2018届天津卷文科数学十年真题分类汇编6 数列

合集下载

2018年高考天津卷文科数学(含答案)

2018年高考天津卷文科数学(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =(A ){1,1}-(B ){0,1}(C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >” 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >> (C )c b a >>(D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ 上单调递增 (D )在区间[,]2ππ 上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -=(B )22193x y -=(C )221412x y -=(D )221124x y -= (8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为(A )15- (B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年高考文科数学天津卷及答案解析

2018年高考文科数学天津卷及答案解析

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前天津市2018年普通高等学校招生全国统一考试文科数学第I 卷本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟. 参考公式:·如果事件A ,B 互斥,那么()()()P AB P A P B =+.·棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =( )A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥则目标函数35z x y =+的最大值为 ( )A .6B .19C .21D .45 3.设x ∈R ,则“38x >”是“||2x >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4 5.已知37log 2a =,131()4b =,131log 5c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增B .在区间,04π⎡⎤⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2π⎡⎤π⎢⎥⎣⎦上单调递减毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)7.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .22139x y -=B .22193x y -= C .221412x y -=D .221124x y -= 8.在如图的平面图形中,已知1OM =,2ON =,120MON ∠=︒,2BM MA =,2CN NA =则BC OM 的值为( )A .-15B .-9C .-6D .0第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.i 是虚数单位,复数67i12i+=+ . 10.已知函数()e x f x lnx =,()f x '为()f x 的导函数,则(1)f '的值为 . 11.如图,已知正方体1111–ABCD A B C D 的棱长为1,则四棱柱111–A BB D D 的体积为 .12.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .13.已知a ,b ∈R ,且–360a b +=,则218a b+的最小值为 . 14.已知a ∈R ,函数2222,0,()22,0x x a x f x x x a x ⎧++-⎪=⎨-+->⎪⎩≤.若对任意)[3,x ∈-+∞,()||f x x ≤恒成立,则a 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作。

(完整版)2018高考天津文科数学带答案

(完整版)2018高考天津文科数学带答案

精心整理绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时12012···棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =U I (A ){1,1}-(B ){0,1}(C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3(A (C (4T 的值为 (A (5(A (6 (A (C (7221(0,0)a b a b-=>>x 双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -=(B )22193x y -=(C )221412x y -=(D )221124x y -=(8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r则·BC OM u u u r u u u u r 的值为(A )15- (B )9- (C )6-(D )0第Ⅱ12(9(10. (11(12为(13(14)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i(ii(16在△(Ⅰ(Ⅱ(17为棱AB(Ⅰ(Ⅱ(Ⅲ(18设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.(19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.(20(I (II (III 围. (1(5(9(12)2220x y x +-= (13)14(14)[18,2]三、解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,E ,G },{F ,(ii @(16满分(Ⅰπ6B -,得a π3.(Ⅱ7,故b由πsin cos()6b A a B =-,可得sin A .因为a <c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分. (Ⅰ)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠在AC .在(AB ,CM ∠在在(.考查数列求和的基本方法和运算求解能力.满分13分.(I )解:设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =,所以(1)2n n n S +=. (II )解:由(I ),知13112(222)2 2.n n n T T T n n ++++=+++-=--L L 由12()4n n n n S T T T a b ++++=+L 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =.所以n 的值为4.学&科网(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代.满分(I |( 点 组整理得2182580k k ++=,解得9k =-,或2k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.(Ⅰ)解:由已知,可得f(x)=x(x?1)(x+1)=x3?x,故f‵(x)=3x?1,因此f(0)=0,(0)f'=?1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y?f(0)=(0)f'(x?0),故所求切线方程为x+y(f(x故f当xf(t2((x?tu3设函数g(x)=x3+(1?d2)x y=f(x)与直线y=?(x?t2等价于函数y=g(x)有三个零点.g'x=3x3+(1?d2).()当d2≤1时,()g'x在R上单调递增,不合题意.g'x≥0,这时()当d 2>1时,()g'x =0,解得x 1=,x 2.易得,g (x )在(?∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增,g (x )的极大值g (x 1)=g (+g (x )的极小值g (x 2)=g )=?3221)9d -+若g (若(g 2||d -y g =所以。

2018天津高考文科数学试题及答案

2018天津高考文科数学试题及答案

2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅰ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B 互斥,那么P(AⅠB)=P(A)+P(B).·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.(A)1 (B)2 (C)3 (D)4(A)-15 (B)-9 (C)-6 (D)0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅰ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.(16)(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–π/6).(Ⅰ)求教B的大小;(Ⅰ)设a=2,c=3,求b和sin(2A–B)的值.(17)(本小题满分13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C (2)C (3)A (4)B(5)D (6)A (7)A (8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.。

2018年数学真题及解析_2018年天津市高考数学试卷(文科)

2018年数学真题及解析_2018年天津市高考数学试卷(文科)

2018年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5.00分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5.00分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.45.(5.00分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5.00分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=.10.(5.00分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.11.(5.00分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为.12.(5.00分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5.00分)已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.16.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.17.(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.18.(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.19.(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.20.(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.2018年天津市高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5.00分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}【分析】直接利用交集、并集运算得答案.【解答】解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}.故选:C.【点评】本题考查交集、并集及其运算,是基础的计算题.2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值.【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.也可以利用目标函数的几何意义求解最优解,求解最值.3.(5.00分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.4.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【分析】根据程序框图进行模拟计算即可.【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.【点评】本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.5.(5.00分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【分析】把a,c化为同底数,然后利用对数函数的单调性及1的关系进行比较.【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.【点评】本题考查对数值的大小比较,考查了指数函数与对数式的单调性,是基础题.6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【分析】由函数的图象平移求得平移后函数的解析式,结合y=Asin(ωx+φ)型函数的单调性得答案.【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换及其性质,是中档题.7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】画出图形,利用已知条件,列出方程组转化求解即可.【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:A.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.8.(5.00分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0【分析】解法Ⅰ,由题意判断BC∥MN,且BC=3MN,再利用余弦定理求出MN和∠OMN的余弦值,计算•即可.解法Ⅱ:用特殊值法,不妨设四边形OMAN是平行四边形,由题意求得的值.【解答】解:解法Ⅰ,由题意,=2,=2,∴==2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×(﹣)=7,∴MN=;∴BC=3,∴cos∠OMN===,∴•=||×||cos(π﹣∠OMN)=3×1×(﹣)=﹣6.解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6.故选:C.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=4﹣i.【分析】根据复数的运算法则计算即可.【解答】解:====4﹣i,故答案为:4﹣i【点评】本题考查了复数的运算法则,属于基础题.10.(5.00分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e.【分析】根据导数的运算法则求出函数f(x)的导函数,再计算f′(1)的值.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.【点评】本题考查了导数的运算公式与应用问题,是基础题.11.(5.00分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【分析】求出四棱锥的底面面积与高,然后求解四棱锥的体积.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.【点评】本题考查几何体的体积的求法,判断几何体的形状是解题的关键.12.(5.00分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0).【分析】【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程.【方法二】设圆的一般方程,把点的坐标代入求得圆的方程.【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1.【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0.故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0).【点评】本题考查了圆的方程与应用问题,是基础题.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【分析】化简所求表达式,利用基本不等式转化求解即可.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.【点评】本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值.考查计算能力.14.(5.00分)已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] .【分析】根据分段函数的表达式,结合不等式恒成立分别进行求解即可.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].【点评】本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可.注意数形结合.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【分析】(Ⅰ)利用分层抽样的性质能求出应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学,利用列举法能求出所有可能结果.(ii)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,利用列举法能求出事件M发生的概率.【解答】解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个.(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M)=.【点评】本题考查分层抽样、用列举法计算随机事件所含基本事件数、古典概型及其概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力.16.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【分析】(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣).由此能求出B.(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B).【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.17.(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【分析】(Ⅰ)由平面ABC⊥平面ABD,结合面面垂直的性质可得AD⊥平面ABC,则AD⊥BC;(Ⅱ)取棱AC的中点N,连接MN,ND,又M为棱AB的中点,可得∠DMN(或其补角)为异面直线BC与MD所成角,求解三角形可得异面直线BC与MD所成角的余弦;(Ⅲ)连接CM,由△ABC为等边三角形,M为边AB的中点,可得CM⊥AB,且CM=,再由面面垂直的性质可得CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角,求解三角形可得直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.【点评】本题考查异面直线所成角、直线与平面所成角、平面与平面垂直等基本知识,考查空间想象能力、运算求解能力与推理论证能力,属中档题.18.(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.【分析】(Ⅰ)设等比数列{b n}的公比为q,由已知列式求得q,则数列{b n}的通项公式与前n项和可求;等差数列{a n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,代入等差数列的通项公式与前n项和公式可得S n;(Ⅱ)由(Ⅰ)求出T1+T2+……+T n,代入S n+(T1+T2+……+T n)=a n+4b n,化为关于n的一元二次方程求解正整数n的值.【解答】解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1.故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n ﹣2.由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4.∴n的值为4.【点评】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题.19.(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.【分析】(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,即可.(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).由△BPM的面积是△BPQ面积的2倍,可得x2﹣x1=2[x1﹣(﹣x1)],x2=5x1,联立方程求出由>0.,可得k.【解答】解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],易知直线AB的方程为:2x+3y=6.由,可得>0.由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.由>0.可得k,故k=﹣,【点评】本题考查了椭圆的方程、几何性质,考查了直线与椭圆的位置关系,属于中档题.20.(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.【分析】(Ⅰ)求出t2=0,d=1时f(x)的导数,利用导数求斜率,再写出切线方程;(Ⅱ)计算d=3时f(x)的导数,利用导数判断f(x)的单调性,求出f(x)的极值;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程f(x)+(x﹣t2)﹣6=0有三个互异的实数根,利用换元法研究函数的单调性与极值,求出满足条件的d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;+)∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d )(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).【点评】本题主要考查了导数的运算以及导数的几何意义,运用导数研究函数的单调性与极值的应用问题,是综合题.。

2018年天津市高考数学试题及全解(文科)

2018年天津市高考数学试题及全解(文科)

2018年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}2.(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.45.(5分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减7.(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,复数=.10.(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.11.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为.12.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.13.(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5分)己知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.17.(13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.18.(13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.19.(14分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.20.(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.2018年天津市高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}【解答】解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}.故选:C.2.(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.3.(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.5.(5分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.7.(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:A.8.(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0【解答】解:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6.故选:C.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,复数=4﹣i.【解答】解:====4﹣i,故答案为:4﹣i10.(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.11.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.12.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0).【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1.【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0.故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0).13.(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.14.(5分)己知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] .【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【解答】解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个.(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M)=.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.17.(13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.18.(13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.【解答】解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1.故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n ﹣2.由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4.∴n的值为4.19.(14分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.【解答】解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6.由,可得>0.由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.由>0.可得k,故k=﹣,20.(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;+)∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d )(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).。

2018年全国普通高等学校招生统一考试文科数学(天津卷)(精品解析)

2018年全国普通高等学校招生统一考试文科数学(天津卷)(精品解析)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.·棱锥的体积公式,其中表示棱锥的底面积,h表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,,则A. B.C. D.【答案】C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:由题意首先画出可行域,然后结合目标函数的解析式整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z 值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.3.(2018年天津卷)设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4.阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.5.已知,则的大小关系为A. B. C. D.【答案】D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系. 详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6.将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.7.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.【答案】A【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8.在如图的平面图形中,已知,则的值为A. B.C. D. 0【答案】C【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年天津市高考数学试卷及解析(文科)

2018年天津市高考数学试卷及解析(文科)

2018年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A、{﹣1,1}B、{0,1}C、{﹣1,0,1}D、{2,3,4}2、(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A、6B、19C、21D、453、(5分)设x∈R,则“x3>8”是“|x|>2”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件4、(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A、1B、2C、3D、45、(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A、a>b>cB、b>a>cC、c>b>aD、c>a>b6、(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A、在区间[]上单调递增B、在区间[﹣,0]上单调递减C、在区间[]上单调递增D、在区间[,π]上单调递减7、(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点、设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=18、(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A、﹣15B、﹣9C、﹣6D、0二.填空题:本大题共6小题,每小题5分,共30分.9、(5分)i是虚数单位,复数=、10、(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为、11、(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为、12、(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为、13、(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为、14、(5分)已知a∈R,函数f(x)=、若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是、三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15、(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160、现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动、(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作、(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率、16、(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c、已知bsinA=acos (B﹣)、(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值、17、(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°、(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值、18、(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*)、已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6、(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值、19、(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B、已知椭圆的离心率为,|AB|=、(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限、若△BPM的面积是△BPQ面积的2倍,求k的值、20、(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列、(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围、参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A、{﹣1,1}B、{0,1}C、{﹣1,0,1}D、{2,3,4}题目分析:直接利用交集、并集运算得答案、试题解答:解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}、故选:C、点评:本题考查交集、并集及其运算,是基础的计算题、2、(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A、6B、19C、21D、45题目分析:先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值、试题解答:解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3)、当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值、将其代入得z的值为21,故选:C、点评:在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解、也可以利用目标函数的几何意义求解最优解,求解最值、3、(5分)设x∈R,则“x3>8”是“|x|>2”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件题目分析:由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案、试题解答:解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8、即“x3>8”是“|x|>2”的充分不必要条件、故选:A、点评:本题考查充分条件、必要条件及其判定方法,是基础题、4、(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A、1B、2C、3D、4题目分析:根据程序框图进行模拟计算即可、试题解答:解:若输入N=20,则i=2,T=0,==10是整数,满足条件、T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件、,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B、点评:本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键、5、(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A、a>b>cB、b>a>cC、c>b>aD、c>a>b题目分析:把a,c化为同底数,然后利用对数函数的单调性及1的关系进行比较、试题解答:解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b、故选:D、点评:本题考查对数值的大小比较,考查了指数函数与对数式的单调性,是基础题、6、(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A、在区间[]上单调递增B、在区间[﹣,0]上单调递减C、在区间[]上单调递增D、在区间[,π]上单调递减题目分析:由函数的图象平移求得平移后函数的解析式,结合y=Asin(ωx+φ)型函数的单调性得答案、试题解答:解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x、当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增、故选:A、点评:本题考查y=Asin(ωx+φ)型函数的图象变换及其性质,是中档题、7、(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点、设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=1题目分析:画出图形,利用已知条件,列出方程组转化求解即可、试题解答:解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=、则双曲线的方程为:﹣=1、故选:A、点评:本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力、8、(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A、﹣15B、﹣9C、﹣6D、0题目分析:解法Ⅰ,由题意判断BC∥MN,且BC=3MN,再利用余弦定理求出MN和∠OMN的余弦值,计算•即可、解法Ⅱ:用特殊值法,不妨设四边形OMAN是平行四边形,由题意求得的值、试题解答:解:解法Ⅰ,由题意,=2,=2,∴==2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×(﹣)=7,∴MN=;∴BC=3,∴cos∠OMN===,∴•=||×||cos(π﹣∠OMN)=3×1×(﹣)=﹣6、解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6、故选:C、点评:本题考查了平面向量的线性运算与数量积运算问题,是中档题、二.填空题:本大题共6小题,每小题5分,共30分.9、(5分)i是虚数单位,复数=4﹣i、题目分析:根据复数的运算法则计算即可、试题解答:解:====4﹣i,故答案为:4﹣i点评:本题考查了复数的运算法则,属于基础题、10、(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e、题目分析:根据导数的运算法则求出函数f(x)的导函数,再计算f′(1)的值、试题解答:解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e、故答案为:e、点评:本题考查了导数的运算公式与应用问题,是基础题、11、(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为、题目分析:求出四棱锥的底面面积与高,然后求解四棱锥的体积、试题解答:解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=、则四棱锥A1﹣BB1D1D的体积为:=、故答案为:、点评:本题考查几何体的体积的求法,判断几何体的形状是解题的关键、12、(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0)、题目分析:【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程、【方法二】设圆的一般方程,把点的坐标代入求得圆的方程、试题解答:解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1、【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0、故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0)、点评:本题考查了圆的方程与应用问题,是基础题、13、(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为、题目分析:化简所求表达式,利用基本不等式转化求解即可、试题解答:解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=、即a=﹣3时取等号、函数的最小值为:、故答案为:、点评:本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值、考查计算能力、14、(5分)已知a∈R,函数f(x)=、若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] 、题目分析:根据分段函数的表达式,结合不等式恒成立分别进行求解即可、试题解答:解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2]、点评:本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可、注意数形结合、三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15、(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160、现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动、(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作、(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率、题目分析:(Ⅰ)利用分层抽样的性质能求出应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人、(Ⅱ)(i)从抽取的7名同学中抽取2名同学,利用列举法能求出所有可能结果、(ii)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,利用列举法能求出事件M发生的概率、试题解答:解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人、(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个、(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M)=、点评:本题考查分层抽样、用列举法计算随机事件所含基本事件数、古典概型及其概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力、16、(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c、已知bsinA=acos (B﹣)、(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值、题目分析:(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣)、由此能求出B、(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B)、试题解答:解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣)、∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=、(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==、点评:本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题、17、(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°、(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值、题目分析:(Ⅰ)由平面ABC⊥平面ABD,结合面面垂直的性质可得AD⊥平面ABC,则AD⊥BC;(Ⅱ)取棱AC的中点N,连接MN,ND,又M为棱AB的中点,可得∠DMN(或其补角)为异面直线BC与MD所成角,求解三角形可得异面直线BC与MD所成角的余弦;(Ⅲ)连接CM,由△ABC为等边三角形,M为边AB的中点,可得CM⊥AB,且CM=,再由面面垂直的性质可得CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角,求解三角形可得直线CD与平面ABD所成角的正弦值、试题解答:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD ⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=、∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角、在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=、∴直线CD与平面ABD所成角的正弦值为、点评:本题考查异面直线所成角、直线与平面所成角、平面与平面垂直等基本知识,考查空间想象能力、运算求解能力与推理论证能力,属中档题、18、(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*)、已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6、(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值、题目分析:(Ⅰ)设等比数列{b n}的公比为q,由已知列式求得q,则数列{b n}的通项公式与前n项和可求;等差数列{a n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,代入等差数列的通项公式与前n项和公式可得S n;(Ⅱ)由(Ⅰ)求出T1+T2+……+T n,代入S n+(T1+T2+……+T n)=a n+4b n,化为关于n的一元二次方程求解正整数n的值、试题解答:解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q﹣2=0、∵q>0,可得q=2、故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1、故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n﹣2、由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4、∴n的值为4、点评:本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题、19、(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B、已知椭圆的离心率为,|AB|=、(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限、若△BPM的面积是△BPQ面积的2倍,求k的值、题目分析:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,即可、(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0)、则Q(﹣x1,﹣y1)、由△BPM的面积是△BPQ面积的2倍,可得x2﹣x1=2[x1﹣(﹣x1)],x2=5x1,联立方程求出由>0.,可得k、试题解答:解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0)、则Q(﹣x1,﹣y1)、∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6、由,可得>0、由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣、由>0、可得k,故k=﹣,点评:本题考查了椭圆的方程、几何性质,考查了直线与椭圆的位置关系,属于中档题、20、(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列、(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围、题目分析:(Ⅰ)求出t2=0,d=1时f(x)的导数,利用导数求斜率,再写出切线方程;(Ⅱ)计算d=3时f(x)的导数,利用导数判断f(x)的单调性,求出f(x)的极值;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程f(x)+(x﹣t2)﹣6=0有三个互异的实数根,利用换元法研究函数的单调性与极值,求出满足条件的d的取值范围、试题解答:解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;x(﹣∞,t2﹣)t2﹣(t2﹣,t2+)t2+(t2+,+∞)f′(x)+0﹣0+f(x)单调增极大值单调减极小值单调增∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞)、点评:本题主要考查了导数的运算以及导数的几何意义,运用导数研究函数的单调性与极值的应用问题,是综合题、。

2018年高考真题 文科数学 (天津卷) 精编精校版

2018年高考真题 文科数学 (天津卷) 精编精校版

2018年普通高等学校招生全国统一考试文 科 数 学(天津卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分. 1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{|12}C x x =∈-≤<R ,则()A B C =U I ( ) A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.设变量x ,y 满足约束条件52410x y x y x y y +≤-≤-+⎧⎪≤⎨≥⎪⎪⎪⎩,则目标函数35z x y =+的最大值为( )A .6B .19C .21D .453.设x ∈R ,则“38x >”是“2x >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( ) A .1B .2C .3D .45.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,131log 5c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2π⎡⎤π⎢⎥⎣⎦上单调递减7.已知双曲线()222210,0x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=8.在如图的平面图形中,已知1OM =,2ON =,MON ∠=︒120,2BM MA =u u u u r u u u r ,2CN NA =u u u r u u u r ,则BC OM ⋅u u u r u u u u r的值为( )A .15-B .9-C .6-D .0第II 卷二、填空题:本大题共6小题,每题5分,共30分. 9.i 是虚数单位,复数67i12i+=+___________. 此卷只装订不密封班级 姓名 准考证号 考场号 座位号10.已知函数()e ln x f x x =,()'f x 为()f x 的导函数,则()1f '的值为__________.11.如图,已知正方体1111–ABCD A B C D 的棱长为1,则四棱柱111–A BB D D 的体积为__________.12.在平面直角坐标系中,经过三点()0,0,()1,1,()2,0的圆的方程为__________. 13.已知a ,b ∈R ,且–360a b +=,则128b a +的最小值为__________. 14.已知a ∈R ,函数()2222,022,0x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩若对任意[)–3,x ∈+∞,()f x x ≤恒成立,则a 的取值范围是__________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15.(13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.16.(13分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 sin cos 6-b A a B π⎛⎫= ⎪⎝⎭.(1)求角B 的大小;(2)设2a =,3c =,求b 和()sin 2A B -的值.17.(13分)如图,在四面体ABCD中,ABC△是等边三角形,平面ABC⊥平面ABD,点M为棱AB 的中点,2AB=,23AD=,90BAD∠=︒.(1)求证:AD BC⊥;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.18.(13分)设{}n a是等差数列,其前n项和为()*nS n∈N;{}n b是等比数列,公比大于0,其前n项和为()*nT n∈N.已知11b=,322b b=+,435b a a=+,5462b a a=+.(1)求nS和n T;(2)若()124n n n nS T T T a b+++⋯+=+,求正整数n的值.19.(14分)设椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B,AB =.(1)求椭圆的方程;(2)设直线():0l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.20.(14分)设函数()()()()123f x x t x t x t ---=,其中1t ,2t ,3t ∈R ,且1t ,2t ,3t 是公差为d 的等差数列.(1)若20t =,1d =,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若3d =,求()f x 的极值;(3)若曲线()y f x =与直线()12y x t =---有三个互异的公共点,求d 的取值范围.2018年普通高等学校招生全国统一考试文 科 数 学 答 案(天津卷)第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分. 1.【答案】C【解析】由并集的定义可得{}1,0,1,2,3,4A B =-U , 结合交集的定义可知:(){}1,0,1A B C =-U I .故选C . 2.【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=-+=⎧⎨⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为max 35325321z x y =+=⨯+⨯=.故选C .3.【答案】A【解析】求解不等式38x >可得2x >,求解绝对值不等式2x >可得2x >或2x <-, 据此可知:“38x >”是“2x >” 的充分而不必要条件.故选A . 4.【答案】B【解析】结合流程图运行程序如下: 首先初始化数据:20N =,2i =,0T =,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =.故选B .5.【答案】D【解析】由题意可知:3337log 3log log 92<<,即12a <<,1131110444⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即01b <<,133317log log 5log 52=>,即c a >,综上可得:c a b >>.故选D . 6.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z , 即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦, 选项C ,D 错误;故选A . 7.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --==+,22222bc b bc b d c a b ++==+, 则12226bcd d b c+===,则3b =,29b =, 双曲线的离心率:2229112c b e a a a==+=+=,据此可得23a =,则双曲线的方程为22139x y -=.故选A .8.【答案】C【解析】如图所示,连结MN ,由2BM MA =u u u u r u u u r ,2CN NA =u u u r u u u r可知点M ,N 分别为线段AB ,AC 上靠近点A 的三等分点,则()33BC MN ON OM ==-u u u r u u u u r u u u r u u u u r,由题意可知:2211OM ==u u u u r ,12cos1201OM ON ⋅=⨯⨯︒=-u u u u r u u u r,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u r u u u u r .故选C .第II 卷二、填空题:本大题共6小题,每题5分,共30分. 9.【答案】4i -【解析】由复数的运算法则得:()()()()67i 12i 67i 205i4i 12i 12i 12i 5+-+-===-++-. 10.【答案】e【解析】由函数的解析式可得:()11e ln e e ln x x x f x x x x x ⎛⎫=⨯+⨯='+ ⎪⎝⎭, 则()111e ln1e 1f ⎛⎫=⨯+= ⎪⎝⎭'.即()1f '的值为e .11.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且221111121122A O A C ==+=,111212BDD B S BD DD =⨯=⨯=四边形, 结合四棱锥体积公式可得其体积为11212333V Sh ==⨯⨯=.12.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点()0,0,()1,1,()2,0,则01104020F D E F D F =++++=+++=⎧⎪⎨⎪⎩,解得200D E F ⎧=-==⎪⎨⎪⎩,则圆的方程为2220x y x +-=. 13.【答案】14【解析】由360a b -+=可知36a b -=-,且312228a ab b -+=+,因为对于任意x ,20x >恒成立,结合均值不等式的结论可得:336122222224a ba b ---+≥⨯.当且仅当32236a b a b -=-=⎧⎪⎨⎪⎩,即31 a b ==-⎧⎨⎩时等号成立.综上可得128b a +的最小值为14. 14.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知,当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.【答案】(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人; (2)①答案见解析;②521. 【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.②由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率为()521P M =.16.【答案】(1)3B π=;(2)7b =,()33sin 2A B -=.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由sin cos 6b A a B π⎛⎫=- ⎪⎝⎭,得sin cos 6a B a B π⎛⎫=- ⎪⎝⎭,即sin cos 6B B π⎛⎫=- ⎪⎝⎭,可得tan 3B =.又因为()0,B ∈π,可得3B π=. (2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故7b =.由sin cos 6b A a B π⎛⎫=- ⎪⎝⎭,可得3sin 7A =.因为a c <,故cos 7A =. 因此43sin 22sin cos A A A ==,21cos22cos 17A A =-=.所以,()4311333sin 2sin 2cos cos2sin 27A B A B A B -=-=⨯-⨯=. 17.【答案】(1)证明见解析;(2)13;(3)3.【解析】(1)由平面ABC ⊥平面ABD ,平面ABC I 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥.(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥. 所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角.在Rt DAM △中,1AM =,故2213DM AD AM =+=.因为AD ⊥平面ABC , 故AD AC ⊥.在Rt DAN △中,1AN =,故2213DN AD AN =+= 在等腰三角形DMN 中,1MN =,可得1132cos MNDMN DM ∠==. 所以,异面直线BC 与MD 13(3)连接CM ,因为ABC △为等边三角形,M 为边AB 的中点,故CM AB ⊥,3CM =平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,CDM ∠为直线CD 与平面ABD 所成的角.在Rt CAD △中,224CD AC AD +.在Rt CMD △中,3sin CM CDM CD ∠==. 所以,直线CD 与平面ABD 3. 18.【答案】(1)()12n n n S +=,21n n T =-;(2)4.【解析】(1)设等比数列{}n b 的公比为q ,由11b =,322b b =+,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+, 可得131316a d +=,从而11a =,1d =,故n a n =,所以,()12n n n S +=.(2)由(1),有()()131122122222212nnn n T T T n n n +⨯-+++=+++--=---L L =,由()124n n n n S T T T a b ++++=+L 可得()1112222n n n n n n ++++--=+,整理得2340n n --=,解得1n =-(舍),或4n =.所以n 的值为4. 19.【答案】(1)22194x y +=;(2)12-. 【解析】(1)设椭圆的焦距为2c ,由已知得2259c a=,又由222a b c =+,可得23a b =.由2213AB a b +从而3a =,2b =.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意,210x x >>, 点Q 的坐标为()11,x y --.由BPM △的面积是BPQ △面积的2倍,可得PM PQ =2, 从而()21112x x x x -=--⎡⎤⎣⎦,即215x x =.易知直线AB 的方程为236x y +=,由方程组236x y y kx +==⎧⎨⎩消去y ,可得2632x k =+.由方程组22194x y y kx⎧+==⎪⎨⎪⎩,消去y ,可得1294x k =+215x x =, ()294532k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.20.【答案】(1)0x y +=;(2)极大值为;极小值为-(3)(),-∞+∞U .【解析】(1)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x ='-,因此()00f =,()01f '=-,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()000y f f x '-=-,故所求切线方程为0x y +=. (2)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()22223639f x x t x t +'=--.令()0f x '=,解得2x t =2x t = 当x 变化时,()f x ',()f x 的变化如下表:所以函数()f x 的极大值为(((329f t =-⨯=;函数()f x的极小值为(329f t =-⨯=-(3)曲线()y f x =与直线()2y x t =---有三个互异的公共点等价于关于x 的方程()()()()22220x t d x t x t d x t -+---+-+=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+.设函数()()321g x x d x =+-+()y f x =与直线()2y x t =---等价于函数()y g x =有三个零点.()()32'31g x x d =+-.当21d ≤时,()'0g x ≥,这时()gx 在R 上单调递增,不合题意.当21d >时,()'0g x =,解得1x =,2x =易得,()g x 在()1,x -∞上单调递增,在[]12,x x 上单调递减,在()2,x +∞上单调递增.()g x 的极大值())3221109d g x g ⎛- ==+ ⎝.()gx 的极小值())322219d g x g -==-+.若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意.若()20g x <,即()322127d ->,也就是d >,此时2d x >,()0g d d =+>,且12d x -<,()32620g d d d -=--+-<,从而由()g x 的单调性,可知函数()y g x =在区间()12,d x -,()12,x x ,()2,x d 内各有一个零点,符合题意.所以,d 的取值范围是(),-∞+∞U.。

2018年普通高等学校招生统一考试文科数学真题及参考答案(天津卷)

2018年普通高等学校招生统一考试文科数学真题及参考答案(天津卷)

2018年普通高等学校招生全国统一考试(天津卷)数学试卷(文史类)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()AB C =(A ){1,1}- (B ){0,1} (C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >> (C )c b a >>(D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ-上单调递增 (B )在区间[,0]4π-上单调递减(C )在区间[,]42ππ上单调递增 (D )在区间[,]2ππ上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -=(B )22193x y -= (C )221412x y -=(D )221124x y -= (8)在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为(A )15- (B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018天津高考文科数学真题答案解析(可编辑)

2018天津高考文科数学真题答案解析(可编辑)

CN 2 NA ,则 BC OM的值为
(A)-15 答案:C 解析:如图所示建系,
O( 0 , 0 M ), ( 1 ,N 0 ) , ( 1, 3)
(B)-9
(C)-6
(D)0
设 A( xA , yA ), B( xB , yB ), C ( xC , yC )
B M 2 M A
( 1 xB , yB ) 2x( yA , A 1
1 8
1 综上, a Î [ , 2] 8 二、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算
步骤. (15)(本小题满分 13 分) 已知某校甲、乙、丙三个年级的学生志愿者人数分别为 240,160,160.现采用分 层抽样的方法从中抽取 7 名同学去某敬老院参加献爱心活动. (I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (II)设抽出的 7 名同学分别用 A,B,C,D,E,F,G 表示,现从中随机抽 取 2 名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设 M 为事件“抽取的 2 名同学来自同一年级” ,求事件 M 发生的概
(ii)解:由(I),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年 级的是 D,E,来自丙年级的是 F,G,则从抽出的 7 名同学中随机抽取的 2 名 同学来自同一年级的所有可能结果为 A,B ,A,C ,B ,C ,D ,E ,F ,G , 共 5 种. 所以,事件 M 发生的概率 P(M ) (16)(本小题满分 13 分)
.
答案:
1 3
解析:连 A1C1 交 B1 D1 于点 O, VA1- BB1D1D =
1 1 2 鬃 A1O S B1BDD1 = 创 (1? 2) 3 3 2

2018天津高考文科数学试题及答案

2018天津高考文科数学试题及答案

2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B 互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh.其中S表示棱柱的底面面积,h表示棱柱的高.(A)1(B)2(C)3(D)4(A)-15(B)-9(C)-6(D)0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.(16)(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–π/6).(Ⅰ)求教B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.(17)(本小题满分13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C (2)C (3)A(5)D (6)A (7)A (4)B(8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.。

2018天津高考文科数学试题及答案

2018天津高考文科数学试题及答案

2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B 互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.(A)1 (B)2 (C)3 (D)4(A)-15 (B)-9 (C)-6 (D)0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.(16)(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–π/6).(Ⅰ)求教B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.(17)(本小题满分13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C (2)C (3)A (4)B(5)D (6)A (7)A (8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分..'.。

2018年天津市高考数学试卷(文科)(含详细答案解析)

2018年天津市高考数学试卷(文科)(含详细答案解析)

2018年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}2.(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.45.(5分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减7.(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,复数=.10.(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.11.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为.12.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.13.(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5分)已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.17.(13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.18.(13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.19.(14分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.20.(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.2018年天津市高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}【分析】直接利用交集、并集运算得答案.【解答】解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}.故选:C.【点评】本题考查交集、并集及其运算,是基础的计算题.2.(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值.【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.也可以利用目标函数的几何意义求解最优解,求解最值.3.(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【分析】根据程序框图进行模拟计算即可.【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.【点评】本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.5.(5分)已知a=log 3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【分析】把a,c化为同底数,然后利用对数函数的单调性及1的关系进行比较.【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.【点评】本题考查对数值的大小比较,考查了指数函数与对数式的单调性,是基础题.6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【分析】由函数的图象平移求得平移后函数的解析式,结合y=Asin(ωx+φ)型函数的单调性得答案.【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换及其性质,是中档题.7.(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】画出图形,利用已知条件,列出方程组转化求解即可.【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:A.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.8.(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0【分析】解法Ⅰ,由题意判断BC∥MN,且BC=3MN,再利用余弦定理求出MN和∠OMN的余弦值,计算•即可.解法Ⅱ:用特殊值法,不妨设四边形OMAN是平行四边形,由题意求得的值.【解答】解:解法Ⅰ,由题意,=2,=2,∴==2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×(﹣)=7,∴MN=;∴BC=3,∴cos∠OMN===,∴•=||×||cos(π﹣∠OMN)=3×1×(﹣)=﹣6.解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6.故选:C.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,复数=4﹣i.【分析】根据复数的运算法则计算即可.【解答】解:====4﹣i,故答案为:4﹣i【点评】本题考查了复数的运算法则,属于基础题.10.(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e.【分析】根据导数的运算法则求出函数f(x)的导函数,再计算f′(1)的值.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.【点评】本题考查了导数的运算公式与应用问题,是基础题.11.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【分析】求出四棱锥的底面面积与高,然后求解四棱锥的体积.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.【点评】本题考查几何体的体积的求法,判断几何体的形状是解题的关键.12.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0).【分析】【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程.【方法二】设圆的一般方程,把点的坐标代入求得圆的方程.【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1.【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0.故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0).【点评】本题考查了圆的方程与应用问题,是基础题.13.(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【分析】化简所求表达式,利用基本不等式转化求解即可.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.【点评】本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值.考查计算能力.14.(5分)已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] .【分析】根据分段函数的表达式,结合不等式恒成立分别进行求解即可.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].【点评】本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可.注意数形结合.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【分析】(Ⅰ)利用分层抽样的性质能求出应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学,利用列举法能求出所有可能结果.(ii)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,利用列举法能求出事件M发生的概率.【解答】解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人.(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个.(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M)=.【点评】本题考查分层抽样、用列举法计算随机事件所含基本事件数、古典概型及其概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【分析】(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣).由此能求出B.(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B).【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.17.(13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【分析】(Ⅰ)由平面ABC⊥平面ABD,结合面面垂直的性质可得AD⊥平面ABC,则AD⊥BC;(Ⅱ)取棱AC的中点N,连接MN,ND,又M为棱AB的中点,可得∠DMN(或其补角)为异面直线BC与MD所成角,求解三角形可得异面直线BC与MD所成角的余弦;(Ⅲ)连接CM,由△ABC为等边三角形,M为边AB的中点,可得CM⊥AB,且CM=,再由面面垂直的性质可得CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角,求解三角形可得直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.【点评】本题考查异面直线所成角、直线与平面所成角、平面与平面垂直等基本知识,考查空间想象能力、运算求解能力与推理论证能力,属中档题.18.(13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.【分析】(Ⅰ)设等比数列{b n}的公比为q,由已知列式求得q,则数列{b n}的通项公式与前n项和可求;等差数列{a n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,代入等差数列的通项公式与前n项和公式可得S n;(Ⅱ)由(Ⅰ)求出T1+T2+……+T n,代入S n+(T1+T2+……+T n)=a n+4b n,化为关于n的一元二次方程求解正整数n的值.【解答】解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1.故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n ﹣2.由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4.∴n的值为4.【点评】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题.19.(14分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.【分析】(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,即可.(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).由△BPM的面积是△BPQ面积的2倍,可得x2﹣x1=2[x1﹣(﹣x1)],x2=5x1,联立方程求出由>0.,可得k.【解答】解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6.由,可得>0.由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.由>0.可得k,故k=﹣,【点评】本题考查了椭圆的方程、几何性质,考查了直线与椭圆的位置关系,属于中档题.20.(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围.【分析】(Ⅰ)求出t2=0,d=1时f(x)的导数,利用导数求斜率,再写出切线方程;(Ⅱ)计算d=3时f(x)的导数,利用导数判断f(x)的单调性,求出f(x)的极值;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程f(x)+(x﹣t2)﹣6=0有三个互异的实数根,利用换元法研究函数的单调性与极值,求出满足条件的d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;+)+∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t 2,可得u 3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).【点评】本题主要考查了导数的运算以及导数的几何意义,运用导数研究函数的单调性与极值的应用问题,是综合题.。

最新-2018年天津高考文科数学数列试题部分 精品

最新-2018年天津高考文科数学数列试题部分 精品

(2018). 在数列{}n a 中,1a =0,且对任意k *N ∈,2k 12k 2k+1a ,a ,a -成等差数列,其公差为2k.(Ⅰ)证明456a ,a ,a 成等比数列;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)记2222323n n n T a a a =+++,证明n 32n T 2n 2<-≤≥(2).(2018). 已知等差数列}{n a 的公差d 不为0,设121-+++=n n n q a q a a S *1121,0,)1(N n q q a q a a T n n n n ∈≠-++-=--(Ⅰ)若15,1,131===S a q ,求数列}{n a 的通项公式; (Ⅱ)若3211,,,S S S d a 且=成等比数列,求q 的值。

(Ⅲ)若*2222,1)1(2)1(1,1N n qq dq T q S q q n n n∈--=+--±≠)证明((2018). 已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(20)n q ≠≥,. (Ⅰ)设1()n n n b a a n +=-∈*N ,证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项.(2018). 在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列;(Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.(2018). 已知数列{}n x 满足121x x ==并且11,(n n n n x x x x λλ+-=为非零参数,2,3,4,...).n =(I )若1x 、3x 、5x 成等比数列,求参数λ的值;(II )设01λ<<,常数*k N ∈且3,k ≥证明*1212...().1k k k n k k n x x x n N x x x λλ++++++<∈-(2018). 已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n (Ⅰ)当b a =时,求数列{}n u 的前n 项和n S(Ⅱ)求1lim-∞→n n n u u(2004). 设{}n a 是一个公差为(0)d d ≠的等差数列,它的前10项和10110S =且1a ,2a ,4a 成等比数列(1)证明1a d =;(2)求公差d 的值和数列{}n a 的通项公式(2003). 已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=n n a(2002).(2001). 已知等差数列前三项为a ,4,3a ,前n 项的和为S n ,S k =2550. (Ⅰ)求a 及k 的值; (Ⅱ)求).111(lim 21nn S S S +++∞→。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 数列一.基础题组1.【2005天津,文14】在数列中,,且,则 . 【答案】2600本题答案填写:26002.【2006天津,文2】设是等差数列,则这个数列的前6项和等于( )(A )12 (B )24 (C )36 (D )48【答案】B 【解析】是等差数列, ∴ ,则这个数列的前6项和等于,选B.3.【2007天津,文8】设等差数列的公差不为0,.若是与的等比中项,则( )A.2 B.4 C.6 D.8【答案】B 【解析】解:因为a k 是a 1与a 2k的等比中项, 则a k 2=a 1a 2k ,9d+(k-1)d]2=9d•9d+(2k-1)d], 又d≠0,则k 2-2k-8=0,k=4或k=-2(舍去).故选B .4.【2008天津,文4】若等差数列的前5项和,且,则(A )12 (B )13 (C )14 (D )15 【答案】B{}n a 121,2a a ==21(1)nn n a a +-=+-*()n N ∈10S=()()()210010011505021005050260022a a S a a ++=+=+={}n a 13569,9.a a a a ++=={}n a 13533639,3,9.a a a a a a ++====12,1d a ==-166()242a a +={}n a d 19a d =k a 1a 2k a k ={}n a 525S =23a =7a =【解析】,所以,选B . 5.【2010天津,文15】设{a n }是等比数列,公比q,S n 为{a n }的前n 项和.记T n =,n∈N *.设Tn0为数列{T n }的最大项,则n 0=__________.【答案】4 【解析】解析:an +1)n ,Sn ,)n17].)nn =4时等号成立, 又1<0,∴当n =4时,Tn 取最大值,故n0=4.6.【2011天津,文11】已知是等差数列,为其前n 项和,.若,,则的值为 . 【答案】1107.【2014天津,文5】设是首项为,公差为的等差数列,为其前n 项和,若成等比数列,则=( )1524545()5()722a a a a S a ++==⇒=4272255132a a a a d a -=+=+⋅=2117n nn S S a +-n 2n n 2n n {}n a n S n N *∈316a =2020S =10S {}n a 1a 1-n S ,,,421S S S 1aA.2B.-2C. D . 【答案】D 【解析】试题分析:因为成等比数列,所以即选D.考点:等比数列8. 【2015高考天津,文18】(本小题满分13分)已知是各项均为正数的等比数列,是等差数列,且,. (I )求和的通项公式;(II )设,求数列的前n 项和.【答案】(I ),;(II )【解析】.(II )由(I )有 ,设的前n 项和为 ,则两式相减得所以 .【考点定位】本题主要考查等差、等比数列的通项公式及错位相减法求和,考查基本运算能力. 二.能力题组2112-124S S S ,,2214S S S =,211111(21)(4.2a a a a -==--6),{}n a {}nb 112331,2a b b b a ==+=5237a b -={}n a {}n b *,n n nc a b n N =?{}n c 12,n n a n -*=∈N 21,n b n n *=-∈N ()2323nn S n =-+21,n b n n *=-∈N ()1212n n c n -=-{}n c n S ()0121123252212,n n S n -=⨯+⨯+⨯++-⨯ ()1232123252212,n n S n =⨯+⨯+⨯++-⨯ ()()2312222122323,nnnn S n n -=++++--⨯=--⨯- ()2323nn S n =-+1.【2005天津,文18】若公比为的等比数列的首项且满足. (I )求的值;(II )求数列的前项和. 【答案】(I )c =1或(II ) 【解析】 (Ⅰ)解:由题设,当时,,,由题设条件可得,因此,即 解得c =1或式两边同乘,得 ②①式减去②式,得所以(n ∈N*)2.【2007天津,文20】在数列中,,,.{}n a 11a =13(3,4,)2n n n a a a n --+== {}n na n S 21-=c ]223)1(4[911-+--=n n n n S 3n ≥2212,n n n n a c a a ca ---==221212---+=+=n n n n a ca a a 20n a -≠212cc +=2210c c --=21-=c 21-n n n n n S )21()21)(1()21(2212112-+--++-+-=-- n nn n n n n S )21(211)21(1)21()21()21()21(1)211(12--+--=---++-+-+=+- ]223)1(4[911-+--=n n n n S {}n a 12a =1431n n a a n +=-+n ∈*N(Ⅰ)证明数列是等比数列 (Ⅱ)求数列的前项和;(Ⅲ)证明不等式,对任意皆成立.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)详见解析(Ⅲ)证明:对任意的,.所以不等式,对任意皆成立.3.【2008天津,文20】已知数列中,,,且. (Ⅰ)设,证明是等比数列; (Ⅱ)求数列的通项公式;(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.{}n a n -{}n a n S 14n n S S +≤n ∈*N 41(1)32n n n n S -+=+n ∈*N 1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤14n n S S +≤n ∈*N {}n a 11a =22a =11(1)n n n a q a qa +-=+-(20)n q ≠≥,1()n n n b a a n +=-∈*N {}n b {}n a 3a 6a 9a n ∈*N n a 3n a +6n a +【答案】(I )详见解析,(II )(Ⅲ)详见解析【解析】(Ⅰ)证明:由题设,得,即.又,,所以是首项为1,公比为的等比数列. (Ⅱ)解:由(Ⅰ),, ,……., ①整理得,解得或(舍去).于是另一方面,11111 1.n n q q a q n q -⎧-+≠⎪=-⎨⎪=⎩,,,11(1)(2)n n n a q a qa n +-=+-≥11()n n n n a a q a a +--=-12n n b qb n -=,≥1211b a a =-=0q ≠{}n b 211a a -=32a a q -=21(2)n n n a a q n ---=≥3611q q -=-323()20q q +-=32q =-31q =q =,.由①可得.所以对任意的,是与的等差中项.4.【2009天津,文20】已知等差数列{a n }的公差d 不为0,设S n =a 1+a 2q+…+a n qn -1,T n =a 1-a 2q+…+(-1)n -1a n qn -1,q≠0,n∈N *.(1)若q =1,a 1=1,S 3=15,求数列{a n }的通项公式; (2)若a 1=d 且S 1,S 2,S 3成等比数列,求q 的值;(3)若q≠±1,证明(1-q)S 2n -(1+q)T 2n ,n∈N *. 本小题主要考查等差数列的通项公式、等比数列的通项公式与前n 项和公式等基础知识,考查运算能力和推理论证能力.满分12分.【答案】(Ⅰ)a n =4n -3;(Ⅱ)q =-2;(Ⅲ)详见解析S 2n =a 1+a 2q+a 3q 2+a 4q 3+…+a 2n q2n -1,①T 2n =a 1-a 2q+a 3q 2-a 4q 3+…-a 2n q 2n -1.②21133(1)11n n n n n q q q a a q q q +--+--==---15166(1)11n n n n n q q q a a q q q-+-+--==---36n n n n a a a a n ++-=-∈*N ,n ∈*N n a 3n a +6n a +221)1(2qq dq n --=①式减去②式,得 S 2n -T 2n =2(a 2q+a 4q 3+…+a 2n q 2n -1).①式加上②式,得S 2n +T 2n =2(a 1+a 3q 2+…+a 2n -1q 上标2n -2).③ ③式两边同乘q,得q(S 2n +T 2n )=2(a 1q+a 3q 3+…+a 2n -1q2n -1).所以,(1-q)S 2n -(1+q)T 2n =(S 2n -T 2n )-q(S 2n +T 2n ) =2d(q+q 3+…+q2n -1),n∈N *. 5.【2012天津,文18】已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2). 【答案】(Ⅰ)an =3n -1,bn =2n ;(Ⅱ)详见解析-Tn =2×2+3×22+3×23+…+3×2n-(3n -1)×2n+1=-(3n -1)×2n+1-2=-(3n -4)×2n+1-8,即Tn -8=(3n -4)×2n+1,而当n >2时,an -1bn +1=(3n -4)×2n+1.所以,Tn -8=an -1bn +1,n∈N*,n >2.221)1(2qq dq n --=6(12)12n ⨯--三.拔高题组1.【2006天津,文21】已知数列满足并且为非零参数, (I )若、、成等比数列,求参数的值;(II )设,常数且证明 【答案】(I )(II )详见解析因此,对任意当且时,所以2.【2010天津,文22】在数列{a n }中,a 1=0,且对任意k ∈N *,a 2k -1,a 2k ,a 2k +1成等差数列,其公差为2k .{}n x 121x x ==11,(n n n n x xx x λλ+-=2,3,4,...).n =1x 3x 5x λ01λ<<*k N ∈3,k ≥*1212...().1k k k n k kn x x x n N x x x λλ++++++<∈-1.λ=±1112....n k n k n k n n n k n k nx x x xx x x x +++-++-+-=231(3)2.....n k n k n k k kn λλλλ+-+---+=*,n N ∈1212...k k n k n x x xx x x ++++++(3)(3)(3)2222...k k k k k k k k kn λλλ---+++=+++(3)22(3)2(...)(1).1k k k k nk k k k nk kλλλλλλλλ--=+++-=-3k ≥01λ<<(3)201,011,k k nk λλ-<≤<-<*1212...().1k k k n k k n x x x n N x x x λλ++++++<∈-(1)证明a 4,a 5,a 6成等比数列; (2)求数列{a n }的通项公式;(3)记T n =+…+,证明<2n -T n ≤2(n ≥2). 【答案】(1) 详见解析,(2) an =+,(3) 详见解析由a1=0,得a2k +1=2k(k +1),从而a2k =a2k +1-2k =2k2.所以数列{an}的通项公式为an =或写为an =+,n∈N*.(3)证明:由(2)可知a2k +1=2k(k +1),a2k =2k2. 以下分两种情况进行讨论:①当n 为偶数时,设n =2m(m∈N*).若m =1,则2n -=2.若m≥2,则= =222323a a +2nn a 3222n 114n --()22122n n n n ⎧-⎪⎪⎨⎪⎪⎩,奇,,偶,为数为数22n 114n--()22nk kk a =∑22nk k k a =∑22111221(2)(21)mm k k k k k k a a -==-++∑∑221211444122(1)mm k k k k k k k k -==++++∑∑=2m + =2m + =2m +2(m -1)+(1-)=2n --. 所以2n -=+, 从而<2n -<2,n =4,6,8,….有<2n -Tn≤2. 3.【2011天津,文20】已知数列与满足,,211441[]2(1)2(1)m k k k k k k k -=++++∑11111[2()]2(1)m k k k -=+-+∑121m 321n 22n k kk a =∑321n 3222n k kk a =∑32{}n a {}n b 11(2)1n n n n n b a b a +++=-+13(1),2n n b n N -+-=∈*且.(Ⅰ)求的值;(Ⅱ)设,,证明是等比数列;(Ⅲ)设为的前n 项和,证明. 【答案】(1) (2)详见解析,(3)详见解析 【解析】(Ⅰ)由,可得 ,, 当时,,由得; 当时,可得.由①得,所以 , 因此,于是 , 故, 所以 【命题意图】本小题主要考查等比数列的定义、求和公式等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论思想方法.12a =23,a a 2121n n n c a a +-=-n N ∈*{}n c n S {}n a 21212122121()3n n n n S S S S n n N a a a a *--++++≤-∈ 233,8,2a a =-=1*3(1),2n n b n N -+-=∈2,1n n b n ⎧=⎨⎩是奇数,是偶数11(2)1n n n n n b a b a +++=-+1n =1221a a +=-12a =232a =-2n =2325a a +=38a=212122221k k k a --+=-+21*212,2k k a k N -=-∈21234212()()......()2k k k k S a a a a a a -=++++++=212122122k k k k k S S a ---=-=+21212212221212121************(41)22k k k k k k k k k k k k k k k S S k k k a a ------+-++=+=-=-----*21212122121......()3n n n n S S S S n n N a a a a --++++≤-∈4.【2013天津,文19】已知首项为的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明(n ∈N *). 【答案】(Ⅰ);(Ⅱ)详见解析 当n 为奇数时,随n 的增大而减小,所以. 当n 为偶数时,随n 的增大而减小,所以. 故对于n∈N*,有. 5.【2017天津,文18】(本小题满分13分)已知为等差数列,前n 项和为,是首项为2的等比数列,且公比大于0, .(Ⅰ)求和的通项公式;321136n n S S +≤11313(1)222n n n n a --⎛⎫=⨯-=-⋅ ⎪⎝⎭11112112n n n n S S ⎛⎫+=--+ ⎪⎝⎭⎛⎫-- ⎪⎝⎭1122212.221n n n n n n +⎧+⎪()⎪=⎨⎪+⎪(-)⎩,为奇数,,为偶数1n nS S +111113=6n n S S S S +≤+1n nS S +221125=12n n S S S S +≤+1136n n S S +≤{}n a *()n S n ∈N {}n b 2334111412,2,11b b b a a S b +==-={}n a {}n b(Ⅱ)求数列的前n 项和.【答案】(Ⅰ),;(Ⅱ).【解析】试题分析:(Ⅰ)设等差数列的首项为,公差为,等比数列的公比为,建立方程(组)即可求解;(Ⅱ)先求的通项公式,可得的通项公式,再根据错位相减法即可求其前n 项和. 试题解析:(Ⅰ)设等差数列的公差为,等比数列的公比为.由已知,得,而,所以.又因为,解得,所以.由,可得;由,可得,,得.所以,数列的前项和为.【考点】等差数列、等比数列、错位相减法、数列求和【名师点睛】利用等差数列和等比数列通项公式及前项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.6.【2014天津,文20】已知和均为给定的大于1的自然数,设集合,集合,(1)当时,用列举法表示集合A ;(2)设其中证明:若则.2{}n n a b *()n ∈N 32n a n =-2n n b =2(34)216n n +-+{}n a 1a d 2{}n a 2{}n n a b {}n a d {}n b 2312b b +=21()12b q q +=12b =260q q +-=0q >2q =2n n b =3412b a a =-138d a -=①11411S b =1516a d +=②122)2(34)216n n n ++⨯=---2(34)216n n T n +=-+2{}n n a b 2(34)216n n +-+{}12,1,0-=q M {}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-3,2==n q ,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s ,,2,1,,n i M b a i i =∈,n n b a <t s <【答案】(1) , (2) 详见解析.【解析】试题分析:(1)本题实质是具体理解新定义,当时,,,再分别对取得到 (2)证明大小不等式,一般利用作差法. ,根据新定义:,所以,即.考点:新定义,作差证明不等式,等比数列求和7.【2016高考天津文数】(本小题满分13分)已知是等比数列,前n 项和为,且. (Ⅰ)求的通项公式;(Ⅱ)若对任意的是和的等差中项,求数列的前2n 项和. 【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)求等比数列通项,一般利用待定系数法:先由,解得,{}0,1,2,3,4,5,6,7A =3,2==n q {}0,1M ={}12324,,1,2,3i A x x x x x x M i ==++∈=123(,,)x x x (0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(0,1,1),(1,1,1),{}0,1,2,3,4,5,6,7A =21112211()()()()n n n n n n s t a b a b q a b q a b q -----=-+-++-+- 1,1,(1,2,,1)i i n n a b q a b i n -≤--≤-=- 1211(1)(1)(1)(1)(1)101n n n n q q s t q q q q q q q q -------≤-+-++--=-=-<- t s<{}n a ()n S n *∈N 6123112,63S a a a -=={}n a ,n n b *∈N 2log n a 21log n a +(){}21n n b -12-=n n a 22n 2111211qa q a a =-1,2-==q q分别代入,得,;(Ⅱ)先根据等差中项得,再利用分组求和法求和:.设数列的前项和为,则. 【考点】等差数列、等比数列及其前项和公式【名师点睛】分组转化法求和的常见类型: (1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 616(1)631a q S q-==-1-≠q 11=a 21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n 2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-})1{(2n n b -n T 2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-,,n n nb n ac n ⎧⎪=⎨⎪⎩为奇数,为偶数。

相关文档
最新文档