【同步检测】第三章测评-北师大版高中数学选修2-2练习
高中数学北师大版选修2-2 第2、3、4章综合检测 Word版含解析
第二、三、四章 综合检测(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( )A .0B .3C .-2D .3-2t解析:物体的初速度即为t =0时物体的瞬时速度,即函数s (t )在t =0处的导数. s ′(0)=s ′|t =0=(3-2t )|t =0=3. 答案:B2.函数f (x )=x 2-ln2x 的单调递减区间是( ) A .⎝⎛⎦⎤0,22 B .⎣⎡⎭⎫22,+∞C .⎝⎛⎦⎤-∞,-22,⎝⎛⎭⎫0,22 D .⎣⎡⎭⎫-22,0,⎝⎛⎦⎤0,22 解析:∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0.答案:A3.下列求导正确的是( ) A .(ln xx )′=ln x -1xB .(x e -x 2)′=e -x 2·(1+2x 2)C .(6cos x )′=6sin xD .(x +ln x )′=x +22x解析:按导数的运算法则,结合基本初等函数的导数公式计算可知答案为D. 答案:D4.[2013·福建高考]设函数f (x )的定义域为R ,x 0(x 0≠0)为f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点解析:函数f (x )的极大值f (x 0)不一定是最大值,故A 错;f (x )与-f (-x )关于原点对称,故x 0(x 0≠0)是f (x )的极大值点时,-x 0是-f (-x )的极小值点,故选D.答案:D5.[2014·课标全国卷Ⅰ]已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)解析:a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a .若a >0,则由图像知f (x )有负数零点,不符合题意.则a <0,由图像结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a 2+1>0,化简得a 2>4,又a <0,所以a <-2,故选C.答案:C6.[2014·大庆高二检测]设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1]1x ,x ∈(1,e],则∫e 0f (x )dx 等于( )A .43B .54C .65D .76解析:⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x=⎪⎪⎪⎪13x 310+ln x e 1=43. 答案:A7.若函数f (x )满足f (x )=13x 3-f ′(1)·x 2-x ,则f ′(1)的值为( )A .0B .2C .1D .-1解析:f ′(x )=x 2-2f ′(1)x -1, 所以f ′(1)=1-2f ′(1)-1,则f ′(1)=0. 答案:A8.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞)D .(-∞,-3) 解析:f ′(x )=3x 2+a .令3x 2+a ≥0,则a ≥-3x 2,x ∈(1,+∞),∴a ≥-3. 答案:B9.若函数f (x )=a sin x +13cos x 在x =π3处有最值,那么a 等于( )A .33 B .-33 C .36D .-36解析:f ′(x )=a cos x -13sin x ,由题意f ′⎝⎛⎭⎫π3=0, 即a ·12-13×32=0,∴a =33.答案:A10.[2014·湖南高考]若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2解析:令f (x )=e xx ,则f ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,f ′(x )<0,即f (x )在(0,1)上单调递减,∵0<x 1<x 2<1, ∴f (x 2)<f (x 1),即e x 2x 2<e x 1x 1,∴x 2e x 1>x 1e x 2,故选C .答案:C11.已知函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则a 、b 、c 的大小关系为( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:由f (x )=f (2-x )知函数f (x )图像关于x =1对称. 当x <1时,由(x -1)f ′(x )<0知f ′(x )>0, 即x <1时,f (x )单调递增. a =f (0),b =f (12),c =f (3)=f (-1),∵-1<0<12,∴c <a <b ,故选B.答案:B12.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32解析:∵f (x )=12x 4-2x 3+3m ,∴f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,∴函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,∴3m -272≥-9,解得m ≥32.故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=⎩⎪⎨⎪⎧x 2+3,x ≥0-x ,x <0,则⎠⎛1-1f (x )d x =__________.解析:⎠⎛1-1f (x )d x =⎠⎛0-1(-x )d x +⎠⎛01(x 2+3)d x = ⎪⎪-12x 20-1+⎪⎪(13x 3+3x )10=12+(13+3)=236. 答案:23614.若函数f (x )在x =a 处的导数为A(a A ≠0),函数F (x )=f (x )-A 2x 2满足F ′(a )=0,则A =__________.解析:f ′(x )|x =a =A ,即f ′(a )=A.又F ′(x )=f ′(x )-2A 2x ,且F ′(a )=f ′(a )-2a A 2=A -2a A 2=0. ∵a A ≠0,∴A =12a .答案:12a15.若函数f (x )=4xx 2+1在区间(m ,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1).又f (x )在(m ,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m ≥-1,m<2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]16.幂指数函数y =f (x )g (x )在求导数时,可以运用对数法:在函数解析式两边求对数得ln y =g (x )ln f (x ),两边求导数得y ′y =g ′(x )ln f (x )+g (x )f ′(x )f (x ),于是y ′=f (x )g (x )[g ′(x )ln f (x )+g (x )f ′(x )f (x )].运用此方法可以探求得知y =x 1x (x >0)的一个单调递增区间为__________.解析:由题意得y ′=x 1x (-1x 2ln x +1x 2)=x 1x -2(1-ln x ),由y ′>0,得0<x <e ,所以单调递增区间为(0,e).答案:(0,e)三、解答题(本大题共6小题,共70分)17.(10分)设函数f (x )=x 3-(a +1)x 2-ax ,其中a ∈R .已知f (x )在x =3处取得极值. (1)求f (x )的解析式;(2)求f (x )在点A (-13,1427)处的切线方程.解:(1)f ′(x )=3x 2-2(a +1)x -a . ∵f (x )在x =3处取得极值,∴f ′(3)=3×9-2(a +1)×3-a =0, 解得a =3.∴f (x )=x 3-4x 2-3x . (2)A 点在f (x )上,由(1)可知f ′(x )=3x 2-8x -3,f ′(-13)=13+83-3=0,∴切线方程为y =1427.18.(12分)若函数f (x )=ax 2+2x -43ln x 在x =1处取得极值.(1)求a 的值;(2)求函数f (x )单调区间及极值. 解:(1)f ′(x )=2ax +2-43x ,由f ′(1)=2a +23=0,得a =-13.(2)f (x )=-13x 2+2x -43ln x (x >0).f ′(x )=-23x +2-43x =-2(x -1)(x -2)3x .由f ′(x )=0,得x =1或x =2. ①当f ′(x )>0时1<x <2;②当f ′(x )<0时0<x <1或x >2.当x 变化时f ′(x ),f (x )的变化情况如下:函数的极小值为f (1)=53,极大值为f (2)=83-43ln2.19.(12分)已知某公司生产的某品牌服装的年固定成本为10万元,每生产1千件,需另投入1.9万元,设R (x )(单位:万元)为销售收入,据市场调查知R (x )=⎩⎨⎧10x -130x 3 (0≤x ≤10),2003 (x >10),其中x 是年产量(单位:千件).(1)写出年利润W 关于年产量x 的函数关系式;(2)年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大? 解:(1)依题意有:W =⎩⎨⎧ 10x -130x 3-10-1.9x (0≤x ≤10),2003-10-1.9x (x >10).即W =⎩⎨⎧8.1x -130x 3-10(0≤x ≤10),1703-1.9x (x >10).(2)设f (x )=-130x 3+8.1x -10(0≤x ≤10),f ′(x )=-110x 2+8.1,由f ′(x )=0,得x =9或x =-9(舍去).当0≤x ≤9时,f ′(x )≥0;当9≤x ≤10时,f ′(x )≤0,所以当x =9时,f (x )取得最大值38.6.当x >10时,1703-1.9x <1133<38.6.所以当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.20.(12分)[2014·课标全国卷Ⅱ]已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a ,曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根.当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 21.(12分)[2014·长春高二检测]设函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)由a =0,f (x )≥h (x )可得 -m ln x ≥-x ,即m ≤x ln x.记φ(x )=xln x ,则f (x )≥h (x )在(1,+∞)上恒成立等价于m ≤φ(x )m i n ,求得φ′(x )=ln x -1ln 2x ,当x ∈(1,e)时:φ′(x )<0; 当x ∈(e ,+∞)时,φ′(x )>0故φ(x )在x =e 处取得极小值,也是最小值, 即φ(x )m i n =φ(e)=e ,故m ≤e.(2)函数k (x )=f (x )-h (x )在[1,3]上恰有两个不同的零点等价于方程x -2ln x =a ,在[1,3]上恰有两个相异实根.令g (x )=x -2ln x ,则g ′(x )=1-2x当x ∈[1,2)时,g ′(x )<0; 当x ∈(2,3]时,g ′(x )>0.∴g (x )在[1,2)上是单调递减函数,在(2,3]上是单调递增函数. 故g (x )m i n =g (2)=2-2ln 2.又g (1)=1,g (3)=3-2ln 3, ∵g (1)>g (3),∴只需g (2)<a <g (3). 故a 的取值范围是(2-2ln 2,3-2ln 3)22.(12分)[2013·天津高考]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =1e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是(0,1e), 单调递增区间是(1e,+∞). (2)证明:当0<x ≤1时,f (x )≤0.设t >0, 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)内单调递增.h (1)=-t <0,h (e t )=e 2t lne t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立.(3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而ln g (t )ln t =ln s ln f (s )=ln s ln (s 2ln s )=ln s2ln s +ln (ln s )=u2u +ln u,其中u =ln s .要使25<ln g (t )ln t <12成立,只需0<lnu<u2.当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾.所以s >e , 即u>1,从而lnu>0成立. 另一方面,令F (u)=lnu -u2,u>1.F ′(u)=1u -12,令F ′(u)=0,得u =2.当1<u<2时,F ′(u)>0;当u>2时,F ′(u)<0. 故对u>1,F (u)≤F (2)<0. 因此lnu<u2成立.综上,当t >e 2时,有25<ln g (t )ln t <12.。
2018-2019学年北师大版高中数学选修2-2同步配套(课件+练习+检测):3
§2 导数在实际问题中的应用2.1 实际问题中导数的意义1.某质点运动的方程为s=5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt-6,则该质点在t=1时的瞬时速度是( )A .-3B .3C .6D .-6答案:D2.自由下落的物体的运动方程为s (t )=12gt 2,g=9.8 m/s 2,若lim Δt →0s (1+Δt )-s (1)Δt =g=9.8 m/s,则下面说法正确的是( )A.9.8 m/s 是物体在0~1 s 这段时间内的平均速度B.9.8 m/s 是物体从1 s 到(1+Δt )s 这段时间内的速度C.9.8 m/s 是物体在t=1 s 这一时刻的瞬时速度D.9.8 m/s 是物体从1 s 到(1+Δt )s 这段时间内的平均速度 解析:由导数的定义知lim Δt →0s (1+Δt )-s (1)Δt =s'(1),其含义是物体在t=1 s 时的瞬时速度.答案:C3.如果一个物体的运动方程为s=1-t+t 2,其中s 的单位是 m,t 的单位是s,那么该物体在3 s 末的瞬时速度是 .答案:5 m/s4.某收音机制造厂管理者通过对上午工人工作效率的研究表明:一个中等技术水平的工人,从8:00开始工作,t 小时后可装配晶体管收音机的台数为Q (t )=-t 3+9t 2+12t ,则Q'(2)= ,它的实际意义为答案:36台/时 10:00时,该工人装配收音机的速度为36台/时5.一个质量为m=3 kg 的物体做直线运动,设运动距离s (单位:cm)与时间t (单位:s)的关系可以用函数s (t )=1+t 2表示,并且物体的动能U=12mv 2,则该物体开始运动后第5 s 时的动能为 . 解析:因为s'(t )=2t ,所以s'(5)=10 cm/s,即5 s 时的瞬时速度为10 cm/s,即0.1 m/s .故U=12×3×(0.1)2=0.015(J). 答案:0.015 J6.已知车轮旋转的角度与时间的平方成正比,如果车轮启动后转动第一圈需要0.8 s,则转动开始后第3.2 s 时的瞬时角速度为 .解析:设时间为t 时,车轮旋转的角度为f (t ),则f (t )=kt 2(k ≠0).由题意知2π=k ·0.82,则k=25π8.所以f (t )=25π8t 2,则f'(t )=25π4t ,f'(3.2)=20π rad/s,即转动开始后第3.2 s 时的瞬时角速度为20π rad/s .答案:20π rad/s7.某工厂生产一种木材旋切机械,已知生产总利润c(单位:元)与生产量x(单位:台)之间的关系式为c(x)=-2x2+7 000x+600.(1)求产量为1 000台时的总利润与平均利润;(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;(3)求c'(1 000)与c'(1 500),并说明它们的实际意义.解(1)产量为1 000台时的总利润为c(1 000)=-2×1 0002+7 000×1 000+600=5 000 600(元),平均利润为c(1000)1000=5 000.6(元).(2)当产量由1 000台提高到1 500台时,总利润的平均改变量为c(1500)-c(1000)1500-1000=6000600-5000600500=2 000(元).(3)∵c'(x)=(-2x2+7 000x+600)'=-4x+7 000,∴c'(1 000)=-4×1 000+7 000=3 000(元).c'(1 500)=-4×1 500+7 000=1 000(元).c'(1 000)=3 000表示当产量为1 000台时,每多生产一台机械可多获利3 000元;c'(1 500)=1 000表示当产量为1 500台时,每多生产一台机械可多获利1 000元.8.某考生在参加某年高考数学科考试时,其解答完的题目数量y(单位:道)与所用时间x(单位:分钟)近似地满足函数关系y=f(x)=2√x.(1)求x从0分钟变化到36分钟时,y关于x的平均变化率;(2)求f'(64),f'(100),并解释它的实际意义.解(1)当x从0分钟变化到36分钟时,y关于x的平均变化率为f(36)-f(0)36-0=1236=13(道/分).它表示该考生在前36分钟内,平均每分钟解答13道题.(2)因为f'(x)=1√x ,所以f'(64)=18,f'(100)=110.它们分别表示该考生在第64分钟和第100分钟时,每分钟可解答18和110道题.9.将原油精炼为汽油、柴油等各种不同的产品,需要对原油进行冷却和加热,如果在第x h时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2 h和第6 h时,原油温度的瞬时变化率,并说明它们的意义.解在第2 h和第6 h时,原油温度的瞬时变化率就是f'(2)和f'(6).根据导数的定义,得Δy Δx=f(2+Δx)-f(2)Δx=(2+Δx)2-7(2+Δx)+15-(22-7×2+15)Δx=4Δx+(Δx)2-7ΔxΔx=Δx-3,所以f'(2)=limΔx→0ΔyΔx=limΔx→0(Δx-3)=-3.同理可得f'(6)=5.所以在第2 h与第6 h时,原油温度的瞬时变化率分别为-3和5,它说明在第2 h附近,原油温度大约以3 ℃/h的速度下降;在第6 h附近,原油温度大约以5 ℃/h的速度上升.★10.已知线段AB的长为10米,在它的两个端点处各有一个光源,线段AB上的点P距光源A x米,若点P受两个光源的总光照度I(x)=8x2+1(10-x)2,其单位为:勒克斯.(1)当x从5变到8时,求点P处的总光照度关于点P与光源A的距离x的平均变化率,它代表什么实际意义?(2)求I'(5),并解释它的实际意义.解(1)当x从5变到8时,点P处的总光照度关于点P与光源A的距离x的平均变化率为=0.005(勒克斯/米),它表示点P与光源A的距离从5米增加到8米的过程中,距离每增加1米,光照度平均增强0.005勒克斯.(2)因为I(x)=8x2+1(10-x)2,所以I'(x)=8×(-2·x-3)+(-2)×(10-x)-3×(-1)=-16x3+2(10-x)3.所以I'(5)=-16125+2125=-14125=-0.112(勒克斯/米).它表示点P与光源A距离5米时,点P受两光源总光照度减弱的速度为0.112勒克斯/米.。
【高考必备】优化方案·高中同步测试卷·北师大数学选修2-2:高中同步测试卷(三)Word版含答案[精品原创]
高中同步测试卷(三)章末检测 推理与证明 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是( ) A .由圆的性质类比推出球的有关性质B .由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C .某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D .蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的2.用反证法证明:“a >b ”,假设为( ) A .a >b B .a <b C .a =bD .a ≤b3.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N +),可归纳猜想出S n 的表达式为( )A.2n n +1 B .3n -1n +1C.2n +1n +2D .2n n +24.下列推理正确的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“若(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,n =k +1时,为了使用假设,应将5k +1-2k+1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k6.求证:1+5<2 3.证明:因为1+5和23都是正数, 所以为了证明1+5<23, 只需证明(1+5)2<(23)2, 展开得6+25<12,即5<3, 只需证明5<9.因为5<9成立. 所以不等式1+5<23成立. 上述证明过程应用了( ) A .综合法 B .分析法 C .反证法 D .间接证法7.有以下结论:①已知p 3+q 3=2,求证p +q ≤2.用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.下列说法中正确的是( ) A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确 8.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 到n =k +1时,不等式左边的变化情况为( )A .增加12(k +1)B .增加12k +1+12(k +1)C .增加12k +1+12(k +1),减少1k +1D .增加12(k +1),减少1k +19.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a 2 014-5=( )A .2 020×2 014B .2 020×2 013C .1 010×2 014D .1 010×2 01310.已知命题1+2+22+…+2n -1=2n -1及其证明: (1)当n =1时,左边=1,右边=21-1=1,所以等式成立;(2)假设n =k 时等式成立,即1+2+22+…+2k -1=2k -1成立,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以n =k +1时等式也成立.由(1)(2)知,对任意的正整数n 等式都成立. 判断以上评述( ) A .命题、推理都正确 B .命题正确、推理不正确 C .命题不正确、推理正确D .命题、推理都不正确11.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间中下列结论:①垂直于同一条直线的两条直线互相平行; ②垂直于同一个平面的两个平面互相平行;③垂直于同一条直线的两个平面互相平行; ④垂直于同一个平面的两条直线互相平行.其中正确的结论是( ) A .①② B .②③ C .③④D .①④12.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B .n +1(n +1)-4+(n +1)+5(n +1)-4=2C.nn -4+n +4(n +1)-4=2 D .n +1(n +1)-4+n +5(n +5)-4=2二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.对于平面几何中的命题:“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“______________”.14.观察下面的几个算式,找出规律.1+2+1=4;1+2+3+2+1=9;1+2+3+4+3+2+1=16;1+2+3+4+5+4+3+2+1=25.利用上面的规律,请你迅速算出1+2+3+…+99+100+99+…+3+2+1=________.15.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为________,由此猜想S n =________.16.在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项:k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)(n +2)”,其结果为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)用分析法和综合法证明1log 519+1log 319+1log 219<2.18.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.19.(本小题满分12分)用数学归纳法证明:1sin 2α+1sin 4α+…+1sin 2n α=1tan α-1tan 2n α.20.(本小题满分12分)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用x n 表示某鱼群在第n 年年初的总量,n ∈N +,且x 1>0.不考虑其他因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x 2n 成正比,这些比例系数依次为正常数a ,b ,c .(1)求x n +1与x n 的关系式;(2)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)21.(本小题满分12分)设f (n )=1+12+13+…+1n (n ∈N +).求证:f (1)+f (2)+…+f (n -1)=n ·[f (n )-1](n ≥2,n ∈N +).22.(本小题满分12分)在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N +).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论; (2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512.参考答案与解析1.解析:选C.A 是类比推理,B 、D 是归纳推理,C 不是合情推理. 2.解析:选D.“>”的否定是“≤”.3.[导学号68070014] 解析:选A.由a 1=1,得a 1+a 2=22a 2, 所以a 2=13,S 2=43;又1+13+a 3=32a 3,所以a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.4.解析:选C.对于A ,a =1,b =-1也可以;对于B ,当a =2,b =3,c =4时推理不正确;对于D ,一般情况下(a +b )n ≠a n +b n ,故选C.5.[导学号68070015] 解析:选B.5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k .6.解析:选B.根据分析法的定义及证明步骤可知,证明过程应用了分析法. 7.解析:选D.用反证法证题时一定要将对立面找全.在①中应假设p +q >2.故①的假设是错误的,而②的假设是正确的.8.解析:选C.当n =k 时,不等式的左边=1k +1+1k +2+…+1k +k ,当n =k +1时,不等式的左边=1k +2+1k +3+…+1(k +1)+(k +1),所以1k +2+1k +3+…+1(k +1)+(k +1)-(1k +1+1k +2+…+1k +k )=12k +1+12(k +1)-1k +1,所以由n =k 到n =k +1时,不等式的左边增加12k +1+12(k +1),减少1k +1.9.[导学号68070016] 解析:选D.a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.所以a n -5=(n -1)(n +6)2,所以a 2 014-5=2 013×2 0202=1 010×2 013.10.解析:选B.推理不正确,错在证明n =k +1时,没用假设n =k 时的结论;命题由等比数列求和公式知正确,故选B.11.解析:选C.因为垂直于同一条直线的两条直线可能平行、相交、异面,故①不正确,应排除A 、D ;因为垂直于同一个平面的两个平面可能平行或相交,故②不正确,应排除B ,易知③④均正确.故选C.12.解析:选A.从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n .13.解析:边类比半平面,角类比二面角可得.答案:如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补 14.解析:观察归纳中间数为2,结果为4=22;中间数为3,结果为9=32;中间数为4,结果为16=42;于是中间数为100,结果应为1002=10 000.答案:10 00015.[导学号68070017] 解析:由S n ,S n +1,2S 1成等差数列,得2S n +1=S n +2S 1.因为S 1=a 1=1,所以2S n +1=S n +2.令n =1,则2S 2=S 1+2=1+2=3⇒S 2=32,同理分别令n =2,n =3,可求得S 3=74,S 4=158.由S 1=1=21-120,S 2=32=22-121,S 3=74=23-122,S 4=158=24-123,猜想S n =2n -12n -1.答案:32,74,158 2n-12n -116.解析:因为n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)],所以1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),…n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)],所以1×2×3+2×3×4+…+n (n +1)(n +2)=14[1×2×3×4-0×1×2×3+2×3×4×5-1×2×3×4+…+n ×(n +1)×(n +2)×(n +3)-(n -1)×n ×(n +1)×(n +2)]=14n (n +1)·(n +2)(n +3).答案:14n (n +1)(n +2)(n +3)17.[导学号68070018] 证明:(分析法)要证1log 519+1log 319+1log 219<2,只需证log 1930<log 19192,即证30<192,又因为30<192恒成立,所以原不等式成立.(综合法)1log 519+1log 319+1log 219=log 195+log 193+log 192=log 1930<log 19192=2.18.证明:假设x 2+2x -1=0, 则x =-1±2. 容易看出-1-2<12,下面证明-1+2<12,要证:-1+2<12,只需证:2<32,只需证:2<94.上式显然成立,故有-1+2<12.综上,x =-1±2<12.而这与已知条件x >12相矛盾,因此假设不成立,也即原命题成立.19.证明:(1)当n =1时,左边=1sin 2α,右边=1tan α-1tan 2α=cos αsin α-cos 2αsin 2α=2cos 2α-cos 2αsin 2α=1sin 2α, 左边=右边,等式成立.(2)假设n =k (k ≥1且k ∈N +)时,等式成立, 即1sin 2α+1sin 4α+…+1sin 2kα=1tan α-1tan 2k α. 当n =k +1时,1sin 2α+1sin 4α+…+1sin 2kα+1sin 2k +1α. =1tan α-1tan 2kα+1sin 2k +1α=1tan α-⎝ ⎛⎭⎪⎫cos 2k αsin 2k α-1sin 2k +1α =1tan α-2(cos 2k α)2-1sin 2k +1α =1tan α-1tan 2k +1α, 即当n =k +1时,等式成立.由(1)、(2)得,对任意n ∈N +,等式成立.20.[导学号68070019] 解:(1)从第n 年初到第n +1年初,鱼群的繁殖量为ax n ,捕捞量为bx n ,死亡量为cx 2n ,x n +1-x n =ax n -bx n -cx 2n ,n ∈N +,(*) x n +1=x n (a -b +1-cx n ),n ∈N +.(2)若每年年初鱼群总量保持不变,则x n 恒等于x 1,n ∈N +,从而由(*)式得x n (a -b -cx n )=0,n ∈N +,a -b -cx 1=0,x 1=a -b c.因为x 1>0,所以a >b ,猜测:当且仅当a >b ,且x 1=a -bc时,每年年初鱼群的总量保持不变.21.证明:(1)当n =2时,左边=f (1)=1, 右边=2(1+12-1)=1,左边=右边,等式成立.(2)假设n =k (k ∈N +)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时, f (1)+f (2)+…+f (k -1)+f (k ) =k [f (k )-1]+f (k ) =(k +1)f (k )-k=(k +1)[f (k +1)-1k +1]-k=(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1],所以当n =k +1时结论仍然成立. 所以f (1)+f (2)+…+f (n -1) =n [f (n )-1](n ≥2,n ∈N +).22.[导学号68070020] 解:(1)由已知得2b n =a n +a n +1,a 2n +1=b n b n +1,a 1=2,b 1=4. 所以a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25. 猜测a n =n (n +1),b n =(n +1)2. 下面用数学归纳法证明. ①当n =1时,结论成立.②假设当n =k (k ≥1,k ∈N +)时,结论成立,即a k =k (k +1), b k =(k +1)2, 那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2), b k +1=a 2k +1b k=(k +2)2,所以当n =k +1时,结论也成立.由①②可知,a n =n (n +1),b n =(n +1)2对一切正整数n 都成立. (2)证明:当n =1时,1a 1+b 1=16<512.当n ≥2时,由(1)知,a n +b n =(n +1)(2n +1)>2(n +1)n . 所以1a n +b n <12⎝⎛⎭⎫1n -1n +1,所以1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1=16+12⎝⎛⎭⎫12-1n +1<16+14=512. 综上所述,对任意n ∈N +,1a 1+b 1+1a 2+b 2+…+1a n +b n <512成立.。
最新北师大版高中数学高中数学选修2-2第三章《导数应用》检测(含答案解析)(1)
一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-4.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞5.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .6.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭7.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<8.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab 的值为( ) A .23-B .23或2 C .2D .13-9.已知可导函数()()f x x R ∈满足()()f x f x '>,则当0a >时,()f a 和(0)a e f 的大小关系为( ) A .()(0)a f a e f >B .()(0)a f a e f <C .()(0)a f a e f =D .()(0)a f a e f ≤10.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.16.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.17.已知函数()2221,204ln 2,0x mx m x f x x m x xe ⎧----<≤⎪=⎨+->⎪⎩在区间()2,-+∞上有且只有三个零点,则实数m 的取值范围为______.18.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________. 19.函数()()21xf x x =-的最小值是______.20.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.三、解答题21.已知函数()322=-+f x x ax b .(1)4a =时,()f x 在区间[]1,1-的最小值为-5,求b 的值 (2)讨论()f x 的单调性;22.已知函数()()21()xf x x e ax a R =--∈.(1)当1a =时,求()f x 的单调区间;(2)若0x =是()f x 的极大值点,求a 的取值范围. 23.如图是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图C 是半径OB 上一点,D 是圆弧AB 上一点,且//CD OA .现在线段OC ,线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问:x 为何值时,广告位出租的总收入最大?并求出其最大值. 24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 26.已知32()1,f x x ax a R =++∈. (1)若()f x 在23x =处取极值,求()f x 在点(,1)a -处切线方程; (2)若函数()f x 在区间[]01,最小值为-1,求a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6x g x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.5.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.7.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=,而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.8.A解析:A 【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可.【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩,当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足.故6293a b -==-. 故选:A. 【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.9.A解析:A 【分析】根据条件构造函数()()x f x g x e=,求导可知()g x 单调递增,比较(),(0)g a g 的大小,可得()f a 和(0)a e f 的大小关系.【详解】解:令()()x f x g x e =,则'''2()()()()()x x x xf x e f x e f x f xg x e e--==,因为()()f x f x '>,所以'()0g x >,所以()g x 在(),-∞+∞上单调递增;因为0a >,所以()(0)g a g >,即0()(0)af a f e e>,即()(0)a f a e f >. 故选:A. 【点睛】本题考查构造函数法比较大小,考查利用导数求函数的单调性,属于基础题.10.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数,因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A.【点睛】 方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+是解答的关键. 二、填空题13.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可.【详解】又因为x ∈R ,()()()||||cos cos x x f x ex e x f x --=+-=+=, 所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-,因为0x >,e 1x >,所以()sin 0x f x e x '=->,故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数.因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤.故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题. 14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4). 【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭ 【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果. 【详解】由题意得:()()2sin2x x f x e e x f x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭ 故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.16.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求 解析:21,e e ⎛⎫-∞+ ⎪⎝⎭ 【分析】将已知等价转化为函数22y x ex a =-+与函数ln x y x =的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln x y x =的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点,等价于函数22y x ex a =-+与函数ln x y x =的图象有两个交点, 对函数ln x y x =求导,得21ln x y x -'=,()0,x e ∈,0y '>, 函数ln x y x =单调递增;(),x e ∈+∞,0y '<, 函数ln x y x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e - 分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+⎪⎝⎭【点睛】 本题考查由函数图象的交点个数求参数的取值范围,属于中档题.17.【分析】当时函数的图像是函数的图像进行上下平移而得到的求出的单调区间作出其图像可得在上函数至多有2个零点又当时则在上函数至多有1个零点根据条件所以在上有一个零点在上有2个零点则从而可得答案【详解】当解析:()22【分析】当0x >时,函数()f x 的图像是函数4ln x y x=的图像进行上下平移而得到的,求出4ln x y x=的单调区间,作出其图像,可得在()0+∞,上,函数()f x 至多有2个零点,又当20x -<≤时,()2010f m =--<,则在()20-,上,函数()f x 至多有1个零点,根据条件所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点,则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,从而可得答案. 【详解】当0x >时,函数()f x 的图像是函数4ln x y x =的图像进行上下平移而得到的. 又由函数4ln x y x =有()241ln x y x -'=. 由()241ln 0x y x -'=>,得x e <,()241ln 0x y x-'=<,得x e >. 所以函数4ln x y x=在()0,e 上单调递增,在(),e +∞上单调递减,图像如图. 当1x >时,4ln 0x y x =>.所以在()0+∞,上,函数()f x 至多有2个零点. 当20x -<≤时,()2221f x x mx m =---,()2010f m =--<,其对称轴为x m =. 此时二次方程22210x mx m ---=有两相异号的实根.所以在()20-,上,函数()f x 至多有1个零点. 因为函数()f x 在区间()2,-+∞上有且只有三个零点.所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点. 则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,解得:272m < 故答案为:()27,2【点睛】本题考查根据函数的零点个数求参数的取值范围,属于中档题. 18.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围.【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得a x =,且1a a >-<①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤.故答案为:15a ≤≤.【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.19.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为 解析:14-【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf x x =-,故可得()()311x f x x ---'=,令()0f x '=,解得1x =-;故当(),1x ∈-∞-时,()f x 单调递减;当()1,1x ∈-时,()f x 单调递增;当()1,x ∈+∞时,()f x 单调递减.且()114f -=-, 当x 趋近于1时()f x 趋近于正无穷;当x 趋近于正无穷时,()f x 趋近于零.函数图像如下所示:故()f x 的最小值为14-. 故答案为:14-. 【点睛】 本题考查利用导数研究函数的最值,属综合基础题.20.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >, 当0x a <<()0f x '<;当x a ()0f x '>, 故x a =()f x 的极小值点,也是最小值点,且()ln 1f a a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.三、解答题21.(1)1b =;(2)答案见解析.【分析】(1)求导求出函数的单调区间,比较(1),(1)f f -得到函数的最小值为65b -=-即得解;(2)先求导,再对a 分三种情况得到函数的单调性.【详解】(1)()3224f x x x b =-+,所以()2682(34)f x x x x x '=-=-, 令()>00f x x '∴<,;()<00f x x '∴>,; 所以函数的单调递增区间为[1,0]-,单调递减区间为[0,1],因为(1)246,(1)2f b b f b -=--+=-=-,所以()f x 在区间[]1,1-的最小值65,1b b -=-∴=.(2)()()26223f x x ax x x a '=-=-. 令0f x ,得0x =或3a x =. 若0a >,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0f x ;当0,3⎛⎫∈ ⎪⎝⎭a x 时,0f x .故()f x 在,0,,3a ⎛⎫+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫ ⎪⎝⎭单调递减; 若0a =,()f x 在(),-∞+∞单调递增;若0a <,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0fx ; 当,03⎛⎫∈ ⎪⎝⎭a x 时,0f x . 故()f x 在,3a ⎛⎫-∞ ⎪⎝⎭,0,单调递增,在,03⎛⎫ ⎪⎝⎭a 单调递减. 【点睛】 方法点睛:用导数求函数的单调区间步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.22.(1)()f x 在()0-∞,和(ln 2,)+∞上单调递增,在(0,ln 2)上单调递减;(2)1(,)2+∞. 【分析】(1)将1a =代入,求出函数解析式,进而利用导数法,可求出函数的单调区间;(2)求导后对a 讨论,判定单调性结合0x =是()f x 的极大值点,可得a 的取值范围.【详解】(1)当1a =时,()()21x f x x e x =--,()()2x f x x e '=-, ()'0f x >得0x <或ln 2x > ,()'0f x <得0ln 2x <<,()f x ∴在()0-∞,和(ln 2,)+∞上单调递增,在(0,ln 2)上单调递减; (2)()()2x f x x e a '=-,当0a ≤时,20x e a ->, 故()00f x x '>⇒>,()f x ∴在()0-∞,上单减, 在上(0,)+∞单增,0x =为极小值点,不合题意;当0a >时,由()0f x '=得0x =或ln 2x a =,0x =是极大值点,ln 20a ∴>,即12a >, 故1(,)2a ∈+∞.【点睛】本题主要考查的是利用导数研究函数的单调区间,利用导数研究函数极大值,掌握利用导函数研究函数的性质是解题的关键,考查学生的分析问题解决问题的能力,是中档题.23.(1)2cos ,0,33y a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭;(2)当6x π=时,广告位出租的总收入最大,最大值为26a π⎫⎪⎭元. 【分析】(1)根据题意,利用正弦定理求得OC 的值,再求弧长DB ,求出函数y 的解析式,写出x 的取值范围;(2)求函数y 的导数,利用导数判断函数的单调性,求出函数的最值和对应x 的值.【详解】(1)因为//CD OA ,所以ODC AOD xrad ∠=∠=.在OCD ∆中,23OCD π∠=,3COD x π∠=-,2OD km =.由正弦定理,得2432sin 3sin sin 33OC CD x x ππ===⎛⎫- ⎪⎝⎭, 得43sin 3OC xkm =,43sin 33CD x km π⎛⎫=- ⎪⎝⎭. 又圆弧DB 长为23x km π⎛⎫-⎪⎝⎭, 所以43432sin sin 23333y a x a x x ππ⎡⎤⎛⎫⎛⎫=⨯+⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦ 23sin cos ,0,33a x x x x ππ⎛⎫⎛⎫=+-+∈ ⎪ ⎪⎝⎭⎝⎭. (2)记()23sin cos 3f x a x x x π⎛⎫=+-+⎪⎝⎭, 则()()'23cos sin 122cos 16f x a x x a x π⎡⎤⎛⎫=--=+- ⎪⎢⎥⎝⎭⎣⎦, 令()'0f x =,得6x π=.当x 变化时,()'f x ,()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值,即2323666f a a πππ⎛⎫⎫⎫=⨯= ⎪⎪⎪⎝⎭⎭⎭. 故当6x π=时,广告位出租的总收入最大,最大值为236a π⎫⎪⎭元. 【点睛】本题考查了三角函数模型的应用问题,考查利用导数知识处理最值问题,考查函数与方程思想,是中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭.【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +k x-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案. 【详解】(1)由题意,得21()(0)k f x x x x '=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,∴()0f e '=,即210k e e -=,解得k =e , ∴221()(0)e x e f x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e ,∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增.当x =e 时,f (x )取得极小值,且f (e )=ln e +e e=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +k x -x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1k h x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题.26.(1)y x =;(2)3a=-. 【分析】(1)求出导函数,结合()f x 在23x =处取极值,导函数为0,求解a ,然后求解切线的斜率,求解切线方程.(2)令()0f x '=,求出极值点,若0a ,若32a -,若302a >>-,判断导函数的符号判断函数的单调性求解函数的极值与最值,然后推出结果. 【详解】解:(1)∵2()3()3f x x x a '=+,又()f x 在23x =处取极值, ∴2()03f '=得1a =-, 当1a =-时2()33f x x x ⎛⎫'=- ⎪⎝⎭,函数在(),0-∞和2,3⎛⎫+∞ ⎪⎝⎭上单调递增,在20,3⎛⎫ ⎪⎝⎭上单调递减,满足题意;∴32()1f x x x =-+,切点为(1,1),切线斜率为(1)1k f '==∴()f x 在点(1,1)的切线方程为y x =(2)∵2()3()3a f x x x '=+,令()0f x '=得0x =或23a - 若0a ≥,则(0,1)x ∈时()0f x '>,()f x 在[0,1]为增函数此时min ()(0)11f x f ==>-舍去若32a ≤-,则213a -≥,此时(0,1)x ∈时()0f x '<,()f x 在[0,1]为减函数 min ()(1)21f x f a ==+=-,得33(,)2a =-∈-∞-满足题意 若302a >>-,则2013a <-<,此时2(0,)3x a ∈-时()0f x '<,2(,1)3a x ∈-时()0f x '>()f x 在2(0,)3a -单调递减,在2(,1)3a -单调递增,此时3min24()()11327a a f x f =-=+=-解得3(,0)2a =-舍去 综合以上得3a=-【点睛】 本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查转化思想以及计算能力,属于难题.。
数学北师大版高中选修2-2选修2-2第三章:导数及应用 单元检测
单元测评:导数及其应用测试时间:120分钟 试卷满分:150分第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.23解析:y ′=x 2+1,当x =1时,k =y ′|x =1=2, ∴切线方程为y -43=2(x -1).当x =0时,y =-23,当y =0时,x =13.∴三角形的面积S =12×|-23|×13=19.答案:A2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:由y =4x 2+1x ,得y ′=8x -1x 2.令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增. 答案:B3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2解析:据已知可得f ′(x )=sin x +x cos x ,故f ′⎝⎛⎭⎫π2=1.由两直线的位置关系可得-a2×1=-1,解得a =2.答案:D4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .4B .-14C .2D .-12解析:∵f (x )=g (x )+x 2,∴f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=2+2=4. 答案:A5.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤3解析:由f (x )=x 3-ax ,得f ′(x )=3x 2-a , 由3x 2-a ≥0对于一切x ∈(-∞,-1]恒成立, 3x 2≥a ,∴a ≤3.若a <3,则f ′(x )>0对于一切x ∈(-∞,-1]恒成立. 若a =3,x ∈(-∞,-1)时,f ′(x )>0恒成立. x =-1时,f ′(-1)=0,∴a ≤3. 答案:D6.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (2)与f (-2)D .f (-2)与f (2)解析:由y =xf ′(x )的图像知±2是y =f ′(x )的两个零点,设f ′(x )=a (x -2)(x +2). 当x >2时,xf ′(x )=ax (x -2)(x +2)>0,∴a >0.由f ′(x )=a (x -2)(x +2)知,f (-2)是极大值,f (2)是极小值,故选D.答案:D7.已知m >0,若⎠⎛0m (2x -1)d x =6,则m =( )A .1 B. 3 C .3D .4解析:∵⎠⎛0m (2x -1)d x =6,∴(x 2-x)|0m =6,∴m 2-m =6,又∵m >0,∴m =3.答案:C8.若f(x)=ax 3+ax +2(a ≠0)满足f(-1)>1且f(1)<1,则方程f(x)=1的解的个数为( )A .0B .1C .2D .3解析:设g(x)=f(x)-1,由f(-1)>1且f(1)<1, 得[f(-1)-1][f(1)-1]<0,即g(-1)g(1)<0, 因此,g(x)=f(x)-1在(-1,1)内至少有一个零点,由于g ′(x)=3ax 2+a =a(3x 2+1)(a ≠0),易知a >0时,g ′(x)>0,函数g(x)单调递增;a <0时,g ′(x)<0,函数g(x)单调递减,即函数g(x)为单调函数,故函数g(x)仅有一个零点,因此,方程f(x)=1仅有一个根.答案:B9.若函数f(x)在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( )A .y =2x -1B .y =3x -2C .y =x +1D .y =-2x +3解析:令x =0,解得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,令x =0,解得f ′(0)=1,故切线方程为y =x +1.答案:C10.函数f (x )=x 3+bx 2+cx +d 的图像如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c3的单调递减区间为( )A.⎝⎛⎭⎫12,+∞ B .(3,+∞) C .(-2,3)D .(-∞,-2)解析:由图像可知,函数f (x )=x 3+bx 2+cx +d 仅在区间[-2,3]上递减,又因f ′(x )=3⎝⎛⎭⎫x 2+23bx +c 3,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c3的定义域是(-∞,-2)∪(3,+∞),又因函数f ′(x )=x 2+23bx +c3在区间(-∞,-2)上单调递减,在区间(3,+∞)上单调递增,故函数y=log 2⎝⎛⎭⎫x 2+23bx +c3的单调递减区间为(-∞,-2). 答案:D第Ⅱ卷 (非选择 共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.解析:设P (a ,a 2-a +1),y ′|x =a =2a -1∈[]-1,3, ∴0≤a ≤2.从而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34. 当a =12时,g (a )min =34;a =2时,g (a )max =3.故P 点纵坐标范围是⎣⎡⎦⎤34,3. 答案:⎣⎡⎦⎤34,312.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________.解析:设F (x )=f (x )-g (x ),其定义域为(0,+∞), 则F ′(x )=1x+2-2ax -a=-(2x +1)(ax -1)x,x ∈(0,+∞).当a ≤0时,F ′(x )>0,F (x )单调递增,F (x )≤0不可能恒成立. 当a >0时,令F ′(x )=0,得x =1a ,或x =-12(舍去).当0<x <1a 时,F ′(x )>0;当x >1a 时,F ′(x )<0.故F (x )在(0,+∞)上有最大值F ⎝⎛⎭⎫1a ,由题意F ⎝⎛⎭⎫1a ≤0恒成立,即ln 1a +1a -1≤0.令φ(a )=ln 1a +1a -1,则φ(a )在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a-1≤0成立的充要条件是a ≥1.答案:[1,+∞)13.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.解析:∵f (x )=ax 2+bx +k (k >0),∴f ′(x )=2ax +b .又f (x )在x =0处有极值,故f ′(0)=0,从而b =0.由曲线y =f (x )在(1,f (1))处的切线与直线x +2y +1=0垂直,可知该切线斜率为2,即f ′(1)=2,∴2a =2,得a =1.∴a +b =1+0=1. 答案:114.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________.解析:当x >0时,xf ′(x )-f (x )x 2<0,即⎝⎛⎭⎫f (x )x ′<0,令y =f (x )x ,则函数y =f (x )x 在区间(0,+∞)上为减函数,又f (x )在定义域上是奇函数,∴函数y =f (x )x 在定义域上是偶函数,且f (2)2=0,则f (x )x >0在区间(0,+∞)上的解集是(0,2);函数x 2f (x )=x 3·f (x )x 是定义域上的奇函数,则x 2f (x )>0的解集是(-∞,-2)∪(0,2).答案:(-∞,-2)∪(0,2)15.已知在区间(a ,b )上,f (x )>0,f ′(x )>0,对x 轴上的任意两点(x 1,0),(x 2,0)(a <x 1<x 2<b )都有f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2.若S 1=⎠⎛ab f (x )d x ,S 2=f (a )+f (b )2(b -a ),S 3=f (a )(b -a ),则S 1、S 2、S 3的大小关系为__________.解析:根据定积分的几何意义知S 1为f (x )的图像与直线x =a ,x =b 及x 轴围成的曲边梯形的面积,而S 2为梯形的面积,S 3为矩形的面积,所以结合题意并画出图形可得S 1>S 2>S 3.答案:S 1>S 2>S 3三、解答题:本大题共6小题,共75分.16.(12分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析:(1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧ a =4,b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,故函数有极值点; 当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3(x -1)2≥0,故函数无极值点; 故b 的值为-11.(2)方法一:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立,则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立.∵x ≥0,F (a )在a ∈[-4,+∞)上单调递增或为常数函数,∴得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , 又-3x 2+8x =-3⎝⎛⎭⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163,故b 的最小值为163.方法二:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max . 令F (x )=-3x 2-2ax =-3⎝⎛⎭⎫x +a 32+a 23, ①当a ≥0时,F (x )max =0,于是b ≥0; ②当-4≤a <0时,F (x )max =a 23,于是b ≥a 23.又∵⎝⎛⎭⎫a 23max=163,∴b ≥163.综上,b 的最小值为163.17.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围. 解析:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0,∴b ≥x -3x 2在(-∞,+∞)恒成立.设g (x )=x -3x 2,当x =16时,g (x )max =112,∴b ≥112.(2)由题意,知f ′(1)=0,即3-1+b =0,∴b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2,令f ′(x )=0,得x =1,或x =-23.∵f (1)=-32+c ,f (-23)=2227+c ,f (-1)=12+c ,f (2)=2+c ,∴f (x )max =f (2)=2+c ,∴2+c <c 2,解得c >2,或c <-1,所以c 的取值范围为(-∞,-1)∪(2,+∞). 18.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ).(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 解析:(1)当m =1时,f (x )=2xx 2+1,f (2)=45,又因为f ′(x )=2(x 2+1)-4x 2(x 2+1)2=2-2x 2(x 2+1)2,则f ′(2)=-625.所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0.(2)f ′(x )=2m (x 2+1)-2x (2mx -m 2+1)(x 2+1)2=-2(x -m )(mx +1)(x 2+1)2.令f ′(x )=0,得到x 1=-1m ,x 2=m .∵m >0,∴-1m<m .当x 变化时,f ′(x ),f (x )的变化情况如下表: x ⎝⎛⎭⎫-∞,-1m-1m ⎝⎛⎭⎫-1m ,m m (m ,+∞)f ′(x ) - 0 + 0 - f (x )递减极小值递增极大值递减从而f (x )在区间⎝⎛⎭⎫-∞,-1m ,(m ,+∞)内为减函数,在区间⎝⎛⎭⎫-1m ,m 内为增函数, 故函数f (x )在点x 1=-1m 处取得极小值f ⎝⎛⎭⎫-1m ,且f ⎝⎛⎭⎫-1m =-m 2,函数f (x )在点x 2=m 处取得极大值f (m ),且f (m )=1.19.(13分)已知函数f (x )=⎝⎛⎭⎫a -12x 2+ln x (a ∈R ). (1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.解析:(1)当a =1时,f (x )=12x 2+ln x ,f ′(x )=x +1x =x 2+1x.对于x ∈[1,e]有f ′(x )>0, ∴f (x )在区间[1,e]上为增函数, ∴f (x )max =f (e)=1+e 22,f (x )min =f (1)=12.(2)令g (x )=f (x )-2ax =(a -12)x 2-2ax +ln x ,则g (x )的定义域为(0,+∞).在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立.∵g ′(x )=(2a -1)x -2a +1x =(2a -1)x 2-2ax +1x=(x -1)[(2a -1)x -1]x,①若a >12,令g ′(x )=0,得极值点x 1=1,x 2=12a -1,当x 2>x 1=1,即12<a <1时,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不符合题意;当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不符合题意;②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0,从而g (x )在区间(1,+∞)上是减函数.要使g (x )<0在此区间上恒成立, 只需满足g (1)=-a -12≤0⇒a ≥-12,由此求得a 的取值范围是⎣⎡⎦⎤-12,12. 综上可知,当a ∈⎣⎡⎦⎤-12,12时,函数f (x )的图像恒在直线y =2ax 下方. 20.(13分)已知函数f (x )=ln x +ax 22-bx (a ,b 为常数).(1)若f (x )存在极值,求a ,b 应满足的条件,并求f (x )的极值; (2)当a =1,b >2时,求f (x )的零点个数.解析:(1)由题意知函数的定义域为(0,+∞),f ′(x )=1x +ax -b =ax 2-bx +1x ,令g (x )=ax 2-bx +1,由f (x )存在极值,且g (0)=1,得如下情况:①当a =0时,g (x )=-bx +1,方程g (x )=0必存在一个正的实根,∴x =1b >0,即b >0,所以当0<x <1b 时,g (x )>0,f ′(x )>0,f (x )递增,当x >1b 时,g (x )<0,f ′(x )<0,f (x )递减,这时f (x )仅存在一个根大值为f ⎝⎛⎭⎫1b =-ln b +a2b 2-1; ②当a >0时,抛物线g (x )=ax 2-bx +1的开口方向向上,方程g (x )=0必存在两个不相等的正根,∴⎩⎪⎨⎪⎧Δ=b 2-4a >0,b 2a >0,得⎩⎪⎨⎪⎧b 2>4a ,b >0,即b >2a .解方程g (x )=0,得x 1=b -b 2-4a 2a,x 2=b +b 2-4a2a,当0<x <b -b 2-4a 2a 或x >b +b 2-4a 2a 时,g (x )>0,f ′(x )>0,f (x )递增,当b -b 2-4a2a<x <b +b 2-4a2a时,g (x )<0,f ′(x )<0,f (x )递减,所以f (x )存在一个极大值为f ⎝ ⎛⎭⎪⎫b -b 2-4a 2a =ln b -b 2-4a 2a -b 2+2a -b b 2-4a 4a , f (x )存在一个极小值为f ⎝ ⎛⎭⎪⎫b +b 2-4a 2a =ln b +b 2-4a 2a -b 2+2a +b b 2-4a 4a ; ③当a <0时,抛物线g (x )=ax 2-bx +1的开口方向向下,又g (0)=1,方程g (x )=0必存在一个负实根与一个正实根,且正实根为x 1=b -b 2-4a2a,这时f (x )存在一个极大值为f ⎝ ⎛⎭⎪⎫b -b 2-4a 2a =ln b -b 2-4a 2a -b 2+2a -b b 2-4a 4a ; 综上,当a =0,b >0时,f (x )仅存在一个极大值为 f ⎝⎛⎭⎫1b =-ln b +a22b 2-1; 当a >0,b >2a 时,f (x )的极大值为f ⎝ ⎛⎭⎪⎫b -b 2-4a 2a =ln b -b 2-4a 2a -b 2+2a -b b 2-4a 4a ,f (x )的极小值为f ⎝ ⎛⎭⎪⎫b +b 2-4a 2a =ln b +b 2-4a 2a -b 2+2a +b b 2-4a4a;。
(北师大版)深圳市高中数学选修2-2第三章《导数应用》测试题(含答案解析)
一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫ ⎪⎝⎭3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭6.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<7.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤8.内接于半径为R 的球且体积最大的圆柱体的高为( )ABCD9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 10.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<11.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A.⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C.2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦12.已知函数()3242xxf x x x e e =-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____. 14.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.函数()f x 在(0,+∞)上有定义,对于给定的正数K ,定义函数()()()(),,K f x f x K f x K f x K⎧≤⎪=⎨>⎪⎩,取函数()2253ln 2f x x x x =-,若对任意x ∈(0,+∞),恒有()()K f x f x =,则K 的最小值为______.17.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.18.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____. 19.已知函数2()2ln af x x x =+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.20.已知()3226f x x x a =-+(a 为常数)在[]22-,上有最小值3,则()f x 在[]22-,上的最大值为______三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数()()2ln 0,1xf x a x x a a a =+->≠.(1)求函数()f x 的单调增区间;(2)若存在[]12,1,1x x ∈-,使得()()121f x f x e -≥-(e 是自然对数的底数),求a 的取值范围.23.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围.24.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.25.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+; (Ⅱ)34<()f x 32≤. 26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.A解析:A 【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解. 【详解】 由题意得2ln x xa x +=有两个零点2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x xa x+=在(0,1)上为增函数, 可得),(1a ∈-∞,当(1,),()0,0x g x a ∈+∞<<',2ln x xa x+=在(1,)+∞上单调递减, 可得(0,1)∈a , 即要2ln x xa x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A 【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-,因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.7.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减. 故()max V h V ⎫=⎪⎪⎝⎭.即当h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=,若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.11.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得x =,列表如下:2()2max22f x ⎛=-= ⎝⎭3a ∴≥a ≥.综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题 解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭则1,1a a ≥-≥- 故答案为:[)1,-+∞ 【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4) 【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论. 【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦,所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误; 对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解; 令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4). 【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】根据题意利用导数求出函数的最大值即可【详解】由得当时函数单调递减当时函数单调递增所以函数的最大值为:即所以要想恒有只需所以的最小值为故答案为:【点睛】本题考查了利用导数求函数最大值问题考查了解析:2332e【分析】根据题意,利用导数求出函数()2253ln 2f x x x x =-的最大值即可. 【详解】 由()2253ln 2f x x x x =-得()()213ln f x x x '=-, 当13x e >时,()0f x '<,函数()f x 单调递减, 当130x e <<时,()0f x '>,函数()f x 单调递增,所以函数()y f x =的最大值为:231332e f e ⎛⎫= ⎪⎝⎭,即()2332f x e ≤,所以要想恒有()()K f x f x =,只需2332K e ≥,所以K 的最小值为2332e .故答案为:2332e【点睛】本题考查了利用导数求函数最大值问题,考查了学生的数学阅读和运算求解能力.17.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤ 【分析】①通过导数研究函数的单调性可得结论正确; ②利用导数可知函数为增函数,函数最多一个零点; ③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围. 【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的. 故答案为:①③⑤ 【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥, ∴a 的取值范围为[),e +∞. 故答案为:[),e +∞. 【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.43【分析】通过函数的导数可判断出在上单调递增在上单调递减比较和的大小从而可得在上的最小值再结合已知其最小值为3即可求出的值进而可求出函数在上的最大值【详解】因为所以当时;当时所以函数在上单调递增在解析:43 【分析】通过函数()f x 的导数可判断出()f x 在(2,0)-上单调递增,在(0,2)上单调递减,比较(2)f -和(2)f 的大小,从而可得()f x 在[2,2]-上的最小值,再结合已知其最小值为3,即可求出a 的值,进而可求出函数()f x 在[2,2]-上的最大值.【详解】因为32()26f x x x a =-+,所以2()6126(2)f x x x x x '=-=-, 当(2,0)x ∈-时,()0f x '>;当(0,2)x ∈时,()0f x '<, 所以函数()f x 在(2,0)-上单调递增,在(0,2)上单调递减, 所以()f x 的最大值为(0)f a =,又(2)40f a -=-+,(2)8f a =-+,因为(8)(40)320a a -+--+=>, 所以408a a -+<-+,所以()f x 在[2,2]-上的最小值为(2)403f a -=-+=, 所以43a =,所以()f x 的最大值为(0)43f =. 故答案为:43 【点睛】本题考查利用导数求闭区间上的函数最值问题.一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,最值必在端点处或极值点处取得.三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫-- ⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解. (Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解.【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>, 所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,,即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,, 解得2x ≥或12x <<, 所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭,故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)()0,∞+(2)[)10,,a e e ⎛⎤∈+∞ ⎥⎝⎦【解析】试题分析:(1)先求原函数的导数得:f'(x )=()ln 2ln 21ln x xa a x a x a a +-=+-,再对a 进行讨论,得到f'(x )>0,从而函数f (x )在(0,+∞)上单调递增.(2)f (x )的最大值减去f (x )的最小值大于或等于e ﹣1,由单调性知,f (x )的最大值是f (1)或f (﹣1),最小值f (0)=1,由f (1)﹣f (﹣1)的单调性,判断f (1)与f (﹣1)的大小关系,再由f (x )的最大值减去最小值f (0)大于或等于e ﹣1求出a 的取值范围. 试题(1)由于()()ln 2ln 21ln 0x xf x a a x a x a a =+'-=+->,1° 当1,2a y x >=单调递增,ln 0a >,所以()1ln xy a a =-单调递增, 故()21ln xy x a a =+-单调递增,∴()()21ln 201ln 0x x a a a a +->⨯+-=,即()()0f x f '>',所以0x >,故函数()f x 在()0,+∞上单调递增;2° 当01,2a y x <<=单调递增,ln 0a <,所以()1ln xy a a =-单调递增,故()21ln x y x a a =+-单调递增,∴()()21ln 201ln 0x x a a a a +->⨯+-=,即()()0f x f '>',所以0x >,故函数()f x 在()0,+∞上单调递增;综上,函数()f x 的单调增区间为()0,+∞. (2)因为存在[]12,1,1x x ∈-,使得()()121f x f x e -≥-, 所以当[]1,1x ∈-时,()()()()()()()()maxmin max min 1f x f x f x f x e -=-≥-,由(1)知,()f x 在[]10-,上递减,在[]0,1上递增, 所以当[]1,1x ∈-时()()()()()()(){}minmax01,max 1,1f x f f x f f ===-,而()()()11111ln 1ln 2ln f f a a a a a a a ⎛⎫--=+--++=-- ⎪⎝⎭, 记()()12ln 0g t t t t t =-->,因为()22121110g t t t t ⎛⎫=+-=-≥ ⎪⎝⎭'(当2t =时取等号),所以()12ln g t t t t=--在()0,t ∈+∞上单调递增,而()10g =.1° 当1a >时,()0g a >, ∴()()11f f >-, ∴当1a >时,()()101f f e -≥-, 即ln 1a a e -≥-,易知:ln y a a =-,在()1,a ∈+∞上递增, ∴a e ≥. 2° 当01a <<时,()0g a <, ∴()()()()111,101,ln 1f f f f e a e a<---≥-+≥-, 易知1ln y a a =+在()0,1a ∈上递减, ∴10,a e ⎛⎤∈ ⎥⎝⎦,综上:[)10,,a e e ⎛⎤∈⋃+∞ ⎥⎝⎦. 23.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-.∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =,结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 24.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.25.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析. 【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题(Ⅰ)因为44231()11,1()1x x x x x x x----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+, 所以2()1.f x x x ≥-+ (Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤. 由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >. 综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤. 26.(1)0b =(2)63a -≤≤- 【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可. (2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可. 【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值, 所以()0f x '=,即得0b =;经检验可知:b =0符合题意. (2)令(0)0f '=,即2320x ax +=, 解得0x =或23x a =-. 依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-. 【点睛】本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(4)
一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .⎫+∞⎪⎪⎝⎭D .⎛ ⎝⎭3.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫ ⎪⎝⎭4.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152B .有最大值152C .有最小值152-D .有最大值152-5.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2 B .3C .4D .56.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( )A .2(,]e-∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞9.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 10.若函数2()x f x mx e -=-+恰有两个不同的零点,则实数m 的取值范围为( ) A .1,1e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .(1,)eD .(,)e +∞11.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭ 12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.14.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________15.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.16.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.17.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____. 18.设函数()21ln 12f x x x bx =+-+(b 为常数),若函数()f x 在[]1,3上存在单调减区间,则实数b 的取值范围是______.19.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.20.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.三、解答题21.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.22.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值.23.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.24.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x≥-在(]0,1x ∈内恒成立,求t 的取值范围. 25.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.A解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =->有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x -'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.A解析:A【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解. 【详解】 由题意得2ln x xa x +=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x xa x +=在(0,1)上为增函数, 可得),(1a ∈-∞,当(1,),()0,0x g x a ∈+∞<<',2ln x xa x+=在(1,)+∞上单调递减, 可得(0,1)∈a , 即要2ln x xa x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A 【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c ≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.5.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.6.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.9.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .10.B解析:B 【分析】根据题意,得到方程有两不等实根,构造函数2()x e g x x-=,0x ≠,对其求导,判定函数单调性,求出极值,画出函数大致图像,结合图像,即可得出结果. 【详解】显然,0x =不是函数()f x 的零点,令2()0x f x mx e-=-+=,得2x e m x-=, 构造函数2()x e g x x -=,0x ≠,则22(1)()x e x g x x --'=,令()0g x '>得到1x >,令()0g x '<得到1x <且0x ≠,即函数2()x e g x x -=在(),0-∞上单调递减,在()0,1上单调递减,在()1,+∞上单调递增;所以函数2()x e g x x-=有极小值1(1)g e =;画出函数()g x 的图象,如图所示,由图像可知,当0m ≤时,直线y m =与()g x 的图象不可能有两个交点, 当0m >,只需1m e>,()g x 的图象与直线y m =即有两个不同的交点, 即函数2()x f x mx e -=-+恰有两个不同的零点, ∴m 的取值范围为1,e⎛⎫+∞ ⎪⎝⎭.故选:B. 【点睛】本题主要考查导数的方法研究函数的零点,利用数形结合的方法即可求解,属于常考题型.11.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =, 故()()1g x g >,解得:1x >, 故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.14.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.15.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.16.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值.【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.17.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围. 【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnxf x x -=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.18.【分析】根据题意将函数在上存在单调减区间转化为在上有解则只需:只需在内即可结合基本不等式即可求出的取值范围【详解】解:由题意知:在上存在单调减区间在上有解即在上有解即在上有解只需在内即可当且仅当时取 解析:()2,+∞【分析】根据题意,将函数()f x 在[]1,3上存在单调减区间,转化为()0f x '<在[]1,3上有解,则只需:只需在[]1,3内min1b x x ⎛⎫>+ ⎪⎝⎭即可,结合基本不等式,即可求出b 的取值范围. 【详解】解:由题意知:()()21ln 102f x x x bx x =+-+>, ()211x bx f x x b x x-+'∴=+-=, ()f x 在[]1,3上存在单调减区间,()0f x '∴<在[]1,3上有解,即10x b x+-<在[]1,3上有解,即1>+b x x 在[]1,3上有解,只需在[]1,3内,min1b x x ⎛⎫>+ ⎪⎝⎭即可,0x,12x x∴+≥,当且仅当1x=时取得最小值2,即在在[]1,3内min12x x ⎛⎫+= ⎪⎝⎭,所以:2b >,则b 的取值范围是:()2,+∞. 故答案为:()2,+∞. 【点睛】本题考查导数的应用,以及基本不等式的应用,考查转化思想和计算能力.19.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m 的取值范围.【详解】当0x >时,2ln ()xf x x '=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →;作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<;故答案为:1(0,)2. 【点睛】本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.20.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->, ∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增,而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2. 故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.三、解答题21.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r -=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<.所以()()2222229002900900900S x x x x x x =-=-+-=. 当且仅当22900x x =-,即152x =时,S 取最大值为2900cm . 所以,取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r -=所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V .取BC 为时,做出的圆柱形罐子体积最大,最大值为3cm π.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围.22.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;23.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln am x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -,直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a-=,解得2a =-. (2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x'='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln ax a x x x +<-. 整理得0001ln 0ax a x x +-+<. 构造函数1()ln am x x a x x+=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值. 令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减,只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题. 24.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可.(2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x--+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减, 所以当1x =时,312ln ()xh x x x x=+-有最小值2, 得22t ≤,所以1t ≤, 故t 的取值范围是(],1-∞, 【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 25.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案.【详解】(1)由题意,得21()(0)kf x x x x'=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题. 26.(1)0b =(2)63a -≤≤- 【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可. (2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可. 【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值, 所以()0f x '=,即得0b =;经检验可知:b =0符合题意. (2)令(0)0f '=,即2320x ax +=, 解得0x =或23x a =-. 依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-. 【点睛】本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。
新教材高中数学北师大版选修2-2 第3章 单元综合检测 Word版含解析
(新教材)北师大版精品数学资料第三章 单元综合检测(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1. [2014·山东师大附中月考]函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:f ′(x )=e x +(x -3)e x =(x -2)e x .由f ′(x )>0,得x >2,即f (x )的单调递增区间为(2,+∞),故选D.答案:D2. 当x ≠0时,以下不等式成立的是( ) A .e x <1+xB .当x >0时e x <1+x ,当x <0时,e x >1+xC .e x >1+xD .当x <0时e x <1+x ,当x >0时e x >1+x解析:构造f (x )=e x -x -1,则f ′(x )=e x -1.当x <0时,f ′(x )<0,函数f (x )单调递减,f (x )>f (0)=0,即x <0时,e x >x +1;当x >0时,f ′(x )>0,函数f (x )单调递增,f (x )>f (0)=0,即x >0时,e x >x +1,故选C.答案:C3. 函数f (x )=ln x -12x 2的图像大致是( )解析:函数f (x )的定义域为{x |x >0},f (x )的导数为f ′(x )=1x -x =1-x 2x .由f ′(x )=1-x 2x >0,得0<x <1,即函数f (x )的递增区间为(0,1);由f ′(x )=1-x 2x<0,得x >1,即函数f (x )的递减区间为(1,+∞),所以当x =1时,函数f (x )取得极大值,且f (1)=-12<0,故选B.答案:B4. [2014·课标全国卷Ⅱ]若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:依题意得f ′(x )=k -1x ≥0在(1,+∞)上恒成立,即k ≥1x 在(1,+∞)上恒成立,∵x >1,∴0<1x<1,∴k ≥1,故选D.答案:D5. 定义域为(-∞,0)∪(0,+∞)的偶函数y =f (x )在区间(0,+∞)上的图像如图所示,则不等式f (x )f ′(x )>0的解集是( )A .(-∞,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:y =f (x )的图像如图所示,①当x >0时,f (x )为增函数,所以f ′(x )>0,若f (x )f ′(x )>0,则只需f (x )>0,由图得x ∈(1,+∞);②当x <0时,f (x )为减函数,所以f ′(x )<0,若f (x )f ′(x )>0,则只需f (x )<0,由图得x ∈(-1,0).综上,x ∈(-1,0)∪(1,+∞).故选B.答案:B6. 若函数f (x )=x 2ln x (x >0)的极值点为α,函数g (x )=x ln x 2(x >0)的极值点为β,则有( ) A .α>β B .α<βC .α=βD .α与β的大小不确定解析:∵f (x )=x 2ln x (x >0),∴f ′(x )=x (2ln x +1), 令f ′(x )=0,得α=1e;∵g (x )=x ln x 2(x >0), ∴g ′(x )=2(ln x +1),令g ′(x )=0,得β=1e ,因此α>β,故选A.答案:A7. [2014·河南省南阳市检测]函数f (x )=13x 3-x 2+x +a 的极值点的个数为( )A .0B .1C .2D .与a 的取值有关解析:f ′(x )=x 2-2x +1,显然f ′(x )=(x -1)2≥0恒成立,∴f (x )在R 上单调递增,∴函数f (x )无极值点,故选A.答案:A8. 已知在正四棱锥S -ABCD 中,SA =23,那么当该棱锥的体积最大时,它的高为( )A .1B . 3C .2D .3 解析:设底面边长为a ,则高h = SA 2-(22a )2= 12-12a 2,所以体积V =13a 2h =1312a 4-12a 6. 设y =12a 4-12a 6(a >0),则y ′=48a 3-3a 5,当y 取极值时,y ′=0,解得a=0(舍去),a =-4(舍去)或a =4,故a =4时体积最大,此时h =12-12a 2=2.故选C.答案:C9. 如图,某农场要修建3个一样的鱼塘,每个面积为10000 m 2,鱼塘前面要留4 m 的运料通道,其余各边为2 m 宽的堤埂,则占地面积最少时,每个鱼塘的长、宽分别为( )A .102 m 、500051 mB .150 m 、66 mC .100 m 、100 mD .150 m 、2003m解析:设鱼塘的宽为x m 、长为y m ,依题意得xy =10000.设占地面积为S m 2,则S =(3x +8)(y +6)=18x +80000x +30048,令S ′=18-80000x 2=0,取正根得x =2003,此时y =150.故选D.答案:D10. [2014·辽宁高考]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]解析:当x =0时,3≥0恒成立,a ∈R . 当0<x ≤1时,a ≥x 2-4x -3x 3.设h (x )=x 2-4x -3x 3,则h ′(x )=-(x 2-8x -9)x 4=-(x -9)(x +1)x 4,∵x ∈(0,1],∴h ′(x )>0,h (x )递增, ∴h (x )max =h (1)=-6, ∴a ≥-6.当-2≤x <0时,a ≤x 2-4x -3x 3.易知h (x )=x 2-4x -3x 3在[-2,-1)上递减,在(-1,0)上递增.∴h (x )min =h (-1)=-2,∴a ≤-2. 综上,-6≤a ≤-2,故选C. 答案:C11. 若函数f (x )=ax 3-x 在区间(-∞,+∞)内是减函数,则( ) A .a ≤0 B .a <1 C .a =2D .a =13解析:f ′(x )=3ax 2-1,由f ′(x )=3ax 2-1≤0在(-∞,+∞)内恒成立,得a ≤0.故选A.答案:A12. 设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)解析:易知f ′(-2)=0,f ′(2)=0.当x ∈(-∞,-2)时,由图可知x ·f ′(x )<0,∴f ′(x )>0,即当x ∈(-∞,-2)时f (x )为增函数;当x ∈(-2,0)时,由图可知x ·f ′(x )>0,∴f ′(x )<0,当x ∈(0,2)时,由图可知x ·f ′(x )<0,∴f ′(x )<0,即当x ∈(-2,2)时f (x )为减函数;当x ∈(2,+∞)时,由图可知x ·f ′(x )>0,∴f ′(x )>0,即当x ∈(2,+∞)时f (x )为增函数.故f (x )的极大值与极小值分别是f (-2)与f (2).故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分)13. [2014·广东省北江中学期中考试]函数f (x )=e x cos x ,则f ⎝⎛⎭⎫π6与f ⎝⎛⎭⎫π5的大小关系为________.解析:∵f ′(x )=e x (cos x -sin x ),∴[0,π4]是函数f (x )的一个单调递增区间,又0<π6<π5<π4,∴f (π6)<f (π5). 答案:f (π6)<f (π5)14. [2014·甘肃省兰州一中月考]当a ∈________时,函数f (x )=e x (x 2+ax +a +1)没有极值点.解析:由已知可得f ′(x )=e x (x 2+ax +a +1)+e x (2x +a )=e x [x 2+(a +2)x +2a +1],若函数不存在极值点,则对方程f ′(x )=0,即x 2+(a +2)x +2a +1=0有Δ=(a +2)2-4(2a +1)=a 2-4a ≤0,解得0≤a ≤4.答案:[0,4]15. 直线y =a 与函数f (x )=x 3-3x 的图像有相异的三个公共点,则a 的取值范围是________.解析:令f ′(x )=3x 2-3=0,得x =±1,可得极大值为f (-1)=2,极小值为f (1)=-2,大致画出f (x )的图像,如图所示,观察得当-2<a <2时恰有三个不同的公共点.答案:(-2,2)16. 已知函数f (x )=-x 3+ax 2+bx +c 在(-∞,0)上是减函数,在(0,1)上是增函数,函数f (x )在R 上有三个零点,且1是其中一个零点,则f (2)的取值范围是________.解析:f ′(x )=-3x 2+2ax +b ,由题意知x =0为函数f (x )的极值点,∴f ′(0)=b =0.又∵f (1)=-1+a +b +c =0,∴c =1-a ,∴f (x )=-x 3+ax 2+1-a ,且当x →-∞时,f (x )>0;当x →+∞时,f (x )<0.又∵f (x )在R 上有三个零点,∴只需⎩⎪⎨⎪⎧f (0)<0,f ′(1)>0,解得a >32,∴f (2)=-7+3a >-52. 答案:(-52,+∞)三、解答题(本大题共6小题,共70分)17.(10分)已知f (x )=⎩⎪⎨⎪⎧x 2-a (ln x -1)(0<x <e )x 2+a (ln x -1)(x ≥e ),其中a ∈R .当a =-2时,求函数f (x )在区间[e ,e 2]上的单调性.解: 当a =-2,x ∈[e ,e 2]时,f (x )=x 2-2ln x +2, ∴f ′(x )=2x -2x ,∴当x ∈[e ,e 2]时,f ′(x )>0,∴函数f (x )在[e ,e 2]上单调递增.18.(12分)已知函数f (x )=mx 3+nx 2在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,求实数t 的取值范围.解: 由题意可知,⎩⎪⎨⎪⎧f ′(-1)=-3f (-1)=2,所以⎩⎪⎨⎪⎧3m -2n =-3-m +n =2,解得⎩⎪⎨⎪⎧m =1n =3, 所以f (x )=x 3+3x 2.由f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,故f (x )在[-2,0]上单调递减,故有[t ,t +1]⊂[-2,0],即-2≤t <t +1≤0, 解得-2≤t ≤-1,所以t 的取值范围为[-2,-1].19.(12分)[2014·开封一模]已知函数f (x )=x ln x .(1)函数g (x )=-ax +f (x )在区间[1,e 2]上不单调,求a 的取值范围; (2)若k ∈Z ,且f (x )+x -k (x -1)>0对x >1恒成立,求k 的最大值. 解: (1)g ′(x )=-a +1+ln x (x >0)在(0,+∞)上单调递增,依题只需⎩⎪⎨⎪⎧g ′(1)=-a +1<0g ′(e 2)=-a +3>0, 解得1<a <3,∴a 的取值范围为(1,3). (2)f (x )+x -k (x -1)>0对x >1恒成立,即k <x ln x +x x -1对x >1恒成立,记h (x )=x ln x +xx -1(x >1),则h ′(x )=x -ln x -2(x -1)2.记u (x )=x -ln x -2,则u ′(x )=1-1x ,当x >1时,u ′(x )>0,∴u (x )在(1,+∞)上为增函数, ∵u (3)=1-ln3<0,u (4)=2-ln4>0, ∴存在x 0∈(3,4)使得u (x 0)=0, 即x 0-ln x 0-2=0,ln x 0=x 0-2. 当1<x <x 0时,u (x )<0,h ′(x )<0; 当x >x 0时,u (x )>0,h ′(x )>0;当x =x 0时,u (x )=0,h ′(x )=0,此时h (x )有最小值, 且[h (x )]min =h (x 0)=x 0ln x 0+x 0x 0-1=x 0(x 0-2)+x 0x 0-1=x 0,只需k <[h (x )]min =x 0∈(3,4), ∵k ∈Z ,∴k 的最大值为3.20.(12分)在半径为R 的圆上取一个圆心角为α(弧度)的扇形卷成圆锥,问α多大时,圆锥的体积最大?解: 如图,设圆锥的底面半径为r ,高为h ,则⎩⎪⎨⎪⎧h 2=R 2-r 2,2πr =αR ,从而圆锥的体积为V =π3r 2R 2-r 2=π3r 4(R 2-r 2),则V ′=π3·4R 2r 3-6r 52r 4(R 2-r 2)=π3·2R 2r 3-3r5r 4(R 2-r 2).令V ′=0,解得r =23R =63R (舍负), ∴V 在(0,R )上有唯一的极值点,所以当r =63R 时,V 取得最大值.此时,α=2πR ·6R3=263π.21.(12分)[2014·重庆高考]已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x=5.因x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.22.(12分)[2014·湖北高考]π为圆周率,e =2.71828…为自然对数的底数. (1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe,3π,π3这6个数中的最大数与最小数.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f′(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π. 故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即lnππ<ln33<lnee.由lnππ<ln33,得lnπ3<ln3π,所以3π>π3;由ln33<lnee,得ln3e<lne3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.。
高中数学北师大版选修2-2练习章末综合测评3 Word版含答案
章末综合测评(三) 导数应用(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).物体运动的方程为=-,则=时的瞬时速度为( )【解析】∵=′=,∴=时的瞬时速度为=.【答案】.函数()=(-)的单调递增区间是( ).(,).(-∞,).(,+∞).(,)【解析】′()=(-),由′()>,得>,所以函数()的单调递增区间是(,+∞).【答案】.函数()=++有极值的充要条件是( )>≥<≤【解析】′()=+,当=时,′()=>,()单调增加,无极值;当≠时,只需Δ=->,即<即可.【答案】.函数()的导函数′()的图像如图所示,那么()的图像最有可能的是( )图【解析】数形结合可得在(-∞,-),(-,+∞)上,′()<,()是减函数;在(-,-)上,′()>,()是增函数,从而得出结论.【答案】.若函数=(-)的递增区间是,,则的取值范围是( ).-<<><<>【解析】依题意得′=(-)>的解集为,,∴>.【答案】.若函数()在上可导,且满足()-′()>,则( )()>()()<()()=()()=()【解析】由于()>′(),′=<恒成立,因此在上是单调递减函数,∴<,即()>(),故选.【答案】.若函数()=-+++在区间上的最大值为,则它在该区间上的最小值为( ).-.-【解析】∵()′=-++=-(+)(-),所以函数在内单调递减,所以最大值为(-)=+=,∴=,最小值为(-)=-=-.【答案】.函数=-的图像大致是( )【解析】因为′=-,所以令′=- >,得 <,此时原函数是增函数;令′=- <,得 >,此时原函数是减函数,结合余弦函数图像,可得选项正确.【答案】.若()=-+(+)在(-,+∞)上是减函数,则的取值范围是( )【导学号:】。
北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(答案解析)
一、选择题1.已知函数()3sin f x x x ax =+-,则下列结论错误的是( )A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点 2.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( ) A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞5.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( )A .1(0,)eB .(0,1]eC .1(2D .1(26.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .57.以下不等式不成立的是( )A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞8.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<9.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)10.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞11.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .12.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .32⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .322,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦二、填空题13.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.14.已知()(sin )xf x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.若函数的()1,2ln ,x m x ef x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.17.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.18.如图,等腰直角ABC 底边4BC =,E 为BC 上异于B ,C 的一个动点,点F 在AB 上,且EF BC ⊥,现将BEF 沿EF 折起到B EF '的位置,则四棱锥B AFEC '-体积的最大值为___________.19.若函数()2122f x x x aInx =-+有两个不同的极值点,则实数a 的取值范围是__________.20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.函数()21xf x xe x =-+.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()()ln g x f x x x m =-+-的零点个数. 22.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 23.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围.24.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 25.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性.(2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;26.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 2.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件.故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x-+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.5.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.6.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.7.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1x f x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.8.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.9.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=,当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.10.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.11.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.12.A解析:A【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围.【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立.①当0x =时,则有10≥恒成立,此时a R ∈;②当10x -≤<时,由3310x ax ++≥可得213a x x ≤--, 令()21f x x x =--,()32211220x f x x x x -'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得2x =,列表如下:2()2max 22f x ⎛=-= ⎝⎭3a ∴≥a ≥. 综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根 解析:814,16⎛⎫ ⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可.【详解】因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax b f x x a x x++'=++=, 设()2g x x ax b =++, 因为函数()f x 在()1,2上存在两个极值点,所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,所以根据韦达定理有:1212x x a x x b +=-⎧⎨⋅=⎩, 故()23939b a b b ab b ++=++ ()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈, 所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 由于12x x ≠,所以()()22112281334,16x x x x ⎛⎫--∈ ⎪⎝⎭. 故答案为:814,16⎛⎫ ⎪⎝⎭. 【点睛】 思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 4x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x e f x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞.于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e -. 故答案为:312e -. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.17.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】 由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭, 当102x <<时,0V '>,1322x <<时,0V '<, 所以当12x =时,V 取得最大值,最大值为2. 故答案为:2【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题. 18.【分析】设则设根据四棱锥的体积公式可求得四棱锥体积为利用正弦函数的最大值以及导数求得的最大值可得结果【详解】设则设则四棱锥的高四边形的面积为则四棱锥体积为当且仅当时取等号令则令得令得所以函数在上递增【分析】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,根据四棱锥的体积公式可求得四棱锥B AFEC '-体积为31sin (8)6x x θ-,利用正弦函数的最大值以及导数求得31(8)(04)6y x x x =-<<的最大值可得结果. 【详解】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,则四棱锥B AFEC '-的高sin sin h B E x θθ'==,四边形AFEC 的面积为22111424222x x ⨯⨯-=-, 则四棱锥B AFEC '-体积为211sin (4)32x x θ⨯-3311sin (8)(8)66x x x x θ=-≤-,当且仅当sin 1θ=,2πθ=时取等号, 令31(8)(04)6y x x x =-<<,则21(83)6y x '=-,令0y '>,得0x <<0y '<4x <<,所以函数31(8)(04)6y x x x =-<<在上递增,在上递减,所以当x =31(8)6y x x =-所以当,23x πθ==时,四棱锥B AFEC '-【点睛】本题考查了棱锥的体积公式,考查了正弦函数的最值,考查了利用导数求函数的最值,属于中档题.19.【分析】对函数求导要满足题意只需导函数在定义域内有两个零点数形结合即可求得【详解】由可得函数定义域为且若满足有两个不同的极值点则需要满足有两个不同的实数根即在区间上有两个不同的实数根也即直线与函数有 解析:()0,1【分析】对函数求导,要满足题意,只需导函数在定义域内有两个零点,数形结合即可求得.【详解】由()2122f x x x aInx =-+可得函数定义域为()0,∞+且()2a f x x x=+-' 若满足()f x 有两个不同的极值点,则需要满足()20a f x x x=-'+=有两个不同的实数根, 即22a x x =-+在区间()0,∞+上有两个不同的实数根,也即直线y a =与函数()22,0,y x x x =-+∈+∞有两个交点,在直角坐标系中作图如下:数形结合可知,故要满足题意,只需()0,1a ∈.故答案为:()0,1.【点睛】本题考查由函数极值点的个数,求参数范围的问题,属基础题;本题也可转化为二次函数在区间()0,∞+上有两个实数根,从而根据二次函数根的分布进行求解.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭ 故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)1y x =-+;(2)答案见解析.【分析】(1)利用导数求出函数()f x 在0x =处的切线的斜率,并求出切点的坐标,利用点斜式可求得所求切线的方程;(2)令()()ln ln 1xh x f x x xe x x =-=--+,则问题转化为直线y m =与函数()y h x =的图象的交点个数,利用导数分析函数()h x 的单调性与极值,数形结合可得出直线y m =与函数()y h x =的图象的交点个数,由此可得出结论.【详解】(1)因为()()12xf x x e '=+-,所以()01f '=-, 又()01f =,切点坐标为()0,1,所以函数()f x 在0x =处的切线方程为:1y x =-+;(2)构造函数()()()ln ln 10xh x f x x x xe x x x =-+=--+> 则()()()()11111x xx xe h x x e x x +-'=+--=, 令()1x m x xe =-,()()10xm x x e '=+>,则()m x 在()0,∞+单调递增,且1102m ⎛⎫=-< ⎪⎝⎭,()110m e =->, 所以存在0,112x ⎛⎫∈⎪⎝⎭,使得()00m x =,即001x e x =,从而00ln x x =-. 所以当()00,x x ∈时,()0m x <,即()0h x '<,则()h x 单调递减;当()0,x x ∈+∞时,()0m x >,即()0h x '>,则()h x 单调递增.所以()()00000000min 01ln 112x h x h x x e x x x x x x ==--+=⋅-++=,如下图所示:所以当2m <时,()g x 没有零点;当2m =时,()g x 有1个零点;当2m >时,()g x 有2个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析.【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立.【详解】(1)函数()x f x e x =-的定义域为R ,且()1x f x e '=-. 令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--,当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-; (2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.23.(1)详见解析;(2)[1,)-+∞.【分析】(1)对函数求导[]()(2)121()a x x f x x -+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可.【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+, 则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增, 当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减; (2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立, 则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x -=+,则()()()()22211ln x x x g x x x +-+-'=+,令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<,所以当1x =时,()g x 取得最大值1-,所以1a ≥-,所以实数a 的取值范围是[1,)-+∞.【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论..2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果;(2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域. 【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =.∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f =-+>,即0>,而0>恒成立,∴0b >.所以实数b 的取值范围为()0,∞+.(2)()22f x x ax b '=-++, 由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩ 当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-, 令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符.当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤;令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =.又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减.又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】思路点睛: 导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 25.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.26.(1)1,1a b ==;(2)证明见解析.【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立.【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+, ()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭, 即1y bx =+,∵两条切线重合.∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-.易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减,当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增.∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到.∴不等式()()f x g x >恒成立.【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题.。
数学北师大版高中选修2-2北师大版高二数学选修2-2第三章导数应用单元测试
试卷第1页,总2页分宜中学2011-2012学年度下学期高二年级第十次周练数 学 试 卷考试范围:函数求导;考试时间:2012.5.8;命题人:张振瀛一、选择题(每题5分,共40分)1.函数1)(3++=x ax x f 有极值的充要条件是( )A .0≥aB .0>aC .0≤aD .0<a2.设函数)cos (sin )(x x e x f x -=,若π20120≤≤x ,则函数)(x f 的各极大值之和为( )3.若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围是( )A .3113<<-<<-k k 或B .3113≥≤≤--≤k k k 或或C .22<<-kD .不存在这样的实数k4.)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,0)()()()(<'+'x g x f x g x f且0)()(,0)2(<=-x g x f f 则不等式的解集为A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2)5.以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A .①、②B .①、③C .③、④D .①、④6.设a R ∈,函数()x x f x e a e -=+⋅的导函数是'()f x ,且'()f x 是奇函数。
若曲线()y f x =的) A.ln 2 B.ln 2- C.7) 8 )二、填空题(每题4分,共20分)9.已知函数)(x f 的导函数为)(x f ',且x f x x f ln )1(2)(+'=,则)1('f = 。
10.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是 。
(北师大版)南京市高中数学选修2-2第三章《导数应用》测试卷(有答案解析)
一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( )A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫-- ⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( )A .1a e<B .0a <C .0a ≤D .10a e<<3.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( )A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭ B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>4.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤ D .35a <≤5.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .6.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2eD .1(2e7.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭8.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x xx x x ⎛⎫<<⎪⎝⎭9.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab的值为( ) A .23-B .23或2 C .2D .13-10.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )A.8B.2C.4D.311.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知函数()ln (1)=+-f x x a x ,当()f x 有最大值,且最大值大于22a -时,则a 的取值范围是__________.14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.若函数的()1,2ln ,x m x ef x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.16.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 17.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.18.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________.19.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.20.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 23.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.24.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值.25.设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的极值. 26.已知函数()ln ()af x x a R x=+∈.(1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-,则12x -=,12x =;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.D解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.3.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.4.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.5.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.7.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.8.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选. 考点:1、导数在研究函数的单调性中的应用.9.A解析:A【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可. 【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩, 当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足.故6293a b -==-. 故选:A.【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.10.C解析:C【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】 3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =, 又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数; 若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()f x =min ()f x =,当且仅当1sin 4cos x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos x x ⎧=-⎪⎪⎨⎪=⎪⎩故M ≥M的最小值4. 故选:C.【点睛】 本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.11.B解析:B【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解.【详解】构造()()g x f x x =+,则()()1g x f x ''=+,又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=,所以()(1)g e g <,即()0f e e +<,所以()f e e <-.故选:B【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.D解析:D【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2a x =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2a x =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <, 综上:a 的取值范围为28a <<故选:D【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【解析】的定义域为∴若则∴函数在上单调递增在上无最大值;若则当时当时所以在上单调递增在上单调递减故在取得最大值最大值为∵∴令∵在单调递增∴当时当时∴的取值范围为故答案为点睛:本题考查了导数与函数的单 解析:(0,1)【解析】()()ln 1f x x a x =+-的定义域为∞(0,+), ∴11ax f x a x x-'=-=(), 若0a ≤,则()0f x '>,∴函数()f x 在∞(0,+)上单调递增,()f x 在∞(0,+)上无最大值;若0a >,则当10x a ∈(,)时,()0f x '>,当1x a ∈+∞(,)时,()0f x '<,所以()f x 在10a (,)上单调递增,在1a +∞(,)上单调递减,故()f x 在1x a=取得最大值,最大值为11f lna a a =-+-(),∵122f a a ⎛⎫>- ⎪⎝⎭,∴10lna a +-<,令()1g a lna a =+-,∵()g a 在∞(0,+)单调递增,0g =(1), ∴当01a <<时,()0g a <,当1a >时,()0>g a ,∴a 的取值范围为()0,1,故答案为()0,1.点睛:本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题;先求导,再分类讨论,根据导数即可判断函数的单调性,根据单调性求出函数的最大值,再构造函数()1g a lna a =+-,根据函数的单调性即可求出a 的范围.14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称, ()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x e f x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭ [)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e -. 故答案为:312e -.【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.16.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛 解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值,则42R H l +=22l H R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=-令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-=60l R ∴-=6l R ∴=当6l R >时,(6)0V R l R π'=-< 当6l R <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-= 故答案为:3216l π. 【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.17.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值.【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->, 则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭. 也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】 本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题. 18.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【 解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围.【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+, 令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e≥,当()0g x '<,即ln 10x +<,解得10x e <<所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤- 故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.19.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e-=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案. 【详解】由()()12f x g x m ==,即1x e m ==且0m >. 所以212ln ,m x m x e ==,则221ln m x x m e-=- 设函数()2ln x h x x e =-,则()2212x e h x x e x ex-'=-=.令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x 在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x 的最小值为11ln 222e h e =⨯-=.所以21x x -的最小值为ln 22 故答案为:ln 22【点睛】 本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题.20.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫--⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解. (Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解. 【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>,所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,, 即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,, 解得2x ≥或12x <<,所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭, 故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22xx x x -++<-;只要证3222213ln 22x x x x --+<-; 2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理.23.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003π.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<. 所以()()2222229002900900900S x x xx x x =-=-+-=.当且仅当22900x x =-,即152x =时,S 取最大值为2900cm .所以,取BC 为时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由2AB r π==,得r =所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V .取BC 为3.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围.24.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ; 当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<; 25.(1)12b =-;(2)()f x 的极大值是21,极小值是6-. 【解析】试题分析:(1)先对()f x 求导,()f x 的导数为二次函数,由对称性可求得a ,再由()10f '=即可求出b ;(2)对()f x 求导,分别令()f x '大于0和小于0,即可解出()f x 的单调区间,继而确定函数的极值.试题(1)因()3221f x x ax bx =+++,故()2'62f x x ax b =++,从而()22'666a a f x x b ⎛⎫=++-⎪⎝⎭,即()'y f x =关于直线6a x =-对称,从而由条件可知162a -=-,解得3a =,又由于()'0f x =,即620a b ++=解得12b =-.(2)由(1)知()()()()32223121,'6612612f x x x x f x x x x x =+-+=+-=-+.令()'0f x =,得1x =或2x =-,当(),2x ∈-∞-时,()()'0,f x f x > 在(),2-∞-上是增函数,当()2,1x ∈-时,()()'0,f x f x <在()2,1-上是减函数,当()1,x ∈+∞时,()()'0,f x f x > 在()1,,+∞上是增函数,从而()f x 在2x =-处取到极大值()221f -=, 在1x =处取到极小值()16f =-.考点:利用导数研究函数的单调性;二次函数的性质. 26.(1)见解析;(2),a e =. 【分析】 (1)求得()2x af x x='-,分类讨论,即可求解函数的单调性; (2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解. 【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增 所以()()min ln 12f x f a a ==+=,解得a e = (舍去), 当a e ≥时,由(1)知()f x 在[]1,e 单调递减, 所以()()min ln 12a af x f e e e e==+=+=,解得a e = , 综上所述,a e =. 【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。
北师大版高中数学选修2-2同步练测:第三章3.2导数在实际问题中的应用(含解析)
高中数学学习材料 (灿若寒星 精心整理制作)3.2 导数在实际问题中的应用(选修2-2北师大版)一、选择题(本题共2小题,每小题7分,共14分) 1.在底面直径和高均为a 的圆锥内作一内接圆柱,则该内接圆柱的最大侧面积为( ) A.2πa B.2π4a C.2π3a D.2π2a2.已知正四棱锥的侧棱长为,那么当该棱锥体积最大时,它的高为( )A.1B.C.2D.3 二、填空题(本题共2小题,每小题6分,共12分) 3.周长为20 cm 的矩形,绕一条边所在直线旋转成一个圆柱,则该圆柱体积的最大值为 .4.电动自行车的耗电量y 与速度x 之间的关系为,为使耗电量最小,则其速度应定为_______. 三、解答题(本题共5小题,共74分)5.(14分)某银行准备新设一种定期存款业务,经预测存款量与利率的平方成正比,比例系数为k(k >0),贷款的利率为4.8 %,且银行吸收的存款能全部放贷出去.求:(1)若存款的利率为x,x ∈(0,0.048),试写出存款量g(x)及银行应支付给储户的利息h(x)的函数表达式;(2)存款利率定为多少时,银行可获得最大收益?6.(15分)请你设计一个示意图如下所示的仓库,它的下部形状是高为10 m 的正四棱柱(上、下底面都是正方形,且侧面都垂直于底面),上部形状是侧棱长都为30 m 的四棱锥,试问当四棱锥的高为多少时,仓库的容积最大?建议用时 实际用时满分 实际得分45分钟100分7.(15分)某种新型快艇在某海域匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为:.该海域甲、乙两地相距120千米.(1)当快艇以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当快艇以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少约为多少升?(精确到0.1升)8.(15分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10千米时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每千米的费用总和最小?9.(15分)工厂生产某种电子元件,假设生产一件正品可获利200元;生产一件次品,则损失100元.已知该厂制造电子元件的过程中,次品率P与日产量x的函数关系式是(1)将该产品的日盈利额T(元)表示为日产量x(件)的函数;(2)为获得最大利润,该厂的日产量应定为多少件?D CA BP3.2 导数在实际问题中的应用答题纸得分:___一、选择题题号 1 2答案二、填空题3.___________4.__________三、解答题5.6.7.8.9.3.2 导数在实际问题中的应用答案一、选择题1.B 解析:设圆柱的底面半径为r,由三角形相似的性质得圆柱的高为a-2r,则圆柱的侧面积为当时,2.C 解析:设底面边长为a,则高所以体积设令解得.当时,,函数在区间()上是减函数;当0<a<4时,,函数在区间(0,4)上是增函数.所以当时,函数取得极大值,即为最大值,即此时体积最大,此时二、填空题3.400027π3cm解析:设矩形与旋转轴平行的一边长为,则另一边长为,圆柱的体积为令得(不合题意,舍去).当;当因此当时,圆柱的体积取得极大值,即最大值4.40 解析:由题设知,令>0,解得x>40或x<-1,故函数在上递减,在上递增.故当x=40时,y取得极小值,即为最小值.由此得为使耗电量最小,则其速度应定为40.三、解答题5.解:(1)由题意,存款量g(x)=,银行应支付的利息h(x)=x·g(x)=.(2)设银行可获得收益为y,则y=0.048·,所以y′=0.096 kx-3,令y′=0,即0.096kx-3=0,解得x=0.032(x=0不合题意,舍去).又当x∈(0,0.032)时,y′>0;当x∈(0.032,0.048)时,y′<0,故当x=0.032时,y在(0,0.048)内取得极大值,即最大值,即银行存款利率为3.2%时,银行可获得最大收益.6.解:设四棱锥的高为,底面边长为,则在△P AC中,又在△ABC中,所以仓库的容积所以由当因此,当故当四棱锥的高为10 m时,仓库的容积最大.7.解:(1)当x=40时,快艇从甲地到乙地行驶了=3(小时),耗油量为(升).答:当快艇以40千米/时的速度匀速行驶时,从甲地到乙地要耗油10升.(2)当速度为x千米/时时,快艇从甲地到乙地行驶了小时.设耗油量为h(x)升,依题意得,,令=0,得x=60.当x∈(0,60)时,<0,h(x)是减函数;当x∈(60,120]时,>0,h(x)是增函数.所以当x=60时,.答:当快艇以60千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少约为8.7升.8.解:设轮船速度为x千米/时(x>0),每小时的燃料费用为Q元,则Q=kx3.由6=k×103可得,所以,∴轮船行驶中每千米的费用总和,.令y′=0得x=20.当x∈(0,20)时,y′<0,此时函数单调递减;当x∈(20,+∞)时,y′>0,此时函数单调递增.∴当x=20时,y取得极小值,也是最小值.因此当轮船以20千米/时的速度航行时,能使行驶每千米的费用总和最小,为元.9.解:(1)当日产量为x(件)时,次品数为,正品数为已知生产一件正品可获利200元,生产一件次品则损失100元,因此日盈利额.(2)令得当时,;当时,,所以当x=16时,T取得极大值,也是最大值,因此为获得最大利润,该厂的日产量应定为16件,此时最大利润为800元.。
最新北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(含答案解析)(2)
一、选择题1.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( ) A .[1,)+∞ B .(0,1] C .[2,)+∞ D .(0,)+∞ 2.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x '+>,若()()1F x f x x =+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或2 3.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是 ( )A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <1 4.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞5.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( )A .11,27⎛⎫-∞- ⎪⎝⎭ B .1, C .5,127⎛⎫- ⎪⎝⎭ D .11,127⎛⎫- ⎪⎝⎭6.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( ) A .2,3⎛⎫-∞- ⎪⎝⎭ B .2,3⎛⎫-∞ ⎪⎝⎭ C .(,0)-∞ D .2,3⎛⎫+∞ ⎪⎝⎭7.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞ B .(,1]-∞C .[1,)+∞D .2[,)e +∞ 8.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭ B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞ 9.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则a b的值为( )A .23-B .23或2C .2D .13- 10.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .3 11.若函数1()21x f x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .12.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( )A .1B .2C .eD .2e二、填空题13.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________14.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.15.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .16.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =的图象恰有一个交点;③函数sin y x =与2y x 的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题为_____17.设()22,0ln ,0x mx x f x x mx x ⎧-+<=⎨->⎩,若方程()f x x =恰有三个零点,则实数m 的取值范围为______.18.已知函数()f x 的导函数()y f x '=的图象如图所示,给出如下命题:①当20x -<<时,()0f x >;②(1)(0)f f -<;③函数()f x 在12x =-处切线的斜率小于零;④0是函数()f x 的一个极值点;其中正确的命题是___________.(写出所有正确命题的序号)19.已知函数2()2ln a f x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()2ln f x ax bx x =+-.(,a b ∈R ) (1)当1a =-时,讨论函数()f x 的单调性;(2)若函数()f x 的图像与x 轴交于()1,0A x ,()()212,0B x x x <,线段AB 中点为()0,0C x ,求证:()00f x '≠.22.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点.(2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围.23.设函数()()21x f x e a x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.24.已知函数()2(1)x f x x e ax =--,(a R ∈). (1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围.25.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围.26.已知函数22()ln a f x a x x x=⋅++(0a ≠). (1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值; (2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可.【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1, 等价于()'211fx ax =-≥,1x 时恒成立, 0a 时,()'0f x <,不合题意, 0a >时,只需211ax -, 即1a x在[1,)+∞恒成立, 故max 1()1a x=, 故a 的范围是[1,)+∞,故选:A【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.2.A解析:A【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数.【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+,当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>. 综上所述,函数()y F x =的零点个数为0.故选:A.【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.3.D解析:D【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D. 点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.4.B解析:B【分析】根据'()0f x ≤在(1,1)-上恒成立求解.【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥.所以实数a 的取值范围是[3,)+∞.故选:B .【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.5.C解析:C【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围.【详解】函数()32f x x x x a =--+与x 轴有三个不同交点, 可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>. ∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值, 5127a ∴-<<.【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题. 6.B解析:B【分析】由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】 函数211()x f x x x x-==-,可得21()1f x x '=+, 0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-. ∴23x <. 故选:B .【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题. 7.C解析:C【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k.故选C【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题. 8.A【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果.【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e +=∈+∞, 则2222ln 2ln ()42x x g x x x --'==-, 可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e 上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A.【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目. 9.A解析:A【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可. 【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩, 当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足. 故6293a b -==-. 故选:A.【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.10.C解析:C【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验.【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误;因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C .【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题. 11.C解析:C【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.12.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论.【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()x f x e '=,切线方程为000()-=-x x y e e x x ,切线过原点,∴000x x e e x -=-⋅,01x =,∴(1)k f e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.二、填空题13.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调 解析:1,e ⎛⎤-∞ ⎥⎝⎦ 【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x =, 则()21ln xf x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.14.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可. 【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤-⎥⎝⎦时,()0f x '>,()f x 单调递增; 31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减; 所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭,又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭又13711ln ln 2044322f f ⎛⎫⎛⎫--=->->⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()ln ln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】本题主要考查用导数求函数的最值,属于中档题.15.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为GE x = cm ,因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为)HE x - cm ,所以包装盒的体积为232())]60900)V x x x x x =-=-+,030x <<,则2()120900)V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.16.②③④【分析】①构造函数求出函数的导数研究函数的导数和单调性进行判断即可;②利用与x 的关系进行转化判断;③设函数利用导数研究其单调性根据零点存在原理得出零点个数判断其真假④设函数利用导数研究其单调性解析:②③④ 【分析】①构造函数()sin f x x x =-,求出函数的导数,研究函数的导数和单调性,进行判断即可;②x x 的关系进行转化判断;③设函数()2sin g x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假.④设函数()3sin h x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假. 【详解】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵()0=0f ,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <, 当01x <≤sin x x x >>, 当1x >sin x x >,当0x =sin x x =,综上当0x >sin x x >恒成立, 函数sin y x =与y x =②正确,③设函数()2sin g x x x =-,则()cos 2g x x x '=-, 又()sin 20g x x ''=--<,所以()g x '在R 上单调递减.又()01g '=,02g ππ⎛⎫'=-<⎪⎝⎭所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '=即当0x x <时,()0g x '>,函数()g x 单调递增. 当0x x >时,()0g x '<,函数()g x 单调递减. 由函数()g x 在()0,x -∞上单调递增且()00g =,所以函数()g x 在(]0-∞,上有且只有一个零点. 由()00g =,函数()g x 在()0,x -∞上单调递增,则()00g x >又21024g ππ⎛⎫=-< ⎪⎝⎭,且函数()g x 在()0x +∞,上单调递减. 所以()g x 在()0x +∞,上有且只有一个零点. 即()g x 在()0+∞,上有且只有一个零点. 所以()g x 有2个零点,即函数sin y x =与2yx 的图象恰有两个交点,故③正确.④设函数()3sin h x x x =-,()h x 为奇函数,且()00h =.所以只需研究()h x 在()0+∞,上的零点个数即可. 则()2cos 3h x x x '=-,则()sin 6h x x x ''=--,所以()cos 60h x x '''=--<,所以()h x ''在()0+∞,上单调递减. 所以当()0x ∈+∞,时,()()00h x h ''''<=,则()h x '在()0+∞,上单调递减. 又()01h '=,203024h ππ⎛⎫'=-⨯< ⎪⎝⎭. 所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00h x '=. 即当00x x <<时,()0h x '>,函数()h x 单调递增. 当0x x >时,()0h x '<,函数()h x 单调递减.()00h =,由函数()h x 在()00x ,上单调递增,则()00h x >又31028h ππ⎛⎫=-< ⎪⎝⎭,且函数()h x 在()0x +∞,上单调递减. 所以()h x 在()0x +∞,上有且只有一个零点. 即()h x 在()0+∞,上有且只有一个零点. 由()h x 为奇函数,所以()h x 在()0-∞,上有且只有一个零点,且()00h =.所以()h x 有3个零点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确. 故答案为:②③④. 【点睛】本题主要考查命题的真假判断,涉及函数零点个数,利用数形结合或构造函数,利用导数是解决本题的关键.属于中档题.17.【分析】将问题转化为与图像交点个数有3个的问题利用导数研究函数单调性和最值数形结合即可求得结果【详解】当时等价于;当时等价于;令则方程恰有三个零点等价于与直线有三个交点当时则令解得故该函数在区间单调解析:1m <-【分析】将问题转化为()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩与1y m =+图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果. 【详解】当0x <时,22y x mx x =-+=,等价于21x m x+=+; 当0x >时,y lnx mx x =-=,等价于1lnxm x=+; 令()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩,则方程()f x x =恰有三个零点,等价于()y h x =与直线1y m =+有三个交点. 当lnx y x =时,则21lnx y x-=',令0y '=,解得x e =, 故该函数在区间()0,e 单调递增,在(),e +∞单调递减. 且x e =时,1y e=;又x e >时,0y >; 而当2y x x=+时,由对勾函数性质,容易知:当x =y =-. 故()h x 的图像如下所示:数形结合可知,要满足题意,只需122m +<-, 解得221m <-. 故答案为:221m <-. 【点睛】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综合中档题.18.②④【分析】由导数的图象推不出当时;当时函数单调递增由此可判断②正确由可判断③错误由时时时可判断④正确【详解】由导数的图象推不出当时故①不一定正确当时函数单调递增所以故②正确因为所以函数在处切线的斜解析:②④ 【分析】由导数的图象推不出当20x -<<时,()0f x >;当20x -<<时0f x ,函数()f x 单调递增,由此可判断②正确,由102f ⎛⎫'-> ⎪⎝⎭可判断③错误,由0x >时0f x,0x =时0fx ,0x <时0f x 可判断④正确【详解】由导数的图象推不出当20x -<<时,()0f x >,故①不一定正确. 当20x -<<时0fx ,函数()f x 单调递增,所以(1)(0)f f -<,故②正确因为102f ⎛⎫'-> ⎪⎝⎭,所以函数()f x 在12x =-处切线的斜率大于零,故③错误因为0x >时0fx ,0x =时0f x ,0x <时0f x所以0是函数()f x 的一个极值点,故④正确故答案为:②④ 【点睛】本题考查命题的真假判断和应用,解题时要熟练掌握导函数的图象和性质.19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥, ∴a 的取值范围为[),e +∞. 故答案为:[),e +∞. 【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围; 【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.三、解答题21.(1)答案见解析;(2)证明见解析 . 【分析】(1)先对函数求导,得()1122f x x b x b x x ⎛⎫'=-+-=-++ ⎪⎝⎭,由于12x x +≥以分b ≤b >两种情况判断导函数的正负,从而可求出函数的单调区间; (2)由题意可得()()()()222212111222121212ln ln ln ln f x f x ax bx x ax bx x a x x b x x x x =⇒+-=+-⇒-+-=-,再由对数平均值不等式可得()()()()()212221212121212122ln ln 20x x a x x b x x x x a x x b x x x x --+-=-<⇒+++->+,而1202x x x +=,代入化简可得结果 【详解】(1)解:当1a =-时,()()2ln 0f x x bx x x =-+->.()1122f x x b x b x x ⎛⎫'=-+-=-++ ⎪⎝⎭.因为12x x+≥b ≤()0f x '≤恒成立,即()f x 在0,上单调递减;当b >()20210f x x bx b '>⇒-+<⇒∈⎝⎭, 此时()f x在⎝⎭上单调递增,在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递减. (2)解:由题意得()()12f x f x =,1202x x x +=,()12f x ax b x '=+-.()()()()222212111222121212ln ln ln ln f x f x ax bx x ax bx x a x x b x x x x =⇒+-=+-⇒-+-=-利用对数平均值不等式ln ln 2b a a bb a -+<-,上式可变形为()()()()()212221212121212122ln ln 20x x a x x b x x x x a x x b x x x x --+-=-<⇒+++->+()22121200000121021020022x x x x a b ax bx ax b f x x ++⎛⎫⎛⎫'⇒+->⇒+->⇒-+>⇒> ⎪ ⎪⎝⎭⎝⎭即证. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区,第2问解题的关键是利用对数平均值不等式得()()()()()212221212121212122ln ln 20x x a x x b x x x x a x x b x x x x --+-=-<⇒+++->+,然后化简即可,考查数学转化思想和计算能力,属于中档题22.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x≥+在[]2,5上恒成立,设()13m x x x=+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围. 【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-, 由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<;∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =;函数()g x 极小值点为0,对应的极小值为()00g =. (2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增, ∴2320cx x c -+≥在[]2,5上恒成立,即2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =,当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】 方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 23.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性; (2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果. 【详解】(1)由题意得:()22xf x e a '=-,当0a ≤时,()0f x '>,()f x ∴在R 上单调递增; 当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意; 当0a =时,2()0x f x e =>恒成立,满足题意. 当0a >时,()f x 在1ln 22ax =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭,令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立.综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果. 24.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】(1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题25.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, 所以()f x 在2(1,)a上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞. 【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 26.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果. 【详解】(1)()f x 的定义域为(0,)+∞,222()1a af x x x=-+',根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x +--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >, 由()0f x '<得()(2)0x a x a -+<,解得0x a <<, ∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-, ∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减, (3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a ,即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a =-=⋅-+-=⋅---,2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.。
北师大版高中数学选修2-2章本检测:第三章导数应用(含解析)
第三章导数应用(选修2-2北师大版)建议用时 实际用时满分 实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分) 1.下列说法正确的是()A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数()323922y x x x x =---<<有()A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值 3.函数xx y 142+=的单调递增区间是() A .),0(+∞B .)1,(-∞ C .⎪⎭⎫⎢⎣⎡+∞,21D .),1(+∞ 4.函数xxy ln =的最大值为() A.1e - B.eC.2eD.310 5.函数在区间[0,3]上的最大值与最小值分别是() A.5,-15B.5,-4 C.-4,-15D.5,-166.f (x )=-+3x 的极值点的个数是()A.0B.1C.2D.37.已知函数y =f(x)是定义在R 上的奇函数,且当x ∈(-∞,0)时,不等式恒成立.若,,,则a ,b ,c 的大小关系是( ) A .B . C .D .8.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内的极小值点有( )A.1个B.2个C.3个D.4个9.已知函数f(x)=12x 3-x 2-72x ,则f(-a 2)与f(-1)的大小关系为( )A .f(-a 2)f(-1)B .f(-a 2)f(-1)C .f(-a 2)f(-1)D .f(-a 2)与f(-1)的大小关系不确定 10.若某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-+81x -234,则使该生产厂家获得最大年利润的年产量 为()A.13万件B.11万件C.9万件D.7万件11.已知函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞) 12.设f(x),g(x)分别是定义在R 上的奇函数和偶函数,当x<0时,f ′(x)g(x)+f(x)g ′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是() A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)二、填空题(本题共4小题,每小题4分,共16分) 13.若函数f (x )在区间(m ,2m +1)上是增函数,则m 的取值范围是 . 14.若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则,,a b c 的关系式为 .15.已知函数f (x )=在x =2处有极大值,则常数m 的值是 .16.在曲线的切线斜率中斜率最小的切线方程是_________.三、解答题(本题共5小题,共74分) 17.(14分)已知函数 (1)讨论函数f(x)的单调性;(2)求函数f(x)在[1,2]上的最大值.18.(14分)已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-.(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间.19.(14分)已知函数2()ln (0).f x x ax x a =-->(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为-2,求a 的值以及切线方程;(2)若()f x 是单调函数,求a 的取值范围.20.(16分)已知函数()ln f x ax x =+()a ∈R . (1)若2a =,求曲线()y f x =在1x =处切线的斜率;(2)求()f x 的单调区间;(3)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.21.(16分)已知平面向量,若存在不同时为0的实数k 和t ,使2(3),,t k t =+-=-+x a b y a b 且⊥x y ,试确定函数()k f t =的单调区间.第三章导数应用答题纸得分:_________一、选择题二、填空题13._____________14._____________15._____________16._____________三、解答题17.18.19.20.21.第三章导数应用答案一、 选择题1.D 解析:函数的极值与最值没有必然联系. 2.C 解析:令'23690,1yx x x =--==-得,或3当时,不满足题意,故舍去.当x 在(-2,2)上变化时,的变化情况如下表:由上表可知,函数y 有极大值5,无极小值.3.C 解析:令3'322181180,810,.2x y x x x x x -=-=≥-≥≥即得4.A 解析:令'''22(ln )ln 1ln 0, e.x x x x xy x x x -⋅-====得当x 变化时,随x 的变化情况如下表:由上表可知,函数y 在x=e 时取得最大值,最大值. 5.A 解析:由,得. 令,得当变化时,,f(x)的变化情况如下表:所以函数的最大值与最小值分别是5,-15.6.A 解析:因为f ′(x )=3-3x +3=0,-x +1=0无解,所以没有极值点.7.C 解析:设g(x)=xf(x),由y =f(x)为R 上的奇函数,可知g(x)为R 上的偶函数. 而g ′(x)=[xf(x)]′=f(x)+xf ′(x).由已知得,当x ∈(-∞,0)时,g ′(x)>0,故函数g(x)在(-∞,0)上单调递增. 由偶函数的性质可知,函数g(x)在(0,+∞)上单调递减. 因为=g(-2)=g(2),且,故.8.A 解析:若处取得极小值,则,在的左侧,在的右侧.据此可知,f(x)在开区间(a,b)内的极小值点有1个. 9.A 解析:由题意可得.由=12(3x -7)(x +1)=0,得x =-1或x =73.当时,为增函数; 当时,为减函数; 当x >时,为增函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值.又因为-a 2≤0,故f(-a 2)≤f(-1). 10.C 解析:,令y ′=0得x =9或x =-9(舍去),当0<x <9时,y ′>0;当x >9时,y ′<0,故当x =9时,函数有极大值,也是最大值,故选C.11.B 解析:因为函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,所以方程有两个不同的实数根. 由得m 的取值范围为. 12.D 解析:因为,则在x <0时是增函数.又因为分别是定义在R 上的奇函数和偶函数, 所以为奇函数,关于原点对称, 所以在x >0时也是增函数. 因为所以当时,可转化为,即; 当时,可转化为,即. 二、填空题13.-1<m ≤0解析:∵f ′(x )=,令f ′(x )>0,得-1<x <1,∴f (x )的增区间为(-1,1).又∵f (x )在区间(m ,2m +1)上是单调递增函数,∴∴-1≤m ≤0.∵2m +1>m ,m >-1,∴-1<m ≤0. 14.23b ac ≤解析:由题意知'2()320f x ax bx c =++≥恒成立,已知则,即15.6解析:f (x )=.由题意得,解得m =2或m =6,当m =2时,f (2)是极小值,不合题意,舍去. 16.3x -y -11=0解析:因为,令切线的斜率,当k 取最小值时,,此时切线的斜率为3,切点为(-1,-14),切线方程为,即. 三、解答题 17.解:(1)当(2)当时,函数上单调递增,最大值为当时,若,即若,即上单调递增,在上单调递减,最大值 为 若,即. 18.解:(1)因为c bx ax x f ++=24)(的图象经过点(0,1),所以1c =.①'3'()42,(1)421f x ax bx k f a b =+==+=.②由题意得切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)-,得.③联立①②③得所以(2)令得 当x 变化时,由上表可知,函数的单调递增区间为 19.解:(1)由题设,f '(1)=-2a =-2,所以a =1,此时f(1)=0,切线方程为y =-2(x -1),即2x +y -2=0. (2),令=1-8a . 当a ≥18时,≤0,f '(x)≤0,f(x)在(0,+∞)上单调递减. 当0<a <18时,>0,方程+1=0有两个不相等的正根, 不妨设,则当时,f '(x)<0,当时,f '(x)>0, 这时f(x)不是单调函数.综上,a 的取值范围是[ 18,+).20.解:(1)由已知1()2(0)f x x x'=+>,(1)213f '=+=. 故曲线()y f x =在1x =处切线的斜率为3.(2)11'()(0)ax f x a x x x+=+=>. ①当0a ≥时,由于0x >,故10ax +>,'()0f x >, 所以函数()f x 的单调递增区间为.②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>;在区间1(,)a-+∞上,()0f x '<,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 所以函数()f x 的单调递增区间为,单调递减区间为.(3)由已知,转化为max max ()()f x g x <,max ()2g x =.由(2)知,当0a ≥时,函数()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意.(或者举出反例:存在33(e )e 32f a =+>,故不符合题意)当0a <时,函数()f x 在上单调递增,在上单调递减, 故()f x 的极大值即为最大值,11()1ln()1ln()f a aa -=-+=----, 所以21ln()a >---,解得31ea <-. 21.解:由11),(2=-=a b 得0,2, 1.•===a b a b 22222[(3)]()0,(3)(3)0t k t k t k t t t •=+-•-+=-+•--•+-=即,x y a b a b a a b a b b331430,()(3).4k t t k f t t t -+-===-即可化为 令当t 变化时,的变化情况如下表:由上表可知,的单调递增区间为单调递减区间为。
北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)(2)
一、选择题1.已知函数x y a =(1a >)与log ay x =(1a >)的图象有且仅有两个公共点,则实数a 的取值范围是( )A .1e 1e a <<B .1e a <<C .1e e e a <<D .e a >2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2,)e eD .1(2,]ee4.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞5.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞- ⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞ ⎪⎝⎭6.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞7.若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e8.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2xB .y =x 3-xC .y =x e xD .y =-x +ln(1+x )9.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .10.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)11.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( )A .(21e -,0) B .(12e-,0) C .(0,12e ) D .(0,21e) 12.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞二、填空题13.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.14.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 15.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =③函数sin y x =与2y x 的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题为_____ 18.已知函数()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的单调递增区间为______. 19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.20.已知定义在R 上的连续函数()y f x =对任意实数x 满足(4)()f x f x -=,(()2)0x f x -'>,则下列命题正确的有________.①若(2)(6)0f f <,则函数()y f x =有两个零点; ②函数(2)y f x =+为偶函数; ③(2)(sin12cos12)f f >︒+︒; ④若12x x <且124x x +>,则12()()f x f x <.三、解答题21.已知函数()()()3222110f x ax a x a =--+≠.(1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围. 22.近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量y (单位:千件)与销售价格x (单位:元/件)之间满足如下的关系式:24(6),26,,2ay x x a R a x =+-<<∈-为常数.已知销售价格为4元/件时,每月可售出21千件.(1)求实数a 的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格x 的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)23.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围. 24.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围. 25.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0fx >恒成立,试确定实数k 的取值范围.26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 将问题转化为()1xy a a =>的图象与y x =有两个公共点,即ln ln x a x=有两解,再构造新函数()ln xf x x=,根据()f x 的单调性和取值分析ln a 的取值即可得到结果. 【详解】因为函数()()1,log 1xa y aa y x a =>=>的图象关于直线y x =对称,所以两个图象的公共点在y x =上,所以()1xy a a =>的图象与y x =有两个公共点,即xx a =有两解,即ln ln x x a =有两解,即ln ln xa x=有两解, 令()ln x f x x =,所以()21ln xf x x -'=, 当()0,x e ∈时,()0f x '>,()f x 单调递增,当(),x e ∈+∞时,()0f x '<,()f x 单调递减,()f x 大致图象如下图所示:所以()10ln a f e e<<=,所以11e a e <<, 故选:A. 【点睛】结论点睛:函数图象的交点个数、方程根的数目、函数的零点个数之间的关系: 已知()()()h x f x g x =-,则有()h x 的零点个数⇔方程()()f x g x =根的数目⇔函数()f x 与函数()g x 的图象的交点个数. 2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.4.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.B解析:B 【解析】 令()()()()()0,(0)1x xf x f x f xg x g x g e e -=∴=<'='所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等7.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由x y e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.8.C解析:C 【解析】A 在R 上是周期函数,2sin cos y x x =' ,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 231,y x -'= 在(0,+∞),有正有负,所以原函数不是增函数,C x x y xe e '=+ 0> ,恒成立,故原函数单调递增;D 1111x y x x-=-+=++' ,在(0,+∞)上导函数为负,原函数应该是减函数. 故选C .点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.9.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.10.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.11.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,则()g x 单调递减, 所以当x e =时,()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.12.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D二、填空题13.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值故答案为: 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.14.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.15.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为GE x = cm ,因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为)HE x - cm ,所以包装盒的体积为232())]60900)V x x x x x =-=-+,030x <<,则2()120900)V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V单调递减,所以3max ()(10)60009000))V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.②③④【分析】①构造函数求出函数的导数研究函数的导数和单调性进行判断即可;②利用与x 的关系进行转化判断;③设函数利用导数研究其单调性根据零点存在原理得出零点个数判断其真假④设函数利用导数研究其单调性解析:②③④ 【分析】①构造函数()sin f x x x =-,求出函数的导数,研究函数的导数和单调性,进行判断即可;②x x 的关系进行转化判断;③设函数()2sin g x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假.④设函数()3sin h x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假. 【详解】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵()0=0f ,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <, 当01x <≤sin x x x >>, 当1x >sin x x >,当0x =sin x x =,综上当0x >sin x x >恒成立, 函数sin y x =与y x =②正确,③设函数()2sin g x x x =-,则()cos 2g x x x '=-, 又()sin 20g x x ''=--<,所以()g x '在R 上单调递减. 又()01g '=,02g ππ⎛⎫'=-<⎪⎝⎭所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '= 即当0x x <时,()0g x '>,函数()g x 单调递增. 当0x x >时,()0g x '<,函数()g x 单调递减. 由函数()g x 在()0,x -∞上单调递增且()00g =,所以函数()g x 在(]0-∞,上有且只有一个零点. 由()00g =,函数()g x 在()0,x -∞上单调递增,则()00g x >又21024g ππ⎛⎫=-< ⎪⎝⎭,且函数()g x 在()0x +∞,上单调递减. 所以()g x 在()0x +∞,上有且只有一个零点. 即()g x 在()0+∞,上有且只有一个零点. 所以()g x 有2个零点,即函数sin y x =与2yx 的图象恰有两个交点,故③正确.④设函数()3sin h x x x =-,()h x 为奇函数,且()00h =.所以只需研究()h x 在()0+∞,上的零点个数即可. 则()2cos 3h x x x '=-,则()sin 6h x x x ''=--,所以()cos 60h x x '''=--<,所以()h x ''在()0+∞,上单调递减. 所以当()0x ∈+∞,时,()()00h x h ''''<=,则()h x '在()0+∞,上单调递减. 又()01h '=,203024h ππ⎛⎫'=-⨯< ⎪⎝⎭. 所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00h x '=. 即当00x x <<时,()0h x '>,函数()h x 单调递增. 当0x x >时,()0h x '<,函数()h x 单调递减.()00h =,由函数()h x 在()00x ,上单调递增,则()00h x >又31028h ππ⎛⎫=-< ⎪⎝⎭,且函数()h x 在()0x +∞,上单调递减. 所以()h x 在()0x +∞,上有且只有一个零点. 即()h x 在()0+∞,上有且只有一个零点. 由()h x 为奇函数,所以()h x 在()0-∞,上有且只有一个零点,且()00h =. 所以()h x 有3个零点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确. 故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及函数零点个数,利用数形结合或构造函数,利用导数是解决本题的关键.属于中档题.18.【分析】首先求出函数的导函数由再根据三角函数的性质解三角不等式即可;【详解】解:所以令即所以故的单调递增区间为故答案为:【点睛】本题考查利用导数求函数的单调区间三角函数的性质的应用属于中档题解析:06,π⎡⎤⎢⎥⎣⎦【分析】首先求出函数的导函数,由()0f x '>,再根据三角函数的性质解三角不等式即可; 【详解】 解:()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦所以()1sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦令()0f x '>,即1sin 02x -+>,所以06x π<<,故()f x 的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,故答案为:06,π⎡⎤⎢⎥⎣⎦【点睛】本题考查利用导数求函数的单调区间,三角函数的性质的应用,属于中档题.19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数,②当x <<()0,()f x f x '<为递减函数,③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.①②④【分析】根据已知条件得到函数的对称轴以及函数的单调性结合题意对选项进行逐一判断即可【详解】因为故关于对称;又故当时单调递增;时单调递减对①:若根据函数单调性显然则根据零点存在定理和函数单调性在解析:①②④ 【分析】根据已知条件得到函数的对称轴,以及函数的单调性,结合题意,对选项进行逐一判断即可. 【详解】因为(4)()f x f x -=,故()f x 关于2x =对称;又(()2)0x f x -'>,故当2x >时,()f x 单调递增;2x <时,()f x 单调递减. 对①:若(2)(6)0f f <,根据函数单调性,显然()()20,60f f ,则()20f -> 根据零点存在定理和函数单调性,()f x 在()()2,2,2,6-上各有1个零点,故①正确; 对②:因为()f x 关于2x =对称,故()2f x +关于0x =对称,故是偶函数,则②正确;对③:121257sin cos ︒+︒=︒<(),2-∞单调递减可知,()1212ff sin cos <︒+︒,故③错误;对④:因为12x x <,故可得1222x x -<-;因为124x x +>,故可得1222x x -<- 故2122x x ->-,又函数关于2x =对称,结合函数单调性, 故可得()()21f x f x >,故④正确. 综上所述:正确的有①②④. 故答案为:①②④. 【点睛】本题考查根据导数的正负判断函数的单调性,函数对称轴的识别,涉及辅助角公式的使用,利用函数单调性比较大小,属综合性中档题.三、解答题21.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间; (2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增; ③当12a =时,()230f x x '=≥,()f x 在R 上单调递增; ④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭;当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭;(2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤ ⎥⎝⎦上单调递增,在10,2⎛⎫ ⎪⎝⎭上单调递减.因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.22.(1)10a =;(2) 3.3. 【分析】(1)将“销售价格为4元/件时,每月可售出21千件”带入关系式中即可得出结果; (2)首先可通过题意得出每月销售装饰品所获得的利润24(6102)2f x x x x ,然后通过化简并利用导数求得最大值,即可得出结果. 【详解】(1)由题意可知,当销售价格为4元/件时,每月可售出21千件, 所以2214(46)42a ,解得10a =.(2)设利润为()f x ,则2f xy x ,26x <<,带入2104(6)2y x x =+--可得: 224(6)(6)10210422f x xx x x x ,化简可得32456240278f xx x x ,函数()f x 的导函数21211224043106f xx x x x ,26x <<,当0f x 时,1032x ,函数()f x 单调递增;当0f x时,1036x ,函数()f x 单调递减;当0fx 时,103x,函数()f x 取极大值,也是最大值,所以当103x,函数()f x 取最大值,即销售价格约为每件3.3元时,该店每月销售装饰品所获得的利润最大. 【点睛】本题考查函数的相关性质,主要考查函数的实际应用以及利用导数求函数的最值,本题的关键在于能够通过题意得出题目所给的销售量、销售价格以及每月销售装饰品所获得的利润之间的关系,考查推理能力与计算能力,考查化归与转化思想,是中档题. 23.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>,所以()f x 在2(1,)a 上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞. 【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 24.(1)1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222aln a a af ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围;【详解】解:(1)因为()2xf x eax b =-+所以()()220xf x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增,∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞, ∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫<⎪⎝⎭,又a b =, ∴ln 21ln ln 02222aa a af e a ⎛⎫=-+< ⎪⎝⎭,即ln 0222a a aa -+< 所以3ln02a -< 所以32a e > 【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.25.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解.试题(1)由k e =得()xf x e ex =-,所以()xf x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数.于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增.故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<. 综合①②得,实数k 的取值范围是0k e <<. 也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,. 【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122mx x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解. 【详解】(1)()f x 的定义域为(0,)+∞, ∵()f x 在(0,)+∞上单调递增,∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=,∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122mx x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+-2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x---+--=-+='=<, ∴()g x 在1,12⎛⎫⎪⎝⎭上为减函数,又1111544ln 4ln 22424g ⎛⎫=-+=-⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
北师大版高中数学选修2-2测试题全套及答案
北师大版高中数学选修2-2测试题全套及答案模块综合测评(时间150分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=a+i的实部与虚部相等,则实数a=()A.-1B.1C.-2D.2【解析】z=a+i的虚部为1,故a=1,选B.【答案】B2.已知复数z=11+i,则z·i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵z=11+i=1-i2,∴z=12+12i,∴z·i=-12+1 2i.【答案】B3.观察:6+15<211, 5.5+15.5<211,4-2+17+2<211,……,对于任意的正实数a,b,使a+b<211成立的一个条件可以是()A.a+b=22B.a+b=21C.ab=20D.ab=21【解析】由归纳推理可知a+b=21.故选B.【答案】B4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=()A.-eB.-1C.1D.e【解析】∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x,∴f′(1)=2f′(1)+1,∴f′(1)=-1.【答案】B5.由①y=2x+5是一次函数;②y=2x+5的图像是一条直线;③一次函数的图像是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是()A.②①③B.③②①C.①②③D.③①②【解析】该三段论应为:一次函数的图像是一条直线(大前提),y=2x+5是一次函数(小前提),y=2x+5的图像是一条直线(结论).【答案】D6.已知函数y =f (x )的导函数y =f ′(x )的图像如图1所示,则( )图1A.函数f (x )有1个极大值点,1个极小值点B.函数f (x )有2个极大值点,2个极小值点C.函数f (x )有3个极大值点,1个极小值点D.函数f (x )有1个极大值点,3个极小值点【解析】 根据极值的定义及判断方法,检查f ′(x )的零点左右值的符号,如果左正右负,那么f (x )在这个点处取得极大值;如果左负右正,那么f (x )在这个点处取得极小值;如果左右都是正,或者左右都是负,那么f (x )在这个点处不是极值.由此可见,x 2是函数f (x )的极大值点,x 3是极小值点,x 1,x 4不是极值点. 【答案】 A7.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A.94e 2 B.2e 2C.e 2D.e 22【解析】 ∵f ′(x )=e x ,∴曲线在点(2,e 2)处的切线的斜率为k =f ′(2)=e 2,切线方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0,切线与x 轴和y 轴的交点坐标分别为A (1,0),B (0,-e 2),则切线与坐标轴围成的△OAB 的面积为12×1×e 2=e 22.【答案】 D8.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( ) A.a k +a k +1+…+a 2k B.a k -1+a k +…+a 2k -1 C.a k -1+a k +…+a 2k D.a k -1+a k +…+a 2k -2【解析】 由归纳推理可知,第k 项的第一个数为a k -1,且共有k 项.故选D. 【答案】 D9.函数f (x )=ax 3-x 在R 上为减函数,则( ) A.a ≤0 B.a <1C.a <2D.a ≤13 【解析】 由题意可知f ′(x )=3ax 2-1≤0在R 上恒成立,则a ≤0. 【答案】 A10.设a =⎠⎛10x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛10x 3d x ,则a ,b ,c 的大小关系( ) A .a>b>c B.b>a>c C .a>c>b D.b>c>a【解析】 由题意可得a =⎠⎛01x -13dx =32x 23⎪⎪⎪10=32;b =1-⎠⎛01x 12dx =1-23x 32⎪⎪⎪10=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3dx =x 44⎪⎪⎪1=14.综上,a >b >c . 【答案】 A11.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A.1B.2k +1C.2k -1D.2k【解析】 ∵f (k )=1+12+13+…+12k -1,又f (k +1)=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1.从f (k )到f (k +1)是增加了(2k +1-1)-2k +1=2k 项.【答案】 D12.已知函数f (x )=x 3-ln (x 2+1-x ),则对于任意实数a ,b (a +b ≠0),则f (a )+f (b )a +b的值为( )A.恒正B.恒等于0C.恒负D.不确定【解析】 可知函数f (x )+f (-x )=x 3-ln (x 2+1-x )+(-x )3-ln (x 2+1+x )=0,所以函数为奇函数,同时, f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b=f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.复数3+ii 2(i 为虚数单位)的实部等于________. 【解析】 ∵3+ii 2=-3-i ,∴其实部为-3.【答案】 -314.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第五个等式为________.【解析】 第n 个等式左边为1到n +1的立方和,右边为1+2+3+…+(n +1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】 13+23+33+43+53+63=21215.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为__________.【解析】 由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为⎠⎜⎛π65π6⎝ ⎛⎭⎪⎫sin x -12dx =⎝ ⎛⎭⎪⎫-cos x -12x ⎪⎪⎪⎪5π6π6=3-π3.【答案】3-π316.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【解析】 设x >0,则-x <0,f (-x )=e x -1+x . ∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x . ∵当x >0时,f ′(x )=e x -1+1, ∴f ′(1)=e 1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为 y -2=2(x -1),即2x -y =0.【答案】 2x -y =0三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i,若z 2+az +b =1+i ,求实数a ,b 的值.【解】 z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=5-5i5=1-i .因为z 2+az +b =(1-i )2+a (1-i )+b =-2i +a -ai +b =(a +b )-(2+a )i =1+i ,所以⎩⎪⎨⎪⎧a +b =1,-(2+a )=1,解得⎩⎪⎨⎪⎧a =-3,b =4.18.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围. 【解】 (1)当a =-2时,f (x )=x 3-32x 2+3x +1, f ′(x )=3x 2-62x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞, 2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1, 2+1)上是减函数;当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数.(2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈(2,+∞)时,f ′(x )=3(x 2+2ax +1)≥3⎝ ⎛⎭⎪⎫x 2-52x +1=3⎝ ⎛⎭⎪⎫x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,+∞.19.(本小题满分12分)设等差数列{a n }的公差为d ,S n 是{a n }中从第2n -1项开始的连续2n -1项的和,即 S 1=a 1, S 2=a 2+a 3,S 3=a 4+a 5+a 6+a 7, ……S n =a 2n -1+a 2n -1+1+…+a 2n -1, ……若S 1,S 2,S 3成等比数列,问:数列{S n }是否成等比数列?请说明你的理由.【解】 ∵S 1,S 2,S 3成等比数列, ∴S 1=a 1≠0,且S 1·S 3=S 22,由S 1·S 3=S 22,得a 1(a 4+a 5+a 6+a 7)=(a 2+a 3)2,即a 1(4a 1+18d )=(2a 1+3d )2,2a 1d =3d 2.∴d =0或a 1=32d . 当d =0时,S n =2n -1a 1≠0,S n +1S n =2n a 12n -1a 1=2(常数),n ∈N +,{S n }成等比数列; 当a 1=32d 时,S n =a 2n -1+a 2n -1+1+a 2n -1=2n -1a 2n -1+2n -1(2n -1-1)2d=2n -1[a 1+(2n -1-1)d ]+2n -1(2n -1-1)2d=2n -1⎝ ⎛⎭⎪⎫32d ·2n -1+a 1-32d =32d ·4n -1≠0, S n +1S n =32d ·4n32d ·4n -1=4(常数),n ∈N +,{S n }成等比数列.综上所述,若S 1,S 2,S 3成等比数列,则{S n }成等比数列.20.(本小题满分12分)已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f (x )的解析式;(2)设函数g (x )=14f (x )+ax 3+92x 2-b (x ∈R ),其中a ,b ∈R ,若函数g (x )仅在x =0处有极值,求a 的取值范围.【解】 (1)因为f (x )在区间(0,+∞)上是单调增函数, 所以-m 2+2m +3>0,即m 2-2m -3<0, 所以-1<m <3,又m ∈Z ,所以m =0,1,2. 而m =0,2时,f (x )=x 3不是偶函数,m =1时, f (x )=x 4是偶函数, 所以f (x )=x 4.(2)由(1)知g (x )=14x 4+ax 3+92x 2-b ,则g ′(x )=x (x 2+3ax +9),显然x =0不是方程x 2+3ax +9=0的根. 为使g (x )仅在x =0处有极值, 必须x 2+3ax +9≥0恒成立,即有Δ=9a 2-36≤0,解不等式得a ∈[-2,2]. 这时,g (0)=-b 是唯一极值,所以a ∈[-2,2].21.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.【解】 (1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1, 因为a n >0,所以a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0,所以a 2=2-1,由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3,得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N +).证明:①当n =1时, a 1=1-0=1,命题成立; ②假设n =k (k ≥1,k ∈N +)时, a k =k -k -1成立,则n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k , 即a k +1=12⎝⎛⎭⎪⎫a k +1+1a k +1 -12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0. 所以a k +1=k +1-k ,则n =k +1时,命题成立. 则①②知,n ∈N +,a n =n -n -1.22.(本小题满分12分)设函数f (x )=a e x ln x +b ex -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.【解】 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+bx e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1.章末综合测评(一) 推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】C2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①【解析】结合反证法的证明步骤可知,其正确步骤为③①②.【答案】B3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.【答案】B4.用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是()A.假设a,b,c都小于0B.假设a,b,c都大于0C.假设a,b,c中都不大于0D.假设a,b,c中至多有一个大于0【解析】用反证法证明“a,b,c中至少有一个大于0”,应先假设要证命题的否定成立.而要证命题的否定为:“假设a,b,c中都不大于0”,故选C.【答案】C5.用数学归纳法证明“5n-2n能被3整除”的第二步中,当n=k+1时,为了使用假设,应将5k+1-2k+1变形为()A.(5k-2k)+4·5k-2kB.5(5k-2k)+3·2kC.(5-2)(5k-2k)D.2(5k-2k)-3·5k【解析】5k+1-2k+1=5k·5-2k·2=5k·5-2k·5+2k·5-2k·2=5(5k-2k)+3·2k.【答案】B6.已知n为正偶数,用数学归纳法证明1-12+13-14+…-1n=2⎝⎛⎭⎪⎫1n+2+1n+4+…+12n时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n=________时等式成立.()A.k+1B.k+2C.2k+2D.2(k+2)【解析】根据数学归纳法的步骤可知,n=k(k≥2且k为偶数)的下一个偶数为n=k+2,故选B.【答案】B7.已知{b n}为等比数列,b5=2,则b1·b2·b3·b4·b5·b6·b7·b8·b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+a3+…+a9=29C.a1a2a3…a9=2×9D.a1+a2+a3+…+a9=2×9【解析】根据等差、等比数列的特征知,a1+a2+…+a9=2×9.【答案】D8.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.【答案】 B9.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19且n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 11=1,则有( )A.b 1·b 2·…·b n =b 1·b 2·…·b 19-nB.b 1·b 2·…·b n =b 1·b 2·…·b 21-nC.b 1+b 2+…+b n =b 1+b 2+…+b 19-nD.b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1 A.2 018×2 014 B.2 018×2 013 C .1 010×2 012 D.1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A.1 006B.1 007C.1 008D.1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C12.记集合T ={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104|a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104B.510+5102+7103+2104C.510+5102+7103+3104D.710+9102+9103+1104【解析】 因为a 110+a 2102+a 3103+a 4104 =1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.观察下列等式: 13=1, 13+23=9,13+23+33=36,13+23+33+43=100, ……照此规律,第n 个等式可为__________.【解析】 依题意,注意到13=⎣⎢⎡⎦⎥⎤12×1×(1+1)2,13+23=⎣⎢⎡⎦⎥⎤12×2×(2+1)2=9,13+23+33=⎣⎢⎡⎦⎥⎤12×3×(3+1)2=36,……,照此规律,第n 个等式可为13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)2. 【答案】 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)2 15.当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N+时,左边第二个因式可知为a n+a n-1b+…+ab n-1+b n,那么对应的表达式为(a -b)·(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1.【答案】(a-b)(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+116.如图3,如果一个凸多面体是n(n∈N+)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f(n)对异面直线,则f(4)=________,f(n)=__________.(答案用数字或n的解析式表示)图3【解析】所有顶点所确定的直线共有棱数+底边数+对角线数=n+n+n(n-3)2=n(n+1)2.从题图中能看出四棱锥中异面直线的对数为f(4)=4×2+4×12×2=12,所以f(n)=n(n-2)+n(n-3)2·(n-2)=n(n-1)(n-2)2.【答案】n(n+1)212n(n-1)(n-2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明:(1)如果a,b>0,则lg a+b2≥lg a+lg b2;(2)6+10>23+2.【证明】(1)当a,b>0时,有a+b2≥ab,∴lg a+b2≥lg ab,∴lg a+b2≥12lg ab=lg a+lg b2.(2)要证6+10>23+2,只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin 30°cos 60°=3 4,sin 220°+cos 250°+sin 20°cos 50°=34, sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+ 32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34.19.(本小题满分12分)点P 为斜三棱柱ABC A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】 (1)证明:因为PM ⊥BB 1,PN ⊥BB 1,又PM ∩PN =P , 所以BB 1⊥平面PMN ,所以BB 1⊥MN . 又CC 1∥BB 1,所以CC 1⊥MN . (2)在斜三棱柱ABC A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2S BCC 1B 1S ACC 1A 1cos α. 其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角. 证明如下:因为CC 1⊥平面PMN ,所以上述的二面角的平面角为∠MNP . 在△PMN 中,因为PM 2=PN 2+MN 2-2PN · MN cos ∠MNP ,所以PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP ,由于S BCC 1B 1=PN ·CC 1,S ACC 1A 1=MN ·CC 1, S ABB 1A 1=PM ·BB 1=PM ·CC 1,所以S 2 ABB 1A 1=S 2 BCC 1B 1+S 2 ACC 1A 1-2S BCC 1B 1·S ACC 1A 1·cos α.20.(本小题满分12分)如图4,在三棱锥P ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:图4(1)直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【证明】 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A . 又因为P A ⊆/平面DEF ,DE 平面DEF , 所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC . 因为AC ∩EF =E ,AC 平面ABC ,EF 平面ABC ,所以DE ⊥平面ABC . 又DE 平面BDE , 所以平面BDE ⊥平面ABC .21.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n(n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +.下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立, ②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a kk -a k=(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1)=13k +1=13(k +1)-2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立.(2)证明:b n =a n ·a n +1a n +a n +1=13n -2·13n +113n -2+13n +1=13n +1+3n -2=13(3n +1-3n -2),所以b 1+b 2+…+b n =13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)] =13(3n +1-1),所以只需要证明13(3n +1-1)<n3⇔3n +1<3n +1⇔3n +1<3n +23n +1⇔0<23n (显然成立),所以对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.22.(本小题满分12分)记U ={1,2,…,100},对数列{a n }(n ∈N +)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N +)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .【解】 (1)由已知得a n =a 1·3n -1,n ∈N +.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1.所以数列{a n }的通项公式为a n =3n -1,n ∈N +.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N +,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E =C ∩∁U D ,F =D ∩∁U C , 则E ≠∅,F ≠∅,E ∩F =∅.于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D 得S E ≥S F . 设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l . 由(2)知,S E <a k +1.于是3l -1=a l ≤S F ≤S E <a k +1=3k , 所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1.从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1. 综合①②③得,S C +S C ∩D ≥2S D .章末综合测评(二) 变化率与导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某质点沿直线运动的位移方程为f (x )=-2x 2+1,那么该质点从x =1到x =2的平均速度为( )A.-4B.-5C.-6D.-7【解析】Δy Δx =f (2)-f (1)2-1=(-2×22+1)-(-2×12+1)1=-6.【答案】 C2.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A.1B.12C.-12 D.-1【解析】 y ′=2ax ,于是切线斜率k =f ′(1)=2a ,由题意知2a =2,∴a =1. 【答案】 A3.下列各式正确的是( ) A.(sin α)′=cos α(α为常数) B.(cos x )′=sin xC.(sin x)′=cos xD.(x-5)′=-15x-6【解析】由导数公式知选项A中(sin α)′=0;选项B中(cos x)′=-sin x;选项D中(x -5)′=-5x-6.【答案】C4.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a等于()【解析】令f(x)=ax-ln(x+1),则f′(x)=a-1x+1.由导数的几何意义可得在点(0,0)处的切线的斜率为f′(0)=a-1.又切线方程为y=2x,则有a-1=2.∴a=3.【答案】D5.已知二次函数f(x)的图像如图1所示,则其导函数f′(x)的图像大致形状是()图1A B C D【解析】由图像知f(x)=ax2+c(a<0),∴f′(x)=2ax(a<0),故选B.【答案】B6.已知函数y=x-1,则它的导函数是()A.y′=12x-1 B.y′=x-12(x-1)C.y′=2x-1x-1 D.y′=-x-12(x-1)【解析】u=x-1,y′=(u)′·u′=12u=12x-1=x-12(x-1).【答案】B7.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0【解析】切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x30=4,∴x0=1,∴切点为(1,1),即y-1=4(x-1),∴4x-y-3=0.【答案】A8.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N +)的前n 项和是( )A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 【解析】 ∵f ′(x )=mx m -1+a =2x +1,∴m =2,a =1,∴f (x )=x 2+x ,∴1f (n )=1n 2+n =1n (n +1)=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.故选A.【答案】 A9.如图2,下列图像中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图像,则f (-1)等于( )图2A.-13B.13C.73D.-13或73【解析】 f ′(x )=x 2+2ax +(a 2-1)=[x +(a -1)][x +(a +1)].显然(2)(4)不符合,若(1)是f ′(x )的图像,则有a =0,与已知矛盾,故(3)是f ′(x )的图像,∴a =-1.∴f (-1)=-13-1+1=-13.【答案】 A10.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A.2x +y +2=0 B.3x -y +3=0 C.x +y +1=0 D.x -y +1=0 【解析】 y ′=2x +1,设所求切线的切点为(x 0,x 20+x 0+1), 则x 20+x 0+1x 0+1=2x 0+1,∴x 0=0或x 0=-2.当x 0=0时,曲线y =x 2+x +1在点(0,1)处的切线斜率为1,方程为y -1=x ,即x -y +1=0.当x 0=-2时,切线方程为3x +y +3=0. 【答案】 D11.点P 是曲线x 2-y -2ln x =0上任意一点,则点P 到直线4x +4y +1=0的最短距离是( )A.22(1-ln 2)B.22(1+ln 2) C.22⎝ ⎛⎭⎪⎫12+ln 2D.12(1+ln 2)【解析】 y ′=2x -1x =-1⇒x =12⇒y =14+ln 2,所以切点为⎝ ⎛⎭⎪⎫12,14+ln 2,切点到直线的距离就是两平行线间的距离,由点到直线的距离公式求得d =⎪⎪⎪⎪⎪⎪4×12+4×⎝ ⎛⎭⎪⎫14+ln 2+142+42=22(1+ln 2),故选B.【答案】 B12.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4 B.⎣⎢⎡⎭⎪⎫π4,π2 C.⎝ ⎛⎦⎥⎤π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π 【解析】 因为y =4e x+1, 所以y ′=-4e x(e x +1)2=-4e xe 2x +2e x +1=-4e x +1ex +2. 因为e x >0,所以e x +1e x≥2,所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫3π4,π.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.设函数y =f (x )是一次函数,若f (1)=-1,且f ′(2)=-4,则f (x )=________. 【解析】 ∵y =f (x )是一次函数,∴设f (x )=ax +b , ∴f ′(x )=a ,则f (1)=a +b =-1,又f ′(2)=a =-4.即a =-4,b =3,∴f (x )=-4x +3. 【答案】 -4x +314.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.【解析】 ∵y ′=2x -1, ∴当x =-2时,y ′=-5. 又P (-2,6+c ), ∴6+c -2=-5,∴c =4. 【答案】 415.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′(a )+bf ′(b )+cf ′(c )=________. 【解析】 ∵f ′(x )=(x -b )(x -c )+(x -a )·(x -c )+(x -a )·(x -b ), ∴f ′(a )=(a -b )(a -c ), 同理f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ),代入原式中得值为0. 【答案】 016.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=____. 【解析】 f ′(x )=-sin (3x +φ)·(3x +φ)′=-3sin (3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2 cos ⎝ ⎛⎭⎪⎫3x +φ+π3,当f (x )+f ′(x )为奇函数时,φ+π3=k π+π2,k ∈Z ,∴φ=k π+π6,k ∈Z ,∵0<φ<π,∴φ=π6.【答案】 π6三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求下列函数的导数. (1)y =3x 2+x cos x ;(2)y =tan x x ;(3)y =x 2-2x +5x 3.【解】 (1)y ′=(3x 2)′+(x cos x )′ =6x +x ′cos x +x (cos x )′ =6x +cos x -x sin x .(2)法一:y ′=(tan x )′·x -tan xx 2=xcos 2x -tan x x 2=x -cos 2x ·tan x x 2cos 2x =x -sin x cos x x 2cos 2x .法二:y ′=⎝ ⎛⎭⎪⎫sin x x cos x ′=(sin x )′x cos x -sin x (x cos x )′x 2cos 2x=x cos 2x -sin x (cos x -x sin x )x 2cos 2x=x -sin x cos x x 2cos 2x .(3)∵y =1x -2x 2+5x 3=x -1-2x -2+5x -3,∴y ′=-x -2-2×(-2)x -3+5×(-3)x -4=-1x 2+4x 3-15x 4.18.(本小题满分12分)已知曲线y =f (x )=x 3-8x +2. (1)求曲线在点(0,2)处的切线方程;(2)过原点作曲线的切线l :y =kx ,求切线l 的方程.【解】 (1)∵f (x )=x 3-8x +2,∴f ′(x )=3x 2-8,则f ′(0)=-8,所以曲线在点(0,2)处的切线方程为y -2=-8(x -0),即8x +y -2=0.(2)设切点为P (a ,a 3-8a +2),切线斜率k =3a 2-8,则切线方程y -(a 3-8a +2)=(3a 2-8)(x -a ),又因为切线过原点,所以0-(a 3-8a +2)=(3a 2-8)(0-a ),即2a 3-2=0,所以a =1,即切线l 斜率为k =-5,切线l 方程为y =-5x ,即5x +y =0.19.(本小题满分12分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.【解】 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4.又因为点P 0在第三象限,所以切点P 0的坐标为(-1,-4).(2)因为直线l ⊥l 1,l 1的斜率为4,所以直线l 的斜率为-14, 因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.20.(本小题满分12分)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求过点(2,f (2))且与切线y =(e -1)x +4垂直的直线方程l .【解】 (1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.∴⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知k l =11-e ,且f (2)=2e +2, ∴y -(2e +2)=11-e(x -2).即所求直线l 的方程为y =11-e x +21-e +2e +2.21.(本小题满分12分)已知函数f (x )=a ln x +x 2. (1)若a =1,求f (x )在点(1,f (1))处的切线方程;(2)对于任意x ≥2使得f ′(x )≥x 恒成立,求实数a 的取值范围.【解】 (1)当a =1时,f (x )=ln x +x 2,则f ′(x )=1x +2x ,故在点(1,f (1))处的切线斜率为k =f ′(1)=3,又f (1)=1,即切点为(1,1),故切线方程为y -1=3(x -1),即3x -y -2=0.(2)当x ≥2时,f ′(x )≥x ,即ax +2x ≥x (x ≥2)恒成立,即a ≥-x 2在x ∈[2,+∞)上恒成立. 令t =-x 2,当x ∈[2,+∞)时,易知t max =-4,为使不等式a ≥-x 2恒成立,则a ≥-4,故实数a 的取值范围为[-4,+∞).22.(本小题满分12分)已知两曲线f (x )=x 3+ax ,g (x )=ax 2+bx +c 都经过点P (1,2),且在点P 有公切线.(1)求a ,b ,c 的值;(2)设k (x )=f (x )g (x ),求k ′(-2)的值.【解】 (1)依题意,⎩⎪⎨⎪⎧1+a =2,a +b +c =2,即⎩⎪⎨⎪⎧a =1,b +c =1.故f (x )=x 3+x ,g (x )=x 2+bx +1-b ,所以f ′(x )=3x 2+1,g ′(x )=2x +b ,由于两曲线在点P (1,2)处有公切线,故f ′(1)=g ′(1),即4=2+b , 所以b =2. 故c =1-b =-1.(2)由(1)可得f (x )=x 3+x ,g (x )=x 2+2x -1, 故k (x )=f (x )g (x )=x 3+x x 2+2x -1,故k ′(x )=(x 3+x )′(x 2+2x -1)-(x 3+x )(x 2+2x -1)′(x 2+2x -1)2=(3x 2+1)(x 2+2x -1)-(x 3+x )(2x +2)(x 2+2x -1)2=x 4+4x 3-4x 2-1(x 2+2x -1)2. 故k ′(-2)=16-32-16-1(4-4-1)2=-33.章末综合测评(三) 导数应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.物体运动的方程为s =14t 4-3,则t =5时的瞬时速度为( ) A.5 B.25 C.125 D.625【解析】 ∵v =s ′=t 3,∴t =5时的瞬时速度为53=125. 【答案】 C2.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞)【解析】 f ′(x )=(x -2)e x ,由f ′(x )>0,得x >2,所以函数f (x )的单调递增区间是(2,+∞). 【答案】 D3.函数f (x )=ax 3+x +1有极值的充要条件是( ) A.a ≥0 B.a >0 C.a ≤0 D.a <0 【解析】 f ′(x )=3ax 2+1,当a =0时,f ′(x )=1>0,f (x )单调增加,无极值;当a ≠0时,只需Δ=-12a >0,即a <0即可. 【答案】 D4.函数f (x )的导函数f ′(x )的图像如图1所示,那么f (x )的图像最有可能的是( )图1A B C D【解析】 数形结合可得在(-∞,-2),(-1,+∞)上,f ′(x )<0,f (x )是减函数;在(-2,-1)上,f ′(x )>0,f (x )是增函数,从而得出结论.【答案】 B5.若函数y =a (x 3-x )的递增区间是⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,则a 的取值范围是( )A.a >0B.-1<a <0C.a >1D.0<a <1【解析】 依题意得y ′=a (3x 2-1)>0的解集为⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,∴a >0.【答案】 A6.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A.3f (1)<f (3) B.3f (1)>f (3) C.3f (1)=f (3) D.f (1)=f (3) 【解析】 由于f (x )>xf ′(x ),⎝ ⎛⎭⎪⎫f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数,∴f (3)3<f (1)1,即3f (1)>f (3),故选B.【答案】 B7.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )A.-5B.7C.10D.-19【解析】 ∵f (x )′=-3x 2+6x +9=-3(x +1)(x -3), 所以函数在[-2,-1]内单调递减, 所以最大值为f (-2)=2+a =2, ∴a =0,最小值为f (-1)=a -5=-5. 【答案】 A8.函数y =12x -2sin x 的图像大致是( )【解析】 因为y ′=12-2cos x ,所以令y ′=12-2cos x >0,得cos x <14,此时原函数是增函数;令y ′=12-2cos x <0,得cos x >14,此时原函数是减函数,结合余弦函数图像,可得选项C 正确.【答案】 C9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)【解析】 f ′(x )=-x +bx +2,由题意知f ′(x )≤0在(-1,+∞)上恒成立,即b ≤x 2+2x 在(-1,+∞)上恒成立,即b ≤(x +1)2-1,则b ≤-1,故选C.【答案】 C10.已知y =f (x )是定义在R 上的函数,且f (1)=1,f ′(x )>1,则f (x )>x 的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞)【解析】 不等式f (x )>x 可化为f (x )-x >0, 设g (x )=f (x )-x ,则g ′(x )=f (x )′-1, 由题意g ′(x )=f ′(x )-1>0,∴函数g (x )在R 上单调递增,又g (1)=f (1)-1=0, ∴原不等式⇔g (x )>0⇔g (x )>g (1),∴x >1,故选C. 【答案】 C11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎢⎡⎦⎥⎤-6,-98C.[-6,-2]D.[-4,-3] 【解析】 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈[-2,-1)时,φ′(x )<0.当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2. 【答案】 C12.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A.a ≥0 B.a <-4 C.a ≥0或a ≤-4 D.a >0或a <-4【解析】 f ′(x )=2x +2+ax ,x ∈(0,1), ∵f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,∴2x +2+a x ≥0或2x +2+ax ≤0在(0,1)上恒成立,即a ≥-2x 2-2x 或a ≤-2x 2-2x 在(0,1)上恒成立.设g (x )=-2x 2-2x =-2⎝ ⎛⎭⎪⎫x +122+12,则g (x )在(0,1)上单调递减,∴g (x )max =g (0)=0,g (x )min =g (1)=-4.∴a ≥g (x )max =0或a ≤g (x )min =-4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 【解析】 因为f (x )=(2x +1)e x , 所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3. 【答案】 314.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.【解析】 ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2,即12≤f (x )≤12e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π2 15.已知函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,则a +b =________. 【解析】 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,⎩⎪⎨⎪⎧2a +b =-3,a 2+a +b =9,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11,∴a +b =-7.【答案】 -716.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【解析】 设矩形的长为x ,则宽为10-x (0<x <10),由题意可知所求圆柱的体积V =πx 2(10-x )=10πx 2-πx 3,∴V ′(x )=20πx -3πx 2.由V ′(x )=0,得x =0(舍去),x =203,且当x ∈⎝ ⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫203,10时,V ′(x )<0,∴当x =203时,V (x )取得最大值为4 00027π cm 3.【答案】 4 00027π三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若函数f (x )=x 3+3ax 2+3(a +2)x +3既有极大值又有极小值,求实数a 的取值范围.【解】 ∵f ′(x )=3x 2+6ax +3(a +2), 令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0,∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实数根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.故实数a 的取值范围是(-∞,-1)∪(2,+∞).18.(本小题满分12分)设函数f (x )=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值;(2)讨论函数f (x )的单调性.【解】 (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图像与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12, 即⎩⎪⎨⎪⎧1-3a +3b =-11,3-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6x -9=3(x 2-2x -3) =3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3; 又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)和x ∈(3,+∞)时,f (x )是增函数,当x ∈(-1,3)时,f (x )是减函数.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(包含答案解析)
一、选择题1.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .⎫+∞⎪⎪⎝⎭ D .⎛ ⎝⎭2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞- B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( ) A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<5.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2xB .y =x 3-xC .y =x e xD .y =-x +ln(1+x )6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a << B .11a e<< C .111a e-<< D .111a e+<< 7.已知函数1()ln xf x x ax-=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1 B .(01],C .()1,+∞D .[1,)+∞8.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x ee x x -<-C .1221xxx e x e > D .1221xxx e x e <9.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .1210.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202011.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x <时,()2f x x '<,则不等式()()424f x f x x +≥-+的解集为______.14.若函数的()1,2ln ,x m x e f x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.15.已知函数()f x 是定义在R 上的增函数,()()2f x f x '+>,()01f =,则不等式()ln 2ln 3f x x +>+⎡⎤⎣⎦的解集为______.16.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.17.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 18.函数()()21xf x x =-的最小值是______.19.已知函数()ln g x a x =,若对[1,]x e ∀∈,都有2()(2)g x x a x ≥-++恒成立,则实数a 的取值范围是________.20.已知函数()ln =-xf x e a x 在[]1,4上单调递增,则a 的取值范围是______.三、解答题21.函数()21xf x xe x =-+.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()()ln g x f x x x m =-+-的零点个数. 22.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 23.已知函数()()2ln 1f x ax x =-+()0a ≠. (1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.24.已知函数21()(1)ln 2f x x ax a x =-+-;(1)若12a <≤,求函数()f x 的单调递减区间; (2)求证:若15a <<,则对任意的120x x >>,有1212()()1f x f x x x ->--.25.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围.26.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a.【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x ---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x -+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A. 【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.5.C解析:C 【解析】A 在R 上是周期函数,2sin cos y x x =' ,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 231,y x -'= 在(0,+∞),有正有负,所以原函数不是增函数,C x x y xe e '=+ 0> ,恒成立,故原函数单调递增;D 1111x y x x-=-+=++' ,在(0,+∞)上导函数为负,原函数应该是减函数. 故选C .点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x'=+>在区间()1,e 上恒成立,所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<.故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.D解析:D 【分析】 根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解. 【详解】 函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立, 即1a x≥在[1,)+∞上恒成立, 令()()max 11g x g x x==,, 所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.8.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x -'=<,故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.9.C解析:C 【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果. 【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x ,则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=,令()0f x '>,则01x <<;令()0f x '<,则1x > , 所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数,由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤, 故a 的最大值为1. 故选:C. 【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.10.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 11.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得2x =,列表如下:()2max 2f x ⎛=-= ⎝⎭3a ∴≥2a ≥-. 综上所述,实数a 的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】 结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.A解析:A【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解.【详解】由题意,函数32()42x x f x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x x x xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥,当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+, 所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略:1、求解函数不等式的依据是函数的单调性的定义.具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 二、填空题13.【分析】先由两边对求导根据题意得到推出时都有构造函数对其求导得到在上单调递减再由将原不等式化简得到根据函数单调性即可求出结果【详解】因为两边对求导得到令则因为当时所以因此又直线过原点所以因此时都有; 解析:(],1-∞【分析】先由()()22f x f x x -+=两边对x 求导,根据题意,得到()f x x '-<-2,推出x ∈R 时,都有()2f x x '<,构造函数()()()424F x f x f x x =+---,对其求导,得到()F x 在R 上单调递减,再由()10F =,将原不等式化简得到()()1F x F ≥,根据函数单调性,即可求出结果.【详解】因为()()22f x f x x -+=, 两边对x 求导,得到()()4f x f x x ''--+=,令0x >,则0x -<,因为当0x <时,()2f x x '<,所以()f x x '-<-2,因此()()42f x x f x x ''=+-<,又()00f =,直线2y x =过原点,所以()00f '≤,因此x ∈R 时,都有()2f x x '≤;令()()()424F x f x f x x =+---,则()()()()2422240F x f x f x x x '''=+--<---=,即函数()F x 在R 上单调递减,又()()()114140F f f =+--=,所以不等式()()424f x f x x +≥-+可化为()0F x ≥,即()()1F x F ≥,所以1x ≤,即原不等式的解集为(],1-∞.故答案为:(],1-∞.【点睛】本题主要考查由函数单调性解不等式,以及导数的方法判定函数的单调性,属于常考题型. 14.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x e f x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞, 所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭ [)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e -. 故答案为:312e -. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.15.【分析】构造函数则所以的单调递减将转化成又再根据函数单调性即可求出结果【详解】设所以因为所以所以在上为减函数因为函数是定义在上的增函数所以所以在上恒成立又因为所以所以即因为所以所以又在上为减函数所以 解析:(),0-∞【分析】构造函数()()2+=x f x g x e ,则()()()()20'-+'=<x f x f x g x e,所以()g x 的单调递减,将()ln 2ln 3f x x +>+⎡⎤⎣⎦转化成()23+>x f x e ,又()03g =,再根据函数单调性即可求出结果.【详解】设()()2+=x f x g x e ,所以()()()()()()()222''-+-+'==x x x x f x e f x e f x f x g x e e, 因为()()2f x f x '+>,所以()0g x '<,所以()()2+=xf xg x e 在R 上为减函数, 因为函数()f x 是定义在R 上的增函数,所以()0f x '>,所以()()20'+>>f x f x 在R 上恒成立,又因为()ln 2ln 3f x x +>+⎡⎤⎣⎦,所以()2ln 3+>f x x ,所以()23+>x f x e ,即()23+>x f x e ,因为()01f =,所以()()00203+==f g e ,所以()()0g x g >,又()()2+=xf xg x e 在R 上为减函数,所以0x <. 故答案为:(),0-∞【点睛】 本题主要考查导数在判断单调性中的应用,解题的关键是合理构造函数,利用导函数判断构造的函数的单调性.16.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为 解析:0a ≤或1a =【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值;【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+, 所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件;当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x -+'=<,解得10x a <<即函数在10,a ⎛⎫ ⎪⎝⎭上单调递减, 则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭, 解得1a =,综上可得0a ≤或1a =;故答案为:0a ≤或1a =【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.17.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 18.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为 解析:14-【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf x x =-,故可得()()311x f x x ---'=,令()0f x '=,解得1x =-; 故当(),1x ∈-∞-时,()f x 单调递减;当()1,1x ∈-时,()f x 单调递增;当()1,x ∈+∞时,()f x 单调递减.且()114f -=-, 当x 趋近于1时()f x 趋近于正无穷;当x 趋近于正无穷时,()f x 趋近于零.函数图像如下所示:故()f x 的最小值为14-. 故答案为:14-. 【点睛】 本题考查利用导数研究函数的最值,属综合基础题.19.【分析】由已知条件推导出令由此利用导数性质能求出的取值范围【详解】解:由题意得到:且等号不能同时取所以即因而令又当时从而(仅当时取等号)在上为增函数的最小值为的取值范围是即故答案为:【点睛】本题考查 解析:(],1-∞-【分析】由已知条件推导出22x x a x lnx--,([1,])x e ∈,令22()x x f x x lnx -=-,([1,])x e ∈,由此利用导数性质能求出a 的取值范围.【详解】解:由题意得到:2()2a x lnx x x --.[]1,x e ∈,1lnx x ∴且等号不能同时取,所以lnx x <,即0x lnx ->, 因而22x x a x lnx--,([1,])x e ∈ 令22()x x f x x lnx-=-,([1,])x e ∈, 又2(1)(22)()()x x lnx f x x lnx -+-'=-, 当[]1,x e ∈时,10x -,1lnx ,220x lnx +->,从而()0f x '(仅当1x =时取等号),()f x 在[]1,e 上为增函数, ()f x ∴的最小值为()11f =-,a ∴的取值范围是1a -,即(],1a ∈-∞-故答案为:(],1-∞-.【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意构造法和导数性质的合理运用,属于中档题.20.【分析】求出函数的导数问题转化为在恒成立令根据函数的单调性求出的范围即可【详解】解:若在递增则在恒成立即在恒成立令则在递增故故故答案为:【点睛】本题考查了函数的单调性最值问题考查导数的应用以及函数恒 解析:(],e -∞【分析】求出函数的导数,问题转化为x a xe 在[]1,4恒成立,令()x h x xe =,[]1,4x ∈,根据函数的单调性求出a 的范围即可.【详解】解:()x a f x e x'=-, 若()f x 在[]1,4递增,则()0f x '在[]1,4恒成立,即x a xe 在[]1,4恒成立,令()x h x xe =,[]1,4x ∈,则()(1)0x h x x e '=+>,()h x 在[]1,4递增,故()()1min h x h e ==,故a e ,故答案为:(],e -∞.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,属于中档题. 三、解答题21.(1)1y x =-+;(2)答案见解析.【分析】(1)利用导数求出函数()f x 在0x =处的切线的斜率,并求出切点的坐标,利用点斜式可求得所求切线的方程;(2)令()()ln ln 1xh x f x x xe x x =-=--+,则问题转化为直线y m =与函数()y h x =的图象的交点个数,利用导数分析函数()h x 的单调性与极值,数形结合可得出直线y m =与函数()y h x =的图象的交点个数,由此可得出结论.【详解】(1)因为()()12xf x x e '=+-,所以()01f '=-, 又()01f =,切点坐标为()0,1,所以函数()f x 在0x =处的切线方程为:1y x =-+;(2)构造函数()()()ln ln 10xh x f x x x xe x x x =-+=--+> 则()()()()11111x x x xe h x x e x x+-'=+--=, 令()1x m x xe =-,()()10xm x x e '=+>,则()m x 在()0,∞+单调递增,且11022m ⎛⎫=-< ⎪⎝⎭,()110m e =->, 所以存在0,112x ⎛⎫∈ ⎪⎝⎭,使得()00m x =,即001x e x =,从而00ln x x =-. 所以当()00,x x ∈时,()0m x <,即()0h x '<,则()h x 单调递减;当()0,x x ∈+∞时,()0m x >,即()0h x '>,则()h x 单调递增.所以()()00000000min 01ln 112x h x h x x e x x x x x x ==--+=⋅-++=,如下图所示:所以当2m <时,()g x 没有零点;当2m =时,()g x 有1个零点;当2m >时,()g x 有2个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析.【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立.【详解】(1)函数()x f x e x =-的定义域为R ,且()1x f x e '=-. 令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--, 当0x ≥时, ()10x g x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数,当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数,当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.23.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*) 由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++,即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. 24.(1){}|11x a x -<<;(2)证明见解析. 【分析】(1)求出()f x 的导函数,根据12a <≤可得到单调递减区间; (2)令21()()(1)ln 2g x f x x x ax a x x =+=-+-+()0x >,判断出单调性,利用12()()g x g x >可得答案.【详解】 (1)21()(1)ln 2f x x ax a x =-+-的定义域为(0+)∞,, [](1)(1)1()x x a a f x x a x x----'=-+=, 因为12a <≤,所以011a <-≤, 当11a -=即2a =时,()f x 在(0+)∞,单调递增, 当011a <-<时,即02a <<,令()0f x '<得11a x -<<,所以()f x 单调递减, 单调递减区间为{}|11x a x -<<, 综上所述,2a =时,()f x 无单调递减区间; 02a <<时, ()f x 单调递减区间为{}|11x a x -<<. (2)设21()()(1)ln 2g x f x x x ax a x x =+=-+-+()0x >,则21(1)1()1a x a x a g x x a x x-+-+-'=-++=, 令2()(1)1M x x a x a =+-+-,所以2(1)4(1)(1)(5)a a a a ∆=---=--, 因为15a <<,所以(1)(5)0a a ∆=--<,所以()0M x >,即()0g x '>, 所以()g x 在(0+)∞,上单调递增, 对任意的120x x >>,有12()()g x g x >,即1122()()f x x f x x +>+,1212()()()f x f x x x ->--,所以1212()()1f x f x x x ->--.【点睛】利用导数()0f x '<求得函数的单调递减区间,利用导数()0f x '>求得函数的单调递增区间.25.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x≥+在[]2,5上恒成立,设()13m x x x=+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围. 【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-, 由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<;∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g=;函数()g x极小值点为0,对应的极小值为()00g=.(2)由(1)知431()4f x x x=-+,∴43221()()(1)4h x f x x c x x cx c=++--++322cx x cx c=-++,∴2()32h x cx x c'=-+,因为函数()h x在[]2,5上单调递增,∴2320cx x c-+≥在[]2,5上恒成立,即2221313xcx xx≥=++在[]2,5上恒成立,设()13m x xx=+,令()22213130xm xx x-'=-==,解得[]2,5x=,当[]2,5x∈时,()0m x'>,所以()13m x xx=+在[]2,5上单调递增,则()()1322m x m≥=,所以24=13132c≥.【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x-=,若已知奇函数,则()()f x f x-=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 26.(1)1a=-,1b=,证明见解析;(2)(),2e-∞-.【分析】(1)先求出()21xf x e x=--,则()()21xg x f x x x e x=+-=--,利用导数求出()()min00g x g==,不等式即得证;(2)价于()f xkx>对任意的0,恒成立,令()()f xxxϕ=,0x>,求出函数()y xϕ=的最小值即得解.【详解】(1)根据题意,函数()2xf x e x a=-+,则()2xf x e x'=-,则()01f b'==,由切线方程y bx=可得切点坐标为()0,0,将其代入()y f x=,解得1a=-,故()21xf x e x=--,则()()21xg x f x x x e x=+-=--,则()10xg x e'=-=,得0x=,当(),0x∈-∞,0g x,函数y g x单调递减;当()0,x ∈+∞,0g x,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+. (2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x>对任意的0,恒成立, 令()()f x x xϕ=,0x >, 得()()()()()()()22222111x x xx e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立, 令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<, 所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数f(x)=2x +ln x,则( ) A.x=12为f(x)的极大值点 B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析:由f'(x)=-2x 2+1x =1x (1-2x )=0可得x=2.∵当0<x<2时,f'(x)<0,f(x)是减少的,当x>2时f'(x)>0,f(x)是增加的,所以x=2为极小值点. 答案:D2.函数f(x)=xe x -e x+1的递增区间是( ) A.(-∞,e) B.(1,e) C.(e,+∞) D.(e-1,+∞)解析:由题意可知f'(x)=e x (1+x-e),令f'(x)>0,解得x>e-1,∴f(x)=xe x -e x+1的递增区间为(e-1,+∞). 答案:D3.已知函数f(x)是R 上的可导函数,f(x)的导数f'(x)的图像如图,则下列结论正确的是( )A.a,c 分别是极大值点和极小值点B.b,c 分别是极大值点和极小值点C.f(x)在区间(a,c)上是增加的D.f(x)在区间(b,c)上是减少的解析:由极值点的定义可知a 是极小值点,无极大值点;由导函数的图像可知函数f(x)在区间(a,+∞)上是增加的,所以选C. 答案:C4.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系式是R=R(x)={400x -12x 2,0≤x ≤400,80 000,x >400,则总利润P 最大时,每年生产的产品是( ) A.100单位 B.150单位 C.200单位 D.300单位解析:由题意知,总成本为C=20 000+100x.而总利润为P=P(x)=R-C={300x -12x 2-20 000,0≤x ≤400,60 000-100x ,x >400.P'(x)={300-x ,0≤x ≤400,-100,x >400.令P'(x)=0,得x=300,易知当x=300时,总利润最大. 答案:D5.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x).当x>0时,f'(x)>0,g'(x)>0,则当x<0时,下列各式正确的是( ) A.f'(x)>0,g'(x)>0 B.f'(x)>0,g'(x)<0 C.f'(x)<0,g'(x)>0 D.f'(x)<0,g'(x)<0解析:由题意知f(x)为奇函数,图像关于原点对称,在对称区间上的单调性相同;g(x)为偶函数,在对称区间上的单调性相反.∵当x>0时,f(x)是增加的,g(x)是增加的, ∴x<0时,f(x)是增加的,g(x)是减少的. ∴f'(x)>0,g'(x)<0. 答案:B6.已知当x ∈(0,π2)时,函数f(x)=tx-sin x(t ∈R)的值恒小于零,则t 的取值范围是( ) A.(-∞,2π] B.(-∞,π2] C.[2π,+∞)D.(-∞,π2)解析:f(x)=tx-sin x<0在x ∈(0,π2)内恒成立,即t<sinx x在(0,π2)内恒成立.令g(x)=sinx x ,则g'(x)=xcosx -sinxx .当x ∈(0,π2)时,tan x>x,∴sin x>xcos x. ∴g'(x)<0,g(x)在(0,π2)上是减少的. ∴t≤sinπ2π2=2π.答案:A7.若函数f(x)=13x 3+mx 2-3m 2x+1,m ∈R 在区间(-2,3)上是减少的,则实数m 的取值范围为( ) A.m≥3 B.m≤-2 C.m≥2或m≤-3 D.m≥3或m≤-2解析:因为f'(x)=x 2+2mx-3m 2,令f'(x)=0,得x=-3m 或x=m.当m=0时,f'(x)=x 2≥0恒成立,不符合题意.当m>0时,f(x)的递减区间是(-3m,m),若f(x)在区间(-2,3)上是减少的,则{-3m ≤-2,m ≥3,解得m≥3. 当m<0时,f(x)的递减区间是(m,-3m),若f(x)在区间(-2,3)上是减少的,则{m ≤-2,-3m ≥3,解得m≤-2. 综上所述,实数m 的取值范围是m≥3或m≤-2.故选D. 答案:D8.若a>0,b>0,且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( ) A.2 B.3 C.6 D.9解析:∵f'(x)=12x 2-2ax-2b,Δ=4a 2+96b>0,又x=1是极值点,∴f'(1)=12-2a-2b=0,即a+b=6,且a>0,b>0.∴ab≤(a+b)24=9,当且仅当a=b时“=”成立.∴ab的最大值为9.答案:D9.当a>0时,函数f(x)=(x2-ax)e x的图像大致是( )解析:f'(x)=[x2-(a-2)x-a]e x,令f'(x)=0,则x2-(a-2)x-a=0.∵a>0,∴Δ=(a-2)2+4a>0.从而可知函数f(x)有两个极值点,∴排除A,D;再由题意可知,当x<0时,f(x)>0恒成立,∴排除C,从而选B.答案:B10.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f'(x)g(x)+f(x)g'(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)解析:令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f'(x)g(x)+f(x)g'(x)>0,即F'(x)>0,知F(x)在(-∞,0)上是增加的.又F(x)为奇函数,∴F(x)在(0,+∞)上也是增加的,且由奇函数的性质知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0.∴F(-3)=0,进而F(3)=0.于是F(x)=f(x)g(x)的大致图像如图所示.∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3).答案:D11.若函数f(x)=-2x3+ax2+1存在唯一的零点,则实数a的取值范围为( )A.[0,+∞)B.[0,3]C.(-3,0]D.(-3,+∞)解析:函数f(x)=-2x3+ax2+1存在唯一的零点,即方程2x3-ax2-1=0有唯一的实根⇔直线y=a与函数g(x)=2x 3-1x 的图像有唯一的交点,由g'(x)=2(x3+1)x,可得g(x)在(-∞,-1)上是增加的,在(-1,0)上是减少的,在(0,+∞)上是增加的,所以当x=-1时,g(x)有极大值,g(x)极大=g(-1)=-3.故当a>-3时,直线y=a 与函数g(x)=2x 3-1x 2的图像有唯一的交点.答案:D 12.导学号88184043若0<x 1<x 2<1,则( ) A.e x 2−e x 1>ln x 2-ln x 1 B.e x 2−e x 1<ln x 2-ln x 1 C.x 2e x 1>x 1e x 2 D.x 2e x 1<x 1e x 2解析:构造函数f(x)=e x -ln x,则f'(x)=e x -1x ,故f(x)=e x -ln x 在(0,1)上有一个极值点,即f(x)=e x -ln x 在(0,1)上不是单调函数,无法判断f(x 1)与f(x 2)的大小,故A,B 错;构造函数g(x)=e xx ,则g'(x)=xe x -e x x =e x (x -1)x ,故函数g(x)=e xx 在(0,1)上是减少的,故g(x 1)>g(x 2),x 2e x 1>x 1e x 2,应选C. 答案:C二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=13ax 3+12ax 2-2ax+2a+1的图像经过四个象限,则实数a 的取值范围是 .解析:f'(x)=ax 2+ax-2a=a(x-1)(x+2),由f(x)的图像经过四个象限知,若a>0,则 {f (-2)>0,f (1)<0,此时无解;若a<0,则{f (-2)<0,f (1)>0,解得-65<a<-316.综上,知-65<a<-316. 答案:(-65,-316)14.已知函数f(x)=-x 3+ax 2-4在x=2处取得极值,若m,n ∈[-1,1],则f(m)+f'(n)的最小值是 .解析:f'(x)=-3x 2+2ax,根据已知得2a3=2,即a=3,故f(x)=-x 3+3x 2-4.根据函数f(x)的极值点,可得函数f(m)在[-1,1]上的最小值为f(0)=-4,f'(n)=-3n 2+6n 在[-1,1]上是增加的,所以f'(n)的最小值为f'(-1)=-9.[f(m)+f'(n)]min =f(m)min +f'(n)min =-4-9=-13. 答案:-1315.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床 台,一年中库存费和生产准备费之和最小.解析:设每批生产x 台,则一年生产Nx 批.一年中库存费和生产准备费之和y=C 1x+C 2N x(0<x<N).y'=C 1-C 2Nx 2.由y'=0及0<x<N,解得x=√C 2NC 1.根据问题的实际意义,y 的最小值是存在的,且y'=0有唯一解.故使费用最小的每批生产台数为√C 2NC 1.答案:√C 2NC 116.导学号88184044在区间[0,1]内随机取两个实数分别为a,b,则使函数y=13x 3+ax 2-(b 2-1)x+2存在极值点的概率为 . 解析:因为函数y=13x 3+ax 2-(b 2-1)x+2,所以y'=x 2+2ax-(b 2-1).又函数存在极值点,则方程x 2+2ax-(b 2-1)=0必有两个不相等的实数根,所以Δ=4a 2+4(b 2-1)>0,即a 2+b 2>1,而基本事件所包含的面积为正方形,其面积为1×1=1,由几何概型的计算公式知,使函数y=13x 3+ax 2-(b 2-1)x+2存在极值点的概率为P=1-π4. 答案:1-π4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f(x)=(x 2+bx+b)·√1-2x (b ∈R). (1)当b=4时,求f(x)的极值;(2)若f(x)在区间(0,13)上是增加的,求b 的取值范围. 解(1)当b=4时,f'(x)=√1-2x ,由f'(x)=0得x=-2或x=0.当x ∈(-∞,-2)时,f'(x)<0,f(x)是减少的; 当x ∈(-2,0)时,f'(x)>0,f(x)是增加的; 当x ∈(0,12)时,f'(x)<0,f(x)是减少的.故f(x)在x=-2处取极小值f(-2)=0,在x=0处取极大值f(0)=4. (2)f'(x)=√1-2x , 因为当x ∈(0,13)时,√1-2x<0,依题意当x ∈(0,13)时,有5x+(3b-2)≤0,从而53+(3b-2)≤0.所以b≤19. 所以b 的取值范围为(-∞,19].18.(本小题满分12分)已知函数f(x)=x-1-aln x. (1)若f(x)≥0,求a 的值;(2)设m 为整数,且对于任意正整数n,(1+12)(1+122)…(1+12n )<m,求m 的最小值. 解(1)f(x)的定义域为(0,+∞).①若a≤0,因为f (12)=-12+aln 2<0,所以不满足题意; ②若a>0,由f'(x)=1-ax =x -a x知,当x ∈(0,a)时,f'(x)<0;当x ∈(a,+∞)时,f'(x)>0.所以f(x)在(0,a)单调递减,在(a,+∞)单调递增. 故x=a 是f(x)在(0,+∞)的唯一最小值点. 由于f(1)=0,所以当且仅当a=1时,f(x)≥0. 故a=1.(2)由(1)知当x ∈(1,+∞)时,x-1-ln x>0. 令x=1+12得ln (1+12)<12.从而ln (1+12)+ln (1+122)+…+ln (1+12n )<12+122+…+12n =1-12n <1. 故(1+12)(1+122)…(1+12n )<e.而(1+12)(1+12)(1+12)>2,所以m 的最小值为3.19.(本小题满分12分)已知函数f(x)=12ax 2-(a 2+1)x+aln x. (1)若函数f(x)在[1e ,e]上是减少的,求实数a 的取值范围;(2)当a ∈(0,35)时,求f(x)在[1,2]上的最大值和最小值.(注意:ln 2<0.7) 解(1)∵f(x)在[1e ,e]上是减少的,∴f'(x)=ax+ax -(a 2+1)≤0在[1e ,e]上恒成立.∴ax+ax ≤(a 2+1).(可做如下分类讨论) ①当a≤0时,结论显然成立;②当a>0时,可化为x+1x ≤a+1a 对任意x ∈[1e ,e]恒成立. 显然,当x ∈(0,+∞)时,对勾函数h(x)=x+1x 在[0,1]上是减少的,在[1,+∞)上是增加的.∴要使得h(x)≤h(a)在x ∈[1e,e]上恒成立,只需0<a≤1e或a≥e . 综上,可知a≤1e 或a≥e . (2)∵f'(x)=ax+a x -(a 2+1) =ax 2-(a 2+1)x+ax=(ax -1)(x -a )x,令f'(x)=0,则x=1a 或x=a. ①当0<a≤12时,f'(x)≤0, ∴f(x)在[1,2]上是减少的. ∴y min =f(2)=2a-2(a 2+1)+aln 2,y max =f(1)=12a-(a 2+1). ②当12<a≤35时, 1≤x<1a 时,f'(x)<0,1a<x≤2时,f'(x)>0,∴y min =f (1a )=-a-12a -aln a. f(2)-f(1)=32a-(a 2+1)+aln 2,令h(x)=32x-(x 2+1)+xln 2(12<x ≤35). ∴h'(x)=32-2x+ln 2. ∵12<x≤35,∴h'(x)>0. ∴y=h(x)在12<x≤35上是增加的. ∴h max (x)=h (35)=910−3425+35ln 2<-125<0.∴f(1)>f(2).∴f max =f(1)=12a-(a 2+1).综上所述:当0<a≤12时,y min =f(2)=2a-2(a 2+1)+aln 2,y max =f(1)=12a-(a 2+1); 当12<a≤35时,y min =f (1a )=-a-12a -aln a,y max =f(1)=12a-(a 2+1). 20.(本小题满分12分)已知函数f(x)=e xx -a(x-ln x). (1)当a=1时,试求f(x)在(1,f(1))处的切线方程; (2)当a≤0时,试求f(x)的单调区间;(3)若f(x)在(0,1)内有极值,试求a 的取值范围. 解(1)当a=1时,f'(x)=e x (x -1)x 2-1+1x ,f'(1)=0,f(1)=e-1.故所求的切线方程为y=e-1.(2)f'(x)=e x (x -1)x -a (1-1x )=e x (x -1)-ax (x -1)x =(e x -ax )(x -1)x .当a≤0时,对于∀x ∈(0,+∞),e x -ax>0恒成立,所以f'(x)>0⇒x>1;f'(x)<0⇒0<x<1.所以f(x)的递增区间为(1,+∞),递减区间为(0,1).(3)若f(x)在(0,1)内有极值,则f'(x)在x ∈(0,1)内有解.令f'(x)=(e x -ax )(x -1)x 2=0⇒e x-ax=0⇒a=e xx .设g(x)=e xx ,x ∈(0,1), 所以g'(x)=e x (x -1)x,当x ∈(0,1)时,g'(x)<0恒成立,所以g(x)是减少的.又因为g(1)=e,又当x →0时,g(x)→+∞, 即g(x)在x ∈(0,1)上的值域为(e,+∞), 所以当a>e 时,f'(x)=(e x -ax )(x -1)x 2=0有解.设H(x)=e x -ax,则H'(x)=e x -a<0,x ∈(0,1), 所以H(x)在x ∈(0,1)上是减少的. 因为H(0)=1>0,H(1)=e-a<0,所以H(x)=e x -ax 在x ∈(0,1)上有唯一解x 0. 所以有:所以当a>e 时,f(x)在(0,1)内有极值且唯一.当a≤e 时,当x ∈(0,1)时,f'(x)≥0恒成立,f(x)是增加的,不成立. 综上,a 的取值范围为(e,+∞).21.(本小题满分12分)济南市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研,据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k(k>0).现已知相距36 km 的A,B 两家化工厂(污染源)的污染强度分别为正数a,b,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC=x(km). (1)试将y 表示为x 的函数;(2)若a=1时,y 在x=6处取得最小值,试求b 的值.解(1)设点C 受A 污染源污染指数为ka x ,点C 受B 污染源污染指数为kb36-x ,其中k 为比例系数,且k>0.从而点C 处污染指数y=ka x +kb36-x (0<x<36).(2)因为a=1,所以y=kx +kb36-x ,y'=k[-1x2+b(36-x)2],令y'=0,得x=1+√b,当x∈(01+√b)时,函数单调递减;当x∈(1+√b+∞)时,函数单调递增.∴当x=1+√b时,函数取得最小值,又此时x=6,解得b=25,经验证符合题意.故污染源B的污染强度b的值为25.22.导学号88184045(本小题满分12分)已知函数f(x)=ax-ln x.(1)若f(x)在x=1处取得极值,求实数a的值;(2)若f(x)≥5-3x恒成立,求实数a的取值范围.解(1)∵f(x)=ax-ln x,∴f'(x)=-ax2−1x=-x+ax2.由题意得f'(1)=0,即-1+a1=0,解得a=-1.经检验,当a=-1时,函数f(x)在x=1处取得极大值.∴a=-1.(2)设g(x)=f(x)+3x-5=ax-ln x+3x-5,则函数g(x)的定义域为(0,+∞). ∴当x>0时,g(x)≥0恒成立.于是g(1)=a-2≥0,即a≥2.∵g'(x)=-ax2−1x+3=3x2-x-ax2,∴方程g'(x)=0有一负根x1和一正根x2,x1<0<x2,其中x1不在函数定义域内.当x∈(0,x2)时,g'(x)<0,函数g(x)是减少的.当x∈(x2,+∞)时,g'(x)>0,函数g(x)是增加的.∴g(x)在定义域上的最小值为g(x2).依题意g(x2)≥0,即g(x2)=ax2-ln x2+3x2-5≥0.又3x22-x2-a=0,于是ax2=3x2-1,又ax2>0,∴x2>13.∴g(x2)=3x2-1-ln x2+3x2-5≥0,即6x2-6-ln x2≥0.令h(x)=6x-6-ln x,则h'(x)=6-1x =6x-1x.当x∈(13,+∞)时,h'(x)>0,∴h(x)是增加的.又h(1)=6-6-ln 1=0,∴6x2-6-ln x2≥0的解集为[1,+∞).又函数y=3x2-x在(16,+∞)上是增加的,∴a=3x22-x2≥3×12-1=2.故a的取值范围是[2,+∞).。