牛顿运动定律11

合集下载

第2章 牛顿运动定律

第2章 牛顿运动定律

分离变量求定积分,并考虑到初始条件:t=0时v=v0,则有
v dv t μ
dt
v v0
2
0R

v
1
v0
v0t
R
将上式对时间积分,并利用初始条件t=0时,s=0得
s
R μ
ln 1
μ R
v0t
15
例题2-2 一条长为l质量均匀分布的细链条AB,挂在半径 可忽略的光滑钉子上,开始时处于静止状态。已知BC段 长为L(l/2<L<2l/3),释放后链条做加速运动,如图所示。 试求BC=2l/3时,链条的加速度和速度。
a0
a0
mg
T -ma0
mg
讨论一种非惯性系,做直线运动的加速参考系,在以恒定
加速度 沿a直0 线前进的车厢中,用绳子悬挂一物体。在地面
上的惯性参考系中观察,牛顿运动定律成立。 在车厢中的参考系(非惯性系)内观察,虽然物体所受张
f μN
µ为滑动摩擦系数,它与接触面的材料和表面状态(如 粗糙程度、干湿程度等)有关;其数值可查有关手册。
10
2.2.2 力学中常见的几种力
3、摩擦力。
当两个相互接触的物体虽未发生相对运动,但沿接触面有 相对运动的趋势时,在接触面间产生的摩擦力为静摩擦力。 静摩擦力的大小可以发生变化。
如图所示,用一水平力F推一放置在粗糙水平面上的木箱,
解:取被抛物体为研究对象,物体运动过程
中只受万有引力作用。取地球为参考系,垂 直地面向上为正方向。物体运动的初始条件
v0
是:t=0时,r0=R,速度是v0。略去地球的公 转与自转的影响,则物体在离地心r处的万有
m
引力F与地面处的重力P之间的关系为

牛顿运动定律

牛顿运动定律

er
m1
Fr m2
重力 P mg 矢量式 P mg
g 重力加速度
比 萨 斜 塔
重力加速度和质量无关
F

G
Mm
R2

P mg
g
G
M R2
9.80m/s2
讨论:
万有引力公式只适用于两 质点。
一般物体万有引力很小, 但在天体运动中却起支配 作用。
二、弹性力 (elastic force) 物体发生弹性变形后,内部产生欲恢复形变的力。 常见的有:弹簧的弹力、绳索间的张力、压力、支
a


F 1 a1
aF22aF3 3
Fi ai
4.此式为矢量关系,通常要用分量式:
Fx ma x
Fy ma y
F ma
Fn man
三、牛顿第三定律 (Newton’s Third Law)
作用力与反作用力总是大小相等、
方向相反,作 用在同一条直线上。 F12 F21
★已做和待做的工作:
• 弱、电统一:1967年温伯格等提出理论 1983年实验证实理论预言
• 大统一(弱、电、强 统一): 已提出一些理论,因目前加速器能量不够
而无法实验证实。
• 超大统一:四种力的统一
电弱相互作用
强相互作用
“超大统一”(尚待实现)
万有引力作用
2.4 牛顿定律的应用举例
应用牛顿定律解题的基本方法
动量为 mv 的质点,在合外力的作用下,其动量
随时间的变化率等于作用于物体的合外力。
表达式:
F合外

dp dt


或: F合外 ma

高中物理牛顿运动定律经典练习题

高中物理牛顿运动定律经典练习题

牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。

注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。

(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。

2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。

(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。

(3)定律说明了任何物体都有一个极其重要的性质——惯性。

(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。

4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。

(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。

任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。

质量是物体惯性的唯一量度。

(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。

物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。

(4)惯性不是力。

5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。

公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。

反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。

(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。

牛顿运动定律讲义(教师逐字稿)高清PDF版

牛顿运动定律讲义(教师逐字稿)高清PDF版

牛顿运动定律讲义(学霸版)课程简介:PPT(第1页):今天我们要学习的内容是牛顿运动定律,牛顿运动定律这块内容一直就是我们高中阶段的重点和难点,那么今天让我们一起来提升它。

PPT(第2页):牛顿运动定律是高中阶段最重要的内容之一,对后面的知识点掌握有非常重要的影响,要注意,牛顿运动定律中知识模块的组成,牛顿运动定律主要组成部分为牛顿以第一定律、牛顿第二定律和牛顿第三定律,每块知识点都需要先掌握定义,然后通过模型去巩固应用,来让我们正式开始体验它。

PPT(第3页):主要内容和原来的板块一样,同样分为梳理知识体系和解决经典问题实例。

PPT(第4页):我们先看知识体系梳理,这部分也是我们经常说起的部分,物理是科学学科,一定要把知识梳理成体系和框架,科学是一张网。

PPT(第5页):我们先来看一下知识体系框架,牛顿运动定律主要组成部分是三个,分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。

PPT(第6页):先来看一下牛顿第一定律。

内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态;意义:(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。

(2)指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。

惯性:(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。

(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。

(3)普遍性:惯性是物体的固有属性,一切物体都有惯性。

与物体的运动情况和受力情况无关。

PPT(第7页):再来看一下牛顿第三定律,牛顿第三定律是我们要特别注意的内容,因为容易忽略。

首先我们来看一下内容:1.作用力和反作用力:两个物体之间的作用总是相互的。

一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力。

物体间相互作用的这一对力,通常叫做作用力和反作用力。

牛顿第三定律(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

牛顿运动定律知识点的总结

牛顿运动定律知识点的总结

牛顿运动定律知识点的总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!牛顿运动定律知识点的总结高三物理在复习时,牛顿运动定律是常考的知识点。

2022届高中物理牛顿运动定律考点精题训练

2022届高中物理牛顿运动定律考点精题训练

(每日一练)2022届高中物理牛顿运动定律考点精题训练单选题1、在光滑的水平地面上有两个完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F2。

以A、B为一个系统,如图甲所示,F1、F2向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2。

则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2答案:A解析:A、B完全相同,设它们的质量都是m,对图甲所示情况的整体有F1−F2=2ma1对图甲中的A有F1−kΔl1=ma1对图乙所示情况的整体有F1−F2=2ma2对图乙中的A有F1−kΔl2=ma2联立以上各式,有a1=a2,Δl1=Δl2故选A。

2、物体质量为m=5Kg放在粗糙的水平面上,在力F的作用下做a=2m/s2的匀加速直线运动,方向向右,已知物体与地面之间的动摩擦因数为0.3,则外力F为()A.20NB.15NC.25ND.10N答案:C解析:根据牛顿第二定律得a=F 合m则有F﹣μmg=maF=0.3×5×10+2×5=25N故选C。

3、物理是来源于生活,最后应用服务于生活。

在日常生活中,有下面一种生活情境。

一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。

桌布的一边与桌的AB边重合,如图。

已知盘与桌布间的动摩擦因数大小为0.1,盘与桌面间的动摩擦因数大小为0.2。

现突然以恒定加速度a将桌布抽离桌面,加速度方向是水平的且垂直于AB边。

若圆盘最后未从桌面掉下,则加速度a至少为多大(g取10m/s2)()A.0.25m/s2B.2.5m/s2C.0.5m/s2D.5m/s2答案:B解析:圆盘在桌布上时做匀加速运动,掉到桌面上后在桌面上做匀减速运动。

牛顿运动定律

牛顿运动定律

物理竞赛培训专题《牛顿运动定律》(6课时)一、 知识提纲:1、 牛顿运动定律:牛顿第一、第二、第三定律。

2、 质心和质心运动定理:质心坐标:B A B B A A c m m x m x m x ++=、BA BB A A c m m y m y m y ++=速度:B A B B A A B A B B A A c c m m v m v m t m m x m x m t x v ++=∆++=∆∆=)( 加速度:BA BB A A c c m m a m a m t a a ++=∆∆= 3、 连接体的位移、速度和加速度的关系:4、 惯性力:牛顿运动定律适用的参照系称为惯性参照系。

对惯性参照系做边速运动的参照系,叫做非惯性系。

在非惯性参照系中运用牛顿定律,需要引入一个假想的力:0a m f -=惯。

5、 “轻”杆、“轻”物的特点:二、 典型例题:例题1:(1)如图所示,弹簧S 1的上端固定在天花板上,下端连一小球A ,球A 与球B 之间用线相连.球B 与球C 之间用弹簧S 2相连.A 、B 、C 的质量分别为m A 、m B 、m C ,弹簧与线的质量均可不计.开始时它们都处在静止状态.现将A 、B 间的线突然剪断,求线刚剪断时A 、B 、C 的加速度.(2)两个相同的条形磁铁,放在平板AB 上,磁铁的N 、S 极如图所示.开始时平板及磁铁皆处于水平位置,且静止不动.(i)现将AB 突然竖直向下平移(磁铁与平板间始终相互接触),并使之停在A′B′处,结果发现两个条形磁铁碰在一起.(ii)如果将AB 从原位置突然竖直向上平移,并使之停在A″B″位置处,结果发现两条形磁铁也碰在一起. 试定性地解释上述现象.(第23届竞赛试题)maF =∑0→m ∞→不可能a 0=∑F例题2:如下左图所示,物体A 质量为5kg ,物块B 、C 的质量都为1kg ,忽略一切摩擦,从静止释放B 、C 。

问连杆EF 对物体A 的力是拉力还是压力?大小等于多少?g 取10m/s 2。

2020高考物理一轮复习专题03牛顿运动定律(解析版)

2020高考物理一轮复习专题03牛顿运动定律(解析版)

专题03 牛顿运动定律1 .(2020 届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A、B 两块木板,在木板 A 的上面放着一个质量为m 的物块C,木板和物块均处于静止状态。

A、B、C 之间以及 B 与地面之间的动摩擦因数都为。

若用水平恒力 F 向右拉动木板 A (已知最大静摩擦力的大小等于滑动摩擦力),要使 A 从 C 、B 之间抽出来,则对 C 有aC=mg=gm对 B 受力分析有:受到水平向右的滑动摩擦力力,有f= μ(2M+m )g因为μ(M+m )g<μ(2M+m )g 所以 B 没有运动,加速度为0 ;所以当a A>a C 时,能够拉出,则有F mg M m g M解得F> 2μ(m+M )g,故选C2 .(2020 届福建省漳州市高三第一次教学质量检测)如图,个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度v0 4m/s 从M 点开始沿传送带运动。

物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则()F 大小应满足的条件是(A.F (m 2M )g B.F (2m 3M )gC .F 2 (m M )gD .F (2m M )g答案】C解析】要使 A 能从C、 B 之间抽出来,则,A要相对于B、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对 A 有a A=mg M m gμ(M+m )g,B 与地面的最大静摩擦力等于滑动摩擦MN 是一段倾角为=30 °的传送带A .物块最终从传送带N 点离开B .传送带的速度v=1m/s ,方向沿斜面向下C .物块沿传送带下滑时的加速度a=2m/s 2D .物块与传送带间的动摩擦因数32【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,AB 错误;v—t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度a=2.5m/s 2,C 错误;根据牛顿第二定律mg cos30o mg sin 30o ma,可得3,D 正确。

压轴题11 牛顿运动定律解决弹簧问题 备战2021年高考物理必刷压轴题精选精炼(解析版)

压轴题11 牛顿运动定律解决弹簧问题 备战2021年高考物理必刷压轴题精选精炼(解析版)

压轴题11 牛顿运动定律解决弹簧问题一、单选题1.如图所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图所示,则A. t1时刻小球速度最大B. t1~t2这段时间内,小球的速度先增大后减小C. t2~t3这段时间内,小球所受合外力一直减小D. t1~t3全过程小球的加速度先减小后增大【答案】B【解析】解:A、t1时刻小球刚接触弹簧,小球的速度仍在增大,速度不是最大。

当弹簧的弹力等于重力时速度才最大。

故A错误。

B、t1−t2这段时间内,小球向下运动,弹簧的弹力先大于重力,后小于重力,合外力先向下后向上,所以小球先加速后减速,即小球的速度先增大后减小。

故B正确。

CD、t1−t2这段时间内,小球向下运动,加速度先向下逐渐减小,后向上逐渐增大。

t2~t3这段时间内,小球从最低点向上运动,弹簧的弹力先大于小球的重力,后小于重力,合外力先向上,后向下,而弹力逐渐减小,合外力先减小后增大,根据牛顿牛顿第二定律可知,小球的加速度先减小后反向增大。

故CD错误。

故选B。

2.如图,某发射系统内有一木箱,木箱内有一竖直放置的轻弹簧,弹簧上方有一物块,木箱内上表面和下表面都装有压力传感器.木箱静止时,上表面压力传感器的读数为12.0N,下表面压力传感器的读数为20.0N.当系统竖直向上发射时,上表面传感器的读数变成下表面压力传感器读数的一半,取重力加速度g= 10m/s2,此时木箱的加速度大小为A. 2.5m/s2B. 5.0m/s2C. 10.0m/s2 D. 条件不足,无法确定【答案】A【解析】木箱静止时对弹簧和木块整体受力分析,受重力G、上方传感器向下的压力F1,下方传感器向上的支持力N1。

根据平衡条件有F1+G=N1,带入数据解得G=8N。

【牛顿运动定律】知识点总结

【牛顿运动定律】知识点总结

12
考点三 牛顿第二定律的瞬时性问题
师生互动
1.两种模型
加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具
体可简化为以下两种模型:
13
2.求解瞬时加速度的一般思路 分析瞬时变化前、 列牛顿第二 求瞬时 后物体的受力情况 ⇒ 定律方程 ⇒ 加速度
14
考点四 牛顿第三定律的理解和应用
考点一 牛顿第一定律和惯性的理解及应用
自主学习
1.惯性的两种表现形式
(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态
不变(静止或匀速直运动).
(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力.惯性大,物体的运动状
态较难改变;惯性小,物体的运动状态容易改变.
9
2.与牛顿第二定律的对比 牛顿第一定律是在实验的基础上,经过科学抽象、归纳推理总结出来的,科学地揭 示了运动和力的关系,而牛顿第二定律是一条实验定律,明确了加速度 a 与外力 F 和质 量 m 的定量关系.
10
考点二 对牛顿第二定律的理解 1.牛顿第二定律的五个特性
师生互动
11
2.合力、加速度、速度之间的决定关系 (1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度. (2)a=ΔΔvt 是加速度的定义式,a 与 Δv、Δt 无必然联系;a=mF是加速度的决定式,a ∝F,a∝m1 . (3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.
3
2.惯性 (1)定义:物体具有保持原来_匀__速__直__线__运__动___状态或__静__止__状态的性质. (2)量度:质量是惯性大小的唯一量度,质量大的物体惯性_大___,质量小的物体惯性 _小___. (3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受 力情况_无__关___.

牛顿运动定律的10种典型例题

牛顿运动定律的10种典型例题
例19、一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图9所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)
9.传送带有关的问题。
8.面接触物体分离的条件及应用
相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关案例。下面举例说明。0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s这段时间内P向上运动的距离: x=mg/k=0.4m 因为 ,所以P在这段时间的加速度 当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N. 当P与盘分离时拉力F最大,Fmax=m(a+g)=360N.
1. 力和运动的关系
加速度与力有直接关系,速度与力没有直接关系。 速度如何变化需分析加速度方向与速度方向之间的关系: 加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。
1.力和运动的关系
例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是( ) 探测器加速运动时,沿直线向后喷气 探测器加速运动时,竖直向下喷气 探测器匀速运动时,竖直向下喷气 探测器匀速运动时,不需要喷气

第11课时 牛顿运动定律的应用(二)(B卷)

第11课时  牛顿运动定律的应用(二)(B卷)

第11课时牛顿运动定律的应用(二)(B卷)易错现象1.当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

2.些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。

3.些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少啦。

纠错训练1.如图11-B-1所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?2.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?3.关于超重和失重,下列说法中正确的是( )A.超重就是物体受的重力增加了B.失重就是物体受的重力减少了C.完全失重就是物体一点重力都不受了D.不论超重或失重甚至完全失重,物体所受重力是不变的检测提高1.在圆轨道运行的空间实验室里,下面哪些仪器能使用( )①弹簧秤②水银气压计③天平④水银温度计A.①②④B.①④ C.②③D.②③④2.将物体竖直上抛,假设运动过程中空气阻力不变,其速度一时间图像如图11-B-2所示,则物体所受的重力和空气阻力之比为( ).A.1:10 B.10:1 B.9:1 D.8:13.完全相同的直角三角形滑块A、B,按图11-B-3所示叠放,设A、B接触的斜面光滑,A与桌面的动摩擦因数为μ.现在B上作用一水平推力F,恰好使A、B一起在桌面上匀速运动,且A、B保持相对静止,则A与桌面的动摩擦因数μ跟斜面倾角θ的关系为[]图11-B-3A.μ=tgθB.μ=(1/2)tgθC.μ=2·tgθD.μ与θ无关4.质量为m的物体放在一水平放置的粗糙木板上,缓慢抬起木板的一端,在如图11-B-4所示的几个图线中,哪一个最能表示物体的加速度与木板倾角θ的关系[]图11-B-45.如图11-B-5,在一无限长的小车上,有质量分别为m1和m2的两个滑块(m1>m2)随车一起向右匀速运动,设两滑块与小车间的动摩擦因数均为μ,其它阻力不计,当车突然停止时,以下说法正确的是[]图11-B-5A.若μ=0,两滑块一定相碰B.若μ=0,两滑块一定不相碰C.若μ≠0,两滑块一定相碰D.若μ≠0,两滑块一定不相碰图11-B-1图11-B-26. 如图11-B-6所示,A、B是竖直平面内的光滑弧面,一个物体从A点静止释放,它滑到静止不动的水平皮带后,从C点离开皮带作平抛运动,落在水平地面上的D点,现在使皮带轮转动,皮带的上表面以某一速率向左或向右作匀速运动,小物体仍从A点静止释放,则小物体将可能落在地面上的( ).A.D点右边的M点B.D点C. D点左边的N点D.从B到C小物体速度降为零,停在C点不下落7..汽车在两站间行驶的v-t图线如图11-B-7所示,车所受阻力恒定,在BC段,汽车关闭了发动机.汽车质量为4000kg,由图可知,汽车在BC段的加速度大小为 m/s2,在AB段的牵引力大小为 N.8..以24.5m/s的速度沿水平面行驶的汽车上固定一个光滑的斜面,如图11-B-8所示.汽车刹车后,经2.5 s停下来,欲使在刹车过程中物体A与斜面保持相对静止,则此斜面的倾角应为,车的行驶方向应向。

11 第三章 第1讲 牛顿运动定律

11 第三章 第1讲 牛顿运动定律

3.【惯性的理解及应用】 (多选)如图,圆柱形玻璃容器内装满液体静置于水平面 上,容器中有a、b、c三个不同材质的物块,物块a、c 均对容器壁有压力,物块b悬浮于容器内的液体中,忽略a、c与容器 壁间的摩擦。现给容器施加一水平向右的恒力,使容器向右做匀加速 直线运动。下列说法正确的是 A.三个物块将保持图中位置不变,与容器一起向右加速运动 B.物块a将相对于容器向右运动,最终与容器右侧壁相互挤压
返回
02
考点二 牛顿第二定律的理解及简单应用
(重难共研类)
【知识梳理】 1.牛顿第二定律 (1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成 _反__比__,加速度的方向跟 作用力 的方向相同。 (2)表达式:F=kma,其中k是比例系数。在质量的单位取千克(kg), 加速度的单位取米每二次方秒(m/s2),力的单位取牛顿(N)时,F=ma。
2.【惯性现象的应用】 如图所示,某同学朝着列车行进方向坐在车厢中,水平桌面上放有一 静止的小球。突然,他发现小球向后滚动,则可判断 A.列车在刹车 B.列车在做匀速直线运动
√C.列车在做加速直线运动
D.列车的加速度在增大 C [小球突然向后滚动,根据牛顿第一定律可以判断列车相对小球 向前做加速直线运动,但无法判断列车的加速度变化情况,故ABD 错误,C正确。故选C。]
【针对训练】 1.【牛顿第二定律的理解】 根据牛顿第二定律,判断下列叙述正确的是 A.物体加速度的大小跟它的质量和速度大小的乘积成反比 B.物体所受合力必须达到一定值时,才能使物体产生加速度 C.物体加速度的大小与所受作用力中任意一个力的大小成正比
√D.当物体质量改变但其所受合力的水平分力不变时,物体水平加速
题后总结 1.惯性的两种表现形式 (1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原 来的运动状态不变(静止或匀速直线运动)。 (2)物体受到外力时,惯性表现为运动状态改变的难易程度。惯性大, 物体的运动状态较难改变;惯性小,物体的运动状态较易改变。

2024届高考物理强基计划专题讲座课件:牛顿运动定律

2024届高考物理强基计划专题讲座课件:牛顿运动定律
衡或抵消。 (3)作用力和反作用力属于同一种性质的力。
返回 退出
二、力学中的常见力
1. 万有引力(universal gravitation)
存在于任何 两个物体间的相互吸引力。
牛顿万有引力定律:
F
G
m1m2 r2
其中m1和m2为两个质点的引力质量,r为两个质点
的距离,G叫做引力常量。
G 6.672 59 1011 N m2 / kg2
合外力的大小成正比,与物体的质量成反比,加速
度的方向与合外力的方向相同。
数学形式: F ma

F
dp
m
dv
讨论
dt dt
(1)力是产生加速度的原因。
(2)惯性质量:平动惯性大小的量度
(3)瞬时性,矢量性
分量式: Fx=max , Fy=may , Fz =maz 或 Ft=mat , Fn=man (自然坐标系) (4)在惯性系中成立
FT
2m1m2 m1 m2
(a
g)
讨论
当a =-g时,ar=0,T=0,即滑 a1 轮、质点都成为自由落体,两 个物体之间没有相对加速度。
FT
m1 a2
m1 g
y
FT
m2
m2 g
O
返回 退出
例1-10 一个质量为m、悬线长度为l 的摆锤,挂在架 子上,架子固定在小车上,如图所示。求在下列情况
下悬线的方向(用摆的悬线与竖直方向所成的角表示)
v 2Rg cos
圆轨道的作用力
FN
m
v2 R
mg cos
3mg cos
返回 退出
2. 变力作用下的单体问题 例1-12 计算一小球在水中竖直沉降的速度。已知小 球的质量为m,水对小球的浮力为Fb,水对小球的粘 性力为Fv= -Kv,式中K是和水的黏性、小球的半径有 关的一个常量。

第11课时 牛顿运动定律的应用(二)(A卷)

第11课时  牛顿运动定律的应用(二)(A卷)

第11课时牛顿运动定律的应用(二)(A卷)考测点导航1.动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度.②根据题意,选择恰当的运动学公式求解相关的速度、位移等.(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.2.关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化.(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.典型题点击1一个质量为m的物体放在升降机机内的台秤上,升降机在竖直方向以加速度a作匀变速运动,若物体处于失重状态,则( ) A.升降机的加速度一定竖直向下B.台秤读数减少maC.升降机一定向下运动D.台秤读数为ma(该题考查失重的概念)2.如图11-A-1,传送带水平部分ab=2m,与水平面的夹角为37º的斜面部分bc=4m,小物块与传送带间的动摩擦因素μ=0.25,皮带沿图中箭头方向运动,速率为2m/s,若将小物块轻放在a点处,最后被送至C点,则物体从a传到b所用的时间物体从b传到c所用的时间(该题根据物体的受力情况分析物体的运动过程,特别注意物体跟皮带之间是相对静止还是相对滑动)3.一物体在斜面上以一定的初速度向上运动,斜面的倾角θ可在0—90º之间变化,设物体能达到的最大位移与斜面倾角θ之间的关系如图11-A-2,问当θ是时,x有最小值?这个最小值是m(解题时要注意根据图象找出有关条件)4.一机车拉一节车厢,由静止开始在水平直铁轨上做匀加速运动,10s内运动40m,此时将车厢解脱.设机车的牵引力不变,再过10s钟两车相距60m,车厢与机车的质量比是 (不计阻力)(该题考查牛顿第二定律和运动学公式的综合运用)新活题网站一、选择题1.如图11-A-3,杯中的弹簧一端固定在杯底,另一端固定一个小球,杯中注满水后,由于小球受浮力而将弹簧拉长x,当整个装置自由下落后,弹簧的伸长量将( )A.仍为x B.大于xC.小于x D.不伸长,即为零(系统完全失重时,小球不受浮力)2.如图11-A-4中,A为电磁铁、C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( )A.F=Mg .B.Mg<F<(M+m)gC.F=(M十m)gD.F>(M十m)g(用超、失重的观点分析)3.一个物体受到的合力F如图11-A-5所示,该力的大小不变,方向随时间t周期性变化,正力表示力的方向向东,负力表示力的方向向西,力的总作用时间足够长,将物体在下面哪些时刻由静止释放,物体可以运动到出发点的西边且离出发点很远的地方?()A.t=0时B.t=t1时C.t=t2时D.t=t3时图11-A-1图11-A-2图11-A-3图11-A-4图11-A-5(着重考查物体的运动过程的分析)4.如图11-A-6,静止的传送带上有一木块正在匀速下滑,当传送带突然向上开动时,木块滑到底部的时间t与传送带不动时所用的时间t0相比较()A.t= t0 B.t>t0C.t<t0 D.不能比较(着重考查物体的运动过程的分析)5.如图11-A-7,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F l、F2,当物块和木块分离时,两木板的速度分别为V1和V2,物块和木板间的动摩擦因数相同.下列说法正确的是( )A.若F1=F2,M1>M2,则V l>V2B.若F1=F2,M1<M2,则V l>V2C.若F l>F2,M l=M2,则V l>V2D.若F1<F2,M l=M2,则V l>V2(用图象分析较为简捷)二、填空题6.绳能承受的最大拉力为30N,一端挂有重20N的物体,另一端用绳子把它从静止开始竖直向上提40cm,所需最短时间为。

高中物理牛顿运动定律的基本解题步骤讲解

高中物理牛顿运动定律的基本解题步骤讲解

高中物理牛顿运动定律的基本解题步骤讲解(明确研究对象。

可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。

设每个质点的质量为mi,对应的加速度为ai,则有:F合=m1a1+m2a2+m3a3+……+mnan对此结论的证明:分别以质点组中的每个物体为研究对象用牛顿第二定律:∑F1=m1a1,∑F2=m2a2,……∑Fn=mnan,将以上各式等号左、右分别相加,左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F合。

对研究对象进行受力分析。

同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。

若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。

当研究对象在研究过程的不同阶段受力情况有变化时,必须分阶段进行受力分析,分阶段列方程求解。

另外解题中要注意临界条件的分析。

凡是题目中出现“刚好”、“恰好”等字样的,往往要利用临界条件。

所谓“临界”,就是物体处于两种不同的状态之间,可以认为它同时具有两种状态下的所有性质。

在列方程时,要充分利用这种两重性。

环球物理功能介绍我们每天与您分享:物理教学的艺术,物理学习的方法,物理兴趣的培养,物理达人的塑造,物理学霸的成功之路!激励人生,哲理故事,分享智慧,名人格言,传播正能量!!方法简介图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的.高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题.把握图像斜率的物理意义在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同.抓住截距的隐含条件图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______Ω.【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A 当作短路电流,而得出r=E/I短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω挖掘交点的潜在含意一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”.例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示.从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A 站汽车不同时开出,则B站汽车的s-t图线(如图中的直线PQ)与A站汽车的s-t图线最多可有12个交点,所以B站汽车在途中最多能遇到12辆车.明确面积的物理意义利用图像的面积所代表的物理意义解题,往往带有一定的综合性,常和斜率的物理意义结合起来,其中v一t图像中图线下的面积代表质点运动的位移是最基本也是运用得最多的.例4、在光滑的水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32 J.则在整个过程中,恒力甲做功等于多少?恒力乙做功等于多少?【解析】这是一道较好的力学综合题,涉及运动、力、功能关系的问题.粗看物理情景并不复杂,但题意直接给的条件不多,只能深挖题中隐含的条件.下图表达出了整个物理过程,可以从牛顿运动定律、运动学、图像等多个角度解出,应用图像方法,简单、直观.作出速度一时间图像(如图a所示),位移为速度图线与时间轴所夹的面积,依题意,总位移为零,即△0AE的面积与△EBC面积相等,由几何知识可知△ADC的面积与△ADB面积相等,故△0AB的面积与△DCB面积相等(如图b所示).寻找图中的临界条件物理问题常涉及到许多临界状态,其临界条件常反映在图中,寻找图中的临界条件,可以使物理情景变得清晰.例5、从地面上以初速度2v0竖直上抛一物体A,相隔△t时间后又以初速度v0从地面上竖直上抛另一物体B,要使A、B能在空中相遇,则△t应满足什么条件?【解析】在同一坐标系中作两物体做竖直上抛运动的s-t图像,如图.要A、B在空中相遇,必须使两者相对于抛出点的位移相等,即要求A、B图线必须相交,据此可从△t应满足的条件为:2v0/g<△t<4v0/g通过以上讨论可以看到,图像的内涵丰富,综合性比较强,而表达却非常简明,是物理学习中数、形、意的完美统一,体现着对物理问题的深刻理解.运用图像解题不仅仅是一种解题方法,也是一个感悟物理的简洁美的过程.把握图像的物理意义例6、如图所示,一宽40 cm的匀强磁场区域,磁场方向垂直纸面向里.一边长为20 cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20 cm/s通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行.取它刚进入磁场的时刻t=0,在下列图线中,正确反映感应电流随时问变化规律的是()【解析】可将切割磁感应线的导体等效为电源按闭合电路来考虑,也可以直接用法拉第电磁感应定律按闭合电路来考虑.方法介绍等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等.物理量等效在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷.例l.如图所示,ABCD为表示竖立放在场强为E=104V/m的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R的半圆环,轨道的水平部分与半圆环相切A为水平轨道的一点,而且把一质量m=100g、带电q=10-4C的小球,放在水平轨道的A点上面由静止开始被释放后,在轨道的内侧运动。

2021届高考物理考前特训:牛顿运动定律 (解析版)

2021届高考物理考前特训:牛顿运动定律   (解析版)

牛顿运动定律【原卷】1.如图所示,水平桌面上有质量为M=2.5kg的一只长方体形空铁箱,铁箱受到水平向右拉力F作用,已知铁箱与水平面间动摩擦因数μ1=0.3,铁箱内一个质量为m=0.5kg的木块置于铁箱底部正中间(木块可视为质点),木块与铁箱之间的动摩擦因数μ2=0.25,设最大静摩擦力等于滑动摩擦力,g取10m/s2,则:(1)拉力F为多大时,能使铁箱做匀速直线运动;(2)当拉力F为何值时,恰好使木块和铁箱发生相对滑动;(3)若拉力F随时间变化如图乙所示,发现t=7s时木块刚好到达铁箱右侧,求铁箱长度。

2.如图所示的大楼内有2部电梯为观景台使用,其上行最高速率可达16m/s,从1楼到89楼的室内观景台,只需39s,在观景台上可以俯瞰周边全景。

若电梯从地面到观景台经历匀加速、匀速和匀减速三个过程,小明对这个运动过程很感兴趣,于是他在电梯里进行了实验,发现在电梯加速上升时,质量为60kg的他站在台秤上,台秤的示数是66kg,已知重力加速度取10m/s2。

(1)求电梯在加速上升阶段的加速度大小和加速时间;2(2)若加速和减速阶段的加速度大小相等,则求在电梯减速上升阶段小明对电梯的压力;(3)若加速和减速阶段的加速度大小相等,则求观景台的高度。

3.由牛顿第二定律可知、无论多小的力皆能使物体产生加速度,改变物体的运动状态。

但是,当我们推静止的柜子时(图),有时即使用了很大的力也无法推动,柜子仍处于静止状态。

这与牛顿第二定律矛盾吗?为什么?4.杂技表演中,在一个平躺的人身上压一块大而重的石板,另一人以大锤猛力击石,石裂而人未伤。

请解释原因。

有人建议用很厚的棉被代替石板,从而使冲击力减小而更加安全。

你认为这样可行吗?请说明理由。

5.如图所示,倾角为=30θ︒的光滑斜轨道AB 与粗糙水平轨道BC 平滑连接,小物块P 从AB 上由静止释放,与弹性挡板N 碰撞一次返回后恰好停到B 点,若碰撞过程小物块P无机械能损失,碰撞时间极短可忽略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) (2)
T=m[(gsinα +a)2 + g2cos2α ]1/2
θ=
tg-1
y x
练习:如果上题中坐标选为 练习: ,请再做此题, 请再做此题, 并比较用哪种坐标做此题较为方便。 并比较用哪种坐标做此题较为方便。
惯性(参考)系与非惯性(参考) 2.5 惯性(参考)系与非惯性(参考)系
a
p = mυ,如 m 不随 变,则 不随t (矢量式) 矢量式) (3) m:惯性质量(惯性大小的量度) :惯性质量(惯性大小的量度) 3.牛顿第三定律( 3.牛顿第三定律(略) 牛顿第三定律
F = ma
The two elephants exert action and reaction forces on each other.
S—惯性系 惯性系 惯性
加速度为 a ′ 相对于车厢参照系----非惯性系 相对于车厢参照系----非惯性系S′ , 车厢参照系----非惯性系 由运动的相对性得
r r r a = a′ + a0
F= m( a ′+ a0)
F= m( a ′+ a0)
或者 F +(-ma0)=ma ′ 定义 Fi= -ma 0 相对于车厢参照系(非惯性参照系) 相对于车厢参照系(非惯性参照系)
讨论: 讨论:非惯性系中的动力学问题 1.平动情形 1.平动情形 S′(车)以a 0相对 (地)平动 相对S( ′ a0 记小球m受的实际力为 受的实际力为F 记小球 受的实际力为
光滑桌面 S′ --非惯性系 ′ 非惯性系
相对于地面参照系----惯性系 相对于地面参照系----惯性系S 地面参照系----惯性系 加速度为 a F=ma
2.转动情形 2.转动情形 S系—地面 系 地面 S′系---转盘(相对 匀角速转动) 转盘( 匀角速转动) ′ ---转盘 相对S匀角速转动 m通过绳与盘心相连 盘上的人 通过绳与盘心相连,盘上的人 通过绳与盘心相连 观察到m在 观察到 在S′中静止 S中:F = man= 中 S′中:受力 令 Fi =
a0 解释
光滑桌面
在S系中,牛顿第二定律为 系中,
F=ma
因为F 因为 = 0,故 a=0 , 系中, 在S 系中,牛顿第二定律为

S′ --非惯性系 ′ 非惯性系
S—惯性系 惯性系
F +Fi = m a′
F = 0,而 Fi= - ma 0 , 得
r r a′ = −a0
小球相对于车(非惯性系) 小球相对于车(非惯性系)的加速度为 -a0
ω
S′
r o
●mF源自mω 2 rS 设想绳上装有测力计
mω2r
F , Fi
惯性离心力( 惯性离心力 inertial centrifugal force) 则在S′ 则在 ′中牛顿第二定律的达形式为
F + mω2r =0
加速度为零,相对于S 加速度为零,相对于S′静止。
S′中牛顿定律形式上成立。 ′ 牛顿定律形式上成立。 结论 在非惯性系S′中研究问题, 在非惯性系 ′中研究问题,认为 m 除受 F 外,还受 Fi Fi:是虚构力,无施力物体 是虚构力, 几个与惯性力有关的实际现象 失重:在绕地球旋转的飞船中( ☆失重:在绕地球旋转的飞船中(非惯性系中观 ),引力被惯性离心力完全抵消 出现失重。 引力被惯性离心力完全抵消, 察),引力被惯性离心力完全抵消,出现失重。 飞船中是真正能验证惯性定律的地方。 飞船中是真正能验证惯性定律的地方。
光滑桌面
惯性力
车上的观察者及盘上的观察者看到的现象与牛顿第二 定律不符 一、惯性系 1.惯性系 惯性系: 1.惯性系:牛顿定律成立的参考系 凡相对于惯性系作匀速直线运动的参考系都是惯性系。 凡相对于惯性系作匀速直线运动的参考系都是惯性系。
2.谁是惯性系只能由实验确定 2.谁是惯性系只能由实验确定 太阳参考系是很好的惯性系 是很好的惯性系, 太阳参考系是很好的惯性系,在此参考系中描述 太阳系中星体的运动时, 太阳系中星体的运动时,观察到的现象与牛顿定律给 出的结果精确符合。 出的结果精确符合。 地面参考系:因地球自转,不是惯性系, 地面参考系:因地球自转,不是惯性系,但α自转很 是近似的惯性系。 小,是近似的惯性系。 α自转≈ 3.4×10-2m/s2 × 二、非惯性系中的惯性力 牛顿定律仅适用于惯性系,但是有些问题需在 牛顿定律仅适用于惯性系,但是有些问题需在 非惯性系中研究( 非惯性系中研究(如常常需要在地面参考系中研究物 体的运动) 体的运动) 有时在非惯性系中研究问题较为方便。 有时在非惯性系中研究问题较为方便。
[例1]已知 长的悬绳一端拴一质量 的小球,另一 1]已知l长的悬绳一端拴一质量 的小球, 已知 长的悬绳一端拴一质量m的小球 端固定在架子上,架子固定在小车上(如图) 端固定在架子上,架子固定在小车上(如图),小车 以加速度a沿斜面 沿斜面( 以加速度 沿斜面(斜面与水平面成α角)向上作匀加 速直线运动。求悬线的方向(用图中θ 角表示) 速直线运动。求悬线的方向(用图中θ 角表示)和悬 线中的张力 的张力。 线中的张力。
第2章 牛顿运动定律
(Newton’s Laws of Motion)
2.1 牛顿运动定律 1.牛顿第一定律 惯性定律) 牛顿第一定律( 1.牛顿第一定律(惯性定律) 叙述( (1) 叙述(略) (2) 包含两个重要概念 惯性( 惯性( inertia) 力(force) (3)定义了 定义了惯性参考系 (3)定义了惯性参考系 2.牛顿第二定律 2.牛顿第二定律 (1)叙述 叙述( (1)叙述(略) dp F= dt (2)表示式 (2)表示式
2.4 应用牛顿定律解题
解题思路:·认物体(研究对象m) 解题思路: 认物体(研究对象 认物体 ·看运动 看运动 ·分析力(求合力) 分析力( 分析力 求合力) 隔离体受力图 ·列方程 列方程 牛顿定律分量方程: 牛顿定律分量方程: l θ a x向 向
Fx = max
m
y向 向
Fy = may
α
引入一个虚拟力----惯性力 引入一个虚拟力----惯性力 ----
F +Fi = m a′
类比 F = m a
仍可写成牛顿第二定律的形式 在非惯性参照系中牛顿第二定律的表示形式为 质点的质量× 真实力 + 惯性力 = 质点的质量×质点相对于非惯性 系的加速度 (注意其与惯性系中表示的差别) 注意其与惯性系中表示的差别)
解:物体: m 物体:
受力:张力 受力:张力T 重力mg 重力
T y
θ
l θ x m a
α α
mg 受力图: 力图: 方程: 方程: 矢量方程 T +mg = ma
分量方程 x向:Tcos[90°-(θ +α)]-mgsinα =ma 向 ° y向:Tsin[90°-(θ +α)]-mgcosα =0 向 ° 解出 gsinα +a -α gcosα
相关文档
最新文档