角形,则点B 的坐标不可能是( )A .(4,2)-B .(0,4)C .(4,2)D .(2,2)-12.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 13.小红、小丽假期在同一超市购买同种水果,付款金额y (元)与购买x (千克)之间的函数图象如图所示,小红一次性购买6千克,小丽每次买3千克,连续买2次,小红比小丽少花几元( )A .4B .3C .2D .114.某校举行规范书写大赛,100名参赛同学最后得分(得分取整数)的频数分布直方图如图所示(频数轴刻度等间隔).根据图中的信息写出频数轴每隔代表人数( )A .5B .10C .15D .无法确定二、填空题15.函数321=-y x 自变量x 的取值范围是 . 16.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出不完整的频数分布表(如右图).频数分布表中的组距是 .17.已知y 与x 成正比例函数,当2x =-时,y =-6,当5x =时,y = . 18.在平面直角坐标系中,对于点(,)P x y ,若点Q 的坐标为(,)-+x ay ax y ,则称点Q 是点P 的“a 阶智慧点”(a 为常数,且0a ≠),例如:点(1,3)P 的“2阶智慧点”为点(123,213)-⨯⨯+,即点(5,5)-Q .(1)点(1,2)A --的“3阶智慧点”的坐标为 ;(2)若点(2,13)C m m +-的“5-阶智慧点”到x 轴的距离为1,则m 的值 .三、解答题19.在同一平面直角坐标系内有A 、B 两点.点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为1;点(3,29)--B m m 在第三象限.(1)直接写出点A 的坐标;(2)求m 的取值范围;(3)连接AB ,且AB 垂直于x 轴,求点B 的坐标.20.如图1,在ABC V 中,8BC =,5AD =,动点E 由点C 沿CB 向点B 移动(不与点B 重合),设CE 的长为x ,ABE V 的面积为S .(1)完成表格:(2)在图2所示的平面直角坐标系中画出图像;(3)请写出S 与x 之间的函数关系式;21.某城市部分公共场所位置如图所示,小方格的边长为1个单位长度.已知学校(5,3)A ,体育馆(3,2)B --,火车站O 为坐标原点,文化馆C 与体育馆B 关于x 轴对称,超市D 与点B 关于原点对称.(1)请在图中建立平面直角坐标系,并标出点,O C 的位置;(2)直接写出点D 的坐标;(3)小红从学校出发,先向南走6个单位长度,再向西走3个单位长度,到达图书馆E . ①在图中标出点E ,并写出点E 的坐标________;②连接,,B O E ,则OBE △的面积是________.22.五一黄金周,小红一家驾车出游,出发时油箱内存有一定数量的汽油,行驶若干小时后,到达第一个旅游景点A ,游玩后驾车赶往第二个景点,从第一个景点出发4h 后在途中某一加油站加油,加油5分钟使油箱内汽油的升数与未出发前一致,若汽车从始至终都是以同一速度匀速行驶,图中表示的是该过程中油箱里的剩油量Q (L )与行驶时间t (h )之间的函数关系.(1)油箱内原有汽油________升;在第一个景点游玩________h;(2)A点坐标表示的实际意义________;(3)直接写出C点坐标________;(4)求DC所在直线解析式.23.为了创建书香校园,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成三幅不完整的统计图表.请根据图表提供的信息,解答下列问题:a________;(1)表中的(2)请你把条形统计图中“4册”部分补充完整;(3)若该校共有2200名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.A,B两地相距48km,甲、乙两车分别从A地和B地同时出发相向而行.他们距A地s和出发后的时间t(h)之间的函数关系的图象如图所示.的路程(km)(1)分别求出甲、乙两车距A地的路程s与时间t的函数关系式;(2)求甲乙两车相遇的时间;(3)直接写出两车相距5千米时t的值;25.一辆中型客车准乘32人(包括一名司机),这辆客车由A地行驶到B地,平均油耗为8升/百公里,现油价7元/升,设乘客有x人,盈利为y元.现有两种路线可供选择路线一:走“国道”全程180公里,每人票价25元,其他运行成本为50元;路线二:走“高速”全程120公里,每人票价30元,高速费60元,其他运行成本50元.(1)分别写出两种路线盈利y(元)与x(人)的函数关系式;(2)应该怎么选择路线,保证盈利最大?。
湖北省荆门市海慧中学2023-2024学年八年级下学期期中数学试题(解析版)
荆门市海慧中学2024年4月期中考试八年级数学试卷一、选择题1. 下列各式中最简二次根式是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查最简二次根式的定义,即“被开方数中不含能开得尽方的因数或因式;被开方数不含分母”,由此即可求解,掌握最简二次根式的定义,二次根式的性质是解题的关键.【详解】解:A,不是最简二次根式,不符合题意;BCD是三次根式,不符合题意;故选:C .2. 下列各式计算正确的是()A. B.C. D. 【答案】D【解析】【分析】本题主要考查了二次根式的加减乘除计算,熟知相关计算法则是解题的关键.根据二次根式的加减乘除计算法则求解判断即可.【详解】解:A,原式计算错误,不符合题意;B 、C 、,原式计算错误,不符合题意;D,原式计算正确,符合题意;故选D.===3==2=2+=≠==6318=⨯=2==3. 把( )A. B. C. D. 【答案】B【解析】【分析】由于被开方数,可确定x−1的取值范围,然后再按二次根式的乘除法法则计算即可.【详解】解:由已知可得:,∴ ,即,∴故选:B【点睛】本题主要考查二次根式的性质与化简,由已知得出x−1的取值范围是解答此题的关键.4. 若三点都在函数的图象上,则、、的大小关系为( )A. B. C. D. 【答案】A 【解析】【分析】本题主要考查了正比例函数的图象与性质,根据,可得随的增大而减小,从而可得答案.【详解】解:∵三点 都在函数的图象上,而,∴随的增大而减小,又∵,∴,故选:A .5. 已知直线经过点,且与两坐标轴围成的三角形的面积为3,则直线的解析式为()(x -101x ->-101x ->-10x -<10x ->(x -=123111,,,,242y y y ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()0y kx k =<1y 2y 3y 123y y y >>213y y y >>312y y y >>321y y y >>0k <y x 123111,,,,242y y y ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()0y kx k =<0k <y x 111242-<-<123y y y >>()0,2-A. B. 或C. D. 或【答案】B【解析】【分析】本题主要考查一次函数的图像和性质,根据题意设函数解析式为,由于与两坐标轴围成的三角形面积为3列出等式求出答案.【详解】解:设函数解析式为,令,得,由于与两坐标轴围成的三角形面积为3,,,则这条直线的表达式为或.故选:B .6. 如图,四边形是菱形,对角线相交于点O ,且,,则菱形的面积为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了菱形的性质,30度直角三角形的性质,勾股定理,解题的关键是熟练掌握所学的性质定理,由菱形的性质和直角三角形的性质,得到,求出的长度.即可求出菱形的面积.【详解】解:∵四边形是菱形,∴,,,,在中,,2=23y x -2=23y x-2=23y x --2=23y x --=232y x -2=23y x --2y kx =-2y kx =-0y =2x k=21232k ∴⨯⨯=23k ∴=±223y x =-223y x =--ABCD AC BD 、30ACD ∠=︒4BO =ABCD 28CD OD ==AC ABCD AC BD ⊥4OD BO ==28BD OB ==2AC OC =Rt OCD △30ACD ∠=︒∴,∴,∴,∴菱形的面积为:故选:D .7. 如图,在四边形中,为对角线,,,E 、F 分别是边的中点,则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】本题考查三角形中位线定理,三角形三边关系定理;添加辅助线,构造中位线,得出线段之间数量关系是解题的关键.取的中点H ,连接、,根据三角形中位线定理分别求出、,根据三角形的三边关系解答即可.【详解】解:取的中点H ,连接、,∵E 、H 分别为、的中点,∴是的中位线,∴,同理可得:,在中,,即,的28CD OD ==OC ==AC =11822AC BD ⋅=⨯=ABCD BD 2AB = 2.8CD =AD BC 、EF 0.4 2.4EF ≤≤0.4 2.4EF <≤0.4 2.4EF <<0.4 2.4EF ≤<BD EH FH EH FH BD EH FH AD BD EH ABD △112EH AB ==1 1.42FH CD ==EHF FH EH EF FH EH -+<<0.4 2.4EF <<当点H 在上时,,∴,故选:B .8. 大约公元222年我国汉代数学家赵爽为《周髀算经》一书作序时介绍了“勾股圆方图”,亦称“赵爽弦图”,如图,四个全等的直角三角形拼成大正方形,中空的部分是小正方形,连接相交于点O ,与相交于点P ,若,则直角三角形的边与之比是( )A. B. C. D. 【答案】C【解析】【分析】先证明,得出,再根据已知条件,结合等腰三角形的性质、正方形的性质求得,进而证明,得出,设,得到,进而求解.【详解】解:∵四边形、是正方形,∴,,,∴,∵四个全等的直角三角形拼成大正方形,∴,∴,∴,∵,,∴,∴,∴,EF 2.4EF =0.4 2.4EF £<ABCD EFGH EG BD ,BD HC GO GP =CG BG 12251EDO GBO △≌△OE OG =GO GP =22.5CBG PBG ∠=︒=∠BPG CPG ≌PG CG OG ==1PG CG OG BF ====1BG BF FG =+=EFGH ABCD ,,45EH FG EH FG EGP =∠=︒∥90BGP ∠=︒45CBD ∠=︒,DEO BGO EDO GBO ∠=∠∠=∠ABCD ,DE BG BF CG ==EDO GBO △≌△OE OG =GO GP =45EGP ∠=︒()11804567.52GOP OPG ∠=∠=︒-︒=︒9067.522.5PBG ∠=︒-︒=︒22.5CBG PBG ∠=︒=∠∵,∴,∴,设,则,∴,∴,∴;故选:C .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰三角形的性质等知识,熟练掌握相关图形的性质定理、证明三角形全等是解题的关键.9.如图1,矩形中,E 为上一点,点P 沿折线以每秒1个单位长度的速度从点B 匀速运动到点D .设运动时间为t 秒,,图2是点P 运动过程中y 随t 变化的函数图象.当时点p 运动到点D ,则a 的值为( )A. 22B. 23C. 24D. 25【答案】D【解析】【分析】本题考查了函数图象的信息的获取,矩形的判定与性质,勾股定理等知识,充分理解函数图象所90,PGB CGB BG BG ∠=∠=︒=BPG CPG ≌PG CG OG ==1PG CG OG BF ====22EG OG ==FG ==1BG BF FG =+=1CG BG ==-ABCD AB ()BE BC <BED PE PC y +=t a =涵盖的信息,是解答本题的关键.当时,点P 在B 点处,可得,当点P 在点E 处时,可知此时y 取最小值,结合图象有:,在中,,即可求出,,当时点P 运动到点D ,过E 点作于点N ,结合图象有:,在中,,据此即可作答.【详解】解:当时,点P 在B 点处,,∴结合图象有:,即,当点P 在点E 处时,,如图,连接,∴,,∴可知当点P 运动到E 点时,y 取最小值,∴结合图象有:,∵在中,,∴,∴解得:或者,∴或者,∵,∴,,当时点P 运动到点D ,过E 点作于点N,如图,0=t 23BC BE +=17PE PC y EC +===Rt BCE 222EC EB BC =+15BC =8BE =t a =EN DC ⊥33PE PC y CD DE +==+=Rt DNE △222DE DN NE =+0=t PE PC y BC BE +==+23BC BE +=23BE BC =-PE PC y EC +==EC 11PE PC EC +≥22P E P C EC +≥17PE PC y EC +===Rt BCE 222EC EB BC =+()2221723BC BC =-+15BC =8BC =8BE =15BE =BE BC <15BC =8BE =t a =EN DC ⊥∵在矩形中,,∴四边形是矩形,∴,,∵结合图象有:,∴,∵在中,,∴,∴解得:,∴,∵点P 沿折线以每秒1个单位长度的速度从点B 匀速运动到点D ,∴当时,点P 运动到点D .故选:D .10. 如图,正方形的边长为2,G 是对角线上一动点,于点E ,于点F ,连接.给出四个结论:①;②若,则;③若G 为的中点,则四边形是正方形;④若,则.则其中正确的是( )A. ①②③B. ①②④C. ①②③④D. ②③④【答案】C【解析】【分析】连接交于O ,连接,先证,可得,再证,得到四边形是矩形,可得到,即可判断①;由可得,从而得出,即可判断②;先证明,可得是等腰直角三角形,得出,从而可得四边形是正方形,即可判断③;连接,在中,,求得,得到,从而得出,解得,即可求解④.ABCD ENDC ⊥EBCN 15EN BC ==8NC BE ==33PEPC y CD DE +==+=3325DN DE NC DE =--=-Rt DNE △222DE DN NE =+()2222515DE DE =-+17DE =17825DE BE +=+=BED 25251t a ===ABCD BD GE CD ⊥GF BC ⊥EF AG EF =BG AB =22.5DAG ∠=︒BD CEGF :1:3DG BG =12ADG S = AC BD CG SAS ABG CBG ≌()AG CG =90GFC GEC DCB ∠=∠=∠=︒EGFC CG EF =AB BG =67.5BAG BGA ∠=∠=︒9067.522.5DAG ∠=︒-︒=︒DE CE =DGE △DE GE EC ==CEGF AC Rt △ABD 2228AB BD ==BD =AO =14DG BD ==DG =【详解】解:连接交于O ,连接,∵正方形,∴,在和中∴,∴,∵,∴,∴四边形是矩形,∴,∴,故①正确;∵,∴,∴,故②正确;∵点G 为的中点,,正方形,∴,,,∴,∵四边形是矩形,∴四边形是正方形,故③正确;连接,∵正方形,∴,在中,,AC BD CG ABCD 90AB BC ABG CBG BCD =∠=∠∠=︒,,ABG CBG AB BC ABG CBGBG BG =⎧⎪∠=∠⎨⎪=⎩SAS ABG CBG ≌()AG CG =GF BC GE DC ⊥⊥,90GFC GEC DCB ∠=∠=∠=︒EGFC CG EF =AG EF =AB BG =111801804567.522BAG BGA ABD ∠=∠=︒-∠=︒-︒=︒()()9067.522.5DAG ∠=︒-︒=︒BD GE BC ∥ABCD 45GDE DGE ∠=∠=︒GC GD =GC GD ⊥DE GE EC ==CEGF CEGF AC ABCD 2AC BD AO AC BD ==⊥,Rt △ABD 2228AB BD ==解之得:,∴∵∴, 解之得:∴,故④正确;∴正确结论的序号为. 故选C【点睛】本题考查了正方形的性质与判定,矩形的性质与判定,等腰三角形的判定及性质,全等三角形的性质及判定,二次根式的乘除混合运算,解决本题的关键是熟练掌握四边形的有关性质.二、填空题(每小题3分,共18分)11. 函数yx 的取值范围是_____.【答案】x ≥且x ≠1【解析】【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,2x ﹣1≥0且x ﹣1≠0,解得x≥且x≠1.故答案为x≥且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12. 已知直线,,我们称直线为这两条直线的“友好直线”.若直线 是直线与的“友好直线”,且直线经过第一、三、四象限,则的取值范围是_____.BD =AO BO CO DO ====13DG BG =14DG BD ==DG =111222ADG S DG AO =⋅== ①②③④121212()1110y kx b k =+≠()2220y kx b b =+≠()1212y k k x b b =++l 2y x m =+()360y mx m =-≠l m【答案】##【解析】【分析】本题考查一次函数的性质,根据直线经过第一、三、四象限可得,,据此解答即可.【详解】直线是直线与的友好直线,直线的解析式为:,直线经过第一、三、四象限,,解得,故答案:.13. 若一次函数中x 的取值范围为,相应函数值范围为,则_____.【答案】或.【解析】【分析】此题考查的是一次函数的增减性和求一次函数的解析式,掌握一次函数的增减性与k 的关系和利用待定系数法求一次函数的解析式是解决此题的关键.根据k 的符号分类讨论:当时,易知该一次函数经过和两点,然后利用待定系数法即可求出结论;当时,易知该一次函数经过和两点,然后利用待定系数法即可求出结论.【详解】解:∵一次函数的自变量x 的取值范围是,相应的函数值的范围是,当时,y 随x 的增大而增大∴该一次函数经过和两点∴解得:∴;为0m >0m<y kx b =+0k >0b < l 2y x m =+36(0)y mx m =-≠∴l (23)6y m x m =+- l ∴23060m m +>⎧⎨-<⎩0m >0m >y kx b =+26x -≤≤119y -≤≤kb =15-10-0k >()2,11--()6,90k <()2,9-()6,11-y kx b =+26x -≤≤119y -≤≤0k >()2,11--()6,911296k bk b-=-+⎧⎨=+⎩526k b ⎧=⎪⎨⎪=-⎩56152kb =-⨯=-当时,y 随x 的增大而减小∴该一次函数经过和两点∴解得:∴;综上:为或.故答案为:或14. 如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形,P 为上一点,连接,若四边形的面积为3,的长为______.【解析】【分析】本题考查的是勾股定理的应用,平行四边形的性质,化为最简二次根式,先求解,再进一步利用勾股定理求解即可.【详解】解:如图:过作 ,过B 作,0k <()2,9-()6,11-92116k bk b=-+⎧⎨-=+⎩524k b ⎧=-⎪⎨⎪=⎩54102kb =-⨯=-kb 15-10-15-10-ABCD CD BP ABCD CP =BP BC CD ==CE CH ===D ED BC ⊥BH DC ⊥由题意可得:四边形是平行四边形,,∵∴∴∵∴,∴..15. 如图,在矩形中,,,对角线与相交于点,点为边上的一个动点,,,垂足分别为,,则_____【答案】##【解析】【分析】本题考查了矩形的性质和勾股定理,连接,根据矩形的性质和勾股定理求出,从而求出,进而表示出,可得即可求解.【详解】解:连接 ∵四边形是矩形,∴,,ABCD 3DE BH ==ABCD S BC DE CD BH =⋅=⋅=四边形BC CD ==CE CH ====CP =PH HC CP =+=BP ===ABCD 5AB =12AD =AC BD O E BC EF AC ⊥EF BO ⊥F G EF EG +=60138413OE AC OC BOC BOE COE S S S =+△△△1()2OC EF EG AB BC ⋅+=⋅OE ABCD 90ABC ∠=︒12,BC AD AO CO BO DO =====∵,∴,∴,∴∴,即,∴,∴,故答案为:.16. 如图,已知正方形的边长为,在边的延长线上有一动点,以为对角线作正方形,连接,为的中点,连接、则当的面积最小时,正方形的边长为_____.【答案】【解析】【分析】本题考查了正方形的性质,勾股定理,等腰直角三角形的性质与判定,全等三角形的性质与判定,连接,设交于点,交于点,交于点,先证明,,,进而证明,得出是等腰直角三角形,取的中点,连接,得出在上运动,当点在上时,即,最小,进而得出是等腰直角三角形,即可求解.【详解】解:如图所示,连接,设交于点,交于点,5AB =13AC ==132OC =BOC BOE COE S S S =+= Δ111222ABC OB EG OC EF S ⋅+⋅=OB EG OC EF ⋅+⋅=ABC S 1()2OC EF EG AB BC ⋅+=⋅13()2EF EG +=15122⨯⨯6013EF EG +=6013ABCD 6BC F CF CEFG AF H AF DH GH DHC CEFG ,,,,HE AC BH DE BG ,DC BG S ,DE BG T ,BH DE O BH HE =90BHE ∠=︒()SAS BCG DCE ≌()SAS BHG EHD ≌DHG △AB M HM H MH H DC 12DH DC =DH DCG △,,,,HE AC BH DE BG ,DC BG S ,DE BG T交于点,∵四边形是正方形,是对角线∴∴三点共线,∵是的中点,在中,是斜边∴∴,设,则又∵∴∴,∵,∴,即在中,,BH DE O ,ABCD CGFE ,AC CF 45ACB ECF ∠=∠=︒,,A C E H AF Rt ,Rt ABF AEF AF BH HE=HAE HEA ∠=∠HAE HEA α∠=∠=2EHF α∠=HE HF=90EHF α∠=︒-90BHE ∠=︒BCD GCE ∠=∠BCG DCG GCE DCG ∠+∠=∠+∠BCG DCE∠=∠,BCG DCE∴∴,∵∴又∵∴在中,∴∴,∴∴又∵∴是等腰直角三角形,BC CD BCG DCECG CE =⎧⎪∠=∠⎨⎪=⎩()SAS BCG DCE ≌BG DE =CBG CDE∠=∠DST BSC∠=∠90DTS BCD ∠=∠=︒HOE TOB∠=∠GBH DEH∠=∠,BHG EHD GB DE GBH DEHBH HE =⎧⎪∠=∠⎨⎪=⎩()SAS BHG EHD ≌DH HG =BHG EHD∠=∠BHG BHD EHD BHD∠-∠=∠-∠90DHG BHE ∠=∠=︒DH HG=DHG △如图所示,取的中点,连接∴∴在上运动,∴当最小时,的面积最小AB M HMMH BF∥H MH DH DHC∴当点在上时,即,最小,此时如图所示又∵,∴是等腰直角三角形,∴故答案为:三、解答题(共72分)17. (1)计算:(2)已知,求的值.【答案】(1);(2)【解析】【分析】本题考查了实数的混合运算,分母有理化,分式的化简求值;(1)根据分母有理化,负整数指数幂,零指数幂,化简绝对值进行计算即可求解;(2)先化简分式,然后将字母的值代入,即可求解.【详解】解:(1);H DC 12DH DC =DH 45DCG GCF HDG ∠=∠=︒=∠DCG△CG DC ==(3012202422-⎛⎫+-++- ⎪⎝⎭x =2111x x x----5-1-(3012202422-⎛⎫-++- ⎪⎝⎭812=-++-=5-(2)∵∴,;∵∴原式18. 已知与x 成正比例,与成正比例.当时,;当时,.(1)求这两个函数的解析式;(2)当时,求的值.【答案】(1),; (2)【解析】【分析】此题考查待定系数法求函数解析式,解方程组,已知解析式求函数值,正确理解题意是解题计算的关键.(1)设,,再建立方程组,求出与即可;(2)先求出当时的与,再代入计算即可.x =1==-10x +=>1x =2111x x x--()()1111x x x x +-=-111x x x=+--21x x=-+11,x x =-=21x x =-+)111=-+1111=-+=-1y 2y 1x -2x =121y y +=-3x =129y y -=3x =1211y y -1y x =233y x =-+1211y k x =()221y k x =-121221329k k k k +=-⎧⎨-=⎩1k 2k 3x =1y 2y 1211y y -【小问1详解】解:∵与x 成正比例,与成正比例.∴设,,当时,;当时,,∴,解得;所以这两个正比例函数的解析式分别为:,【小问2详解】当时,,,∴.19. 在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点C 逆时针旋转,画出对应线段;(2)在线段上画点E ,使(保留画图过程的痕迹);(3)连接,画点E 关于直线的对称点F .【答案】(1)见解析(2)见解析 (3)见解析【解析】1y 2y 1x -11y k x =()221y k x =-2x =121y y +=-3x =129y y -=121221329k k k k +=-⎧⎨-=⎩1213k k =⎧⎨=-⎩1y x =233y x =-+3x =13y =2936y =-+=-1211y y -1136=--1136=+12=58⨯OABC ()0,0O ()3,4A ()8,4B ()5,0C CB 90︒CD AB 45BCE ∠=︒AC AC【分析】(1)利用网格特点和旋转的性质画出B 的对称点D ,线段即为所求;(2)根据等腰三角形三线合一的性质,找到的中点,进而得到点E ,即为所求;(3)连接点与点交于点F ,则点F 即为所求.【小问1详解】如图,即为所求线段;【小问2详解】如图,点即为所求作的点.【小问3详解】如图,点F 即为所求.说明:根据题意可知:,,∴四边形为行四边形,又∵,∴四边形为菱形,∴,由(2)得,∴,CD BD BCE ∠()5,0()0,5OA CD E AB OC AB OC =OABC 5OA OC ===OABC OCA ACB OAC BAC ∠=∠=∠=∠45ECB OCF ∠=︒=∠FCA ACE ∠=∠∵,∴,∴.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形. 也考查了轴对称变换.20. 如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B .(1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.【答案】(1)y =﹣2x +6;(2)M (3,6)或(﹣1,2).【解析】【分析】(1)把点C 的坐标代入y =x +3,求出m 的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M 、N 两点的横坐标,利用两点间距离公式求出M 的坐标.【详解】解:(1)在y =x +3中,令y =0,得x =﹣3,∴B (﹣3,0),把x =1代入y =x +3得y =4,∴C (1,4),设直线l 2的解析式为y =kx +b ,∴,解得,∴直线l 2的解析式为y =﹣2x +6;(2)AB =3﹣(﹣3)=6,设M (a ,a +3),由MN ∥y 轴,得N (a ,﹣2a +6),MN =|a +3﹣(﹣2a +6)|=AB =6,解得a =3或a =﹣1,AC AC =()AFC AEC ASA ≌AF AE =430k b k b +=⎧⎨+=⎩26k b =-⎧⎨=⎩∴M (3,6)或(﹣1,2).【点睛】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.21. 如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,已知OA =OC ,OB =OD ,过点O 作EF ⊥BD ,分别交AB 、DC 于点E ,F ,连接DE ,BF ,AF .(1)求证:四边形DEBF 是菱形;(2)设AD EF ,AD +AB =12,BD =AF 的长.【答案】(1)见解析(2)【解析】【分析】(1)先根据对角线互相平分证得四边形为平行四边形,再证得,从而得到,得到四边形为平行四边形,最后根据对角线互相垂直的平行四边形是菱形即可得证;(2)过点作于点,先根据勾股定理求得的长,再根据相似三角形的判定与性质可得,然后根据正弦三角函数可得,根据菱形的性质可得,在中,解直角三角形可得,最后在中,利用勾股定理即可得.【小问1详解】证明:,∴四边形为平行四边形,,,在和中,,,∥ABCD BOE DOF ≅△△DF BE =DEBF F FGAB ⊥G ,AD AB 142BE AB ==30ABD ∠=︒60EBF ∠=︒Rt BFG 2,BG FG ==6AG =Rt AGF △,OA OC OB OD == ABCD AB CD ∴∥OBE ODF ∴∠=∠BOE △DOF OBE ODF OB OD BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()BOE DOF ASA ∴≅,又,∴四边形是平行四边形,,∴四边形是菱形.【小问2详解】解:如图,过点作于点,,,∴在中,,,,解得,,,,,,在中,,,∵四边形是菱形,,,,BE DF ∴=DF BE DEBF EF BD ⊥ DEBF F FG AB ⊥G ,AD EF EF BD ⊥ 90ADB ∴∠=︒Rt ABD 222AD BD AB +=12,AD AB BD +==222(2)1AD AD =-∴+4=AD 128AB AD ∴=-=AD EF BOE BDA ∴ 122BE OB OB OB AB BD OB OD OB ∴====+142BE AB ∴==Rt ABD 1sin 2AD ABD AB ∠==30ABD ∴∠=︒DEBF 260,4EBF ABD BF BE ∴∠=∠=︒==cos 2,sin BG BF EBF FG BF EBF ∴=⋅∠==⋅∠=6AG AB BG ∴=-=则中,.【点睛】本题考查了菱形的判定与性质、相似三角形的判定与性质、解直角三角形等知识点,熟练掌握菱形的判定与性质是解题关键.22. 如图,已知直线分别交x 轴、y 轴的正半轴于、两点,且a 、b 满足.现将沿过点B 的直线折叠,使点A 落在x 轴上的点D 处.折痕所在直线交y 轴正半轴于点C(1)直接写出点的坐标:A (),B ( );(2)试求直线的解析式:(3)将点B 绕点O 逆时针旋转得点E ,作直线,在直线上是否存在点P ,使若存在,试求直线的解析式;若不存在,请说明理由.【答案】(1);(2)直线为(3)的解析式为:或.【解析】【分析】(1)利用非负数的性质可得,,从而可得答案;(2)先求解,结合折叠可得:,,设,由勾股定理可得,解得:,再进一步可得答案;(3)如图,过作于,交轴于,过作轴于,连接,证明,由等面积法可得:在Rt AGF △AF ===AB (),0B b ()0,A a 30b +-=AOB BC 90︒DE DE PBD DEO ∠=∠BP 0,43,0BC 1322y x =-+BP 223y x =-+223y x =-()2281640a a a -+=-=30b -=5AB ==5BD AB ==CD AC =AC m =()22224m m =+- 2.5m =B BP DE ⊥P y T P PG x ⊥G BE PBD DEO ∠=∠2DBE S BP DE === DP ==同理可得:,求解直线为,可得,再利用待定系数法求解解析式即可,作关于轴的对称点,连接交直线于,则,可得,,再利用待定系数法求解解析式即可.【小问1详解】,∴,,解得:,,∴,;【小问2详解】∵,,∴,结合折叠可得:,,设,∴,,,∴,解得:,∴,∴,设为,∴,解得:,∴直线为;【小问3详解】如图,过作于,交轴于,过作轴于,连接,3013DP BP PG BD ⨯==DE 332y x =+630,1313P ⎛⎫- ⎪⎝⎭T x K BK DE P 'PBD P BD '∠=∠P BD DEO '∠=∠()0,2K -30b +-=()2281640a a a -+=-=30b -=4a =3b =()0,4A ()3,0B ()0,4A ()3,0B 5AB ==5BD AB ==CD AC =AC m =532OD =-=5OC m =-CD AC m ==()22224m m =+-2.5m =4 2.5 1.5OC =-=()0,1.5C BC 1.5y kx =+3 1.50k +=12k =-BC 1322y x =-+B BP DE ⊥P y T P PG x ⊥G BE∴,∵,∴,由旋转可得:,而,∴,∴由等面积法可得:∴同理可得:,设直线为,∴,解得:,∴直线为,∴,则,∴,90BPE EOB ∠=︒=∠ETP BTO ∠=∠PBD DEO ∠=∠3OE OB ==2OD =1155322BED S =⨯⨯= DE ==2DBE S BP DE === DP ==3013DP BP PG BD ⨯==DE y mx n =+203m n n -+=⎧⎨=⎩323m n ⎧=⎪⎨⎪=⎩DE 332y x =+3033132x =+613x =-630,1313P ⎛⎫- ⎪⎝⎭由,同理可得:的解析式为:;∴,作关于轴的对称点,连接交直线于,则,∴,∴,同理可得的解析式为:;综上:的解析式为:或.【点睛】本题考查的是一次函数的几何应用,非负数的性质,二次根式的乘除混合运算,轴对称的性质,勾股定理的应用,作出合适的辅助线是解本题的关键.23. 问题提出:如图(1),E 是菱形边上一点,是等腰三角形,,,交于点G ,探究与的数量关系.问题探究:(1)先将问题特殊化,如图(2),当时,求证::(2)再探究一般情形,如(1),试探究与数量关系.问题拓展:现将图(1)特殊化,如图(3),连接,若,菱形的面积为,则当点E 从点B 运动到点C 时,线段扫过的面积为_____【答案】(1)证明见解析,(2);(3).【解析】【分析】问题探究(1)在上截取,使得,证明得到,进一步证明,,即可求出;(2)在上截取,使,连接,证明得到,求出的()3,0B 630,1313P ⎛⎫- ⎪⎝⎭BP 223y x =-+()0,2T T x K BK DE P 'PBD P BD '∠=∠P BD DEO '∠=∠()0,2K -BP '223y x =-BP 223y x =-+223y x =-ABCD BC AEF △AE EF =()90AEF ABC αα∠=∠=≥︒AF CD GCF ∠α90α=︒45GCF ∠=︒GCF ∠αDF 120α=︒ABCD DF 3902GCF α∠=-︒BA BJ BJ BE =EAJ FEC V V ≌AJE ECF ∠=∠135AJE ∠=︒135ECF ∠=︒45GCF ∠=︒AB AN AN EC =NE ANE ECF △≌△ANE ECF ∠=∠得到,进而得到;问题拓展:如图,过作于,延长交的延长线于,由菱形的面积为,可得,证明的轨迹是线段,当,重合,,重合,如图,可得扫过的面积是的面积,再进一步解答即可.【详解】解:(1)如图,在上截取,使得.∵四边形是正方形,,,∵,,∵,,,∵,,,∵,,∴,,,;(2)结论:;理由:如图,在上截取,使,连接.∵,,1902BNE β∠=︒-1902ANE β∠=︒+3902GCF ECF BCD β∠=∠-∠=-︒D DK BC ⊥K CF AD NABCDBC CD ==F CN E C F N DF Rt DCF BA BJ BJ BE =ABCD 90B BCD BCD ∴∠=∠=∠=︒BA BC =BJ BE =AJ EC ∴=AEC AEF CEF BAE B ∠=∠+∠=∠+∠90AEF B ∠=∠=°CEF EAJ ∴∠=∠EA EF =()SAS EAJ FEC ∴ ≌AJE ECF ∴∠=∠90B Ð=°BJ BE =45BJE ∠=︒180135AJE BJE ∴∠=︒-∠=︒135ECF ∴∠=°1359045GCF ECF ECD ∴∠=∠-∠=︒-︒=︒3902GCF α∠=-︒AB AN AN EC =NE AEC ABC BAE AEF FEC ∠=∠+∠=∠+∠ABC AEF ∠=∠.∵,,.∵,,.∵,,∴,;(3)如图,过作于,延长交的延长线于,∵菱形,,∴,,∴,,∴,,∵菱形的面积为∴∴,∵,结合(2)可得:,∴的轨迹是线段,∴∠=∠EANFEC AE EF =()ANE ECF SAS ∴ ≌∴∠=∠ANE ECF AB BC =AN EC =BN BE ∴=EBN α∠=1902α︒∴∠=-BNE 1180902ANE BNE α∠=︒-∠=︒+()139********GCF ECF BCD ANE BCD ααα⎛⎫∴∠=∠-∠=∠-∠=︒+-︒-=-︒ ⎪⎝⎭D DK BC ⊥K CF AD N ABCD 120α=︒AB CD ∥BC CD =60BCD ∠=︒30CDK ∠=︒2DC CK =DK BC ====ABCD 2BC DK ⨯==BC CD ==120α=︒3390120909022GCF α∠=-︒=⨯︒-︒=︒F CN当,重合,,重合,如图,∴扫过的面积是的面积,由菱形的性质可得:,∴,∴∴扫过的面积是【点睛】本题考查的是二次根式的混合运算,正方形,菱形的性质,勾股定理的应用,点的轨迹问题,全等三角形的判定与性质,本题难度大,属于中考压轴题,作出合适的辅助线是解本题的关键.24. 如图1,已知矩形的顶点A 在正比例函数位于第一象限的图象上,顶点D 在正比例函数位于第一象限的图象上,点B 、C 在x 轴的正半轴上,且满足.(1)试求k 的值:(2)当时,点P 是函数位于第一象限图象上的一个动点,若为等腰三角形,求点P 的坐标:(3)如图2,当时,点E 、F 为边上的两个动点,且,试问:是否存在点E 使四边形的周长最小?若存在,试求点E 的坐标;若不存在,请说明理由.【答案】(1) (2)或或; E C F N DFRt DCF 60CDF ∠=︒30DFC ∠=︒FC ==DF 12⨯=ABCD 52y x =()0y kx k =≠:8:5AD AB =2OB =()0y kx k =≠OPC 2OB =CD 5=2EF ABEF 12k =55,2P ⎛⎫ ⎪⎝⎭(P ()16,8P(3)存在,【解析】【分析】(1)设,结合,可得,再利用正比例函数的性质可得答案;(2)如图,当,由(1)得:,,此时,可得,,则,分三种情况:当时,过作于,如图,当时,如图,当时,过作交轴于,过作于,再进一步求解即可;(3)如图,作关于的对称点,则, 即,连接,过作交于,则四边形为平行四边形,当三点共线时,,此时最短,此时四边形的周长最短,再进一步求解即可.【小问1详解】解:∵点A 在正比例函数位于第一象限的图象上,∴设,∴,,∵,∴,∴,∵顶点D 在正比例函数位于第一象限的图象上,∴,解得:;1510,4E ⎛⎫ ⎪⎝⎭5,2A m m ⎛⎫ ⎪⎝⎭:8:5AD AB =55,2D m m ⎛⎫ ⎪⎝⎭2OB =5,2A m m ⎛⎫ ⎪⎝⎭55,2D m m ⎛⎫ ⎪⎝⎭2m =()2,5A ()10,5D ()10,0C OP PC =P PH OC ⊥H 10OP OC ==10CO CP ==D DQ OD ⊥x Q C CH OD ⊥H A CD K 8AD DK ==()18,5K EK E ET BF ∥AB T BFET ,,K E T BF AE AE ET TK +=+=ABFE 52y x =5,2A m m ⎛⎫ ⎪⎝⎭OB m =52AB m =:8:5AD AB =4AD m =55,2D m m ⎛⎫ ⎪⎝⎭()0y kx k =≠552mk m =12k =小问2详解】如图,当,由(1)得:,,∴此时,∴,,则,当时,过作于,∴,∴,∴,如图,当时,而直线为,设,∴,∴,负值舍去∴,如图,当时,过作交轴于,过作于,【2OB =5,2A m m ⎛⎫ ⎪⎝⎭55,2D m m ⎛⎫ ⎪⎝⎭2m =()2,5A ()10,5D ()10,0C OP PC =P PH OC ⊥H 5OH CH ==1522y x ==55,2P ⎛⎫ ⎪⎝⎭10OP OC ==OD 12y x =()1,02P n n n ⎛⎫> ⎪⎝⎭2221102n n ⎛⎫+= ⎪⎝⎭n=(P 10CO CP ==D DQ OD ⊥x Q C CH OD ⊥H设,,而,由勾股定理可得:,即,解得:,即,设直线为,∴,解得:,∵,设为,∴,∴,∴直线为,∴,解得:,∴,∵,,∴,∴;DQ a =CQ b =222510125OD =+=()22222512510a b a b ⎧-=⎪⎨+=+⎪⎩2222252025a b a b b ⎧-=⎨-=-⎩52b =25,02Q ⎛⎫ ⎪⎝⎭DQ 11y k x b =+11111052502k b k b +=⎧⎪⎨+=⎪⎩11225k b =-⎧⎨=⎩CH DQ ∥CH 22y x b =-+2200b -+=220b =CH 220y x =-+12220y x y x ⎧=⎪⎨⎪=-+⎩84x y =⎧⎨=⎩()8,4H CH OP ⊥CP CO =OH PH =()16,8P综上:或或;【小问3详解】存在,理由如下:如图,作关于的对称点,则, 即,连接,过作交于,则四边形为平行四边形,∴,,则,当三点共线时,,此时最短,此时四边形的周长最短,∴,∵,∴,∵,∴,∴,∴,∴.【点睛】本题考查的是轴对称的性质,矩形的性质,平行四边形的判定与性质,正比例函数的应用,勾股定理的应用,等腰三角形的定义与性质,化为最简二次根式,清晰的分类讨论,作出合适的辅助线是解本题的关键.55,2P ⎛⎫ ⎪⎝⎭(P ()16,8P A CD K 8AD DK ==()18,5K EK E ET BF ∥AB T BFET BF ET =52BT EF ==55522AT =-=,,K E T BF AE AE ET TK +=+=ABFE 52,2T ⎛⎫ ⎪⎝⎭AE KE =EAK EKA ∠=∠90TAK ∠=︒90AKE ATK EAK EAT ∠+∠=︒=∠+∠EAT ETA ∠=∠EA ET EK ==1510,4E ⎛⎫ ⎪⎝⎭。
八年级数学(下)期中试卷含答案
八年级数学(下)期中试卷一、选择题(共10小题,每小题2分,满分20分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤22.下列二次根式中的最简二次根式是()A. B. C.D.3.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣24.下列哪一个选项中的等式不成立?()A.=34 B.=(﹣5)3C.=32×55D.=(﹣3)2×(﹣5)45.下列命题的逆命题不正确的是()A.菱形的四条边都相等B.两直线平行,内错角相等C.等腰三角形的两个底角相等 D.全等三角形的对应角相等6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+18.三角形的三边长分别为6,8,10,那它最短边上的高为()A.4.8 B.5 C.6 D.89.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④10.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10二、填空题(共6小题,每小题3分,满分18分)11.计算=.12.命题“如果两个实数相等,那么它们的平方相等”的逆命题是,成立吗.13.已知点D是Rt△ABC斜边AB上的中点,∠B=65°,那么∠ACD=度.14.一个长方形的长为cm,宽为cm,则它的周长是cm.15.如图,菱形ABCD的周长为16,∠B=60°,则以AC为边长的正方形ACEF的周长为.16.如图△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则CD长为.三、解答题(共8小题,满分62分)17.计算:÷﹣×+(﹣)﹣1.18.已知x=﹣1,y=+1,求代数式x2+xy+y2的值.19.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.20.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.21.如图,在正方形ABCD中,E是BC上的一点,BE=BC,F是DC的中点,连接AE,EF.求证:∠AEF=∠DAE.22.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.24.如图1,在▱ABCD中,∠ABC的平分线BF交AD于点E,交CD的延长线于点F.(1)判断DE和DF的数量关系,并证明结论;探究发现:(2)如图2,若∠ABC=90°,G是EF的中点,求∠ACG的度数;(3)如图3,若∠ABC=60°,FG∥DE,FG=DE,分别连接AC,CG.求∠ACG的度数.2017-2018学年山西省阳泉市平定县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.2.下列二次根式中的最简二次根式是()A. B. C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A3.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣2【分析】先把m化简,再估算大小,即可解答.【解答】解;m=×(﹣2)=,∵,∴,故选:C.4.下列哪一个选项中的等式不成立?()A.=34 B.=(﹣5)3C.=32×55D.=(﹣3)2×(﹣5)4【分析】分别利用二次根式的性质化简求出即可.【解答】解:A、=34,正确,不合题意;B、=53,故此选项错误,符合题意;C、=32×55,正确,不合题意;D、=(﹣3)2×(﹣5)4,正确,不合题意;故选:B.5.下列命题的逆命题不正确的是()A.菱形的四条边都相等B.两直线平行,内错角相等C.等腰三角形的两个底角相等 D.全等三角形的对应角相等【分析】分别写出各个命题的逆命题后判断即可.【解答】解:A、逆命题为:四条边都相等的四边形是菱形,正确,不符合题意;B、逆命题为:内错角相等,两直线平行,正确,不符合题意;C、逆命题为:两角相等的三角形是等腰三角形,正确,不符合题意;D、逆命题为:对应角相等的三角形是全等三角形,错误,符合题意.故选D.6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选D.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.8.三角形的三边长分别为6,8,10,那它最短边上的高为()A.4.8 B.5 C.6 D.8【分析】根据勾股定理的逆定理可以判断这个三角形是直角三角形,根据三角形的高的概念解答即可.【解答】解:∵62+82=102,∴这个三角形是直角三角形,这个三角形的最短边是6,则最短边上的高为8,故选:D.9.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.【解答】解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.10.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.二、填空题(共6小题,每小题3分,满分18分)11.计算=2.【分析】先把各根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.12.命题“如果两个实数相等,那么它们的平方相等”的逆命题是如果两个实数平方相等,那么这两个实数相等,成立吗不成立.【分析】把原命题的题设和结论交换即可得到其逆命题.【解答】解:因为“如果两个实数相等,那么它们的平方相等”它的逆命题是“如果两个实数平方相等,那么这两个实数相等”,如两个互为相反数的数平方相等,但这两个数不相等,故不成立.13.已知点D是Rt△ABC斜边AB上的中点,∠B=65°,那么∠ACD=25度.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质得到DA=DC,根据等腰三角形的性质得到答案.【解答】解:如图,在Rt△ABC中,∠B=65°,则∠A=25°,∵点D是Rt△ABC斜边AB上的中点,∴DA=DC,∴∠ACD=∠A=25°,故答案为:25.14.一个长方形的长为cm,宽为cm,则它的周长是10cm.【分析】根据长方形的周长=2(长+宽),利用二次根式的加减,即可解答.【解答】解:长方形的周长为:2()=2()=10(cm),故答案为:10.15.如图,菱形ABCD的周长为16,∠B=60°,则以AC为边长的正方形ACEF的周长为16.【分析】根据菱形的性质得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=16÷4=4,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故答案为:16.16.如图△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则CD长为.【分析】延长AD至E,使AD=DE,连接BE,根据SAS证出△ADC≌△BDE,得出BE=AC=3,根据勾股定理的逆定理证出△ABE为RT△,AE⊥BE,再根据勾股定理求出BD,最后根据D为BC 的中点,得出BD=CD,从而求出CD.【解答】解:延长AD至E,使AD=DE,连接BE,在△ADC和△BDE中,,∴△ADC≌△BDE(SAS),∴BE=AC=3,∵AE=4,AB=5,32+42=52,∴△ABE为RT△,AE⊥BE,∴BD===,∵D为BC的中点,∴BD=CD,∴CD=.故答案为:.三、解答题(共8小题,满分62分)17.计算:÷﹣×+(﹣)﹣1.【分析】根据二次根式的乘除法法则和负整数指数幂进行解答即可.【解答】解:÷﹣×+(﹣)﹣1.==4﹣=.18.已知x=﹣1,y=+1,求代数式x2+xy+y2的值.【分析】由x=﹣1,y=+1,得出x+y=2,xy=4,进一步把代数式x2+xy+y2分解因式代入求得答案即可.【解答】解:∵x=﹣1,y=+1,∴x+y=2,xy=4,∴x2+xy+y2=(x+y)2﹣xy=20﹣4=16.19.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.【分析】连接AC,在Rt△ACD中,AD=4,CD=3,可求AC;在△ABC中,由勾股定理的逆定理可证△ABC为直角三角形,利用两个直角三角形的面积差求图形的面积.【解答】解:连接AC,在Rt△ACD中,AD=4,CD=3,∴AC==5,在△ABC中,∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×5×12﹣×3×4=24.20.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.【分析】(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.【解答】解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作A E⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.21.如图,在正方形ABCD中,E是BC上的一点,BE=BC,F是DC的中点,连接AE,EF.求证:∠AEF=∠DAE.【分析】延长EF交AD的延长线于G,由△DFG≌△CFE得DG=CE,FG=EF,设正方形边长为6k,则DG=CE=4k,DF=CF=3k,AD=6k,求出AG,EG,即可解决问题.【解答】证明:延长EF交AD的延长线于G,∵四边形ABCD是正方形,∴∠ADF=∠C=90°=∠FDG,∵F是DC中点,∴DF=FC,在△DFG和△CFE中,,∴△DFG≌△CFE,∴DG=CE,FG=EF,设正方形边长为6k,则DG=CE=4k,DF=CF=3k,AD=6k,在RT△DFG中,FG==5k,∴EF=FG=5k,∴AG=AD+DG=10k,EG=EF+FG=10k,∴∠AEF=∠DAE.22.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠AP O=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100m,∴A B=AO﹣BO=(100﹣100)≈73(米),∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,答:此车超过每小时80千米的限制速度.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.24.如图1,在▱ABCD中,∠ABC的平分线BF交AD于点E,交CD的延长线于点F.(1)判断DE和DF的数量关系,并证明结论;探究发现:(2)如图2,若∠ABC=90°,G是EF的中点,求∠ACG的度数;(3)如图3,若∠ABC=60°,FG∥DE,FG=DE,分别连接AC,CG.求∠ACG的度数.【分析】(1)由BF平分∠ABC,得到∠ABF=∠FBC,根据平行线的性质得到∠FED=∠FBC,∠F=∠ABF,等量代换得到∠FED=∠F,根据等腰三角形的判定即可得到结论;(2)如图2,根据已知条件得到四边形ABCD是矩形,由BF平分∠ABC,得到∠ABF=∠FBC=45°,推出△EDF是等腰直角三角形,证得△AEG≌△CDG,根据全等三角形的性质得到AG=CG,推出△AGC是等腰直角三角形,根据等腰直角三角形的性质即可得到结论;(3)如图3,延长BA,FG交于H,连接HC,得到四边形AHFD是平行四边形,证得△CBF是等腰三角形,根据等腰三角形的性质得到BC=CF,于是得到平行四边形BCFH是菱形,通过△AHC≌△GFC,得到∠ACH=∠GCF,即可得到结论.【解答】解:(1)DE=DF,理由:∵BF平分∠ABC,∴∠ABF=∠FBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠FED=∠FBC,∠F=∠ABF,∴∠FED=∠F,∴DE=DF;(2)证明:如图2,连接AG,DG,∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∵BF平分∠ABC,∴∠ABF=∠FBC=45°,∵∠ADC=90°,CF∥AB,∴∠F=45°,∠EDF=90°,∴△EDF是等腰直角三角形,∵G为EF的中点,∴EG=DG=FG,DG⊥EF,∵△ABE是等腰直角三角形,AB=DC,∴AE=DC,∵∠DEF=∠GDF=45°,∴∠AEG=∠CDG=135°,在△AEG与△CDG中,,∴△AEG≌△CDG,∴AG=CG,∵DG⊥EF,∴∠DGC﹣∠CGB=90°,∵∠DGC=∠EGA,∴∠EGA+∠CGB=90°,∴△AGC是等腰直角三角形,∴∠ACG=45°;(3)解:如图3,延长BA,FG交于H,连接HC,∵AD∥GF,AB∥DF,∴四边形AHFD是平行四边形,∴DF=AH,∵∠ABC=60°,BF平分∠ABC,∴∠CBF=30°,∠BCD=120°,∴∠CFB=30°,∴△CBF是等腰三角形,∴BC=CF,∴平行四边形BCFH是菱形,∵∠ABC=60°,∴△BCH,△CHF全等的等边三角形,∴CH=CF,∠CHA=∠CFG=60°,∵DE=AH,FG=DE,DF=AH,∴AH=GF,在△AHC与△GFC中,,∴△AHC≌△GFC,∴∠ACH=∠GCF,∴∠ACG=∠ACH+∠HCG=∠GCF+∠HCG=∠HCF=60°.。
人教版八年级数学下册期中试卷(及答案)
人教版八年级数学下册期中试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.函数32y x x =-+x 的取值范围是__________. 3.若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+. 2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、B6、C7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、23x -<≤3、44、x >3.5、36、3三、解答题(本大题共6小题,共72分)1、4x =2、22x -,12-.3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)略;(2)4.5、略.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
八年级(下)数学期中试卷(6)
八年级(下)数学期中试卷(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤4B.x<4C.x≤﹣4D.x≥42.(3分)下列计算正确的是()A.3+=3B.C.D.3.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.4.(3分)下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.6,8,10D.7,8,95.(3分)能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB6.(3分)下列命题是假命题的是()A.等腰三角形的两底角相等B.全等三角形的对应角相等C.角平分线上的点到角两边的距离相等D.两直线平行,同旁内角相等7.(3分)如图,在△ABC中,CE是中线,CD是角平分线,AF⊥CD交CD延长线于点F,AC=7,BC=4,则EF的长为()A.1.5B.2C.2.5D.38.(3分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处.已知AB=8,cos∠FEC=,则BC的值为()A.8B.9C.10D.129.(3分)估计的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间10.(3分)如图所示,正方形ABCD中,E为BC边上一点,连接AE,作AE的垂直平分线交AB于G,交CD于F,若BG=2BE,则DF:CF的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若a为正整数,是有理数,则=.12.(3分)的最小值是,此时a的值是.13.(3分)当时,代数式x2+2x+2的值是.14.(3分)如图,菱形ABCD中,E是AB中点,DE⊥AB,则∠ADC的度数为.15.(3分)如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足分别为E,F,则PE+PF=.16.(3分)如图,E为边长为4的正方形ABCD边AB上一点,AE=1,P为对角线BD上一个动点,则P A+PE的最小值是.三.解答题(共8小题,满分72分)17.(8分)计算:(1);(2).18.(8分)(1)已知,求x2﹣2x+1的值.(2)分解因式(a+b)2+2a+2b+1.19.(8分)已知,如图,点P是平行四边形ABCD外一点,PE∥AB交BC于点E.P A、PD 分别交BC于点M、N,点M是BE的中点.求证:CN=EN.20.(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB=,BC=,AC=;(2)试判断△ABC是什么三角形,并说明理由.(3)△ABC的面积是.21.(8分)如图:四边形ABCD中,AB=BC=,DA=1,CD=,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.22.(10分)如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF.(1)求证:△ABF≌△EAD;(2)如图2.若AB=8,CD=5,∠ECF=∠AED,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,则的值为.23.(10分)在平面直角坐标系中,O为原点,点A(6,0),点B在第一象限,∠OAB=90°,C为OB的中点,AB=AC.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将△OAC沿x轴向右平移得△O'A'C',点O,A,C的对应点分别为O',A',C′.设OO'=t,△O'A'C'与△ABC重叠部分的面积为S.①如图②,当△O'A'C'与△ABC重叠部分为四边形时,O'C'与AC相交于点D,A'C'与AB相交于点E,试用含有t的式子表示S,并直接写出t的取值范围;②当S=时,求t的值(直接写出结果即可).24.(12分)已知:如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为1cm/s,点Q由A点出发沿AC方向向点C匀速运动,速度为2cm/s;若设运动的时间为t(s)(0<t<2),解答下列问题:(1)如图①,连接PQ,直接写出t=时,以A、P、Q为顶点的三角形与△ACB 相似.(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得PQ=PC,若存在,求出t 的值,若不存在,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在,请说明理由.。
八下数学期中试卷(含答案)
八下数学期中试卷(含答案)八年级数学第页共6页1 八年级下期中数学试题姓名班级考号得分:一. 填空题(每空2分,共30分)1.用科学记数法表示0.000043为。
2.计算:计算()=?+--1311 ; 232()3y x=__________; a b b b a a -+-=; yx x x y xy x 22+?+= 。
3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是;在每一象限内y 随x 的增大而。
5. 如果反比例函数x my =过A (2,-3),则m= 。
6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<="" p="" 的取值范围是="" .="">8. 三角形的两边长分别为3和5,要使这个三角形是直角三角A D形,则第三条边长是.9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点P E使PE+PB 的值最小,则最小值为。
B C 10.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,八年级数学第页共6页2则造成影响的时间为秒。
二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有()A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是()A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是()A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是()15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A.16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为().A .3B .4C .5D .6三、解答题:17.(8分)计算:八年级数学第页共6页3 (1)xy y x y x ---22 (2)22111a a a a a ++---18.(6分)先化简代数式1121112-÷+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(8分)解方程:(1)1233x x x=+-- (2)482222-=-+-+x x x x x20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
八年级数学(下)期中试卷(含答案)
八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
新人教版八年级数学下册期中试卷(可打印)
新人教版八年级数学下册期中试卷(可打印) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2的倒数是( )A .-2B .12-C .12D .22.下列二次根式中,是最简二次根式的是( ).A .2xyB .2abC .12D .422x x y +3.下列运算正确的是( )A .4=±2B .(4)2=4C .2(4)-=﹣4D .(﹣4)2=﹣44.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.实数a 在数轴上的位置如图所示,则化简22(4)(11)--a a()A.7 B.-7 C.215a-D.无法确定8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.3二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为____________.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、-153、32或424、25、x≤1.6、4三、解答题(本大题共6小题,共72分)1、x=﹣3.2、22x-,12-.3、0.4、(1)略;(25、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
八年级 下册期中数学试卷附答案
八年级(下)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.2.(2分)下列运算中错误的是()A.•=B.÷=2 C. +=D.(﹣)2=3(2分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()3.A.2.5 B. 3 C. +2 D. +34.(2分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE 的长等于()A.8cm B.6cm C.4cm D.2cm5.(2分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD6.(2分)给出下列命题:①在直角三角形ABC中,已知两边长3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④△ABC中,若a:b:c=1::2,则这个三角形是直角三角形;其中,正确命题的个数为()A.1个B.2个C.3个D.4个二、填空题7.(3分)比较大小:.(填“>、<、或=”)8.(3分)若有意义,则x的取值范围是.9.(3分)若+(b+4)2=0,则点M(a,b)关于y轴的对称点的坐标为.10.(3分)古埃及人画直角方法:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.11.(3分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为米.12.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.13.(3分)如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a 于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.14.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题(共4小题,满分20分)15.(5分)计算:×﹣6﹣3÷2.16.(5分)已知a=﹣1,b=+1,求a2+b2的值.17.(5分)如图是一个外轮廓为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.18.(5分)已知一个三角形的面积为12,一条边AB上的高是AB的,求AB的长.四、解答题(共4小题,满分28分)19.(7分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.20.(7分)如图所示,在△ABC中,∠ABC=90°,AB=8,BC=6,若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,求线段DF的长.21.(7分)如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.22.(7分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?五、解答题(共4小题,满分36分)23.(8分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是A.矩形 B.菱形 C.正方形 D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.26.(10分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.【解答】解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故选:B.2.(2分)下列运算中错误的是()A.•=B.÷=2 C. +=D.(﹣)2=3【解答】解:A、==,所以,A选项的计算正确;B、===2,所以B选项的计算正确;C、与不是同类二次根式,不能合并,所以C选项的计算错误;D、(﹣)2=3,所以D选项的计算正确.故选:C.(2分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()3.A.2.5 B.3 C. +2 D. +3【解答】解:解:如图所示,Rt△ABC中,∠A=30°,AB=2,故BC=AB=×2=1,AC===,故此三角形的周长是+3.故选:D.4.(2分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE 的长等于()A.8cm B.6cm C.4cm D.2cm【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故选:C.5.(2分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.6.(2分)给出下列命题:①在直角三角形ABC中,已知两边长3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④△ABC中,若a:b:c=1::2,则这个三角形是直角三角形;其中,正确命题的个数为()A.1个B.2个C.3个D.4个【解答】解:在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,①是假命题;三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠B为直角的直角三角形,②是假命题;△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,③是真命题;△ABC中,若 a:b:c=1::2,则这个三角形是直角三角形,④是真命题,故选:B.二、填空题7.(3分)比较大小:<.(填“>、<、或=”)【解答】解:∵()2=12,( 3)2=18,而12<18,∴2<3.故答案为:<.8.(3分)若有意义,则x的取值范围是x≥.【解答】解:要是有意义,则2x﹣1≥0,解得x≥.故答案为:x≥.9.(3分)若+(b+4)2=0,则点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣4).【解答】解:由+(b+4)2=0,得a﹣3=0,b+4=0.解得a=3,b=﹣4,M(3,﹣4)关于y轴的对称点的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).10.(3分)古埃及人画直角方法:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据勾股定理的逆定理.【解答】解:设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形.故答案为勾股定理的逆定理.11.(3分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为2400 米.【解答】解:∵D为AC的中点,E为BC的中点,∵DE为△ABC的中位线,又∵DE=1200m,∴AB=2DE=2400m.故答案是:2400.12.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).13.(3分)如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a 于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为8 .【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∵∠AED=∠AFB=90°,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:814.(3分)观察下列各式:①;②=3;③,…请用含n (n≥1)的式子写出你猜想的规律:=(n+1).【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(共4小题,满分20分)15.(5分)计算:×﹣6﹣3÷2.【解答】解:原式=﹣2﹣=4﹣2﹣=.16.(5分)已知a=﹣1,b=+1,求a2+b2的值.【解答】解:∵a=﹣1,b=+1,∴a2+b2=(﹣1)2+(+1)2=2﹣2+1+2+2+1=6.17.(5分)如图是一个外轮廓为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.【解答】解:如图,AC=150﹣60=90(mm),BC=180﹣60=120(mm)(2分)在△ABC中,∠ACB=90°,AC=90mm,BC=120mm,(3分)由勾股定理,得:AB==150(mm),(5分)答:两圆孔中心A和B的距离为150mm.(6分)18.(5分)已知一个三角形的面积为12,一条边AB上的高是AB的,求AB的长.【解答】解:设AB=x,则AB边上的高是x,根据题意得:×x×x=12,解得:x=6或﹣6(不合题意舍去),即AB的长为6.四、解答题(共4小题,满分28分)19.(7分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.【解答】解:在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC==5,∵将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,∴AB′=AB=3,DB′=BD,∠AB′D=∠CB′D=90°,∴CB′=2,设B′D=BD=x,则CD=4﹣x,∵DB′2+CB′2=CD2,∴x2+22=(4﹣x)2,解得x=,∴DB′=.20.(7分)如图所示,在△ABC中,∠ABC=90°,AB=8,BC=6,若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,求线段DF的长.【解答】解:∵∠ABC=90°,AB=8,BC=6,∴AC==10,∵DE是△ABC的中位线,∴DE=BC=3,DE∥BC,EC=AC=5,∵CF是∠ACM的平分线,∴∠ECF=∠MCF,∵DE∥BC,∴∠EFC=∠MCF,∴∠ECF=∠EFC,∴EF=EC=5,∴DF=DE+EF=3+5=8.21.(7分)如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.【解答】(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形又∵四边形 ABCD 是矩形∴OD=OC∴四边形CODE为菱形;(2)解:∵四边形 ABCD 是矩形∴OC=OD=AC又∵AC=4∴OC=2由(1)知,四边形CODE为菱形∴四边形CODE的周长为=4OC=2×4=8.22.(7分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)在Rt△AOB中,AB=25米,OB=7米,OA===24(米).答:梯子的顶端距地面24米;(2)在Rt△AOB中,A′O=24﹣4=20米,OB′===15(米),BB′=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.五、解答题(共4小题,满分36分)23.(8分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是 BA.矩形 B.菱形 C.正方形 D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF是菱形.故答案为:B;(2)①∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°;②∵AF=10,∴OF=5.∵AE垂直平分BF,∴AO==5,∴AE=2AO=10.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证: BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=25.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.26.(10分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.【解答】解:(1)如图1,延长AE,BC相交于N,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(2)结论AM=AD+CM仍然成立,理由:如图2,延长AE,BC相交于N,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(3)设MC=x,则BM=BC﹣CN=9﹣x,由(2)知,AM=AD+MC=9+x,在Rt△ABC中,AM2﹣BM2=AB2,(9+x)2﹣(9﹣x)2=36,∴x=1,∴AM=AD+MC=10.。
北京市第一七一中学2023-2024学年八年级下学期期中数学试题
北京市第一七一中学2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列二次根式中,最简二次根式是( )A B C D 2.下列以a ,b ,c 为边的三角形,不是直角三角形的是( )A .1a =,1b =,c =B .1a =,b =2c =C .345a b c =∶∶∶∶D .2a =,2b =,3c =3.下列函数中,一次函数是( )A .2y x =B .21y x =-C .1y x = D .=2y -4.数据2,6,4,5,4,3的平均数和众数分别是( )A .5和4B .4和4C .4.5和4D .4和55 ) A .-2 B .2或-2 C .4 D .26.一次函数51y x =-+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图所示,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm8.小明同学先向北行进4千米,然后向东进4千米,再向北行进2千米,最后又向东行进一定距离,此时小明离出发点的距离是10千米,小明最后向东行进了( ) A .2千米 B .3千米 C .4千米 D .6千米 9.图中所有四边形都是正方形,所有的三角形都是直角三角形,则图中所有正方形的面积的和是( )A .216cmB .264cmC .281cmD .2128cm10.如图,在ABCD Y 中,直线l BD ⊥. 将直线l 沿BD 从B 点匀速平移至D 点,在运动过程中,直线l 与ABCD Y 两边的交点分别记为点E 、F . 设线段EF 的长为y ,平移时间为t 则如图图象中,能表示y 与t 的函数关系的图象大致是( )A .B .C .D .二、填空题11x 的取值范围是 .12.函数()10y mx m =+≠的图像经过()2,1-,那么m = .13.下表记录了甲、乙、丙、丁四名射箭选手10次测试成绩的平均数与方差:要选择一名成绩好且发挥稳定的选手参加射箭比赛,应该选择 .14.在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为15.如图,以菱形AOBC 的顶点O 为原点,对角线OC 所在直线为x 轴建立平面直角坐标系,若OB =C 的坐标为()8,0,则点A 的坐标为 .16.如图,在Rt ABC △中,9AB =,6BC =,90B =o ∠,如果将ABC V 折叠,使A 点与BC 的中点D 重合,折痕为MN ,那么线段AN 的长是 .17.如图,在ABC V 中,345AB AC BC ===,,,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为 .18.如图,直线332y x =+与x 轴交于点A ,与y 轴交于点D ,将线段AD 沿x 轴向右平移4个单位长度得到线段BC ,若直线4y kx =-与四边形ABCD 有两个交点,则k 的取值范围是 .三、解答题19.计算:(1; (2.20.已知2x =()()13x x --的值.21.学习完四边形的知识后,小明想出了“作三角形一边中线”的另一种尺规作图的作法,下面是具体过程.已知:ABC V .求作:BC 边上的中线AD .作法:如图,①分别以点B ,C 为圆心,AC ,AB 长为半径作弧,两弧相交于P 点;②作直线AP ,AP 与BC 交于D 点,所以线段AD 就是所求作的中线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接PB ,PC .PC AB =Q , ,∴四边形ABPC 是平行四边形( )(填推理的依据).DB DC ∴=( )(填推理的依据).AD ∴是BC 边上的中线.22.已知一次函数的图象经过()1,0和()2,6-两点.(1)求这个一次函数的表达式;(2)在坐标系中画出该一次函数的图象,并求这个一次函数与坐标轴所围成的三角形的面积. 23.为了调查同学们对安全知识的了解情况,小颖从初中三个年级各随机抽取10人,进行了相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行了整理、描述和分析.下面给出了相关信息:a .30名同学安全知识测试成绩的统计图如图:b .30名同学安全知识测试成绩的频数分布直方图如图(数据分成6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):c .测试成绩在7080x ≤<这一组的是:70 73 74 74 75 75 77 78d .小明的安全知识测试成绩为85分.根据以上信息,回答下列问题:(1)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第 ;(2)抽取的30名同学的成绩的中位数为 ;(3)序号为1-10的学生是七年级的,他们的成绩的方差记为21s ;序号为11-20的学生是八年级的,他们的成绩的方差记为22s ,序号为21-30的学生是九年级的,他们的成绩的方差记为23s ,则21s ,22s ,23s 的大小关系为 ;(用“>”号连接) (4)成绩80分及以上记为优秀,若该校初中三个年级420名同学都参加测试,估计成绩优秀的同学约为 人.24.如图,某人从A 地到B 地有三条路可选,第一条路从A 地沿AB 到达B 地,AB 为10米,第二条路从A 地沿折线AC CB →到达B 地,AC 为8米,BC 为6米,第三条路从A 地沿折线AD DB →到达B 地共行走26米,若C 、B 、D 刚好在一条直线上.(1)求证:90C ∠=︒;(2)求AD 的长.25.“白银2号”种子的价格是10元/kg ,如果一次性购买10kg 以上的种子,则超过10kg 部分的种子价格打折.购买种子所需的付款金额y (单位:元)与购买量x (单位:kg )之间的函数关系如图所示:(1)根据图象,求当购买种子超过10kg 时,付款金额y (单位:元)关于购买量x (单位:kg )的函数关系式;(2)当顾客付款金额为340元时,求此顾客购买了多少种子?26.如图,四边形ABCD 是平行四边形,AE BD ∥,AE 与CB 的延长线交于点E ,DE 交AB 于F .(1)求证:BC BE =;(2)连接CF ,若FDA FCB ∠=∠,判断四边形ABCD 的形状并说明理由.27.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE 、DF .(1)求证DE DF ⊥;(2)连接EF ,取EF 中点G ,连接DG 并延长交BC 于H ,连接BG .①依题意,补全图形:②求证BG DG =;③若45EGB ∠=︒,用等式表示线段BG 、HG 与AE 之间的数量关系,并证明.28.如图1,在直角ABC V 中,90ACB ∠=︒,若点P 在斜边AB 上(不与A ,B 重合)满足CP CA ≤,则称点P 是直角ABC V 的“近A 点”.在平面直角坐标系xOy 中,()0,0O ,一次函数图象2y kx =+与x 轴,y 轴分别交于点M ,N .(1)若k =,点P 是直角NOM △的“近N 点”,则OP 的长度可能是______ ;(填序号)①1 ;②2 ;;④(2)若线段MN 上的所有点(不含M 和)N 都是直角NOM △的“近N 点”,求k 的取值范围;(3)当1k >时,若一次函数y x k =+与2y kx =+的交点恰好是直角NOM △的“近N 点”,则直接写出k 的取值范围是______ .。
八年级(下)期中数学试卷含答案
八年级(下)期中数学试卷一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°6.如图表示的是不等式组()的解集.A.B.C.D.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为°.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为°.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为°.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为°.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为cm2.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?2017-2018学年山东省青岛市胶州市八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y【考点】C2:不等式的性质.【分析】根据不等式的性质求解即可.【解答】解:A、两边都减6,不等号的方向不变,故A不符合题意;B、两边都除以2,不等号的方向不变,故B不符合题意;C、两边都乘以2,两边都加1,不等号的方向不变,故C符合题意;D、两边都乘以﹣1,不等号的方向改变,故D不符合题意;故选:C.2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是轴对称图形,不是中心对称的图形,不合题意;C、既是轴对称图形又是中心对称图形,故C符合题意;D都只是轴对称图形,故D不符合题意;故选:C.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°【考点】R2:旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=21°,∴∠BOC=45°﹣27°=18°,故选A,4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【考点】KG:线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°【考点】KH:等腰三角形的性质;JA:平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.6.如图表示的是不等式组()的解集.A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】先求出每个不等式组的解集,再在数轴上表示出来,最后判断即可.【解答】解:A、的解集是x<﹣2,在数轴上表示为:,故本选项不符合题意;B、的解集是﹣2<x≤1,在数轴上表示为:,故本选项符合题意;C、的解集是空集,在数轴上表示为:,故本选项不符合题意;D、的解集是x≥1,在数轴上表示为:,故本选项不符合题意;故选B.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据点A、C的坐标确定出平移规律,再根据平移规律解答即可.【解答】解:∵点A(﹣1,0)的对应点C的坐标为(1,﹣2),∴平移规律为向右平移2个单位,向下平移2个单位,∴B(1,2)的对应点D的坐标为(3,0).故选A.8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE【考点】KF:角平分线的性质;KB:全等三角形的判定.【分析】利用全等三角形的判定定理解答即可.【解答】解:,∴△OCD≌△OCE(ASA),A能判定△OCD与△OCE全等;当CD⊥OA,CE⊥OB时,由AAS得到△OCD≌△OCE,B能判定△OCD与△OCE 全等;当OD=OE时,由SAS得到△OCD≌△OCE,C能判定△OCD与△OCE全等;D不能判定△OCD与△OCE全等;故选:D.9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线的性质得到AD=CD,∠ACD=∠A=30°,DE⊥AC,解直角三角形即可得到结论.【解答】解:∵AC的垂直平分线分别交AB、AC于D、E,∴AD=CD,∠ACD=∠A=30°,DE⊥AC,∵CD=1,∴AC=2CE=,∴AB=,∴BD=AB﹣AD=﹣1.故选:B.10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种【考点】95:二元一次方程的应用.【分析】根据题意列出不等式组,求出不等式组的整数解即可.【解答】解:设小明一根火腿肠x根,一盒方便面y盒,则解得:1≤y≤,1≤x≤7.5,当y=1时,x只能为6、5、4、3、2、1,共6个,当y=2时,x只能为4、3、2、1,共4个,当y=3时,x只能为3、2、1,共3个,当y=4时,x只能为1,共1个,∴6+4+3+1=14,故选C.二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是﹣1,﹣2.【考点】C7:一元一次不等式的整数解.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得不等式的解集,继而可得其负整数解.【解答】解:去分母,得:x﹣1<2x+2,移项,得:x﹣2x<2+1,合并同类项,得:﹣x<3,系数化为1,得:x>﹣3,则该不等式的负整数解为﹣1、﹣2,故答案为:﹣1,﹣2.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为25°.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ACD=∠ADC=65°,根据角的和差即可得到结论.【解答】解:∵AD=AC,且∠A=50°,∴∠ACD=∠ADC=65°,∵∠ACB=90°,∴∠DCB=90°﹣65°=25°,故答案为:25.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为1.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】直接利用已知不等式的解集得出关于a的等式进而得出答案.【解答】解:∵x﹣a≥﹣2的解集在数轴上为:x≥﹣1,则x≥a﹣2,故a﹣2=﹣1,解得:a=1.故答案为1.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为42或132°.【考点】KH:等腰三角形的性质.【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【解答】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+42°=132°;②如图1,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣48°=42°.故答案为:42或132.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为30°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】根据旋转的性质得AE=AC,∠CAB=∠EAD=70°,再根据等腰三角形的性质得∠AEC=∠ACE,然后根据平行线的性质由CE∥AB得∠ACE=∠CAB=70°,则∠AEC=∠ACE=70°,再根据三角形内角和计算出∠CAE=40°,所以∠CAD=30°【解答】解:∵△ABC绕点A逆时针旋转到△AED的位置,∴AE=AC,∠CAB=∠EAD=70°,∴∠ACE=∠AEC,∵CE∥AB,∴∠ACE=∠CAB=70°,∴∠AEC=∠ACE=70°,∴∠CAE=180°﹣2×70°=40°,∴∠CAD=∠EAD﹣∠EAC=30°故答案为:30.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为55°.【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=EC,然后判断出△ACE是等腰直角三角形,根据等腰直角三角形的性质可得∠CAE=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CDE,然后根据旋转的性质可得∠B=∠CDE.【解答】解:∵将Rt△ABC绕点C顺时针旋转90°得到△DCE,∴AC=AE,∴△ACE是等腰直角三角形,∴∠CAE=45°,∴∠CDE=∠AED+∠CAE=10°+45°=55°,由旋转的性质得∠B=∠CDE=55°.故答案为:55.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为10cm2.【考点】Q2:平移的性质.【分析】根据直角三角形两锐角互余求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出BC,然后求出△ABC 的面积,从而得到△DEF的面积,再求出CD,同理求出DG、CG,然后求出△CDG 的面积,最后根据S四边形CGEF=S△DEF﹣S△CDG列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AB=2AC=2×6=12cm,在Rt△ABC中,根据勾股定理得,BC===6cm,∴S△ABC=×6×6=18cm2,∵△ABC沿着AC方向平移2cm得△DEF,∴S△DEF=S△ABC=18cm2,由平移得,AD=2cm,所以,CD=6﹣2=4cm,同理可得,DG=2CD=8cm,CG=4cm,所以,S△CDG=×4×4=8cm2,所以,S四边形CGEF =S△DEF﹣S△CDG=18﹣8=10cm2.故答案为:10.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】根据勾股定理求出BC,得到△ABC的面积,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算即可.【解答】解:∵∠ACB=90°,AC=3cm,AB=5cm,∴BC==4,∴Rt△ABC的面积为:×3×4=6,∵AD平分∠BAC,DE⊥AB,∠ACB=90°,∴DE=DC,∴×AC×CD+×AB×DE=6,解得,DE=cm,故答案为:.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.【考点】N3:作图—复杂作图;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】分别作线段BC的垂直平分线与∠A的角平分线,两直线的交点即为P点.【解答】解:如图,点P即为所求.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】先作出△ABC绕点A旋转90°后所得图形,再向右平移3个单位长度得△DEF.【解答】解:如图,△DEF即为所求.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)先求出不等式组的解集,再求出整数解即可.【解答】解:(1)6(x﹣1)≥3+4x,6x﹣6≥3+4x,6x﹣4x≥3+6,2x≥9,x≥4.5;(2)<,3(x﹣2)<2(7﹣x),3x﹣6<14﹣2x,3x+2x<14+6,5x<20,x<4;(3)+1>x﹣3,x﹣5+2>2x﹣6,x﹣2x>﹣6+5﹣2,﹣x>﹣3,x<3,在数轴上表示为:;(4)∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2,∴不等式组的整数解为﹣1,0,1.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?【考点】C9:一元一次不等式的应用.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式5x﹣2(20﹣x)≥70,求解即可.【解答】解:设答对x道,依题意有5x﹣2(20﹣x)≥70,解得:x≥15.故至少要答对16道题才能得到70分以上(含70分).23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵∠A=∠D=90°,在Rt△BAC与Rt△CDB中,,∴Rt△BAC≌Rt△CDB(HL),∴AB=CD,在△AOB与△DOC中,,∴△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到两边的距离相等可得:FH=FA;则只要在确定FA 与AE的关系即可确定AE与FH之间的关系;在直角三角形AFB中∠AFB+∠ABF=90°,在直角三角形BDE中,∠DEB+∠EBD=90°,根据角平分线的性质可知:∠ABF=∠DBE,则∠AFB=∠DEB,又知∠AEF=∠DEB,则∠AFB=∠AEF,所以AE=FA,则AE=FH.【解答】证明:∵BF平分∠ABC,FA⊥AB,FH⊥BC,∴FH=FA,∵∠AFB+∠ABF=90°,∠DEB+∠EBD=90°,且∠ABF=∠EBD,∴∠AFB=∠DEB,∵∠AEF=∠DECB,∴∠AFB=∠AEF,∴AE=FA,∴AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.【考点】KK:等边三角形的性质;KQ:勾股定理.【分析】根据等边三角形的性质得到AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,CD ⊥AB,AD=AB=,根据勾股定理得到CD==,于是得到结论.【解答】解:∵△ABC是等边三角形,且周长为3,∴AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,∵D为AB的中点,∴CD⊥AB,AD=AB=,∠DCA=∠DCB=ACB=30°,∴CD==,∵BE=BD,∠ABC=∠E+∠BDE,∴∠E=∠BDE=ACB=30°=∠DCB,∴CD=DE=.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?【考点】C9:一元一次不等式的应用.【分析】(1)设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由采购的优惠条件分别得到y1=18x+50,y2=16x+200.分三种情况讨论:甲=乙,甲>乙,甲<乙;(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解该不等式即可.【解答】解:(1)∵20×50=1000(元),∴幼儿园到两家工厂采购均可得到优惠.设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由题意得y1=500+0.9(20x﹣500)=18x+50.y2=1000+0.8(20x﹣1000)=16x+200.由y1=y2,得18x+50=16x+200,解得x=75.由y1<y2,得18x+50<16x+200,解得x<75.由y1>y2,得18x+50>16x+200,解得x>75.∵采购的数量超过了50件,∴当采购的数量为50<x<75时,选择甲工厂时费用较低.当采购的数量为75件时,选择两家工厂的费用一样.当采购的数量为x>75时,选择乙工厂时费用较低.(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解得x≥100.所以,该幼儿园到乙工厂至少采购100件时,才能能使每件玩具的平均价格不超过18元.。
人教版八年级数学下册期中试卷(带答案)
人教版八年级数学下册期中试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( ) A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C 34D .4346.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.因式分解:22ab ab a-+=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是________.6.如图,在ABC中,点D是BC上的点,40∆沿BAD ABC︒∠=∠=,将ABD着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、A7、C8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、()21 a b-3、204、180°5、186、20三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、-53、(1)见解析;(2)k=84、(1)证明略;(2)证明略;(3)10.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新思源教育学院期中试卷一、选择题(共12小题,每小题3分,满分36分)1.二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>12.下列方程中属于一元二次方程的是()A.B.3x=1 C.(a+4)2=9 D.﹣5x2+3y﹣2=03.方程ax2+bx+c=0,若b2﹣4ac<0,则()A.有两个不相等的实数根B.有实数根C.没有实数根D.有两个相等的实数根4.一组数据频率0.2,频数50,则数据总数为()A.50 B.10 C.250 D.1005.对某中学70名女生进行测量,得到一组数据的最大值169cm,最小值143cm,对这组数据整理时测定它的组距5cm,应分组数()A.5组B.6组C.7组D.8组6.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°7.已知3<x<5,求的值()A.2x﹣8 B.2 C.﹣2 D.8﹣2x8.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线9.2x2﹣8x+9的最小值为()A.9 B.1 C.0 D.﹣110.下列命题中,属于真命题的是()A.若一个角的补角大于这个角B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥bD.互补的两角必有一条公共边二、填空题(共8小题,满分24分)11.方程x2﹣3x﹣4=0的两根之积x1x2=_________.12.命题“x=±1是方程的解”是真命题还是假命题?_________命题.13.的整数a,小数部分b,则a2﹣4a+b2+6a+13=_________.14.如图,△ABC沿DE折叠后,点A落在BC边上的A′处,若点D为AB边的中点,∠B=50°,则∠BDA′的度数为_________.15.若方程(m﹣1)+2mx﹣3=0是关于x的一元二次方程,则m=_________.16.如图所示,8块相同的长方形地砖拼成面积为2400cm2的大矩形,则该小矩形的周长为_________cm.17.化简:=_________.18.已知2m2﹣5m﹣1=0,,且m≠n,则的值是_________.三、解答题(共5小题,满分40分)19.(1)解方程:2x2﹣2x﹣1=0 ;(2)解方程:2x(x﹣3)+x=320.大坝横截面迎水坡AD的坡比4:3,背水坡BC的坡比1:2,坝高DE=40m,填顶宽CD=30m,求大坝的周长.()21.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,商场平均每天可多售出2件,试用函数表示当商场降价x元后该商场每天的盈利额y元;若商场每天要盈利1200元,请你帮助商场算一算,每件衬衫应降价多少元?22.要从一块等腰直角三角形的白铁皮零料上截出一块长方形白铁皮,已知AB=AC=20cm,要求截出面积100cm2,应怎样截?23.在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F.求证:(1)AE=CF;(2)S四边形AEPF=S△ABC.2009-2010学年浙江省宁波市慈溪市逍林初中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>1考点:二次根式有意义的条件。
分析:根据二次根式有意义的条件:被开方数1﹣a≥0,解不等式即可.解答:解:根据题意,得1﹣a≥0,解得a≤1.故选B.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.的值为()A.﹣12 B.144 C.12 D.﹣144考点:算术平方根。
专题:计算题。
分析:本题可借助乘方运算解答,先算出(﹣16)×(﹣9)的值,再解答.解答:解:=,因为,122=144,所以,=12,即,=12.故答案为:12.点评:本题主要考查了算术平方根的概念,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.下列方程中属于一元二次方程的是()A.B.3x=1 C.(a+4)2=9 D.﹣5x2+3y﹣2=0考点:一元二次方程的定义。
专题:推理填空题。
分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、由原方程得,2x3+x2+5x﹣1=0,未知数的最高次数3.故本选项错误;B、由原方程得,3x﹣1=0,未知数的最高次1.故本选项错误;C、由原方程得,a2+8a+7=0,符合一元二次方程的定义.故本选项正确;D、本方程含有两个未知数x、y,故本选项错误;故选C.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.方程ax2+bx+c=0,若b2﹣4ac<0,则()A.有两个不相等的实数根B.有实数根C.没有实数根D.有两个相等的实数根考点:根的判别式。
分析:根据一元二次方程根的判别式,b2﹣4ac<0方程没有实数根,b2﹣4ac=0,方程有两个相等的实数根,b2﹣4ac >0方程有两个不相等的实数根,即可得出答案.解答:解:∵方程ax2+bx+c=0,若b2﹣4ac<0,∴方程没有实数根.故选C.点评:此题主要考查了一元二次方程根的判别式,中考中一元二次方程根的判别式的考查比较多,同学们应熟练掌握.5.一组数据频率0.2,频数50,则数据总数为()A.50 B.10 C.250 D.100考点:频数与频率。
专题:计算题。
分析:根据频率的计算公式直接解答即可.解答:解:数据总数=50÷0.2=250.故选C.点评:本题是对频率考查.频率是指每个对象出现的次数与总次数的比值(或者百分比).注意:频率=.6.对某中学70名女生进行测量,得到一组数据的最大值169cm,最小值143cm,对这组数据整理时测定它的组距5cm,应分组数()A.5组B.6组C.7组D.8组考点:频数(率)分布表。
专题:计算题。
分析:用最大值减去最小值求出极差,然后除以组距即得到组数.解答:解:∵最大值与最小值的差为:169﹣143=26,∴组数=26÷5=5.2,∴组数为6组.故选B.点评:本题考查了组数的确定方法,它是作频率分布直方图的基础.7.三角形的三个内角中,锐角的个数不少于()A.1个B.2个C.3个D.无法确定考点:三角形内角和定理。
分析:根据按角分得的三类三角形进行判断.解答:解:锐角三角形中有3个锐角;直角三角形有2个锐角;钝角三角形有2个锐角.所以三角形中至少有2个锐角.故选B.点评:按角分类找三角形中的锐角是常用的方法,注意本题是问最少有几个锐角.8.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°考点:反证法。
专题:证明题。
分析:此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.解答:解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.点评:此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.9.已知3<x<5,求的值()A.2x﹣8 B.2 C.﹣2 D.8﹣2x考点:二次根式的性质与化简。
专题:计算题。
分析:已知x的取值范围,所以,本题可运用二次根式的性质,即双重非负性,解答即可.解答:解:已知3<x<5,所以,根据二次根式的性质,原式=(x﹣3)+(5﹣x),=x﹣3+5﹣x,=2;故选B.点评:本题主要考查了二次根式的化简,熟练运用二次根式的基本性质:=a(a≥0)来解答即可.10.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线考点:命题与定理。
分析:命题有条件和结论两部分组成,条件是已知的部分,结论是有条件得出的推论.解答:解:“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选D.点评:本题考查了对命题的题设和结论的理解.11.2x2﹣8x+9的最小值为()A.9 B.1 C.0 D.﹣1考点:二次函数的最值。
专题:计算题。
分析:利用配方法将多项式化为顶点式,再求最小值.解答:解:∵2x2﹣8x+9=2(x﹣2)2+1,且2>0,∴2x2﹣8x+9的最小值为1.故选B.点评:本题考查了二次函数的最值求法.关键是将多项式化为顶点式的形式.12.下列命题中,属于真命题的是()A.若一个角的补角大于这个角B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.互补的两角必有一条公共边考点:平行公理及推论;命题与定理。
分析:根据补角的定义可知A错误;根据平行公理推论可知B正确;若a、b、c不在同一平面内则不成立所以C 错误;互补的两个角不一定是邻补角所以不一定有公共边故D错误.解答:解:由补角的定义可知A错误;由平行公理推论可知B正确;若a、b、c不在同一平面内则不成立所以C 错误;互补的两个角不一定相邻所以不一定有公共边故D错误.点评:本题主要考查了补角的概念、平行公理及推论、邻补角与补角的区别.二、填空题(共18小题,第13-20题,每小题3分,第21-30题,每题2分,满分44分)13.(2005•三明)计算:+=.考点:二次根式的加减法。
分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=+2=3.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.x2﹣3x+2=0的解是x=1,2.考点:解一元二次方程-因式分解法。