常微分试题 (48)
常微分方程习题集
《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
(完整版)常微分方程试题及答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
(X )2.微分方程的通解中包含了它所有的解。
15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。
② xy 2x dx y x 2y dy 0是可分离变量微分方程。
③ x? y 4是齐次方程。
y 2y 0是二阶常系数齐次线性微分方程。
6. ysiny 是一阶线性微分方程。
(X)7. y 3 3x yxy 不是一阶线性微分方程。
(O )8. y 2y 5y 0的特征方程为r 22r 5 0。
(9. dy 1 xy 2 xy 2是可分离变量的微分方程。
dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。
3. 1 e 2x 的通解是-e 2x C 1x C 2。
42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。
45. xy 2x 2yx 41是二 ______ 阶微分方程。
3.函数y 3sinx 4cosx 是微分方程y y 0的解。
(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。
(X )C (C 为任意常数)。
(0 )④xyy x 2 sinx 是一阶线性微分方程。
6 .微分方程y y阶微分方程。
1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。
A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。
9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
常微分方程期末选择题试题库
选 择 题1、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2'y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)2、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e +=(C)2"0 y x += (D)2'-y y xy =3、方程2-2 "3' 2xy y y x e++=特解的形状为( )(A)2-2 1 x y ax ey = (B) 2-21 () x y ax bx c e =++ (C)22-21 ()x y x ax bx c e =++ (D) 22-21 ()x y x ax bx c e =++4、下列函数组在定义域内线性无关的是( )(A) 4, x (B) 2,2, x x x (C)225,cos ,sin x x (D) 21,2,,x x5、微分方程2-yxdy ydx y e dy =的通解是( )(A)(-) yx y c e = (B)()yx y e c =+ (C)()xy x e c =+ (D) (-)yy x c e =6、下列方程中为常微分方程的是( )(A)20 t dt xdx += (B)sin 1x =(C) 1 y x c =++(c 为常数) (D) 22220u ux y ∂∂+=∂∂7、下列微分方程是线性的是( )(A)2'1y y =+ (B)11dy dx xy=+ (C)2 ' y by cx += (D) 4'0y xy += 8、方程 "-2' 2(cos 2sin )xy y y e x x x +=+特解的形状为( )(A) 1[()cos sin ]x y e Ax B x C x =++ (B) y e Ax x C x x1=+[cos sin ](C)y e Ax B x Cx D x x1=+++[()cos ()sin ] (D)y xe Ax B x Cx D x x1=+++[()cos ()sin ]9、下列函数组在定义域内线性无关的是( )(A)31, , x x (B)222,,x x x(C)21,sin ,cos2x x (D)225,sin (1),cos (1)x x ++10、微分方程2-ydx xdy y exdx =的通解是( )(A)() x y x e c =+ (B)( ) x x y e c =+ (C)(-) x x y c e = (D)(-)xy x e c =11、下列方程中为常微分方程的是( )(A)22-10 x y += (B) 2' x y y=(C) 222222u u u x y∂∂∂=+∂∂∂ (D) 2x y c +=(c 为常数)12、下列微分方程是线性的是( )(A) dy dx y x = (B)2y '+6y '=1 (C)y '=y 3+sin x (D)y '+y =y 2cos x13、方程y ''+y =2sin x 特解的形状为( )(A) )sin cos (1x B x A x y += (B) y Ax x 1=sin (C)y Bx x 1=cos (D)y Ax x x 12=+(cos sin )14、下列函数组在定义域内线性无关的是( )(A) 0,1, t (B) e t,2e t,e -t(C)e t e t t t --3322sin ,cos (D) t t t t ,||,242+15、微分方程ydx-xdy=x 2e xdx 的通解是( )(A) y=x(c+e x ) (B) x=y(c+e x ) (C) x=y(c-e x ) (D) y=x(c-e x)16、下列方程中为常微分方程的是( )(A) x 2+y 2-z 2=0 (B) y ce x=(C)∂∂∂∂u t ux=22 (D) y=c 1cost+c 2sint (c 1,c 2为常数) 17、下列微分方程是线性的是( )(A) )(t x ' -x=f(t) (B)3y '+y=cos x (C) x +2y '=y '' (D) y '+(1/3)y =y 418、方程y ''-2y '+3y =e -xcos x 特解的形状为( )(A)y A x B x 1=+cos sin (B) y Aex1=-(C)y e A x B x x1=+-(cos sin ) (D)y Axe x x1=-cos19、下列函数组在定义域内线性无关的是( )(A)23,,t t t e e e (B) 20,, t t(C) )22cos(),1(sin 12++t t ,(D) 4-t,2t-3,6t+820、微分方程xdx-ydy=y 2e ydy 的通解是( )(A) x=y(e y + c) (B) x=y(c-e y ) (C) y=x(e x +c) (D) y=x(c-e y)21、下列方程中为常微分方程的是( )(A) x 3+1=0 (B) y ce x= (C)∂∂∂∂u t ux=22 (D) ''+=y y e x 2'22、下列微分方程是线性的是( )(A)y ''+y 2=1+x (B)y '2+y=cosx (C)y '-2y=2x 2(D) xdx+ydy=023、方程''-+=-y y y e x69163'特解的形状为( )(A) 31x y Ae = (B)y Ax e x123=(C) y Axe x 13= (D) y e A x B x x1333=+(sin cos )24、下列函数组在定义域内线性无关的是( )(A)2,,xxxe xe x e (B) 222,cos , cos x x (C) 2 1,2,x (D) 5420,,x x e x e x25、微分方程ydx-xdy=2x 2e xdx 的通解是( )(A) y=x(c-2e x ) (B) x=y(c+2e x ) (C) x=y(c-2e x ) (D) y=x(c+2e x) 26、微分方程dy dx y x tg yx=+的通解为( ) (A) 1sin y xcx = (B) sin y x =x +c (C) sin yx =c x (D) sin x y =c x27、微分方程2y y ''=(y ')2的通解()(A) (x-c )2(B) c 1(x -1)2+c 2(x +1)2(C) c 1+(x -c 2)2(D) c 1(x -c 2)228、微分方程xdy-ydx=y 2e ydy 的通解为()(A) y=x(e x +c) (B) x=y(e y +c) (C) y =x(c-e x ) (D) x=y(c-e y)29、微分方程y ''-2y '-3y =0的通解*y 为()(A)c x c x 123+ (B) c x cx123+ (C) c e c e x x 123+- (D) c e c e x x 123-+30、微分方程y ''-3y '+2y =2x -2e x的特解y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x (C) (ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( ) (A) e x y-=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+32、设y(x)满足微分方程(cos 2x)y ¹+y=tgx 且当x=π/4时y=0,则当x =0时y =( )(A) π/4 (B) -π/4 (C) -1 (D) 133、已知y=y(x) 的图形上点M(0,1)处的切线斜率k=0,且y(x)满足微分方程''=+y y 12('),则y(x)=( )(A) sin x (B)cos x (C) shx (D) chx 34、微分方程y ''-2y '-3y =0的通解是y =( )(A)33x x ++ (B) c x c x123+(C) c e c e x x 123+- (D) c e c e x x123-+ 35、设y x y x y x 123(),(),()是线性非齐次方程d y dxa x dydx b x y f x 22++=()()()的特解, 则y c c y x c y x c y x =--++()()()()11211223(A) 是所给微分方程的通解 (B) 不是所给微分方程的通解 (C) 是所给微分方程的特解(D) 可能是所给微分方程的通解 也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x)满足 y 'sinx=yLny ,且y (π/2)=e ,则y (π/4)=( )(A) e /2 (B)-1e (C) e 21- (D) e 23-37、微分方程2cos 0yn ytgx y x -+=的通解是( )(A) arctgx c + (B)1x ()arctgx c + (C) 1arctgx c x + (D) 1arctgx c x++38、微分方程(1+y 2)dx=(arctgy-x)dy 的通解为( )(A) x arctgy ce arctgy=-+-1 (B) x arctgy cearctgy=-++1(C) x arctgy cec arctgy=-++ (D) x arctgy ce c arctgy =-+39、微分方程''+=y y x 4212cos 的通解为y=( )(A) e c x c x c x +++1223 (B) c x c x c 1223++ (C) c e c x c x 123++ (D) c x c x c 13223++40、微分方程''-''+=y y y x 76sin 的通解是 y =( )(A) e x x x-++574774sin cos (B) c e c x c e c x x x 1234+++-sin cos(C) ()()c c x e c c x e x x1233+++- (D) ()sin ()cos c c x x c c x x 1233+++41、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( )(A) e x y -=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+42、设y(x)满足微分方程xy ¹+y-y 2Lnx=0且当y(1)=1,则y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e 43、已知()y y x =满足()()x xy y dx y xy x dy 2222220+-++-=,且(1)1y =则y 122+⎛⎝ ⎫⎭⎪=( ) (A) 1 (B) 1/2 (C) 22 (D) 122+ 44、微分方程''=+y xy x 212'满足初始条件y x ==01, y x '==03的特解是y=( ) (A)x x 33++ (B) x x 331++ (C) x x 23++ (D) x x 231++45、微分方程''++=y y y 6130'的通解是y=( )(A) ec x c x x -+31222(cos sin ) (B) e c x c x x 21233(cos sin )-(C) e c x c x x31222(cos sin )- (D) e c x c x x-+21233(cos sin )46、微分方程y yxc '++=20满足y x ==20的特解y =( )(A) 4422x x - (B)x x 2244- (C))2ln (ln 2-x x (D))2ln (ln 12-x x47、微分方程y ytgx y x 'cos -+=20的通解是( )(A)1()cos x c x y =+ (B) ()cos y x c x =+ (C) 1cos x x c y=+ (D) cos y x x c =+48、微分方程(y 2-6x )y ' +2y=0的通解为( )(A) 2x-y 2+cy 3=0 (B) 2y-x 3+cx 3=0 (C) 2x-cy 2+y 3=0 (D) 2y-cx 3+x 3=049、微分方程''+=y y x 4212cos 的特解的形式是y=( ) (A) cos2a x (B) cos2ax x(C)sin2cos2 a x b x + (D)sin2cos2 ax x bx x +50、满足微分方程''-''+=y y y x 76sin 的一个特解 y*=( )(A)ex x x-++574774sin cos (B)e x x x ++574774sin cos(C)ex x x-++6574774sin cos (D)e e x x x x --+++6574774sin cos51、初值问题"40,(0)0,'(0)1y y y y +===的解是()y x =( )(其中其通解为1212()sin 2cos2,,y x c x c x c c =+为任意常数)(A)1sin 23x (B)1sin 22x (C)1sin33x (D )1sin32x52、下列方程中为常微分方程的是( )(A)42310x x x +-+= (B) 2"'y y x +=(C) 2222u u u t x y∂∂∂=+∂∂∂ (D)2u v w =+53、下列微分方程是线性的是( )(A)2"'y xy y x ++= (B)22'y x y =+ (C)2"()y xy f x -= (D)3"'y y y -= 54、已知(,)F x y 具有一阶连续偏导,且(,)()F x y ydx xdy +为某一函数的全微分,则( )(A) F F x y ∂∂=∂∂ (B)F F x y x y ∂∂=∂∂ (C)F F x y x y ∂∂-=∂∂ (D)F Fy x x y∂∂=∂∂55、设123(),(),()y x y x y x 是二阶线性非齐次微分方程"()'()()y P x y Q x y f x ++=的三个线性无关解,12,c c 是任意常数,则微分方程的解为( )(A)11223c y c y y ++ (B)1122123(1)c y c y c c y ++-- (C)1122123()c y c y c c y +-+ (D)1122123(1)c y c y c c y +--- 56、若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 为( ) (A)2x e ln (B)22x e ln (C)2x e ln + (D)22xe ln +57、若3312,x xy e y xe ==,则它们所满足的微分方程为( )(A)"6'90y y y ++= (B)"90y y -= (C)"90y y += (D)"6'90y y y -+=58、设123,,y y y 是二阶线性微分方程"()'()()y p x y q x y r x ++=的三个不同的特解,且1223y y y y --不是常数,则该方程的通解为( )(A)11223c y c y y ++ (B)1122231()()c y y c y y y -+-+(C)11232c y c y y ++ (D)112223()()c y y c y y -+- 59、设()f x 连续,且满足方程()1()()f tx dt nf x n N =∈⎰,则()f x 为( )(A)1n ncx- (B)(c c 为常数) (C)sin c nx (D)s cco nx60、设12,y y 是方程"()'()0y p x y q x y ++=的两个特解,则1122y c y c y =+(12,c c 为任意常数)( )(A)是此方程的通解 (B)是此方程的特解 (C)不一定是该方程的解 (D)是该方程的解 61、方程22(2)"(2)'(22)0x x y x y x y ---+-=的通解为( )(A)12x y c e c =+ (B)12x x y c e c e -=+ (C)212x y c e c x =+ (D)12xy c e c x =+62、微分方程"'1xy y e -=+的一个特解形式为( )(A)x ae b + (B)x axe bx + (C)x ae bx + (D)xaxe b + 63、方程22()(2)0pxy y dx qxy x dy --+=是全微分的充要条件是( )(A)4,2p q == (B)4,2p q ==- (C)4,2p q =-= (D)4,2p q =-=-64、表达式22[cos()][cos()3]x y ay dx by x y x dy +++++是某函数的全微分,则( )(A)2,2a b == (B)3,2a b == (C)2,3a b == (D)3,3a b ==65、方程"'"'xy y y y xe -+++=是特解形式为( )(A)()xax b e-+ (B)()xx ax b e -+(C)2()xx ax b e -+ (D)[()cos 2()sin 2]xe ax b x cx d x +++66、方程"2'xy y y xe -+=的特解*y 的形式为( )(A) xaxe (B)()x ax b e + (C)()x x ax b e + (D)2()xx ax b e + 67、已知1cos y wx =与23cos y wx =是微分方程2"0y w y +=的解,则1122y c y c y =+是( )(A) 方程的通解 (B)方程的解,但不为通解 (C)方程的特解 (D)不一定是方程的解68、方程"3'232xy y y x e -+=-的特解*y 的形式为( )(A) ()x ax b e + (B)()x ax b xe + (C)()x ax b ce ++ (D)()xax b cxe ++69、方程22"3'2xy y y x e-++=特解的形式为( )(A) 22xy ax e-= (B)22()xy ax bx c e-=++(C)22()xy x ax bx c e -=++ (D)222()xy x ax bx c e -=++70、下列函数在定义域内线性无关的是( )(A) 4x (B)22x x x ⋅⋅ (C)225cos sin x x ⋅⋅ (D)212x x ⋅⋅⋅71、微分方程2yxdy ydx y e dy -=的通解是( )(A)()yx y c e =- (B)()yx y e c =+ (C)()xy x e c =+ (D)()yy x c e =-72、方程5,3dx dyx y x dt dt=-+-=-的奇点为( ) (A)(0,0) (B) (0,5) (C) (5,5) (D) (5,0)73、(0,0)为系统,23dx dyy x y dt dt==--的( ) (A) 鞍点 (B) 结点 (C) 中心 (D) 焦点74、方程dx dy dz xz yz xy==的首次积分是( ) (A)2xy z c -= (B)2x c y= (C)2x yz c -= (D)2xz x c -=75、方程22222dx dy dzx y z xy xz==--的首次积分是( ) (A) 2x y z c x ++= (B)222x y z cy++= (C)y c x = (D)z c x =76、系统22dxx y dtdy x y dt⎧=-+⎪⎪⎨⎪=--⎪⎩的奇点类型为( )(A) 稳定结点 (B) 不稳定结点 (C) 稳定焦点 (D) 不稳定焦点77、系统3474dxx y dt dy x y dt⎧=-⎪⎪⎨⎪=-⎪⎩的奇点类型为( )(A) 鞍点 (B) 焦点 (C) 中心 (D) 结点78、方程"xy y xe-+=有形如( )特解(A)xy Axe -= (B)21()x y Ax Bx c e -=++(C)1()x y Ax B e -=+ (D)xAe -79、方程2"6'13(512)t x x x e t t ++=-+特解形状为( )(A)21()t x At Bt c e =++ (B)1()tx At B e =+(C)1t x Ate = (D)1tx Ae =80、方程"2'2cos xy y y e x --+=的特解形状为( )(A)1cos x y A xe -= (B)1sin xy A xe -=(C)1(cos sin )x y e A x B x -=+ (D)1xy Ae -=81、方程"2'2cos tx x x te t -+=的特解形状为( )(A)21()cos tx At Bt c e t =++ (B)21()sin t x At Bt c e t =++(C)1(cos sin )t x e A t B t =+ (D)221()cos ()sin t tx At Bt c e t Dt Et F e t =++++82、微分方程()()0xyyx ye e dx xee dy ---++=的通解为( )(A)xyye xe c -= (B)yxye xe c -= (C)x y ye xe c --= (D)x yye xe c --=83、微分方程(sin 2sin )(cos 2cos )0x xe y y x dx e y x dy -++=的通解为( )(A)sin 2cos xe y y x c += (B)s 2cos xe co y y x c += (C)sin cos xe y y x c += (D)s 2cos xe co y y x c +=84、微分方程(2)0yye dx x xy e dy -+=的通解为( )(A)2yxe y c += (B)2y e y c x += (C)y xe xy c += (D)y y e c x+=85、方程2(3)20xe y dx xydy ++=的通解为( )(A)32x xe x y c += (B)232(2)xx x e x y c -+=(C)232(22)x x x e x y c --+= (D)232(2)x x e x y c -+=86、下列方程为常微分方程的是( )(A)2220x y z ++= (B)22u u ux y y∂∂∂+=∂∂∂ (C)sin sin y A t B t =+ (D)'x y Ae =87、方程432422(22)(3)0y y xy e xy y dx x y e x y x dy +++--=的积分因子为( )(A)21()x x μ= (B)1()x xμ= (C)41()y y μ= (D)21()y y μ=88、方程(2)0y ye x xy e dy -+=的积分因子为( )(A)21()x x μ=(B) 1()x xμ= (C)21()y y μ= (D) 1()y y μ=89、方程2(3)20xe y dx xydy ++=的积分因子为( )(A) 1()x xμ=(B)2()x x μ= (C) 1()y y μ= (D) 2()y y μ=90、方程(1)0y xy dx xdy --+=的积分因子为( )(A)()x x e μ= (B)()xx e μ-= (C)()y y e μ= (D)()yy eμ-=91、方程23(225)(22)0x y y dx x x dy ++++=的积分因子为( )(A) 1()x x μ=(B)21()1x x μ=+ (C) 1()y y μ= (D)21()1y y μ=+92、方程3222(1)0xy dx x y dy +-=的积分因子为( )(A) 1()x x μ=(B) 21()x xμ= (C) 1()y y μ= (D) 21()y y μ=93、方程(2cos )0xxe dx e ctgx y y dy ++=的积分因子为( )(A)()sin x x μ= (B)()s x co x μ= (C)()sin y y μ= (D)()s y co y μ=94、方程22()0ydx x y x dy -++=的积分因子为( )(A) 21()x x μ= (B) 21()y y μ= (C)221(,)x y x y μ=+ (D)1(,)x y x y μ=+95、方程3222()0y dx x xy dy +-=的积分因子为( )(A) 21x μ= (B)1xy μ= (C)221x y μ= (D)21x y μ=96、方程36330x y x dx dy y y x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭的积分因子为( )(A)x μ= (B)y μ= (C)xy μ= (D)2x y μ=97、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2'y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)98、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e +=(C)2"0 y x += (D)2'-y y xy =。
(完整版)常微分方程试题库.(最新整理)
常微分方程一、填空题1.微分方程的阶数是____________0(22=+-+x y dxdy dx dy n 答:12.若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则),(y x M ),(y x N R ),(y x 方程有只与有关的积分因子的充要条件是 0),(),(=+dy y x N dx y x M y _________________________答:)()1(y Mx N y M φ=-∂∂-∂∂3._________________________________________ 称为齐次方程.答:形如的方程(xy g dx dy =4.如果 ___________________________________________ ,则存在),(y x f ),(y x f dx dy =唯一的解,定义于区间 上,连续且满足初始条件 ,其中)(x y ϕ=h x x ≤-0)(00x y ϕ=_______________________ .=h 答:在上连续且关于满足利普希兹条件 R y ),min(mb a h =5.对于任意的 , (为某一矩形区域),若存在常数使 ),(1y x ),(2y x R ∈R )0(>N N ______________________ ,则称在上关于满足利普希兹条件.),(y x f R y 答: 2121),(),(y y N y x f y x f -≤-6.方程定义在矩形区域:上 ,则经过点 的解的22y x dxdy +=R 22,22≤≤-≤≤-y x )0,0(存在区间是 ___________________ 答:4141≤≤-x 7.若是齐次线性方程的个解,为其伏朗斯基行列式,则满足),.....2,1)((n i t x i =n )(t w )(t w 一阶线性方程 ___________________________________答:0)(1'=+w t a w 8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个),.....2,1)((n i t x i =)(t x 特解,则非齐次线性方程的所有解可表为_____________________答:xx c x ni i i +=∑=19.若为毕卡逼近序列的极限,则有 __________________)(x ϕ{})(x n ϕ≤-)()(x x n ϕϕ答:1)!1(++n n h n ML 10.______________________称为黎卡提方程,若它有一个特解 ,则经过变换 )(x y ___________________ ,可化为伯努利方程.答:形如的方程 )()()(2x r y x q y x p dx dy ++=y z y +=11.一个不可延展解的存在区间一定是区间.答:开12.方程满足解的存在唯一性定理条件的区域是 .1d d +=y x y 答:,(或不含x 轴的上半平面)}0),{(2>∈=y R y x D 13.方程的所有常数解是 .y x x y sin d d 2=答:,2,1,0,±±==k k y π14.函数组在区间I 上线性无关的 条件是它们的)(,),(),(21x x x n ϕϕϕ 朗斯基行列式在区间I 上不恒等于零.答:充分15.二阶线性齐次微分方程的两个解为方程的基本解组充分必要条件)(),(21x y x y 是. 答:线性无关(或:它们的朗斯基行列式不等于零)16.方程的基本解组是.02=+'-''y y y 答:xx x e ,e17.若在上连续,则方程的任一非零解 )(x y ϕ=),(∞+-∞y x xy )(d d ϕ=与轴相交.x 答:不能18.在方程中,如果,在上连续,那么它的0)()(=+'+''y x q y x p y )(x p )(x q ),(∞+-∞任一非零解在平面上 与轴相切.xoy x 答:不能19.若是二阶线性齐次微分方程的基本解组,则它们 共)(),(21x y x y ϕϕ==同零点.答:没有20.方程的常数解是 .21d d y x y -=答:1±=y 21.向量函数组在其定义区间上线性相关的 条件是)(,),(),(21x x x n Y Y Y I 它们的朗斯基行列式,.0)(=x W I x ∈答:必要22.方程满足解的存在唯一性定理条件的区域是 .22d d y x x y +=答: 平面xoy 23.方程所有常数解是 .0d )1(1)d (22=-+-y x y x y x 答:1,1±=±=x y 24.方程的基本解组是.04=+''y y 答:xx 2cos ,2sin 25.一阶微分方程的通解的图像是 维空间上的一族曲线. 答:2二、单项选择题1.阶线性齐次微分方程基本解组中解的个数恰好是( A )个.n(A ) (B )-1 (C )+1 (D )+2n n n n 2.如果,都在平面上连续,那么方程的任一解的存在),(y x f y y x f ∂∂),(xoy ),(d d y x f x y =区间( D ).(A )必为 (B )必为),(∞+-∞),0(∞+ (C )必为(D )将因解而定)0,(-∞3.方程满足初值问题解存在且唯一定理条件的区域是( D ).y x xy +=-31d d (A )上半平面 (B )xoy 平面(C )下半平面 (D )除y 轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差( C ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解5. 方程过点共有( B )个解.21d d y x y -=)1,2(π (A )一(B )无数 (C )两 (D )三6. 方程( B )奇解.2d d +-=y x xy (A )有三个 (B )无 (C )有一个 (D ) 有两个7.阶线性齐次方程的所有解构成一个( A )线性空间.n (A )维 (B )维 (C )维 (D )维n 1+n 1-n 2+n 8.方程过点( A ).323d d y x y = (A )有无数个解 (B )只有三个解 (C )只有解 (D )只有两个解0=y 9. 连续是保证对满足李普希兹条件的( B )条件.),(y x f y '),(y x f y (A )充分 (B )充分必要 (C )必要 (D )必要非充分10.二阶线性非齐次微分方程的所有解( C ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间11.方程的奇解是( D ).y x y =d d (A ) (B ) (C ) (D )x y =1=y 1-=y 0=y 12.若,是一阶线性非齐次微分方程的两个不同特解,则该方程的)(1x y ϕ=)(2x y ϕ=通解可用这两个解表示为( C ).(A ) (B ))()(21x x ϕϕ-)()(21x x ϕϕ+(C ) (D ))())()((121x x x C ϕϕϕ+-)()(21x x C ϕϕ+13.连续是方程初值解唯一的( D )条件.),(y x f y '),(d d y x f xy =(A )必要 (B )必要非充分 (C )充分必要 (D )充分14. 方程( C )奇解.1d d +=y x y (A )有一个 (B )有两个 (C )无 (D )有无数个15.方程过点(0, 0)有( A ).323d d y x y = (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、求下列方程的通解或通积分1.3y x y dx dy +=解: ,则 所以 23y y x y y x dy dx +=+=)(121⎰+⎰⎰=-c dy e y e x dy y dy y cy y x +=23另外 也是方程的解 0=y 2.求方程经过的第三次近似解2y x dxdy +=)0,0(解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ[]52021220121)()(x x dx x x x x +=+=⎰ϕϕ[]81152022316014400120121)()(x x x x dx x x x x +++=+=⎰ϕϕ3.讨论方程 ,的解的存在区间 2y dx dy =1)1(=y 解:dx y dy =2两边积分 c x y+=-1所以 方程的通解为 cx y +-=1故 过的解为 1)1(=y 21--=x y 通过点 的解向左可以延拓到,但向右只能延拓到 2,)1,1(∞-所以解的存在区间为 )2,(-∞4. 求方程的奇解01(22=-+y dxdy 解: 利用判别曲线得p 消去得 即 ⎩⎨⎧==-+020122p y p p 12=y 1±=y 所以方程的通解为 , 所以 是方程的奇解)sin(c x y +=1±=y 5.0)1()1(cos 2=-++dy yx y dx y x 解: =, = , = , 所以方程是恰当方程.y M ∂∂2--y xN ∂∂2--y y M ∂∂x N ∂∂ 得 ⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos yx y y v y x x u )(sin y y x x u ϕ++= 所以)('2y xy yu ϕ+-=∂∂-y y ln )(=ϕ故原方程的解为 c y yx x =++ln sin6. xx x y y y 22'sin cos sin 2-=-+解: 故方程为黎卡提方程.它的一个特解为x x x y y y 22'sin cos sin 2-++-= ,令 , 则方程可化为, x y sin =x z y sin +=2z dx dz -=cx z +=1即 , 故 c x x y +=-1sin c x x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy 解: 两边同除以得2y 037322=-+-xdy dy y ydx xdx 0732=--yd xy d dx 所以 , 另外 也是方程的解c y xy x =--7320=y 8.21d d x xy x y +=解 当时,分离变量得0≠y x x x y y d 1d 2+=等式两端积分得C x y ln )1ln(21ln 2++= 即通解为 21x C y +=9. xy xy 2e 3d d =+ 解 齐次方程的通解为x C y 3e -= 令非齐次方程的特解为xx C y 3e )(-=代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为+ x C y 3e -=x 2e 5110. 5d d xy y xy +=解 方程两端同乘以,得5-yx y x y y +=--45d d 令 ,则,代入上式,得z y =-4xz x y y d d d d 45=-- x z x z =--d d 41 通解为 41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x 11.0)d (d 222=-+y y x x xy 解 因为,所以原方程是全微分方程. x N x y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y xC y y x xy y x =-⎰⎰020d d 2 即C y y x =-323112.y y x y ln d d =解:当,时,分离变量取不定积分,得0≠y 1≠y通积分为C x y y y +=⎰⎰d ln d x C y e ln =13.03)(22=+'+''x y y y解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-=14.xy x y x y +-=2)(1d d 解:令,则,代入原方程,得xu y =x u x u x y d d d d +=21d d u xu x -= 分离变量,取不定积分,得() C x x u uln d 1d 2+=-⎰⎰0≠C 通积分为: Cx xy ln arcsin=15. xy x y x y tan d d +=解 令,则,代入原方程,得u x y =xu x u x y d d d d += , u u x u x u tan d d +=+u x u x tan d d = 当时,分离变量,再积分,得0tan ≠u C x x u u ln d tan d +=⎰⎰ Cx u ln ln sin ln +=即通积分为:Cx x y =sin 16. 1d d +=xy x y 解:齐次方程的通解为Cx y = 令非齐次方程的特解为x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为+Cx y =x x ln 17. 0d d )e (2=+-y x x y x y 解 积分因子为21)(x x =μ 原方程的通积分为1012d d (e C y x x y y x x =+-⎰⎰ 即 1e ,e C C C xy x +==+18.0)(2='+''y y y 解:原方程为恰当导数方程,可改写为0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=19.1)ln (='-'y x y 解 令,则原方程的参数形式为p y ='⎪⎩⎪⎨⎧='+=p y p p x ln 1 由基本关系式 ,有y xy '=d dp p pp x y y )d 11(d d 2+-⋅='= p p )d 11(-=积分得 C p p y +-=ln 得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 120.022=+'+''x y y y 解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为 23123121C x x C y +-=21. 0)d (d )(3223=+++y y y x x xy x 解:由于,所以原方程是全微分方程. x N xy y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y x103023d d )(C y y x xy x y x =++⎰⎰即C y y x x =++42242四、计算题1.求方程的通解.x y y e 21=-''解 对应的齐次方程的特征方程为:12=-λ特征根为:1,121-==λλ故齐次方程的通解为: x x C C y -+=e e 21 因为是单特征根.所以,设非齐次方程的特解为1=αx Ax x y e )(1=代入原方程,有 , 可解出 . x x x x Ax Ax A e 21e e e 2=-+41=A 故原方程的通解为 x xx x C C y e 41e e 21++=-2.求下列方程组的通解. ⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x 43d d 2d d 解 方程组的特征方程为04321=----=-λλλE A 即 0232=+-λλ特征根为 ,11=λ22=λ 对应的解为11=λt b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡其中是对应的特征向量的分量,满足11,b a 11=λ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得.1,111-==b a 同样可算出对应的特征向量分量为 .22=λ3,212-==b a 所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t C C y x 2221e 32e e e 3.求方程的通解.x y y 5sin 5='-''解:方程的特征根为,01=λ52=λ齐次方程的通解为 x C C y 521e += 因为不是特征根。
常微分方程试题库
常微分方程试题库二、计算题(每题6分)1. 解方程:0cot tan =-xdy ydx ;2. 解方程:x y xye 2d d =+; 3. 解方程:;4. 解方程:t e x dtdx23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ;6. 解方程:0)ln (3=++dy x y dx xy;7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ;8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ;12. 解方程:y y dx dyln =; 13. 解方程:y x e dxdy-=;14. 解方程:02)1(22=+'-xy y x ;15. 解方程:x y dxdycos 2=;16. 解方程:dy yx x dx xy y )()(2222+=+;17. 解方程:x xy dx dy42=+;18. 解方程:23=+ρθρd d ;19. 解方程:22x y xe dxdy+=;20. 解方程:422x y y x =-';选题说明:每份试卷选2道题为宜。
二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx解: ,2,1,0,2,±±=+==k k x k y πππ是原方程的常数解, (2分)当2,πππ+≠≠k x k y 时,原方程可化为:0cos sin sin cos =-dx xxdy y y ,(2分) 积分得原方程的通解为:C x y =cos sin . (2分)2. 解方程:x y xye 2d d =+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-),)(()()(dx e x f C e y dxx p dxx p (2分)x xx xdxx dx e Cedx e C edx e e C e 31)()(23222+=+=⎰+⎰=---⎰⎰分)(分)(223. 解方程:解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dx e x f C e y dxx p dx x p (2分)=⎰⎰+⎰-)sec (tan tan dx xe C e xdxxdx(2分)⎰+=)sec (cos 2xdx C xx x C sin cos +=. (2分)4. 解方程:t e x dtdx23=+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dt e t f C e x dtt p dt t p (2分)=⎰⎰+⎰-)(323dt e e C e dtt dt (2分)⎰+=-)(53dt e C e t t t t e Ce 2351+=-. (2分) 5. 解方程:0)2(=+---dy xe y dx e y y解:原方程可化为:02=+---y y xde ydy dx e , (2分) 即 0)(2=--y xe d y , (2分) 原方程的通解为:C y xe y =--2. (2分)6. 解方程:0)ln (3=++dy x y dx xy解:原方程可化为:0ln )(ln 3=++xdy dy y x yd , (2分) 即 0)41ln (4=+y x y d , (2分) 原方程的通解为:C y x y =+441ln . (2分)7. 解方程:0)2()32(3222=+++dy y x x dx y x xy解:因为xNx x y M ∂∂=+=∂∂62,所以原方程为全微分方程, (2分) 由 02323222=+++ydy x dy x dx y x xydx , (1分) 得: 0)()(232=+y x d y x d , (2分) 故原方程的通解为:C y x y x =+232. (1分)8. 解方程:0485=-'+''-'''x x x x 解:其特征方程为:0)2)(1(485223=--=-+-λλλλλ, (1分) 特征根为2=λ为2重根,1=λ. (2分) 所以其基本解组为: t t t e te e ,,22, (2分) 原方程的通解为: t t t e C te C e C x 32221++=. (1分)9. 解方程:02)3()5()7(=+-x x x 解:其特征方程为:0)1()1(2223357=+-=+-λλλλλλ, (1分) 特征根为:0=λ为3重根,1=λ,为2重根,1-=λ为2重根.(2分) 所以其基本解组为: 2,1t t ,t t t t te e te e --,,,, (2分) 原方程的通解为:t t t t te C e C te C e C t C t C C x --++++++=76542321. (1分)10. 解方程:02=-''+'''x x x 解:其特征方程为:0)22)(1(2223=++-=-+λλλλλ, (1分) 特征根为:i ±-==11321,,λλ. (2分) 所以其实基本解组为: t e t e e t t t s i n ,c o s ,--,(2分) 原方程的通解为: t e C t e C e C y t t t sin cos 321--++=. (1分)11. 解方程:1,0='-'='+'y x y x ; 解:原方程可化为:21,21-='='y x , (2分)积分得通解为:212,2c t y c t x +-=+=. (4分)12. 解方程:y y dxdyln = 解:原方程可化为:0ln 1=-dx dy yy , (3分)积分得原方程的通解为:C y x =ln ln . (3分)13. 解方程:y x e dxdy-= 解:原方程可化为: dx e dy e x y =, (3分) 积分得原方程的通解为:c x y +=. (3分)14. 解方程:02)1(22=+'-xy y x解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:012122=-+dx x xdy y , (2分)积分得原方程的通解为:c x y +-=-1ln 21. (3分) 15. 解方程:x y dxdycos 2= 解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:xdx dy ycos 12=, (2分) 积分得原方程的通解为:x c y sin 1-=-. (3分)16. 解方程:dy yx x dx xy y )()(2222+=+解:0=y ,0=x 是原方程的常数解, (1分) 当,0≠x 0≠y 时,原方程可化为:dx xx dy y y )11()11(22+=+,(2分) 积分得原方程的通解为:c x x y y +-=---11ln ln . (3分)17. 解方程:x xy dxdy42=+ 解:分析可知2=y 是其特解. (2分)对应齐方程的02=+xy dxdy通解为:2x ce y -=, (2分) 故原方程的通解为:22+=-x ce y . (2分)18. 解方程:23=+ρθρd d 解:分析可知32=ρ是其特解. (2分)对应齐方程03=+ρθρd d 的通解为:θρ3-=ce , (2分)故原方程的通解为:323+=-θρce . (2分)19. 解方程:22x y xe dxdy+= 解:原方程可化为: dx xe dy e x y 22=-, (3分) 积分得原方程的通解为:c e e x y =+-22. (3分)20. 解方程:422x y y x =-' 解:分析可知4x y =是其特解. (2分) 又对应齐方程02=-'y y x 的通解为:2cx y =, (2分) 故原方程的通解为:42x cx y +=. (2分)。
常微分方程期末试题答案
一、填空题(每空2 分,共16分)。
1、方程满足解的存在唯一性定理条件的区域是 xoy 平面 .22d d y x x y+=2. 方程组的任何一个解的图象是 n+1 维n x x xR Y R Y F Y∈∈=,),,(d d 空间中的一条积分曲线.3.连续是保证方程初值唯一的 充分 条件.),(y x f y '),(d d y x f xy=4.方程组的奇点的类型是 中心⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d )0,0( 5.方程的通解是2)(21y y x y '+'=221C Cx y +=6.变量可分离方程的积分因子是()()()()0=+dy y q x p dx y N x M ()()x P y N 17.二阶线性齐次微分方程的两个解,成为其基本解组的充要)(1x y ϕ=)(2x y ϕ=条件是 线性无关8.方程的基本解组是440y y y '''++=x x x 22e ,e--二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程的积分因子是( A ).d ()()d yp x y q x x+=(A )(B )(C )(D )⎰=xx p d )(e μ⎰=xx q d )(e μ⎰=-xx p d )(e μ⎰=-xx q d )(e μ10.微分方程是( B )0d )ln (d ln =-+y y x x y y (A )可分离变量方程(B )线性方程(C )全微分方程(D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A)(B)1±=x 1±=y (C ), (D ), 1±=y 1±=x 1=y 1=x12.阶线性非齐次微分方程的所有解( D ).n (A )构成一个线性空间(B )构成一个维线性空间1-n(C )构成一个维线性空间(D )不能构成一个线性空间1+n 13.方程( D )奇解.222+-='x y y (A )有一个 (B )有无数个 (C )只有两个(D )无三、计算题(每小题8分,共48分)。
常微分方程期末试题标准答案
一、填空题(每空2 分,共16分)。
1、方程22d d y x xy +=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy =初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y t x d d d d 的奇点)0,0(的类型是 中心 5.方程2)(21y y x y '+'=的通解是221C Cx y += 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 1 7.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e-- 二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=x x q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程(C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y(C )1±=y , 1±=x (D )1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间(C )构成一个1+n 维线性空间 (D )不能构成一个线性空间13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
常微分试题及答案
常微分试题及答案一、选择题(每题5分,共20分)1. 下列关于微分方程的描述,错误的是()。
A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是未知函数C. 微分方程的通解是包含任意常数的解D. 微分方程的特解是满足初始条件的解答案:B2. 一阶线性微分方程的一般形式是()。
A. \( y' + p(x)y = q(x) \)B. \( y'' + p(x)y' + q(x)y = 0 \)C. \( y'' + p(x)y = q(x) \)D. \( y' + p(x)y' = q(x) \)答案:A3. 微分方程 \( y'' - y' - 2y = 0 \) 的特征方程是()。
A. \( r^2 - r - 2 = 0 \)B. \( r^2 - r + 2 = 0 \)C. \( r^2 + r - 2 = 0 \)D. \( r^2 + r + 2 = 0 \)答案:A4. 微分方程 \( y'' + 4y = 0 \) 的通解是()。
A. \( y = C_1 \cos(2x) + C_2 \sin(2x) \)B. \( y = C_1 \cosh(2x) + C_2 \sinh(2x) \)C. \( y = C_1 \cos(4x) + C_2 \sin(4x) \)D. \( y = C_1 \cosh(4x) + C_2 \sinh(4x) \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' - 4y' + 4y = 0 \) 的通解是 \( y = C_1 \)________ + \( C_2 \) ________。
答案:\( e^{2x} \) \( e^{-2x} \)2. 微分方程 \( y'' + y = 0 \) 的通解是 \( y = C_1 \) ________ + \( C_2 \) ________。
常微分方程计算题及答案
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdt x y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解 13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
《常微分方程》练习题库参考答案
《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
(完整版)常微分方程期末试题答案
一、填空题(每空2 分,共16分)。
1、方程22d d y x xy +=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy =初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y t x d d d d 的奇点)0,0(的类型是 中心 5.方程2)(21y y x y '+'=的通解是221C Cx y += 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 1 7.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e-- 二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=x x q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程(C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y(C )1±=y , 1±=x (D )1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间(C )构成一个1+n 维线性空间 (D )不能构成一个线性空间13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
常微分试题及答案
常微分试题及答案一、选择题1. 若微分方程 dy/dx = 3x^2,则它的通解为:A. y = x^3 + CB. y = x^2 + CC. y = x^3/3 + CD. y = x^4/2 + C答案:C2. 设 y = e^x 是微分方程 dy/dx - y = 0 的解,则该微分方程的通解为:A. y = e^xB. y = e^(2x)C. y = e^(3x)D. y = e^(4x)答案:A3. 设 y = x^2 是齐次微分方程 y'' - y' - 2y = 0 的解,则该微分方程的通解为:A. y = x^2B. y = x^2 + CC. y = e^x + CD. y = e^(2x) + C答案:B二、计算题1. 解微分方程 dy/dx = 2x + 1,并求出满足初始条件 y(0) = 1 的特解。
解:对微分方程进行分离变量得:dy = (2x + 1)dx两边同时积分得:∫dy = ∫(2x + 1)dxy = x^2 + x + C代入初始条件 y(0) = 1 得:1 = 0^2 + 0 + CC = 1特解为:y = x^2 + x + 12. 求微分方程 y'' + 2y' + y = 0 的通解。
解:首先设通解为 y = e^(rx),带入微分方程得:r^2e^(rx) + 2re^(rx) + e^(rx) = 0化简得:e^(rx)(r^2 + 2r + 1) = 0由指数函数的性质可知,e^(rx) 不等于 0,因此:r^2 + 2r + 1 = 0求解这个二次方程得:r = -1 (二重根)所以,通解为 y = (C1 + C2x)e^(-x)三、应用题有一容器中装有某种细菌,已知初始时刻容器中有 1000 个细菌,随着时间的推移,细菌的数量的变化率与它们的数量成正比。
经实验测得 2 小时后细菌的数量增加到 2000 个。
《常微分方程》期末考试试题库
《常微分方程》期末考试试题目录《常微分方程》期末考试题(一) (1)《常微分方程》期末考试题(二) (6)《常微分方程》期末考试题(三) (13)《常微分方程》期末考试题(四) (18)《常微分方程》期末考试题(五) (24)《常微分方程》期末考试题(六) (31)《常微分方程》期末考试题库 (36)《常微分方程》期末考试题(一)一、填空题(每空2 分,共16分)。
1、方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x xR Y R Y F Y∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy=初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d 的奇点)0,0(的类型是 中心5.方程2)(21y y x y '+'=的通解是221C Cx y +=6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 17.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e -- 二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d yp x y q x x+=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=xx q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-xx q d )(e μ10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y (C)1±=y , 1±=x (D)1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
常微分期末考试题及答案
常微分期末考试题及答案**常微分期末考试题及答案**一、单项选择题(每题3分,共30分)1. 微分方程 \( y' = 2x \) 的通解是()A. \( y = x^2 + C \)B. \( y = 2x + C \)C. \( y = 2x^2 + C \)D. \( y = x^2 + 2C \)2. 微分方程 \( y'' + 4y = 0 \) 的特征方程是()A. \( r^2 + 4 = 0 \)B. \( r^2 - 4 = 0 \)C. \( r^2 + 4r = 0 \)D. \( r^2 - 4r = 0 \)3. 微分方程 \( y' = \frac{y}{x} \) 的通解是()A. \( y = Cx \)B. \( y = Cx^2 \)C. \( y = Cx^{-1} \)D. \( y = Cx^{-2} \)4. 微分方程 \( y' + 2y = 0 \) 的通解是()A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = Cxe^{-2x} \)D. \( y = Cxe^{2x} \)5. 微分方程 \( y' = 3y \) 的通解是()A. \( y = Ce^{3x} \)B. \( y = Ce^{-3x} \)C. \( y = 3Ce^{3x} \)D. \( y = 3Ce^{-3x} \)6. 微分方程 \( y'' - 5y' + 6y = 0 \) 的特征方程是()A. \( r^2 - 5r + 6 = 0 \)B. \( r^2 + 5r + 6 = 0 \)C. \( r^2 - 5r - 6 = 0 \)D. \( r^2 + 5r - 6 = 0 \)7. 微分方程 \( y' = 2xy \) 的通解是()A. \( y = Cxe^{x^2} \)B. \( y = Cxe^{-x^2} \)C. \( y = Cx^2e^{x^2} \)D. \( y = Cx^2e^{-x^2} \)8. 微分方程 \( y'' + y = 0 \) 的通解是()A. \( y = C_1 \cos x + C_2 \sin x \)B. \( y = C_1 \sin x + C_2 \cos x \)C. \( y = C_1 \cosh x + C_2 \sinh x \)D. \( y = C_1 \sinh x + C_2 \cosh x \)9. 微分方程 \( y' = \frac{1}{y} \) 的通解是()A. \( y = Cx + 1 \)B. \( y = Cx - 1 \)C. \( y = \frac{1}{Cx + 1} \)D. \( y = \frac{1}{Cx - 1} \)10. 微分方程 \( y'' + 4y' + 4y = 0 \) 的特征方程是()A. \( r^2 + 4r + 4 = 0 \)B. \( r^2 - 4r + 4 = 0 \)C. \( r^2 + 4r - 4 = 0 \)D. \( r^2 - 4r - 4 = 0 \)**答案:**1. A2. A3. A4. A5. A6. A7. A8. A9. C10. A二、填空题(每题5分,共30分)1. 微分方程 \( y' = 3x^2 \) 的通解是 \( y = \_\_\_\_\_\_\_\_\_\_\_ \)。
常微分方程的解析求解
常微分方程的解析求解当然可以!这里是根据“常微分方程的解析求解”主题的20道试题,包括选择题和填空题,每道题目都有详细的序号介绍:选择题:1. 下列哪个不是常微分方程解析解的条件?A. 连续性B. 可微性C. 非线性D. 初值条件2. 对于一阶常微分方程 dy/dx = 3x^2,其通解是?A. y = x^3 + CB. y = 3x + CC. y = x^2 + CD. y = 3x^2 + C3. 若常微分方程的解是 y = Ce^(2x),其中 C是常数,则此方程的阶数是?A. 一阶B. 二阶C. 零阶D. 无法确定阶数4. 常微分方程的解析解通常基于的数学工具是?A. 拉普拉斯变换B. 微积分C. 线性代数D. 代数方程5. 对于常微分方程 dy/dx = sin(x),其解析解是?A. y = cos(x)B. y = -cos(x)C. y = sin(x)D. y = -sin(x)填空题:6. 一阶常微分方程 dy/dx = 2x 的通解是 ____________。
7. 若常微分方程的解为 y = C1e^(2x) +C2e^(3x),则其阶数是 ____________。
8. 常微分方程的解析求解通常依赖于 _________ 和_________。
9. 若常微分方程的解为 y = A cos(x) + Bsin(x),则其阶数是 ____________。
10. 解常微分方程 dy/dx = x^2 的特解形式是____________。
11. 一阶常微分方程 dy/dx = e^(2x) 的通解是____________。
12. 常微分方程的解析求解涉及到函数的 ____________ 和____________。
13. 若常微分方程的通解是 y = C1 cos(x) + C2sin(x),则其阶数是 ____________。
14. 常微分方程 dy/dx = 1 的通解是 ____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期终测验考试卷7
一 . 解下列方程(10%*8=80%)
1. x 'y =22y x ++y
2. tgydx-ctydy=0
3. {y-x(2x +2y )}dx-xdy=0
4. 2xylnydx+{2x +2y 21y +}dy=0
5. dx dy =6x
y
-x 2y
6. 'y =22
)1
2(
-++y x y
7. 已知f(x)⎰x
dt t f 0)(=1,x ≠0,试求函数f(x)的一般表达式。
8.一质量为m 质点作直线运动,从速度为零的时刻起,
有一个和时间成正比(比例系数为1k )的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比(比例系数为2k )。
试求此质点的速度与时间的关系。
二. 证明题(10%*2=20%)
1. 证明:如果已知黎卡提方程的一个特解,则可用
初等方法求得它的通解。
2. 试证:在微分方程Mdx+Ndy=0中,如果M 、N 试
同齐次函数,且xM+yN ≠0,则
)
(1
yN xM +是该方程的
一个积分因子。
试题答案:
02412-35
1. 解:将方程改写为 '
y =
2
1x y -
+
x y (*) 令u=x
y
,得到x 'y =x 'u + u,则(*)变为x dx
du =u -1 , 变量分离并两边积分得
arcsinu=ln u +lnC, 故方程的解为arcsin x
y
=lnCx 。
2.
解:变量分离 ctgxdy=tgydx, 两边积分得 ln(siny)=
-ln x cos +C 或sinycosx=C (*) 另外,由tgy=0或ctgx=0得
y=k π(k=0、1…) ,x=t π+2
π(t=0、1…)也是方程的解。
tgy=0或ctgx=0的解是(*)当C=0时的特殊情况,故原方程的解为sinycosx=C 。
3.
解:ydx-xdy-x(2
x +2y )dx=0,两边同除以2
x +2
y 得
2
2
ydx xdy
y
x -+-xdx=0,即d(arctg
x
y
)-12d 2
x
=0,故原方程的解为
arctg x y -1
2
2
x
=C 。
4. 解:M y ∂∂=2xlny+2x , N y ∂∂=2x,则 M N
y x
M ∂∂-
∂∂-=2ln 2ln x y xy y -=-1y
,故方
程有积分因子()y μ=1dy y
e
⎰-=
1y ,原方程两边同乘以1y
得2ln xy y
y
dx+2
y
y
x +
dy=0是恰当方程.
d(
2
x
lny)+y
dy=0,两边积分得方程的解为
2
x
lny+
(
)32
12
3
1y +=C 。
5. 解:1)y=0是方程的特解。
2)当y ≠0时,令z=1
y -得
dz
dx =6x -z+x. 这是线性方程,解得它的通解为z=2
68
c x x + 代回原来的变量y 得方程解为1y =2
68
c
x x +;y=0.
6.
解:令x=u+3, y=v -2, 可将原方程变为dv
du
=2
2v u v ⎛⎫ ⎪+⎝⎭
,
再令z=v
u
,得到z+dz
u
u
=2
21z z ⎛⎫
⎪+⎝⎭
,即dz
u
u
=(
)2
2
11z z
z +-+,
分离变量并两端积分得2121dz z z ⎛⎫
⎰+ ⎪
⎪+⎝⎭
=du u -⎰+lnC 即ln z +2arctgz=ln u -+lnC , ln zu =-2arctgz+lnC 代回原变量得v=C 2v arctg
u
e
-
所以,原方程的解为y+2=C 223
y arctg
x e +--.
7.
解:令f(x)=y ,1
()
f x =0()x f t dt ⎰,两边求导得
()'
1
y -=y ,
即'
1y
y -
=y ,即3
1
dy y
-
=dx ,两边求积得2
1
y
=2x+C ,
从而
y=
f(x)= .
8.
解:因为F=ma=m
dv
dt
,又F=1F 2F -=12t v k k -, 即m dv dt =12t v k k - (v(0)=0),即dv
dt
=12t v k k - (v(0)=0),
解得v=12
2
m
k k 2
t m k e +
12
k k
(t 2m
k -
).
9.
解:1)先找到一个特解y=
y 。
2)令y=
y +z ,化为n=2的伯努利方程。
证明:因为y=
y 为方程的解, 所以 d y
dx
=P(x)2y +Q(x) y +R(x) (1) 令y=
y +z ,则有 d y dx
+dz
dx = P(x)2()y z + +Q(x)()y z + +R(x) (2) (2)-(1)得dz
dx
= P(x)2(2)yz z + +Q(x)z 即
dz
dx
=[2P(x)
y +Q(x)]z+P(x)2z 此为n=2的伯努利方程。
10. 证明:如M 、N 都是n 次齐次函数,则因为
x x M +y y M =nM ,x x N +y y N =nN ,故有
M N
y xM yN x xM yN
∂∂-∂+∂+=
2
()()
()y
y y xM yN M x N y xM yN N M
M +-+++2
()()
()
x x
x xM yN N x M y xM yN N N M +-++-+
=2
()()
()x x y M x yN N x y xM yN N N M +-+-+
=2
()()
()
M nN N nM xM yN --
+=0. 故命题成立。