小学六年级数学下册课件奥数 举一反三 苏教版(共 488 张ppt)
最新2018小学六年级全学年下册奥数举一反三经典课件(共20讲260页)
3、 货场上有一堆沙子,如果用3辆卡车4天可以完成,用4辆马车5天可 以运完,用20辆小板车6天可以运完。现在用2辆卡车、3辆马车和7辆小 板车共同运两天后,全改用小 板车运,必须在两天内运完。问:后两天 需要多少辆小板车?
第22周 特殊工程问题 疯狂操练二
【例题2】有两个同样的仓库 A和B,搬运一个仓库里的货物, 甲需要10小时,乙需要12小时,丙需要15小时。甲和丙在A 仓库,乙在 B 仓库,同时开始搬运。中途丙转向帮助乙搬运。 最后,两个仓库同时搬完,丙帮助甲、乙各多少时间? 【思路导航】
【例题 1 】一项工程,甲单独做需要 12 小时,乙单独做需要 18小时。若甲做1小时后乙接替甲做1小时,再由甲接替乙做 1小时……两人如此交替工作,问完成任务时需共用多少小时? 【思路导航】
【练习1】
1、一项工程,甲单独做要6小时完成,乙单独做要10小时完成。如果按 甲、乙;甲、乙……的顺序交替工作,每次1小时,需要多少小时才能完 成?
【练习2】
第22周 特殊工程问题 疯狂操练三
【例题 3】一件工作,甲独做要 20天完成,乙独做要 12 天完 成。这件工作先由甲做了若干天,然后由乙继续做完,从开 始到完工共用了14天。这件工作由甲先做了几天? 【思路导航】
【练习3】 1、 一项工程,甲独做12天完成,乙独做4天完成。若甲先 做若干天后,由乙接着做余下的工程,直至完成全部任务, 这样前后共用了6天,甲先做了几天?
【例题 1 】修一条路,甲队每天修 8 小时, 5 天完成;乙队每 天修10小时,6天完成。两队合作,每天工作6小时,几天可 以完成? 【思路导航】
【练习1】
1、 修一条路,甲队每天修6小时,4天可以完成;乙队每天修 8小时,5 天可以完成。现在让甲、乙两队合修,要求2天完成,每天应修几小时?
小学奥数举一反三(六年级)全图文百度文库
一、拓展提优试题1.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.4.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?5.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.6.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)7.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.8.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.9.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.10.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.11.若质数a,b满足5a+b=2027,则a+b=.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.已知两位数与的比是5:6,则=.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.21.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.25.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.26.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.27.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.28.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a相乘)29.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.30.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.31.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.32.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.33.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.34.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.35.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.36.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.37.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.38.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)39.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.4.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.5.解:==,答:这三个分数中最大的一个是.故答案为:.6.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.7.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.8.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.9.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).10.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.11.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4016.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.21.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.25.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.26.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.27.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.28.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.29.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.30.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.31.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.32.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.33.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.34.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.35.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.36.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.37.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.38.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.39.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。
小学奥数举一反三六年级1 40讲
小学奥数举一反三六年级1 40讲小学奥数举一反三六年级1--40讲六年级奥数训练教材第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解决新运算的关键是正确理解新定义公式的含义,然后严格按照新定义的计算程序将数值替换为常规的四个计算公式。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
如果新定义的公式中有括号,则应首先计算括号中的括号。
但在转化之前,它并不适用于所有的运行规律。
二、精讲精练[例1]假设a*b=(a+b)+(a-b),找到13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
[思路导航]计算4△ 6首先根据定义。
这里“△“是一个新的行动符号。
练习2:1.设P和Q为两个数字,并指定P△ q=4×q-(P+q)÷2,找到5△ (6 △ 4).2.设P和Q为两个数字,并指定P△ q=P2+(P-q)×2.找到30△ (5 △ 3). 3.设m和n为两个数字,指定m*n=m/n+n/m,然后找到10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级举一反三A设数法解题PPT课件
感谢您的观看!
第22页/共22页
一、知识要点
在小学数学竞赛中,常常会遇到看起来缺少条件的题目, 按常规解法似乎无解,但仔细分析就会发现,题目中缺少的 条件,对于答案并无影响,这时就可以采用“设数代入法“, 即对题目中缺少的条件,随便假设一个数代入(当然假设的 这个数要尽量方便计算),然后求出解答。
第1页/共22页
如果△△= □□□,△☆= □□□□,那么☆☆□= ( )个△。
第16页/共22页
3、一长方形每边增加10%,那么,它的周长增 加百分之几?它的面积增加百分之几?
设长方形的每边边长都为1,则 [(1+10%)×4-1×4]÷(1×4)= 10% [ (1+10%) × (1+10% )-1×1]÷(1+1)= 21%
第17页/共22页
例题 5
狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已 跑出30米,马开始追它。问:狗再跑多远,马可以追到它? 【思路导航】马跑一步的距离不知道,跑3步的时间也不知道, 可取具体数值,并不影响解题结果。
26÷(1÷8/5-4/9) = 144(步)
第19页/共22页
2、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔 子。已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与 兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追到它?
设狗的步长为7,则兔的步长为4,再设狗跑2步的时间为1, 则兔跑3步的时间也为 1,推出狗的速度是14,兔的速度是 12。
答:小王的平均速度是每分钟192米。
第10页/共22页
操练 3
1、小华上山的速度是每小时3千米,下山的速度是每小时6千 米,求上山后又沿原路下山的平均速度。
设一个单程是12千米 12×2÷(12÷3+12÷6)= 4(千米/小时)
六年级下册数学课件-奥数 举一反三 苏教版(共 488 张ppt)
差。这里的“*”就代表一种新运算。在定义新运算中同样规 如这果条甲 水是渠乙由的丙队a/b单,独则挖乙,是多甲少的天b/可a;以完成?
甲2,:汽【车24从×甲2地-开24往÷乙(地1-,1每/5小)时】行÷3(2千1-米1。/3)=27(千克)
两【车例继 题续5】行一驶条到公下路午,1甲时队,独两修车相24距天还可是以1完12成. ,乙队独修30天可以完成。 因3.为甲36数6是×丙2≡数2×的23≡/74,(乙mo数d是7)丙,数3的652×又71≡/21,×甲7≡、0(乙m、o丙d 三7)数,的3比66是×(2+)36:5×(7)≡2:×(2+)1×。7≡4+0≡4(mod 7) 这现时在容 有器15内90溶个液零的件浓的度制是造多任少务?分配给他们三个人,要求在相同的时间内完成,每人应该分配到多少个零件?
第那2么3A周、周B两期地工间程的问距题离疯是狂多操少练千四米? 3问.三如种图水所果示各,买正了方多形少中千对克角?线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。
这题的新运算被定义为:a*b等于a和b两数之和加上两数之 甲这、时乙 的每关天键各就做是多要少找个出?12的几次方对模13与1是同余的。
13*5=(13+5)+(13-5)=18+8=26 定可义是新 扇运形算的是半指径运未用知某,种又特无殊法符求号出来,表所示以特我定们的寻意求义正,方从形而的解面答积某与些扇算形式面的积一的种半运径算之。间的关系。
【3,例食题堂4】买甲回骑一车些、油乙,跑 用步甲,种二桶人装同最时后从一同桶一少地3千点克出,发用沿乙着种长桶4千装米最的后环一形桶公只路装同了方半向桶进油行,晨用练丙。 种桶装最后一桶少7千克。 已如知果数 从学第组一与仓科库技取组出共30有台6,9人存。入第二仓库,则第二仓库就是第一仓库的4/9。
最新2017小学六年级全学年上下册奥数举一反三经典课件(共40讲514页)
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】
这题的新运算被定义为: a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。 13*5=(13+5)+(13-5)=18+8=26
5*4=(5+4)+(5-4)=10
13*(5*4)=13*10=(13+10)+(13-10)=26
【练习 1 】 1. 将新运算“ *” 定义为: a*b=(a+b)×(a-b). 。求 27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【思路导航】这题的新运算被定义为:@ = (a-1)× a × (a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)- 1/ (6×7×8),这里的分母都比较大,不易直接求出结果。根 据 1/ ⑥- 1/ ⑦ =1/ ⑦×A ,可得出 A = (1/ ⑥- 1/ ⑦ ) ÷ 1/ ⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。即
A =(1/⑥-1/⑦)÷1/⑦ =(1/⑥-1/⑦)×⑦ = ⑦/⑥-1 =(6×7×8)/(5×6×7)-1 = 1 又 3/5-1 = 3/5
【练习4】1.规定:②=1×2×3,③=2×3×4,④=3×4×5, ⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么 A=________。
【例题5】设a⊙b=4a-2b+1/2ab, 求z⊙(4⊙1)=34中的 未知数x。
小学六级奥数举一反三精品PPT课件
第2周 简便运算(一)
根据算式的结构和数的特征,灵活运用运算法则、定律、性 质和某些公式,可以把一些较复杂的四则混合运算化繁为简, 化难为易。
【例题1】 计算4.75-9.63+(8.25-1.37) 【思路导航】 先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质: a-b-c = a-(b+c),使运算过程简便。所以 原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算 符号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规 的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。
【练习1】计算下面各题。
【例题2】
计算 3333871 ×79+790×666611
2
4
原式=333387.5×79+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
【练习2】
小学奥数举一反三六年级第01周定义新运算共20页PPT
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
小学奥数举一反三六年级第01周定义 新运算
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
六年级下学期奥数举一反三从课本到奥数(第一周确定位置)
小学数学六年级下册
举一反三
小学数学六年级下册
典型例题
小学数学六年级下册
拓展提高
小学数学六年级下册
从课本到奥数举一反三
今天要学习的是采用找规律的方法,确定数的位置,我们应该先 发现规律,然后计算,根据余数,确定该数的位置。
小Байду номын сангаас数学六年级下册
典型例题
小学数学六年级下册
举一反三
小学数学六年级下册
拓展提高
小学数学六年级下册
从课本到奥数举一反三
今天要学习的是在前面四小节学习知识的基础上,继续学习有关 位置的趣题方法。
小学数学六年级下册
典型例题
小学数学六年级下册
举一反三
小学数学六年级下册
拓展提高
小学数学六年级下册
从课本到奥数举一反三
今天我们学习的是根据已知的点,判断围成的图形是什么形状, 以及根据距离,确定事物的位置。
小学数学六年级下册
典型例题
小学数学六年级下册
举一反三
小学数学六年级下册
拓展提高
小学数学六年级下册
小学数学六年级下册
六年级下学期数学
第一周 确定位置
从课本到奥数
小学数学六年级下册
回归课本
小学数学六年级下册
小学数学六年级下册-----第一周确定位置
认识位置方向
小学数学六年级下册
小学数学六年级下册
小学数学六年级下册
从课本到奥数举一反三
今天我们学习确定位置,在用数对表示物体的位置时,一定要注 意列在前行在后。
小学数学六年级下册
从课本到奥数举一反三
今天我们学习的数阵图,填数阵图是非常有趣的填数游戏,它要 求大家根据要求,把每个数填在合适的位置上,解决这类问题采用的主 要方法是“整体求和法”
小学奥数举一反三PPT课件
练习2. 1.面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完, 现在改用每辆装30袋的汽车6辆来运,几次可以运完? 2.修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个 工人,准备4天完成,这样每天要工作几小时? 3.用5台拖拉机6小时耕地75亩。现在要耕地200亩,且要求8小时耕完,需要同 样的拖拉机多少台?
练习2. 1. 5台磨面机6小时磨面粉42吨,10台磨面机磨面粉98吨,需要几小时? 2. 一辆卡车5次运煤22.5吨,5辆同样的卡车6次可以运煤多少吨? 3. 一个钢铁厂,一号炉前3天每天产钢354.5吨,后5天共生产钢18005吨,平均每天
生产钢多少吨?
第3页/共83页
例3. 5辆汽车4次可以运送100吨钢材,如用同样的7辆汽车运送105吨 钢材,需要运几次?
需要多少人?
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公 顷?
解 (1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷) 列成综合算式 90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6 天耕地300公顷。
第14页/共83页
例2 甲站原有车52辆,乙站原有车32辆,若每天从甲站 开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数 是甲站的2倍?
解 分析:每天从甲站开往乙站28辆,从乙站开往甲站24 辆,相当于每天从甲站开往乙站(28-24)辆。 把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数 就是2倍量,两站的车辆总数(52+32)就相当于(2+1) 倍, 那么,几天以后甲站的车辆数减少为
实用文档之小学奥数举一反三(六年级)
实用文档之""第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
姓名:__________________ 练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学六年级奥数举一反三ppt课件 (1-10)
【例题1】 计算:1234+2341+3412+4123
【思路导航】 注意到题中共有4个四位数,每个四位数中都包含有1、2、 3、4这几个数字,而且它们都分别在千位、百位、十位、 个位上出现了一次,根据位值计数的原则,可作如下解答:
原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110
=254+80 =334
【练习4】
【例题5】
计算81.5×15.8+81.5×51.8+67.6×18.5 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760
【练习5】
计算过程中,我们先整体地分析算式的特点,然后进行 一定的转化,创造条件运用乘法分配律来简算,这种思考方 法在四则运算中用处很大。
即20÷【7/(12-7)-3/(8-3)】÷(1-7/12)=60(根)
解法二:把短跳绳看作单位“1”,原来的总数是短跳绳的 8/ ( 8-3 ) , 后 来 的 总 数 是 短 跳 绳 的 12/ ( 12-7 ) 。 所 以 20÷(12/(12-7)-8/(8-3))÷(1-7/12)=60(根)
3.某校六年级上学期男生占总人数的54%,本学期 转进3名女生,转走3名男生,这时女生占总人数的 48%。现在有男生多少人?
【例题2】某学校原有长跳绳的根数占长、短 跳绳总数的3/8。后来又买进20根长跳绳,这 时长跳绳的根数占长、短跳绳总数的7/12。 这个学校现有长、短跳绳的总数是多少根?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例题5】设a⊙b=4a-2b+1/2ab,求z⊙(4⊙1)=34中的 未知数x。
【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1 =16,再根据x⊙16=4x-2×16+1/2×x×16 = 12x-32, 然后解方程4⊙1=4×4-2×1+1/2×4×1=16
x⊙16ቤተ መጻሕፍቲ ባይዱ4x-2×16+1/2×x×16
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规 的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。
A =(1/⑥-1/⑦)÷1/⑦
=(1/⑥-1/⑦)×⑦
= ⑦/⑥-1
=(6×7×8)/(5×6×7)-1
= 1 又 3/5-1
= 3/5
【 练 习 4 】 1 . 规 定 : ②=1×2×3 , ③ = 2×3×4 , ④ = 3×4×5 , ⑤ = 4×5×6 , …… 如 果 1/⑧ - 1/⑨ = 1/⑨×A , 那么A=________。
=12x-32
12x-32 = 34
12x= 66
x=5.512x-32 = 34,求出x的值。列算式为
【练习5】 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
2 . 对 两 个 整 数 a 和 b 定 义 新 运 算 “ △” : a△b= , 求 6△4+9△8。
3.对任意两个整数x和y定于新运算,“*”:x*y= (其中m 是一个确定的整数)。如果1*2=1,那么3*12=________。
13*5=(13+5)+(13-5)=18+8=26
5*4=(5+4)+(5-4)=10
13*(5*4)=13*10=(13+10)+(13-10)=26
【 练 习 1 】 1. 将 新 运 算 “ *” 定 义 为 : a*b=(a+b)×(a-b). 。 求 27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
【练习2】1.设p、q是两个数,规定p△q=4×q-(p+q) ÷2,求5△(6△4)。
2 . 设 p 、 q 是 两 个 数 , 规 定 p△q = p2+ ( p - q ) ×2 。 求 30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【 例 题 3 】 如 果 1*5=1+11+111+1111+11111 , 2*4=2+22+222+2222 , 3*3=3+33+333 , 4*2=4+44 , 那 么 7*4=________;210*2=________。 【思路导航】
经过观察,可以发现本题的新运算“*”被定义为。因此
7*4=7+77+777+7777=8638 210*2=210+210210=210420
【 练 习 3 】 1 . 如 果 1*5=1+11+111+1111+11111 , 2*4=2+22+222+2222 , 3*3=3+33+333 , …… 那 么 4*4=________。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算 符号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
新定义的算式中有括号的,要先算括号里面的。但它在没有 转化前,是不适合于各种运算定律的。
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】
这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。
2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥ = 5×6×7 , …… 如 果 1/⑩+1/⑾ = 1/⑾×□ , 那 么 □ = ________。
3 . 如 果 1※2 = 1+2 , 2※3 = 2+3+4 , ……5※6 = 5+6+7+8+9+10,那么x※3=54中,x=________。
【练习1】计算下面各题。
【计例算题计33算323】383731238×71279×+77990+×79606×666161466114 原式原=式33=3338373.358×7.759×+77990+×79606×66616.62651.25 =(=33(33383.37358+.67656+6616.62651).2×5)79×0 790 =10=0010000×00709×0 790 =79=00709000000000
根据算式的结构和数的特征,灵活运用运算法则、定律、性 质和某些公式,可以把一些较复杂的四则混合运算化繁为简, 化难为易。
【例题1】 计算4.75-9.63+(8.25-1.37) 【思路导航】 先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质: a-b-c = a-(b+c),使运算过程简便。所以 原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2
2.规定,
那么8*5=________。
3.如果2*1=1/2,3*2=1/33, 4*3=1/444,那么(6*3)÷ (2*6)=________。多少分?
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5, ⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?
【思路导航】这题的新运算被定义为:@ = (a-1)×a× (a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/ (6×7×8),这里的分母都比较大,不易直接求出结果。 根据1/⑥-1/⑦ =1/⑦×A,可得出A = (1/⑥-1/⑦)÷1/⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。即