高考数学课后限时集训41简单几何体的表面积与体积文(含解析)北师大版

合集下载

简单几何体的表面积与体积跟踪训练含答案

简单几何体的表面积与体积跟踪训练含答案

8.3简单几何体的表面积与体积跟踪训练(答案)一、选择题1、已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( B )A.2B.2 2C.4D.4 2解:设圆锥的母线长为l,因为该圆锥的底面半径为2,侧面展开图为一个半圆,所以2π×2=πl,解得l=2 2.2、现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为( D )A.3πB.3π2 C.5π2 D.5π解:设底面圆的半径为R,圆柱的高为h,依题意2R=h=2,∴R=1.∴圆锥的母线l=h2+R2=22+1=5,因此S圆锥侧=πRl=1×5π=5π.3、等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积为( B )A.2πB.2π或()1+2πC.22πD.22π或()2+2π解:如果绕直角边所在直线旋转,那么形成圆锥,圆锥底面半径为1,高为1,母线长就是直角三角形的斜边长2,所以所形成的几何体的表面积S=πrl+πr2=π×1×2+π×12=(2+1)π;如果绕斜边所在直线旋转,那么形成的是同底的两个圆锥,圆锥的底面半径是直角三角形斜边高为22,两个圆锥的母线长都是1,所以形成的几何体的表面积S=2×πrl=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选B.4、对24小时内降水在平地上的积水厚度(mm)进行如下定义:0~1010~2525~5050~100小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级( B )A.小雨B.中雨C.大雨D.暴雨解:由相似关系可得,雨水形成的小圆锥的底面半径r =20022=50(mm),故 V 小圆锥=13×π×502×150=503·π(mm 3),从而可得积水厚度h =V 小圆锥S 大圆=503·ππ·1002=12.5(mm),属于中雨.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( C )A .5-14B .5-12C .5+14D .5+12解:设正四棱锥的高为h ,底面正方形的边长为2a ,斜高为m ,依题意得h 2=12×2a ×m ,即h 2=am ①,易知h 2+a 2=m 2 ②,由①②得m =1+52a (舍负),所以m2a =1+52a 2a =1+54.故选C .6、已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π解:设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,所以S 表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B .7、已知圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( C )A .81πB .100πC .168πD .169π解:圆台的轴截面如图,设上底面半径为r ,下底面半径为R ,高为h ,母线长为l ,则它的母线长l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π, S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.8、正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( D )A.20+12 3B.28 2C.563D.2823解:连接该正四棱台上、下底面的中心,如图,因为该四棱台上、下底面的边长分别为2,4,侧棱长为2,所以该棱台的高h =22-(22-2)2=2,下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13h (S 1+S 2+S 1S 2)=13×2×(16+4+64)=2823.9、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A.4B.6C.4 3D.6 3解:∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,∴AS ⊥平面ABC ,∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC =13×12×2×6×23=4 3. 10、如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是( C )A .23πB .324πC .223πD .22π解:如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为等边三角形ABC 的中心,连接AE 并延长,交BC 于点D .AE =23AD ,AD =32, 所以AE =23×32=33, 所以PE =P A 2-AE 2=63.设圆柱底面半径为r ,则r =AE =33,所以圆柱的侧面积S =2πr ·PE =2π×33×63=22π3.11、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A .4B .6C .4 3D .6 3解:因为∠ABC =π2,AB =2,BC =6,所以AC =AB 2+BC 2=22+62=210.因为∠SAB =π2,AB =2,SB =4,所以AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,所以AC ⊥AS .又因为SA ⊥AB ,AC ∩AB =A ,所以AS ⊥平面ABC ,所以AS 为三棱锥S -ABC 的高,所以V 三棱锥S -ABC =13×12×2×6×2 3=4 3.12、(多选)已知正四棱锥的侧面与底面所成的锐二面角为θ,若θ=30°,侧棱长为21,则( AC )A.正四棱锥的底面边长为6B.正四棱锥的底面边长为3C.正四棱锥的侧面积为24 3D.正四棱锥的侧面积为12 3解: 如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,SH ⊥AB ,设底面边长为2a (a >0),因为∠SHO =30°,所以OH =a ,OS =33a ,SH =233a ,在Rt △SAH 中,a 2+⎝ ⎛⎭⎪⎫233a 2=21,所以a=3,底面边长为6,侧面积为S =12×6×23×4=24 3.故选AC.二、填空题13、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.14、一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为____13____cm.解:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).15、已知圆锥的顶点为A,过母线AB,AC的截面面积是2 3.若AB,AC的夹角是60°,且AC与圆锥底面所成的角是30°,则该圆锥的表面积为___(6+43)π_____.解:如图所示,∵AB,AC的夹角是60°,AB=AC,∴△ABC是等边三角形,∴34×AC2=23,解得AC=2 2.∵AC与圆锥底面所成的角是30°,∴圆锥底面半径r=OC=AC cos 30°=22×32= 6.则该圆锥的表面积=π×(6)2+12×2π×6×22=(6+43)π.16、学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为__118.8____g.解:由题意得,四棱锥O-EFGH的底面积为4×6-4×12×2×3=12(cm2),其高为点O到底面EFGH的距离,为3 cm,则此四棱锥的体积为V1=13×12×3=12(cm3).又长方体ABCD-A1B1C1D1的体积为V2=4×6×6=144(cm3),所以该模型的体积V=V2-V1=144-12=132(cm3),因此模型所需原材料的质量为0.9×132=118.8(g).17、棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.解:如图,由正方体棱长为2及M,N分别为BB1,AB的中点,得S△A1MN =2×2-2×12×2×1-12×1×1=32,又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2,∴V A1-D1MN =V D1-A1MN=13·S△A1MN·D1A1=13×32×2=1.18、圆台的上、下底面半径分别为10 cm,20 cm,它的侧面展开图扇环的圆心角为180°,则圆台的表面积为___1 100π_____cm2.(结果中保留π)解:如图所示,设圆台的上底面周长为c cm,因为扇环的圆心角是180°,故c=π·SA=2π×10(cm),所以SA=20 cm.同理可得SB=40 cm,所以AB=SB-SA=20 cm,所以S表=S侧+S上底+S下底=π(10+20)×20+π×102+π×202=1 100π(cm2).故圆台的表面积为1 100π cm2.19、如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为___23_____.解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH .则原几何体分割为两个三棱锥和一个直三棱柱.依题意,三棱锥E -ADG 的高EG =12,直三棱柱AGD -BHC 的高AB =1. 则AG =AE 2-EG 2=12-⎝ ⎛⎭⎪⎫122=32.取AD 的中点M ,则MG =22, 所以S △AGD =12×1×22=24,∴V 多面体=V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.20、如图,设正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,则此正三棱锥的表面积为________.解:如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.因为S 侧=2S 底, 所以12·3a ·h ′=34a 2×2. 所以a =3h ′.因为SO ⊥OE ,所以SO 2+OE 2=SE 2.所以32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.所以h ′=23,所以a =3h ′=6.所以S 底=34a 2=34×62=93,S 侧=2S 底=18 3. 所以S 表=S 侧+S 底=93+183=27 3.21、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解;设该圆锥的高为h ,则由已知条件可得13×π×62·h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.22、如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为____23____.解: ∵ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ED ⊥AD . ∵在正方形ABCD 中,AD ⊥DC , 而DC ∩ED =D , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF . ∵V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13=2×2×1×12×13=23,∴V ABCDEF =83+23=103.又V F -ABCD =FC ×S正方形ABCD×13=1×2×2×13=43,V A-DEF=AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.23、若E ,F 是三棱柱ABC -A 1B 1C 1侧棱BB 1和CC 1上的点,且B 1E =CF ,三棱柱的体积为m ,则四棱锥A -BEFC 的体积为____m3____.解: 如图所示,连接AB 1,AC 1.因为B 1E =CF ,所以梯形BEFC 的面积等于梯形B 1EFC 1的面积. 又四棱锥A -BEFC 的高与四棱锥A -B 1EFC 1的高相等, 所以V A -BEFC =V A -B 1EFC 1=12V A -BB 1C 1C .又V A -A 1B 1C 1=13S △A 1B 1C 1·AA 1, V ABC -A 1B 1C 1=S △A 1B 1C 1·AA 1=m , 所以V A -A 1B 1C 1=m 3,所以V A -BB 1C 1C =V ABC -A 1B 1C 1-V A -A 1B 1C 1=2m3, 所以V A -BEFC =12×2m 3=m3, 即四棱锥A -BEFC 的体积是m3.24、现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3),所以仓库的容积V=V锥+V柱=24+288=312(m3).故仓库的容积是312 m3.25、如图所示,底面半径为1,高为1的圆柱OO1中有一内接长方体A1B1C1D1-ABCD.设矩形ABCD的面积为S,长方体A1B1C1D1-ABCD的体积为V,AB=x.(1)将S表示为x的函数;(2)求V的最大值.解:(1)连接AC(图略),因为矩形ABCD内接于⊙O,所以AC为⊙O的直径.因为AC=2,AB=x,所以BC=4-x2,所以S=AB·BC=x4-x2(0<x<2).(2)因为长方体的高AA1=1,所以V=S·AA1=x4-x2=x2(4-x2)=-(x2-2)2+4.因为0<x<2,所以0<x2<4,故当x2=2即x=2时,V取得最大值,此时V max=2.。

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 答案 B解析 根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S =2π(2)2+2π×2×22=12π.故选B .16.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 答案 C解析 在长方体ABCD -A 1B 1C 1D 1中,连接BC 1,根据线面角的定义可知∠AC 1B =30°,因为AB =2,AB BC 1=tan30°,所以BC 1=23,从而求得CC 1=BC 21-BC 2=22,所以该长方体的体积为V =2×2×22=82.故选C .17.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D .22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

统考版2022届高考数学一轮复习课后限时集训41空间几何体的结构及其表面积体积理含解析北师大版

统考版2022届高考数学一轮复习课后限时集训41空间几何体的结构及其表面积体积理含解析北师大版

课后限时集训(四十一)空间几何体的结构及其表面积、体积建议用时:25分钟一、选择题1.下列说法中正确的是( )A .斜三棱柱的侧面展开图一定是平行四边形B .水平放置的正方形的直观图有可能是梯形C .一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D .用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台 [答案] D2.一个球的表面积是16π,那么这个球的体积为( ) A .163πB .323πC .16πD .24πB [设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.]3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A .1+ 2B .1+2 2C .2+2D .2+22C [由三视图可得该“阳马”的底面是边长为1的正方形,高为1,则表面积为1+2×12×1×1+2×12×2×1=2+2,故选C.]4.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A.32B.32πC.16πD.8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]5.如图,正方体ABCD ­A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1­BFE 的体积为( )A.13 B.14 C.112 D.16C [由等体积法可知VB 1­BFE =VE ­BFB 1=13S △BB 1F ·AD =16×1×12×1=112.故选C.]6.正方体ABCD ­A 1B 1C 1D 1的棱长为2,已知AC 1⊥平面α,则关于α截此正方体所得截面有以下4个判断,①截面形状可能为正三角形 ②截面形状可能为正方形③截面形状可能为正六边形 ④截面面积最大值为33其中判断正确的是( ) A .①③ B .①②③ C. ①②④D .①③④D [如图,显然①③成立,下面说明D 成立,如图截得正六边形时,面积最大,MN =22,GH =2,OE =1+⎝ ⎛⎭⎪⎪⎫222=62,所以S =2×12×(2+22)×62=33,故④成立,故选D.]7.(2020·全国卷Ⅱ)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A.3B.32C.1D.32 C [由等边三角形ABC 的面积为934,得34×AB 2=934,得AB =3,则△ABC 的外接圆半径r =23×32AB =33AB =3.设球的半径为R ,则由球的表面积为16π,得4πR 2=16π,得R =2,则球心O 到平面ABC 的距离d =R 2-r 2=1,故选C.]8.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43D.32A [(分割法)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22,∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E ­ADG +V 三棱锥F ­BCH +V 三棱柱AGD ­BHC =2V 三棱锥E ­ADG + V 三棱柱AGD ­BHC =13×24×12×2+24×1=23.故选A.]二、填空题9.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.2+22[如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .图1 图2在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22.而四边形AECD 为矩形,AD =1,∴EC =AD =1,∴BC =BE +EC =22+1.由此可还原原图形如图2.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴这块菜地的面积S =12(A ′D ′+B ′C ′)×A ′B ′=12×⎝ ⎛⎭⎪⎪⎫1+1+22×2=2+22.] 10.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________cm 2 (结果中保留π).1 100π [如图所示,设圆台的上底周长为C ,因为扇环的圆心角是180°,所以C =π·SA .又C =2π×10=20π,所以SA =20(cm). 同理SB =40(cm).所以AB =SB -SA =20(cm).S 表=S 侧+S 上底+S 下底=π(r 1+r 2)·AB +πr 21+πr 22=π(10+20)×20+π×102+π×202 =1 100π(cm 2).故圆台的表面积为1 100π cm 2.]11.根据不同的程序,3D 打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为17176π cm 3的球挖去一个三棱锥P ­ABC 后得到的几何体,其中PA ⊥AB ,BC ⊥平面PAB ,BC =1 cm.不考虑打印损耗,当用料最省时,AC =________cm.3 [设球的半径为R ,由球的体积4π3R 3=17176π,解得R =172 cm. 因为BC ⊥平面PAB ,所以BC ⊥PB ,BC ⊥AB ,BC ⊥PA . 因为PA ⊥AB ,AB ∩BC =B ,所以PA ⊥平面ABC ,所以PA ⊥AC . 由BC ⊥AB 可知,AC 为截面圆的直径,故可设AC =x cm(1<x <17),取PC 的中点O ,连接OA ,OB (图略),则PO =OC =OA =OB ,故O 为球心,所以PC =17cm.在Rt △PAC 中,PA =17-x 2 cm ,在Rt △ABC 中,AB =x 2-1 cm ,所以V P ­ABC =13×S △ABC ×PA =13×12×x 2-1×1×17-x 2=16x 2-117-x 2≤16⎝ ⎛⎭⎪⎫x 2-1+17-x 222=43(cm 3),当且仅当x 2-1=17-x 2,即x =3时,等号成立. 所以当用料最省时,AC =3 cm.]12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为_____.设线段AB 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为______.22π36 [该圆锥的高h =32-1=22. 所以该圆锥的体积V =13×π×12×22=223π.将圆锥侧面沿母线SA 展开,如图所示.因为圆锥底面周长为2π,所以侧面展开后得到的扇形的圆心角∠ASA ′=2π3.由题意知点B 是侧面展开后得到的扇形中弧AA ′的中点, 连接AB ,A ′B ,SB ,则∠ASB =π3,可得AB =A ′B =AS =3.所以该质点运动路径的最短长度为AB +A ′B =6.]1.已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22A [由于三棱锥S ­ABC 与三棱锥O ­ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S ­ABC 的高是三棱锥O ­ABC 高的2倍,所以三棱锥S ­ABC 的体积也是三棱 锥O ­ABC 体积的2倍.在三棱锥O ­ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34,高OD =12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S ­ABC =2V O ­ABC =2×13×34×63=26.]2.(2020·福州质检)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B.2πC.3π2D.9π2C [正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.]。

2020高考数学刷题第6章立体几何考点测试41空间几何体的表面积和体积(文数)含解析

2020高考数学刷题第6章立体几何考点测试41空间几何体的表面积和体积(文数)含解析

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12π C.82π D.10π答案 B解析根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S=2π(2)2+2π×2×22=12π.故选B.16.(2018·全国卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )A.8 B.6 2 C.8 2 D.8 3答案 C解析在长方体ABCD-A1B1C1D1中,连接BC1,根据线面角的定义可知∠AC1B=30°,因为AB=2,ABBC1=tan30°,所以BC1=23,从而求得CC1=BC21-BC2=22,所以该长方体的体积为V=2×2×22=82.故选C.17.(2018·全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为( )A.12 3 B.18 3 C.24 3 D.54 3答案 B解析如图所示,点M为三角形ABC的重心,E为AC的中点,当DM⊥平面ABC时,三棱锥D-ABC体积最大,此时,OD=OB=R=4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D . 22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。

北师大版数学高一- 第7节空间简单几何体的表面积和体积 文

北师大版数学高一-  第7节空间简单几何体的表面积和体积 文

第三节空间简单几何体的表面积和体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式),并会求它们以及它们的简单组合体的表面积和体积.知识梳理一、空间简单几何体的侧面展开图的形状几何体名称圆柱圆锥圆台直棱柱正n棱锥正n棱台侧面展开图形状矩形扇形扇环矩形n个全等的等腰三角形n个全等的等腰梯形侧面展开图二、空间简单几何体的侧面积和表面积1.直棱柱:S侧=________________(C为底面周长,h是高),S表=__________.2.正棱锥:S侧=____________(C为底面周长,h′是斜高),S表=__________.3.正棱台:S侧=________(C′,C为上、下底面周长,h′是斜高),S表=________________.4.圆柱:S侧=________(C为底面周长,r是底面圆的半径,l是母线长),S表=________.5.圆锥:S侧=________(C为底面周长,r是底面圆的半径,l是母线长),S表=________.6.圆台:S侧=________(C′,C分别是上、下底面周长,r′,r分别是上、下底面圆的半径,l是母线长),S表=________.7.球:S表=________(R是球的半径).三、空间简单几何体的体积公式1.柱体体积公式:V柱=______,其中h为柱体的高.2.锥体体积公式:V锥=______,其中h为锥体的高.3.球的体积公式:V球=______,其中R表示球的半径.四、长方体、正方体的对角线长、表面积和体积公式1.长方体表面积公式:S=2(ab+bc+ac),长方体体积公式:V=__________.2.正方体表面积公式:S=____________,正方体体积公式:V=__________.3.长方体对角线长等于a2+b2+c2,正方体对角线长等于__________.五、两点的球面距离:(属知识拓展)经过球面上两点(不是直径端点)的大圆的劣弧长叫做这两点的球面距离.二、1.Ch S侧+2S底2.12Ch′S侧+S底3.12(C+C′)h′S侧+S上底+S下底4.Cl=2πrl S侧+2S底5.12Cl=πr l S侧+S底6.12(C+C′)l=π(r+r′)l S侧+S上底+S下底7.4πR2三、1.S底h 2.13S底h 3.43πR3四、1.a bc 2.6a2a3 3.3a基础自测1.(2013·深圳一模)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积、体积分别是()A .32π、1283πB .16π、323πC .12π、163πD .8π、163π解析:三视图复原的几何体是半径为2的半球,所以半球的表面积为半个球的表面积与底面积的和:2πr 2+πr 2=3πr 2=12π.半球的体积为:23πr 3=163π.故选C.答案:C2.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2解析:由于长方体的长、宽、高分别为2a ,a ,a ,则长方体的对角线长为(2a )2+a 2+a 2=6a .又长方体外接球的直径2R 等于长方体的体对角线,∴2R =6a .∴S 球=4πR2=6πa 2.故选B.答案:B3.(2013·陕西卷)某几何体的三视图如图所示,则其体积为________.解析:立体图为半个圆锥体,底面是半径为1的半圆,高为2.所以体积V =13×12×π×12×2=π3.答案:π34.半径为a 的球放在墙角,同时与两墙面及地面相切,两墙面互相垂直,则球面上的点到墙角顶点的最短距离是________.解析:联想到正方体模型,则该球是正方体的内切球,其直径就是正方体的棱长,则球面上的点到墙角顶点的最短距离等于球心到正方体一个顶点的距离与球半径的差,也就是正方体的对角线长与球直径的差的一半.答案:(3-1)a1.(2013·广东卷)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A.16B.13C.23D .1解析:由三视图判断底面为等腰直角三角形,三棱锥的高为2,则V =13×12×1×1×2=13.故选B. 答案:B第1题图 第2题图2.(2013·辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图知,该几何体是由一个底面半径r =2的圆柱内挖去了一个底面边长为2的正四棱柱,又该几何体的高h =4,所以V =(π×22-22)×4=16π-16.答案:16π-161.(2013·梅州一模)如图是一个几何体的三视图,若它的体积是33,则a =( )A. 2B.22C. 3D.32解析:由三视图可知此几何体为一个三棱柱,其直观图如图:底面三角形ABC 为底边BC 边长为2的三角形,BC 边上的高为AM =a ,侧棱AD ⊥底面ABC ,AD =3,所以三棱柱ABCDEF 的体积V =S △ABC ×AD =12×2×a ×3=33,得a = 3.故选C.答案:C2.(2013·汕头二模)某三棱锥的三视图如图所示,该三棱锥的体积是( ) A.403 B.2053C.503D.413解析:由三视图可知该几何体是如图所示的三棱锥:PO ⊥平面ABC ,PO =4,AO =2,CO =3,BC ⊥AC ,BC =4.所以V 三棱锥PABC =13×12×5×4×4=403.故选A.答案:A3.已知长方体的一个顶点上的三条棱长分别是3,4,x ,且它的8个顶点都在同一个球面上,这个球面的表面积为125π,则长方体的体积是( )A .72B .96C .100D .120解析:∵球的半径R =32+42+x 22, ∴4π⎝ ⎛⎭⎪⎫25+x 222=125π,解得x =10,∴长方体的体积V =3×4×10=120.故选D. 答案:D。

高考领航北师大数学理总复习 第章第2课时 空间几何体的表面积与体积含解析

高考领航北师大数学理总复习 第章第2课时 空间几何体的表面积与体积含解析

【A 级】 基础训练1.(2014·银川模拟)长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( ) A.72π B .56π C .14πD .64π解析:设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =2,bc =3,ac =6,得⎩⎪⎨⎪⎧a =2,b =1,c =3,令球的半径为R ,则(2R )2=22+12+32=14, ∴R 2=72,∴S 球=4πR 2=14π. 答案:C2.若等腰直角三角形的直角边长为3,则以一直角边所在的直线为轴旋转一周所成的几何体体积是( ) A .9π B .12π C .6πD .3π解析:由题意知所得几何体为圆锥,且底面圆半径为3,高为3,故V =13·(π·32)·3=9π. 答案:A3.(2013·高考江西卷)一几何体的三视图如图所示,则该几何体的体积为( )A.200+9π B.200+18πC.140+9π D.140+18π解析:由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V=10×4×5+9π=200+9π.答案:A4.(2012·高考上海卷)一个高为2的圆柱,底面周长为2π.该圆柱的表面积为________.解析:先求出圆柱的底面半径,再应用圆柱的表面积计算公式求解.设圆柱的底面半径为r,高为h.由2πr=2π得r=1,∴S圆柱表=2πr2+2πrh=2π+4π=6π.答案:6π5.(2013·高考全国新课标卷)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为________.解析:如图,设球O的半径为R,则由AH∶HB=1∶2得HA=13·2R=23R,∴OH=R3.∵截面面积为π=π·(HM )2,∴HM =1. 在Rt △HMO 中,OM 2=OH 2+HM 2, ∴R 2=19R 2+HM 2=19R 2+1,∴R =324.∴S 球=4πR 2=4π·⎝ ⎛⎭⎪⎫3242=92π. 答案:92π6.(2014·安徽省“江南十校”联考)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R = 3. ∴球的体积V =43πR 3=43π. 答案:43π7.(创新题)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.解:(1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC1及直三棱柱B1C1Q-A1D1P的组合体.由P A1=PD1=2,A1D1=AD=2,可得P A1⊥PD1.故所求几何体的表面积S=5×22+2×2×2+2×12=(22+42)(cm2),2×(2)所求几何体的体积V=23+13×2=10(cm3).2×(2)8.有一根木料,形状为直三棱柱形,高为6 cm,横截面三角形的三边长分别为3 cm、4 cm、5 cm,将其削成一个圆柱形积木,求该木料被削去部分体积的最小值.解:如图所示,只有当圆柱的底面圆为直三棱柱的底面三角形的内切圆时,圆柱的体积最大,削去部分体积才能最小,设此时圆柱的底面半径为R,圆柱的高即为直三棱柱的高.在△ABC中,令AB=3,BC=4,AC=5,∴△ABC为直角三角形.根据直角三角形内切圆的性质可得7-2R=5,∴R=1.∴V圆柱=πR2·h=6π(cm3).而三棱柱的体积为V三棱柱=13).2×3×4×6=36(cm∴削去部分的体积为36-6π=6(6-π)(cm3).即削去部分体积的最小值为6(6-π)cm 3.【B 级】 能力提升1.(2013·高考辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132D .310解析:根据球的内接三棱柱的性质求解.因为直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.答案:C2.某几何体的三视图如图所示,则它的体积是( )A .8-2π3 B .8-π3 C .8-2πD .2π3解析:由几何体的三视图可知该几何体为一个组合体,是由一个正方体中间挖去一个圆锥后得到的,所以它的体积是V =23-13×π×12×2=8-2π3. 答案:A3.(2013·高考陕西卷)某几何体的三视图如图所示,则其表面积为________.解析:由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.答案:3π4.(2013·高考北京卷)某四棱锥的三视图如图所示,该四棱锥的体积为________.解析:将三视图还原为直观图,然后根据三视图特征及数据,利用体积公式求解.由几何体的三视图可知该几何体是一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为V=13×9×1=3.答案:35.(2012·高考浙江卷)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3.解析:由三视图可知,该三棱锥底面为两条直角边分别为1 cm和3 cm的直角三角形,一条侧棱垂直于底面,垂足为直角顶点,故高为2 cm,所以体积V=13×1 2×1×3×2=1(cm 3). 答案:16.(2013·高考江苏卷)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.解析:方法(ⅰ)设三棱柱的底面ABC 的面积为S ,高为h ,则其体积为V 2=Sh .因为D ,E 分别为AB ,AC 的中点,所以△ADE 的面积等于14S .又因为F 为AA 1的中点,所以三棱锥F -ADE 的高等于12h ,于是三棱锥F -ADE 的体积V 1=13×14S ·12h =124Sh =124V 2,故V 1∶V 2=1∶24. 方法(ⅱ)连接A 1C ,A 1B ,则V 1=18VA 1-ABC , 而VA 1-ABC =13V 2,∴V 1=124V 2.方法(ⅲ)若三棱柱A 1B 1C 1-ABC 为正三棱柱,设AB =2,AA 1=2. 则V 2=Sh =34×22×2=23,V 1=13×34×1=312, ∴V 1∶V 2=1∶24. 答案:1∶247.(创新题)如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB >1,点E 在棱AB 上移动,小蚂蚁从点A 沿长方体的表面爬到点C 1,所爬的最短路程为2 2.(1)求AB的长度.(2)求该长方体外接球的表面积.解:(1)设AB=x,点A到点C1可能有两种途径,如图甲的最短路程为|AC1|=x2+4.如图乙的最短路程为|AC1|=(x+1)2+1=x2+2x+2,图甲图乙∵x>1,∴x2+2x+2>x2+2+2=x2+4,故从点A沿长方体的表面爬到点C1的最短距离为x2+4.由题意得x2+4=22,解得x=2.即AB的长度为2.(2)设长方体外接球的半径为R,则(2R)2=12+12+22=6,∴R2=3,∴S表=4πR2=6π.2即该长方体外接球的表面积为6π.。

高三大一轮复习讲义数学文课时作业:简单几何体的面积和体积北师大 含解析

高三大一轮复习讲义数学文课时作业:简单几何体的面积和体积北师大 含解析

课时作业(四十三) 简单几何体的面积和体积A 级1.(2011·北京卷)某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16+16 2C .48D .16+32 22.(2012·广东卷)某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π3.过球的一条半径的中点作垂直于这条半径的球的截面,则此截面面积是球表面积的( )A.116B.316C.112D.184.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( ) A.233πB .23π C.736πD.733π5.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 的体积之比为( )A .1∶1B .1∶2C.2∶1 D.3∶26.(2012·山东卷)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C 上的点,则三棱锥D1-EDF的体积为________.7.(2012·天津卷)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.8.如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于______.9.(2012·上海卷)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.10.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为3左视图,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.11.已知正四棱锥的底面边长为a ,侧棱长为2a ,求它的外接球的体积.B 级1.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A.12512πB.1259πC.1256π D.1253π 2.圆锥的全面积为15π cm 2,侧面展开图的圆心角为60°,则该圆锥的体积为________cm 3. 3.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A ,PB ,PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.答案课时作业(四十三)A级1.B由三视图还原几何体的直观图如图所示.S表=⎝⎛⎭⎫12×4×22×4+4×4=16+16 2.2.C由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示.圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V=V圆锥+V圆柱=13Sh1+Sh2=13×π×32×4+π×32×5=57π.3.B由题意可得截面圆半径为32R(R为球的半径),所以截面面积为π⎝⎛⎭⎫32R2=34πR2,又球的表面积为4πR2,则34πR24πR2=316,故选B.4.D上底半径r=1,下底半径R=2.∵S侧=6π,设母线长为l,则π(1+2)·l=6π,∴l =2,∴高h=l2-(R-r)2=3,∴V=13π·3×(12+1×2+22)=733π.5.C∵G为PB中点,∴V P-GAC=V P-ABC-V G-ABC=2V G-ABC-V G-ABC=V G-ABC,又多边形ABCDEF是正六边形,∴S △ABC =12S △ACD ,∴V D -GAC =V G -ACD =2V G -ABC , ∴V D -GAC ∶V P -GAC =2∶1,故选C.6.解析: 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16.答案: 167.解析: 由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1,所以V =43π×278×2+1×3×6=9π+18.答案: 18+9π8.解析: 如图所示,画出正方体, 则2R =CD =3DA 2=6, ∴R =62,V =43πR 3=43π⎝⎛⎭⎫623=6π. 答案:6π9.解析: 设圆锥底面半径为r ,母线长为l ,高为h ,则⎩⎪⎨⎪⎧πl =2πr ,12πl 2=2π,∴⎩⎪⎨⎪⎧l =2,r =1,∴h = 3.∴V 圆锥=13π×12×3=33π.答案:33π10.解析: (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1, 所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形. 所以表面积S =2×(1×1+1×3+1×2)=6+2 3.11.解析: 如图所示,△SAC 的外接圆是外接球的一个大圆, ∴只要求出这个外接圆的半径即可, 设外接球的半径为R ,球心为O , 则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形. 由正弦定理得2R =AC sin ∠ASC =2a sin 60°=263a ,因此R =63a ,V 球=43πR 3=8627πa 3. B 级1.C 由题意知,球心到四个顶点的距离相等,所以球心在对角线AC 上,且其半径为AC 长度的一半,则V 球=43π×⎝⎛⎭⎫523=1256π.2.解析: 设底面圆的半径为r ,母线长为a ,则侧面积为12×(2πr )a =πra .由题意得⎩⎪⎨⎪⎧πra +πr 2=15ππra =16πa 2,解得⎩⎨⎧r 2=157a 2=36×157,故圆锥的高h =a 2-r 2=53,所以体积为V =13πr 2h =13π×157×53=2537π(cm 3).答案:2537π 3.解析: (1)证明:由题设知A ,B ,C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD ,PD ,则AD ⊥BC ,PD ⊥BC ,PD ∩AD =D ,∴BC ⊥平面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10,PB =PC =P 1B =13, ∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119,∴S △DP A =12P A ·h =5119,又BC ⊥平面P AD ,∴V P -ABC =V B -PDA +V C -PDA =13BD ·S △DP A +13DC ·S △PDA=13BC ·S △PDA =13×10×5119=503119.。

高中数学简单几何体的表面积与体积考点及例题讲解

高中数学简单几何体的表面积与体积考点及例题讲解

简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ­ABCD 与三棱锥E ­FBC 的体积之和,而四棱锥E ­ABCD 的体积等于13×(5×2)×3=10,三棱锥E ­FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。

北师大版数学高一(北师大)必修21.7四法化解空间几何体表面积和体积问题

北师大版数学高一(北师大)必修21.7四法化解空间几何体表面积和体积问题

高中数学 四法化解空间几何体表面积和体积问题空间几何体中有关其表面积和体积在高考中是一个热点问题,时常出现在各地的高考试卷中。

因涉及到的题型较多,解答的方法也较多,常用的方法有公式法、构造法、特殊法、参数法四种,下面就这四种解法化解高考中的空间几何体表面积和体积问题进行举例分析:一、公式法公式法是指运用空间几何体的有关对角线公式,表面积公式,体积公式解题,如边长分别为,,a b cabc ,表面积为ab bc ca ++等。

例1 已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A 、16πB 、20πC 、24πD 、32π解析:该四棱柱底面积为4,从而底面边长为2,其外接球直径为该四棱柱的对角线,不妨设外接球的半径为R ,表面积为S,2R ∴==R ∴=2424S R ππ∴==,因此答案为C.二、构造法构造法是指通过构造出球或立方体等特殊的几何体,使分散的问题集中在一个特殊的空间几何体中,使所求解的问题显性化、简单化.例2 如图,在等腰梯形ABCD 中,AB=2DC=2,060DAB ∠=,E 为AB 的中点,将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为( )ABC、8 D、24解析:根据题意折叠后的三棱锥P DCE -为正面体,且棱长为1,以此正四面体来构造立方体,则此立方体的棱长为2,且立方体的外接球也为此正面A B C D E A BCP Q 1A 1B 1C高中数学 体的外接球,∴334433V R ππ∴===⎝⎭球,因此答案为C. 三、特殊法特殊法是指采用特殊值、特殊位置或特殊的空间几何体来化解具有一般规律的问题,通过一般条件下成立的结论来求出其所要解答的问题.例3 设三棱柱111ABC A B C -的体积为V ,P 、Q 分别为侧棱11,AA CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为( )A 、6VB 、4VC 、3VD 2V 解析:此题可采用特殊化法,取直棱柱,且P 、Q 为侧棱中点,如图连结PQ ,则可得:22B APQC B AQC Q APC V V V ---==11112333ABC ABC S QC S C C V ∆∆=⋅⋅=⋅=,因此可选C. 四、参数法参数法是指对于变化或不定的面积(或体积),采用设一个参数,运用方程或不等式求解的方法,使动态的问题变得明显,方便于求解.例4 有两个相同的直三棱柱,高为2a,底面三角形的边长分别为3,4,5a a a ()0a >,用它们拼成一个三棱柱或四棱柱,在所有的情形中,全面积最小的是一个四棱柱,则a 的取值范围是解析:底面面积为62a ,侧面积分别为6、8、10,拼成三棱柱时,若为上、下接合,则全面为22262(1086)1248a a ⨯+++=+;若拼成四棱柱,显然两侧面积面积最大的结合,全面积为()22842462824a a +⨯+⨯=+,2212482824,a a ∴+>+25,3a ∴<03a ∴<< 空间几何体中的表面积和体积的求解方法较多,以上四种方法是基本方法,针对不同的问题要注意分门别类用不同的方法进行处理求解。

适用于新教材2024版高考数学一轮总复习:基本立体图形及空间几何体的表面积和体积课件北师大版

适用于新教材2024版高考数学一轮总复习:基本立体图形及空间几何体的表面积和体积课件北师大版
∠xOz=90°,且∠yOz=90°.
(2)画直观图时,把Ox,Oy,Oz画成对应的O'x',O'y',O'z',使∠x'O'y'=45°(或
135°),∠x'O'z'=90°.x'O'y'所确定的平面表示水平平面.
(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x'
轴、y'轴或z'轴的线段.
3
4
V1=3πR3,
6. 如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部
分的高都是0.5 m,公共面ABCD是边长为1 m的正方形,那么这个漏斗的容
积是多少立方米(精确到0.01 m3)?(计算漏斗的容积时不考虑漏斗的厚度)
解 由题意知 V 长方体 ABCD-A'B'C'D'=1×1×0.5=0.5(m
是圆锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确说法的个数是(
A.0
B.1
C.2
D.3
)
(2)给出下列说法:①棱柱的侧Βιβλιοθήκη 长都相等,侧面都是全等的平行四边形;
②存在每个面都是直角三角形的四面体;
③棱台的侧棱延长后交于一点.
其中正确说法的序号有
.
答案 (1)A
(2)②③
解析 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②错误,当以
4.菱形的直观图仍是菱形.( × )
题组二 双基自测
5. 如图,圆柱的底面直径和高都等于球的直径,则球与圆柱的
体积之比为(
)

高考数学(理)北师大版一轮课件8.2简单几何体的表面积与体积ppt版本

高考数学(理)北师大版一轮课件8.2简单几何体的表面积与体积ppt版本
(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周 所形成的几何体的体积为9π.( )
(5)将圆心角为23π,面积为 3π 的扇形作为圆锥的侧面,则圆锥的 表面积等于 4π. ( )
关闭
(1)× (2)× (3)√ (4)× (5)√
答案
知识梳理
-7-
知识梳理 双基自测
关闭
由题意可知,该几何体由同底面的一个圆柱和一个圆锥构成, 圆柱的侧面积为 S1=2π×2×4=16π,圆锥的侧面积为
S2=12×2π×2× (2 3)2 + 22=8π,圆柱的底面面积为 S3=π×22=4π,
故该几何体的表面积为 S=S1+S2+S3=28π,故选 C.
关闭
C A.20π B.24π C.28πD.32π
A
解析
关闭
关闭
答案
考点1
考点2
考点3
-14-
考点 2 空间几何体的体积
例 2 在梯形 ABCD 中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯 形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的几何体
的体积为( )
A.23π
B.43π
关闭
C由.53题π 意可得D旋.2转π 体为一个圆柱挖掉一个圆锥.
V= Sh
S上S下)h=13π(r12 +
知识梳理
-3-
知识梳理 双基自测
123
面积
正棱锥 正棱台
S 侧=12Ch' S 侧=12(C+C')h'

S = 球面 4πR2
体积
V=13Sh V=13(S 上+S 下+

(北师大版)2020版高考文科数学一轮复习简单几何体的表面积与体积文课后训练题含解析

(北师大版)2020版高考文科数学一轮复习简单几何体的表面积与体积文课后训练题含解析

课后限时集训(四十一)(建议用时:60分钟) A 组 基础达标一、选择题1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .22π3B.42π3C .22πD .42πB [依题意知,该几何体是以2为底面半径,2为高的两个同底圆锥组成的组合体,则其体积V =13π×(2)2×22=423π.]2.一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中主视图、左视图和俯视图均为边长等于2的正方形,则这个几何体的表面积为( )A .16+4 3B .16+4 5C .20+4 3D .20+4 5D [由三视图可知,该几何体是棱长为2的正方体的内部挖去一个底面边长为2的正四棱锥,将三视图还原可得如图,可得其表面积为S =5×22+4×12×2×5=20+45,故选D.]3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8C [由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6.故选C .]4.某几何体的三视图如图所示,且该几何体的体积是3,则主视图中的x 的值是( ) A .2 B .92 C .32D .3D [由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=12×(1+2)×2=3,∴V =13x ·3=3,解得x =3.]5.(2019·昆明模拟)一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .36πB .8πC .92π D .278πB [根据几何体的三视图,得该几何体是底面为等腰直角三角形,高为2的直三棱锥,如图所示,则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R ,∴2R =VB .∵VB =VA 2+AB 2=22,∴R =2,∴该几何体的外接球的表面积是4πR 2=8π.故选B.] 二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.7 [设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7.]7.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.12 [设正六棱锥的高为h ,棱锥的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.]8.(2019·惠州模拟)已知三棱锥S ­ABC ,△ABC 是直角三角形,其斜边AB =8,SC ⊥平面ABC ,SC =6,则三棱锥S ­ABC 的外接球的表面积为________.100π [将三棱锥S ­ABC 放在长方体中(图略),易知三棱锥S ­ABC 所在长方体的外接球,即为三棱锥S ­ABC 的外接球,所以三棱锥S ­ABC 的外接球的直径2R =AB 2+SC 2=10,即三棱锥S­ABC的外接球的半径R=5,所以三棱锥S­ABC的外接球的表面积S=4πR2=100π.]三、解答题9.如图,从正方体ABCD­A1B1C1D1的8个顶点中选出的4个点恰为一个正四面体的顶点.(1)若选出4个顶点包含点A,请在图中画出这个正四面体;(2)求棱长为a的正四面体外接球的半径.[解] (1)如图所示,选取的四个点分别为A,D1,B1,C.(2)棱长为a的正四面体外接球的半径等于正方体外接球的半径等于正方体对角线长的一半,因为正四面体的棱长a,所以正方体的边长为22a,因此外接球的半径为32×22a=64a.10.(2015·全国卷Ⅱ)如图,长方体ABCD­A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.[解] (1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. B 组 能力提升1.(2019·青岛模拟)如图为某个几何体的三视图,则该几何体的体积为( )A .12-π2 B .12-πC .12-2π3D .12-π3A [由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a =2,半圆锥的底面半径r =1,高h =3,所以正四棱柱的体积V 1=a 2h =22×3=12,半圆锥的体积V 2=12×π3r 2h =π6×12×3=π2,所以该几何体的体积V =V 1-V 2=12-π2.]2.(2018·株洲模拟)已知正三棱锥P ­ABC 的主视图和俯视图如图所示,则此三棱锥外接球的表面积为( )A .16π3B .64π3C .100π3D .12πB [如图,作PG ⊥CB 于点G ,连接AG ,设点P 在底面ABC 内的射影为D ,连接PD ,依题易得AB =23,PG =13,PA =4,AD =2,PD =23,PD ⊥平面ABC .易知,正三棱锥P ­ABC 外接球的球心在PD 上,不妨设球心为O ,半径为r ,连接OA ,则在Rt△AOD 中,r 2=22+(23-r )2⇒r 2=163,S =4πr 2=64π3.故选B.]3.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.8π [由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt△ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.]4.一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的316,设球的半径为R ,圆锥底面半径为r .(1)试确定R 与r 的关系,并求出较大圆锥与较小圆锥的体积之比; (2)求出两个圆锥的体积之和与球的体积之比.[解] (1)不妨设球的半径为4;则球的表面积为64π,圆锥的底面积为12π, 所以圆锥的底面半径为2 3.由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形.由此可以求得球心到圆锥底面的距离是42-232=2,所以圆锥体积较小者的高为4-2=2, 同理可得圆锥体积较大者的高为4+2=6. 又由这两个圆锥的底面相同,所以较大圆锥与较小圆锥的体积之比等于它们高之比,即3∶1.(2)由(1)可得两个圆锥的体积和为13·π·(23)2·8=32π,球的体积为43·π·43=2563π, 故两个圆锥的体积之和与球的体积之比为32π∶2563π=3∶8.。

2019高三数学理北师大版一轮教师用书:第7章 第5节 简

2019高三数学理北师大版一轮教师用书:第7章 第5节 简

第五节简单几何体的表面积与体积[考纲传真](教师用书独具)了解球、棱柱、棱锥、台的表面积和体积的计算公式.(对应学生用书第117页)[基础知识填充]1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.[(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)棱长为a的正四面体,其高H=63a,则其外接球半径R=34H,内切球半径R=14H.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)多面体的表面积等于各个面的面积之和.()(2)锥体的体积等于底面面积与高之积.()(3)球的体积之比等于半径比的平方.()(4)台体的体积可转化为两个锥体的体积之差.()(5)简单组合体的体积等于组成它的简单几何体体积的和或差.()(6)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()[答案](1)√(2)×(3)×(4)√(5)√(6)√2.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cm B.2 cmC.3 cm D.32cmB[S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).]3.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.32 3πC.8πD.4πA[设正方体棱长为a,则a3=8,所以a=2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A .]4.(2017·浙江高考)某几何体的三视图如图7-5-1所示(单位:cm),则该几何体的体积(单位:cm 3)是( )图7-5-1A .π2+1 B .π2+3 C .3π2+1D .3π2+3A [由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, 所以该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1. 故选A .]5.已知某几何体的三视图如图7-5-2所示,则该几何体的体积为________.图7-5-2163π [由三视图可知,该几何体是一个圆柱挖去了一个圆锥,其体积为π×22×2-13π×22×2=163π.](对应学生用书第118页)(1)(2018·石家庄一模)某几何体的三视图如图7-5-3所示(在网格线中,每个小正方形的边长为1),则该几何体的表面积为()图7-5-3A.48B.54C.64 D.60(2)(2016·全国卷Ⅰ)如图7-5-4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()图7-5-4A.17πB.18πC.20πD.28π(1)D(2)A[(1)根据三视图还原直观图,如图所示,则该几何体的表面积S=6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R,则43πR3-18×43πR3=283π,解得R=2.因此它的表面积为78×4πR2+34πR2=17π.故选A.]视图的弧线为四分之一圆周),则该几何体的表面积为()图7-5-5A.48+4πB.72+4πC.48+6πD.72+6πD[由三视图可得该几何体是棱长为4的正方体截去底面是边长为2的正方形、高为4的长方体,再补上14个底面圆半径为2、高为4的圆柱,则该几何体的表面积为16×2+2(12+π)+8×2+14×2π×2×4=72+6π,故选D.](1)(2017·全国卷Ⅱ)如图7-5-6,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()图7-5-6A.90πB.63πC.42πD.36π(2)(2018·深圳二调)一个长方体被一个平面截去一部分后,所剩几何体的三视图如图7-5-7所示,则该几何体的体积为()图7-5-7A.24B .48C .72D .96(1)B (2)B [(1)法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π<V 几何体<90π.观察选项可知只有63π符合.故选B.(2)由三视图知,该几何体是由长、宽、高分别为6,4,4的长方体被一个平面截去所剩下的部分,如图所示,其中C ,G 均为长方体对应边的中心,该平面恰好把长方体一分为二,则该几何体的体积为V =12×6×4×4=48,故选B.]中点,则三棱锥A -B 1DC 1的体积为( )【导学号:79140239】A .3B .32C .1D .32(2)(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图7-5-8,则该几何体的体积为________.图7-5-8(1)C (2)2+π2 [(1)由题意可知,AD ⊥平面B 1DC 1,即AD 为三棱锥A -B 1DC 1的高,且AD =32×2=3, 易求得S △B 1DC 1=12×2×3=3,所以VA -B 1DC 1=13×3×3=1.(2)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成, 所以V =2×1×1+2×14×π×12×1=2+π2.](2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B .9π2 C .6πD .32π3B [由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43π⎝ ⎛⎭⎪⎫323=92π.故选B.]1.若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. [解] 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球, 所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13, 故S 球=4πR 2=169π.2.若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. [解] 如图,设球心为O ,半径为r ,则在Rt △AFO 中,(4-r )2+(2)2=r 2,解得r =94, 则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.为2的同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4 C .π2D .π4(2)(2018·深圳二调)已知三棱锥S -ABC ,△ABC 是直角三角形,其斜边AB =8,SC ⊥平面ABC ,SC =6,则三棱锥的外接球的表面积为( )【导学号:79140240】A .64πB .68πC .72πD .100π(1)B (2)D [(1)设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知, r ,R 及圆柱的高的一半构成直角三角形. ∴r =12-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.(2)由于△ABC 是直角三角形,则对应的截面圆的圆心为AB 的中点,截面圆半径r =4,且球心就在过截面圆的圆心且垂直于截面的直线上,且球心到平面ABC 的距离等于SC 的一半,故三棱锥的外接球的半径R =42+⎝ ⎛⎭⎪⎫622=5,故三棱锥的外接球的表面积为S =4πR 2=100π,故选D.]。

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版
(2)该几何体为一个半圆柱中间挖去一个四面体, ∴体积 V=12π×22×4-13×12×2×4×4=8π-136. 答案 (1)C (2)A
考点三 多面体与球的切、接问题
典例迁移
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V
的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
故S球=4πR2=169π.
【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几 何体外接球的表面积.
解 设外接球的半径为 R,由三视图可知该几何体是两个正四棱锥的组合体(底面重
合),上、下两顶点之间的距离为 2R,正四棱锥的底面是边长为 2R 的正方形,由
R2+

22R2=32 解得
解析 由三视图可知,该几何体是一个底面为直角梯形的直 四棱柱,所以该几何体的体积 V=12×(1+2)×2×2=6. 答案 6
考点一 简单几何体的表面积
【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其主视图如 图所示,则该四棱锥的侧面积是( )
A.4 3
B.4 5
C.4( 5+1)
答案 A
角度2 简单几何体的体积 【例2-2】 (一题多解)(2018·天津卷)如图,已知正方体ABCD-A1B1C1D1的棱长为1,
则四棱锥A1-BB1D1D的体积为________.
解析 法一 连接 A1C1 交 B1D1 于点 E,则 A1E⊥B1D1,A1E⊥BB1,则 A1E⊥平面
BB1D1D,所以 A1E 为四棱锥 A1-BB1D1D 的高,且 A1E= 22,矩形 BB1D1D 的长和宽
【训练3】 (2019·广州模拟)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA= PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后限时集训(四十一)
(建议用时:60分钟) A 组 基础达标
一、选择题
1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A .22π3
B.42π
3
C .22π
D .42π
B [依题意知,该几何体是以2为底面半径,2为高的两个同底圆锥组成的组合体,则其体积V =13π×(2)2
×22=423
π.]
2.一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中主视图、左视图和俯视图均为边长等于2的正方形,则这个几何体的表面积为( )
A .16+4 3
B .16+4 5
C .20+4 3
D .20+4 5
D [由三视图可知,该几何体是棱长为2的正方体的内部挖去一个底面边长为2的正四棱锥,将三视图还原可得如图,
可得其表面积为S =5×22
+4×12
×2×5=20+45,故选D.]
3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:
cm 3
)是( )
A .2
B .4
C .6
D .8
C [由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积
V =12
×(1+2)×2×2=6.故选C .]
4.某几何体的三视图如图所示,且该几何体的体积是3,则主视图中的x 的值是( ) A .2 B .92 C .32
D .3
D [由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=1
2×(1+2)×2=3,
∴V =1
3
x ·3=3,解得x =3.]
5.(2019·昆明模拟)一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )
A .36π
B .8π
C .92
π D .278
π
B [根据几何体的三视图,得该几何体是底面为等腰直角三角形,高为2的直三棱锥,如图所示,
则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R ,∴2R =
VB .
∵VB =VA 2
+AB 2
=22,∴R =2,
∴该几何体的外接球的表面积是4πR 2
=8π.故选B.] 二、填空题
6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.
7 [设新的底面半径为r ,由题意得
13×π×52×4+π×22×8=13×π×r 2×4+π×r 2
×8, ∴r 2
=7,∴r =7.]
7.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
12 [设正六棱锥的高为h ,棱锥的斜高为h ′. 由题意,得13×6×1
2×2×3×h =23,
∴h =1,∴斜高h ′=12
+3
2
=2,
∴S 侧=6×1
2
×2×2=12.]
8.(2019·惠州模拟)已知三棱锥S ­ABC ,△ABC 是直角三角形,其斜边AB =8,SC ⊥平面ABC ,SC =6,则三棱锥S ­ABC 的外接球的表面积为________.
100π [将三棱锥S ­ABC 放在长方体中(图略),易知三棱锥S ­ABC 所在长方体的外接球,即为三棱锥S ­ABC 的外接球,所以三棱锥S ­ABC 的外接球的直径2R =AB 2
+SC 2
=10,即三棱
锥S ­ABC 的外接球的半径R =5,所以三棱锥S ­ABC 的外接球的表面积S =4πR 2
=100π.]
三、解答题
9.如图,从正方体ABCD ­A 1B 1C 1D 1的8个顶点中选出的4个点恰为一个正四面体的顶点.
(1)若选出4个顶点包含点A ,请在图中画出这个正四面体; (2)求棱长为a 的正四面体外接球的半径.
[解] (1)如图所示,选取的四个点分别为A ,D 1,B 1,C .
(2)棱长为a 的正四面体外接球的半径等于正方体外接球的半径等于正方体对角线长的一半,因为正四面体的棱长a ,所以正方体的边长为
22a ,因此外接球的半径为32×22a =6
4
a .
10.(2015·全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,
F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个
正方形.
(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. [解] (1)交线围成的正方形EHGF 如图所示.
(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.
因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2
-EM 2
=6,AH =10,HB =6. 故S 四边形A 1EHA =1
2
×(4+10)×8=56,
S 四边形EB 1BH =12
×(12+6)×8=72.
因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭
⎪⎫79也正确. B 组 能力提升
1.(2019·青岛模拟)如图为某个几何体的三视图,则该几何体的体积为( )
A .12-π
2 B .12-π
C .12-2π
3
D .12-π
3
A [由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a =2,半圆锥的底面半径r =1,高h =3,所以正四棱柱的体积V 1=a 2h =22×3=12,半圆锥的体积V 2=12×π3r 2h =π6×12
×3=π2,所以
该几何体的体积V =V 1-V 2=12-π
2
.]
2.(2018·株洲模拟)已知正三棱锥P ­ABC 的主视图和俯视图如图所示,则此三棱锥外接球的表面积为( )
A .16π3
B .64π3
C .100π3
D .12π
B [如图,作PG ⊥CB 于点G ,连接AG ,设点P 在底面AB
C 内的射影为
D ,连接PD ,依题易得AB =23,PG =13,PA =4,AD =2,PD =23,PD ⊥平面ABC .易知,正三棱锥P ­ABC 外接球的球心在PD 上,不妨设球心为O ,半径为r ,连接OA ,则在Rt△AOD 中,r 2
=22
+(23-r )2⇒r 2=163,S =4πr 2
=64π3
.故选B.]
3.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.
8π [由题意画出图形,如图,设AC 是底面圆O 的直径,连接
SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的
面积为8,得12
l 2
=8,得l =4.在Rt△ASO 中,由题意知∠SAO =30°,
所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =1
3
π×(23)2×2=8π.]
4.一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的3
16
,设球的半径为R ,圆锥底
面半径为r .
(1)试确定R 与r 的关系,并求出较大圆锥与较小圆锥的体积之比; (2)求出两个圆锥的体积之和与球的体积之比.
[解] (1)不妨设球的半径为4;
则球的表面积为64π,圆锥的底面积为12π, 所以圆锥的底面半径为2 3.
由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形.
由此可以求得球心到圆锥底面的距离是42
-3
2
=2,
所以圆锥体积较小者的高为4-2=2, 同理可得圆锥体积较大者的高为4+2=6. 又由这两个圆锥的底面相同,
所以较大圆锥与较小圆锥的体积之比等于它们高之比,即3∶1.
(2)由(1)可得两个圆锥的体积和为13·π·(23)2·8=32π,球的体积为43·π·43

256
3
π, 故两个圆锥的体积之和与球的体积之比为32π∶256
3π=3∶8.。

相关文档
最新文档