2013成都二诊数学_理科试题与答案_word版
四川成都市2013届高三摸底考试数学(理)试题(WORD版)
四川省成都市2013届高三摸底考试数学(理)试题本试卷分选择题和非选择题两部分。
第I 卷(选择题),第Ⅱ卷(非选择题),满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I 卷(选择题,共60分)一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={1,2,3,4},{|37,}Q x x x N =≤<∈,则P ∪Q= 高[考∴试﹤题∴库]A .∅B .{3,4}C .{1,2,5,6}D .{1,2,3,4,5,6} 2.对于函数1()(01,)x f x a a a x R -=>≠∈且,下列命题正确的是A .函数f (x )的图象恒过点(1,1)B .0x ∃∈R ,使得0()0f x ≤C .函数f (x )在R 上单调递增D .函数f (x )在R 上单调递减3.在等差数列*45619{}(),27,n a n N a a a a a ∈++=+中若则等于A .9B . 27C .18D .544.函数()lg 3f x x x =+-的零点所在区间为A .(3,+∞)B .(2,3)C .(1,2)D .(0,1)5.已知α为第四象限的角,且4sin(),tan 25παα+=则= A .34-B .34 C .一43 D .43 6.若某空间几何体的三视图如图所示,则该几何体的体积是A .15B .20C . 30D .607.设l ,m ,n 为不重合的三条直线,其中直线m ,n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件8.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2,且12||F F =2c ,若点P 在椭圆上,且满足2212120,PF F F PF PF c ⋅=⋅=,则该椭圆的离心率e 等于A .12B .12-C .12D .2学优高考网GkStK]9.如图,正方体ABCD —A 1B 1C 1D 1中,P 为线段BC 1上的动点,则下列判断错误..的是 A .DB 1⊥平面ACD 1B .BC 1∥平面ACD 1C .BC 1⊥DB 1D .三棱锥P-ACD 1的体积与P 点位置有关10.一批物资随17辆货车从甲地以v km/h (100≤v ≤120)的速度匀速运达乙地.已知甲、乙两地间相距600 km ,为保证安全,要求两辆货车的间距不得小于2()20v km (货车长度忽略不计),那么这批货物全部运达乙地最快需要的时间是A .小时B .9.8小时C .10小时D .10.5小时 11.在直角坐标系xOy 中,直线Z 的参数方程为,4x t y t=⎧⎨=+⎩(t 为参数,且t>0);以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线c 的极坐标方程为)4πρθ=+.则直线l和曲线C 的公共点有A .0个B .l 个C .2个D .无数个12.已知奇函数f (x )满足f (x+1)=f (x-l ),给出以下命题:①函数f (x )是周期为2的周期函数;②函数f (x )的图象关于直线x=1对称;③函数f (x )的图象关于点(k ,0)(k ∈Z )对称;④若函数f (x )是(0,1)上的增函数,则f (x )是(3,5)上的增函数,其中正确命题的番号是A .①③B .②③C .①③④D .①②④第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案填在答题卡上.13.某单位有青年职工300人,中年职工150人,老年职工100人.为调查职工健康状况,采用分层抽样的方法,抽取容量为33的样本,则应从老年职工中抽取的人数为 .高[考∴试﹤题∴库GkStK]14.函数1()ln 12x f x x+=-的定义域为 . 15.若实数z 、y 满足不等式组,则1y z x +=的最大值为 . 16.已知某程序框图如图所示,则执行该程序后输出的结果为 .三、解答题:本大题共6个小题,共74分.解答应写出文字说明、证明过程或推演步骤.17.(本小题满分12分)已知函数2()2sin cos f x x x x x R =+-∈(I )化简函数f (x )的解析式,并求函数f (x )的最小正周期;(Ⅱ)在锐角△ABC 中,若()1,2f A AB AC =⋅=ABC 的面积.高[考∴试﹤题∴库]18.(本小题满分12分)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 分别是D 1C 、AB 的中点.(I )求证:EF ∥平面ADD 1A 1;(Ⅱ)求二面角D —EF —A 的余弦值.19.(本小题满分12分)某幼儿园在“六·一儿童节"开展了一次亲子活动,此次活动由宝宝和父母之一(后面以家长代称)共同完成,幼儿园提供了两种游戏方案:方案一宝宝和家长同时各抛掷一枚质地均匀的正方体骰子(六个面的点数分别是1,2,3,4,5,6),宝宝所得点数记为z ,家长所得点数记为y ;方案二宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间[1,6],的随机实数),宝宝的计算器产生的随机实数记为m ,家长的计算器产生的随机实数记为挖.(I )在方案一中,若x+l=2y ,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概率;(Ⅱ)在方案二中,若m>2n ,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读物的概率.20.(本小题满分12分)已知函数()log ,()log (22),[1,2],01,a a f x x g x x m x a a m R ==+-∈>≠∈其中且. (I )当m=4时,若函数()()()F x f x g x =+有最小值2,求a 的值;(Ⅱ)当0<a<l 时,f (x )≥2g (x )恒成立,求实数m 的取值范围.21.(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为A 、B ,右焦点为F 0),一条渐近线的方程为2y x =-,点P 为双曲线上不同于A 、B 的任意一点,过P 作x 轴的垂线交双曲线于另一点Q 。
2013年高考理科数学四川卷考试试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B.2 C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=333121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。
四川省成都市2013届高三第二次诊断性检测理科综合试题.pdf
成都市2013届高中毕业班第二次诊断性检测 理科综合物理部分 理科综合共300分,考试用时150分钟。
1.物理试卷分为第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页,第II卷 3至5页,共110分。
2.答卷前,考生务必将自己的姓名、考籍号填写在答题卡上;并在规定位置粘贴考试用 条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,只将 答题卡交回。
第I卷 注意事项: 1.每题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案标号。
2.本卷共7题,每题6分,共42分。
每小题给出的四个选项中,有的只有一个选项正 确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.下列说法正确的是 A牛顿测出了引力常量 B.爱因斯坦提出了系统的电磁理论 C.理想实验不能用于科学研究 D.公式与采取的定义方式相同 2.2012年,四川超特高压输电量首破千亿千瓦时。
如图所示是远距离输电示意图,升 压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变。
下列 说法正确的是 A若用户用电功率增加,升压变压器的输出电压将增大 B.若用户用电功率增加,降压变压器的 输入电压将增大 C.若输电功率一定,采用特高压输电可减少输电线上损耗的功率 D.若输电功率一定,采用特高压输电会降低输电的效率 3.如图所示,轻绳下端拴接一小球,上端固定在天花板上。
用外力F将小球沿圆弧从 图中实线位置缓慢拉到虚线位置,F始终沿轨迹切线方向,轻绳中的拉力为T。
则 A F保持不变,T逐渐增大 B.F逐渐减小,T逐渐增大 C.F逐渐增大,T逐渐减小 D.F与T的合力逐渐增大 4.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P,这个行星围 绕某恒星Q做速圆周运动。
测得P的公转周期为T,公转轨道半径为r,已知引力常量为G0则 A.恒星Q的质量约为 B.行星P的质量约为 C.以7.9 m/s的速度从地球发射的探测器可以到达该行星表面 D.以11.2kWs的速度从地球发射的探测器可以到达该行星表面 5.—列简谐机械横波沿J:轴负方向传播,波速u=lm/s。
成都市2013级二诊数学试卷(理工农医类)带答案(word版)
成都市2013届高中毕业班第二次诊断性检测数学(理工农医类)1.在复平面内,复数iz +=12对应的点位于( ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限2.已知全集{}0>=x x U ,{}x x x M 22<=,则=M C U ( ) A. {}2≥x x B.{}2>x x C.{}02≤≥x x x 或 D. {}20<<x x3. 若直线02)1(=++y x a 与直线1=-ay x 互相垂直,则实数a 的值等于()A. 1-B. 0C. 1D. 24. 已知直线l 和平面α,若α//l ,α∈P ,则过点P 且平行于l 的直线( )A.只有一条,不在平面α内B.有无数条,一定在平面α内C.只有一条,且在平面α内D.有无数条,不一定在平面α内5. 一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( ) A. 33 B.1 C. 332 D.36. 函数11log )(2-+=xx x f 的零点个数为( ) A. 个 B. 1个 C. 2个 D.3个7. 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线与曲线12-=x y 相切,则该双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 228. 若不等式x x m -+≤1221,当)1,0(∈x 时恒成立,则实数m 的最大值为( ) A. 29 C. 5 D. 25 9. 已知数列{}n a 满足n n n n a a a a -=-+++112,则25π=a ,若函数2cos 22sin )(2x x x f +=,记)(n n a f y =,则数列{}n y 的前9项的和为( )A.09- C. 9 D. 110. 某算法的程序框图如图所示,执行该算法后输出的结果S 的值为( )A.二、 填空题(每小题5分,共25分)11. 已知32cos sin =+αα,则α2sin 的值为 。
2013成都二诊数学_理科试题改错
9.已知数列{a n }满足 a n+2-a n+1= a n+1-a n ,*N n ∈,且a 5=2π若函数f(x)= sin2x+2cos 22x ,记y n =f(a n ),则数列{y n }的前9项和为(A)O(B)-9(C)9 (D)11O.某算法的程序框图如图所示,则执行该程序后输出的S 等于(A) 24 (B) 26 (C) 30 (D) 3213. 设G 为ΔABC 的重心,若ΔABC 所在平面内一点P 满足02=+BP PA =0,则||||AG AP 的值等于_______15.对于定义在区间D 上的函数f(x ),若满足对D x x ∈∀21,,且x 1<x 2时都有 )()(21x f x f ≥,则 称 函 数 f(x)为区间D 上的“非增函数”.若f(x)为区间[0,1]上的“非增函数”且f(0) = l ,ff(x)+f(l —x) = l ,又当]41,0[∈x 时,f(x)≤-2x+1恒成立.有下列命题:①0)(],1,0[≥∈∀x f x ;②当,且2121]1,0[,x x x x ≠∈时, f ( x 1)≠f(x 2) ③ 2)87()137()115()81(=f f f f +++; ④当]41,0[∈x 时,)())((x f x f f ≤.其中你认为正确的所有命题的序号为_____ 19.(本小题满分12分)设函数f(x)=x 2过点C 1(1,0)作X 轴的垂线l 1交函数f(x)图象于点A 1,以A 1为切 点作函数f(x)图象的切线交X 轴于点C 2,再过C 2作X 轴的垂线l 2交函数f(x)图象于点 A 2,…,以此类推得点A n ,记A n 的横坐标为a n ,*N n ∈.(I)证明数列{a n }为等比数列并求出通项公式a n ;(II)设直线l n 与函数g(x)=x21log:的图象相交于点B n ,记nn OB OA bn .=(其中O 为 坐 标 原点), 求 数 列 {b n }的前n 项和S n . 20.(本小题满分13分)巳知椭圆E..)0(12222>>=+b a by ax (a>b>0)以抛物线y 2=8x 的焦点为顶点,且离心率为21(I )求椭圆E 的方程;(II )若直线l:y=kx+m 与椭圆E 相交于A 、B 两点,与直线x= -4相交于Q 点,P 是 椭圆E 上一点且满足OB OA OP += (其中O 为坐 标 原 点 ),试 问 在 X 轴上是否存在一点T , 使得TQ OP .为定值?若存在,求出点了的坐标及TQ OP .的值;若不存在,请说明理由. 21.(本小题满分14分)已知函数ax xx x g x a xx x f )(ln 1)(,ln 1)(-+=--=,其中x>0,a ∈R(I )若函数f (x )无极值,求a 的取值范围;(I I )当a 取(I )中的最大值时,求函数g (x )的最小值;(III)证明不等式∑=+∈+>+nk nn kkN n 11*)(122ln)12(21.。
2013年成都七中高2013级高考适应性考试数学理科及答案详解
成都七中高2013级高考适应性考试数学(理科)试题时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.(1)已知全集,集合和的关系的韦恩图如图所示,则阴影部分所示的集合的元素共有(A)3个(B)2个(C)1个(D)0个(2)圆上点到直线的最短距离为(A)(B)(C)(D)(3)已知数列的满足:,若,则(A)(B)(C)(D)(4)已知实数满足,则的最大值为(A)(B)(C)(D)(5)函数在区间的值域为,则实数的取值范围为(A)(B)(C)(D)(6)把的图象经过某种平移得到的图象,则平移方式可为(A)按平移(B)按平移(C)先向右平移个单位再向上平移个单位(D)先向左平移个单位再向下平移个单位(7)设,(为虚数单位),则(A)(B)(C)或(D)不存在(8)若,则“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(9)用边长为6分米的正方形铁皮做一个无盖的水箱,先在四角分别截去一个小正方形,然后把四边翻转,再焊接而成(如图)。
设水箱底面边长为分米,则(A)水箱容积最大为立方分米(B)水箱容积最大为立方分米(C)当在时,水箱容积随增大而增大(D)当在时,水箱容积随增大而减小(10)在中,,则以为焦点且过点的双曲线的离心率为(A)(B)(C)(D)(11)将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有两个房间无人选择且这两个房间不相邻的安排方式的总数为(A)(B)(C)(D)1440 (12)已知球的表面积为,球心在大小为的二面角的内部,且平面与球相切与点,平面截球所得的小圆的半径为,若点为圆上任意一点,记两点在该球面上的球面距离为,则下列结论正确的是(A)当取得最小值时,与所成角为(B)当取得最小值时,点到平面的距离为(C)的最大值为(D)的最大值为第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案填在答题卡上.(13)的展开式中只有第5项的二项式系数最大,则展开式中的第2项为________.(14)抛物线的焦点与双曲线的右焦点重合,则该双曲线的虚轴长等于________.(15)已知二面角为,,,,为线段的中点,,,则直线与平面所成角的大小为________.(16)下图展示了一个由区间到实数集的变换过程:区间中的实数对应数轴上的点(如图1),将线段围成一个正方形,使两端点恰好重合(如图2),再将这个正方形放在平面直角坐标系中,使其中两个顶点在轴上,点的坐标为(如图3),若图3中直线与轴交于点,则点的变换结果就是点,记作.现给出以下命题:①;②的图象的对称中心为;③为偶函数;④关于的不等式的解集为;⑤若数列,则为等比数列.其中所有正确命题的番号应是.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量,,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)在中,分别是角的对边,且,,,且,求的值.(18)(本小题满分12分)如图,正方形、直角梯形、直角梯形所在平面两两垂直,.且,.(Ⅰ)求证:四点共面;(Ⅱ)求二面角的大小;(19)(本小题满分12分)某商场准备在伦敦奥运会期间举行促销活动.根据市场行情,该商场决定从3种品牌的服装类商品、2种品牌的家电类商品、4种品牌的日用类商品中,任选出3种商品进行促销活动.(Ⅰ)求选出的3种商品中至少有一种是日用类商品的概率;(Ⅱ)商场对选出的家电类商品采用的促销方案是有奖销售,即在该类商品成本价的基础上每件提高180元作为售价销售给顾客,同时给该顾客3次抽奖的机会,若中奖一次,就可以获得一次奖金.假设该顾客每次抽奖时获奖的概率都是,每次中奖与否互不影响,且每次获奖时的奖金数额都为元,求顾客购买一件此类商品时中奖奖金总额的分布列和数学期望,并以此测算至多为多少时,此促销方案使商场不会亏本?20.(本小题满分12分)已知函数,数列满足.(Ⅰ)若,求数列的前项和;(Ⅱ)记,,数列的前项和为,对于给定的正整数,如果恒为定值(与的变化无关),求的值.(21)(本小题满分12分)已知是圆上的动点,点,线段的垂直平分线与半径交于点,当点在圆上运动时,点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)已知点,在曲线上,且(,是坐标原点).①求直线的斜率;②求证:当的面积取得最大值时,恰好为的重心.(22)(本小题满分14分)设函数其中为自然对数的底数,.(Ⅰ)当时,求函数的最小值;(Ⅱ)证明:对任意正数,都有;(Ⅲ)若,证明:.成都七中高2012级高考适应性考试数学(理科)参考答案一、选择题:(每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D C A A B B C C B A D(9)解:设箱底边长为,则箱高,则,解得(舍),,时,单增,故选C(10)解:由题知,,设,由余弦定理,由双曲线的定义有,,,故选B(11)解:第一步先将5人分成3组,再全排,有种,第二步,另两个空房间插空,有种,总共有=900种,故选A(12)解:球半径,小圆的半径为,,,当取得最小值时 ,,与所成角为,故A错;点到平面的距离为2,故B错当取得最大值时,,的最大值为,故选D.二、填空题:(每小题4分,共16分)(13);(14);(15);(16)①②⑤.(15)(参见高二下B P57,6题第3小题)(16)故选①②⑤三、解答题:(本大题共6小题,共74分)(17)解:(Ⅰ)………4分∴函数的最小周期………6分(Ⅱ),是三角形内角,∴,∴………8分∴,∴………10分将可得:,解得:∴,,∴,………12分(18)(Ⅰ)证明:由正方形、直角梯形、直角梯形所在平面两两垂直,易证:AD、DE、DG两两垂直,建立如图的坐标系,则A(0,0,2),B(2,0,2),C(0,1,2),E(2,0,0),G(0,2,0),F(2,1,0)∴,即四边形BCGF是平行四边形.故四点B、C、F、G共面. ………4分也可用几何法:取DG的中点M,连结FM,BF,证即可.(Ⅱ),设平面BCGF的法向量为,则则,设平面DBC的法向量;且,则则,故二面角.………12分(19)解:(I)设选出的3种商品中至少有一种是日用商品为事件A,则(法一).(法二).即选出的3种商品中至少有一种是日用商品的概率为.…………5分答:选出的3种商品中至少有一种是日用商品的概率为.(II)设顾客抽奖的中奖中奖奖金总额为,则=,于是,,,,∴顾客中奖次数的数学期望.………10分设商场将每次中奖的奖金数额定为元,则≤180,解得x≤120,即该商场应将每次中奖的奖金数额至多定为120元,才能使商场不亏本.………12分答:该商场应将每次中奖的奖金数额至多定为120元,才能使商场不亏本.(20)解:(Ⅰ),∴为等比数列,公比∴,…………3分①,②①-②得,. …………6分(Ⅱ)∵,,且,∴.∴数列是首项为2,公比为的等比数列,∴.∴.∵,∴是首项为,公差为的等差数列.∴.…………10分∵,又∵恒为定值(即与的变化无关),∴,解得.…………12分(21)解:(Ⅰ)由题意,由椭圆的定义知,的轨迹是以为焦点,半长轴为2,半焦距为1的椭圆,曲线的方程为………4分(Ⅱ)①设,,由得由,两式相减得………6分②设的直线方程为,联立,到直线的距离………8分求最值的方法一:,用导数法 (此处略)可得..………11分方法二:当且仅当,即时取等号11分由韦达定理得:,.故是的重心. ………12分(22)解:解:(Ⅰ)时,则;令得当时,,在是减函数;当时,,在是增函数;∴在时取得最小值,即………4分(Ⅱ) ∵,不妨设(其中),则原式==,………8分(Ⅲ)证法一:数学归纳法①当时,由(Ⅱ)知命题结论成立;②假设当时命题成立;即若,则当时,满足设由(Ⅱ)得=即时命题成立.;由①②可知,.证法二:若由(Ⅱ)可得===.……14分附:理科备选题22.已知函数(Ⅰ)求证:对任意的;(Ⅱ)证明:;(Ⅲ)求证:对任意的.22.解(Ⅰ)只需证明的最大值为0即可,令,得,当时,,当时是唯一的极大值点,故,∴,从而4分(Ⅱ)由(Ⅰ)当时,,即令得由上面个不等式相加得9分(Ⅲ)由(Ⅰ)当时,即14分21.(本题满分14分)已知函数.(1)求函数的图像在点处的切线方程;(2)若,且对任意恒成立,求的最大值;(3)当时,证明.22.(1)解:因为,所以,函数的图像在点处的切线方程;……3分(2)由(1)知,,所以对任意恒成立,对任意恒成立.令,则,令,则,在上单调递增.因为,所以方程在上存在唯一实根,且满足.………5分当,即,当,即,所以函数在上单调递减,在上单调递增.所以.所以.故整数的最大值是3.………8分。
成都市2013级二诊理科数学答案
* B CDEF% " ?
! G CDE !"#%$" %% " $# # & '$ ! & ($ $ & )$ * & +$ % & ($ , & )$ & ($ . & +$ / & )$ # " & '& ! + HIE !"#%$" %! % $# # # & 0 %$ $ $ $ # ! & " # $ & ! # * & $ # % & & / $ !
'
&
$ +* +* " # " ¨+6 8;, «<¬;6! 0 # " 7+2 (5 ! !
! # " , 0 " ,4 # ! K ! # ! ,# 5 # 4 !0 5 ! 9! # 8 ! , , , ! " #" 9, <¯° X±°" 0 " ,4 # 5 ";®D! " 4 =#
槡
%% 8* & # ! # !$ #5 ! ! ! K % >/>-0 # / ! " " " ! " ,0 " ! # 0 0 #! 0 0 #" 0 0 ## 0 0 #5 0 0 #! 0 0 ##
2013年全国普通高等学校招生统一考试理科数学(四川卷带解析)答案解析
2013年全国普通高等学校招生统一考试理科(四川卷)数学答案解析1、【答案】A【解析】由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.2、【答案】B【解析】两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.3、【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.4、【答案】D【解析】因为全称命题的否定是特称命题,所以设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则¬p:?x∈A,2x?B.【答案】A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2?+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣6、【答案】B【解析】∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==【答案】A【解析】当x<0时,x3<0,3x﹣1<0,∴,故排除B;对于C,由于函数值不可能为0,故可以排除C;∵y=3x﹣1与y=x3相比,指数函数比幂函数,随着x的增大,增长速度越大,∴x→+∞,→0,∴D不正确,A正确,8、【答案】C【解析】首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有种排法,因为,,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是:20﹣2=18.9、【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=10、【答案】A【解析】曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[﹣1,1]考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,A,B,C,D四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项当a=0时,,此是一个增函数,且函数值恒非负,故只研究y0∈[0,1]时f(f(y0))=y0是否成立由于是一个增函数,可得出f(y0)≥f(0)=1,而f(1)=>1,故a=0不合题意,由此知B,D两个选项不正确当a=e+1时,此函数是一个增函数,=0,而f(0)没有意义,故a=e+1不合题意,故C,D两个选项不正确综上讨论知,可确定B,C,D三个选项不正确,故A选项正确11、【答案】10【解析】设二项式(x+y)5的展开式的通项公式为T r+1,则T r+1=x5﹣r?y r,令r=3,则含x2y3的项的系数是=10.12、【答案】2【解析】∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.13、【答案】【解析】∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.14、【答案】(﹣7,3)【解析】因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).15、【答案】①④【解析】①若三个点A、B、C共线,C在线段AB上,根据两点之间线段最短,则C是A,B,C的中位点,正确;②举一个反例,如边长为3,4,5的直角三角形ABC,此直角三角形的斜边的中点到三个顶点的距离之和为5+2.5=7.5,而直角顶点到三个顶点的距离之和为7,∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;③若四个点A、B、C、D共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;④如图,在梯形ABCD中,对角线的交点O,P是任意一点,则根据三角形两边之和大于第三边得PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.故答案为:①④.16、【答案】S n=【解析】设该数列的公差为d,前n项和为S n,则∵a1+a3=8,且a4为a2和a9的等比中项,∴2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d)解得a1=4,d=0或a1=1,d=3∴前n项和为S n=4n或S n=.17、【答案】(1)(2)=ccosB=【解析】(Ⅰ)由,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.18、【答案】(I)输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为(II)乙同学所编程序符合算法要求的可能性较大(III)1【解析】(I)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出的y 值为1,故P1==;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出的y值为2,故P2==;当x从6,12,18,24这4个数中产生时,输出的y值为3,故P3==;故输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为;(II)当n=2100时,甲、乙所编程序各自输出的y值为i(i=1,2,3)的频率如下:输出y值为1的频率输出y值为2的频率输出y值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大;(III)随机变量ξ的可能取值为:0,1,2,3,P(ξ=0)==,P(ξ=1)==P(ξ=2)==,P(ξ=3)==,故ξ的分布列为:ξ 0 1 2 3P所以所求的数学期望Eξ==119、【答案】(I)见解析(II)【解析】(I)在平面ABC内,过点P作直线l∥BC∵直线l?平面A1BC,BC?平面A1BC,∴直线l∥平面A1BC,∵△ABC中,AB=AC,D是BC的中点,∴AD⊥BC,结合l∥BC得AD⊥l∵AA1⊥平面ABC,l?平面ABC,∴AA1⊥l∵AD、AA1是平面ADD1A1内的相交直线∴直线l⊥平面ADD1A1;(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF由(I)知MN⊥平面A1AE,结合MN?平面A1MN得平面A1MN⊥平面A1AE,∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,∵EF⊥A1M,EF是AF在平面A1MN内的射影,∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1Rt△A1AP中,A1P==;Rt△A1AM中,A1M=∴AE==,AF==∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==即二面角A﹣A1M﹣N的余弦值等于.20、【答案】(I)(II)点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)【解析】(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.∴c=1,2a=PF1+PF2==2,即a=∴椭圆的离心率e===…4分(II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q 的坐标为(0,2﹣)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则,,又|AQ|2=(1+k2)x2,∴,即=…①将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2﹣24(2k2+1)>0,得k2>由②知x1+x2=,x1x2=,代入①中化简得x2=…③因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18由③及k2>可知0<x<,即x∈(﹣,0)∪(0,)由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1,又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈[,)且﹣1≤y≤1,则y∈(,2﹣)所以,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)…13分21、【答案】(I)f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增(II)1(III)(﹣1﹣ln2,+∞)【解析】(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).。
2013成都二诊理综试题答案公布(WORD版)下载
1.下列说法正确的是
A牛顿测出了引力常量
B. 爱因斯坦提出了系统的电磁理论
C. 理想实验不能用于科学研究
D.
2.2012年,四川超特高压输电量首破千亿千瓦时。如图所示是远距离输电示意图,升 压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变。下列 说法正确的是
第I卷
注意事项:
1. 每题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡 皮擦干净后,再选涂其他答案标号。
2. 本卷共7题,每题6分,共42分。每小题给出的四个选项中,有的只有一个选项正 确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
成都市2013届高中毕业班第二次诊断性检测
理科综合物理部分
理科综合共300分,考试用时150分钟。
1. 物理试卷分为第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页,第II卷 3至5页,共110分。
2. 答卷前,考生务必将自己的姓名、考籍号填写在答题卡上;并在规定位置粘贴考试用 条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,只将 答题卡交回。
A若用户用电功率增加,升压变压器的输出电
压将增大
B. 若用户用电功率增加,降压变压器的 输入
电压将增大
C. 若输电功率一定,采用特高压输电可减少输电线上损耗的功率
D. 若输电功率一定,采用特高压输电会降低输电的效率
3. 如图所示,轻绳下端拴接一小球,上端固定在天花板上。用外力F将小球沿圆弧从
图
2013年高考全国二卷理科数学试卷与答案
绝密★启用前2013年成都戴氏教育富顺校区考试卷数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)错误!未找到引用源。
(B)- 错误!未找到引用源。
(C)错误!未找到引用源。
(D)- 错误!未找到引用源。
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(B)1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
2013年普通高等学校招生全国统一考试(四川卷)数学试题 (理科) word解析版
绝密启用前2013年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡上一并交回.第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =I ( )A .{-2}B .{2}C .{-2,2}D .∅答案 A解析 A ={x |x +2=0}={-2},B ={x |x 2-4=0}={-2,2},∴A ∩B ={-2}∩{-2,2}={-2},选A.2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点( ) A .A B .B C .C D .D 答案 B解析 表示复数z 的点A 与表示z 的共轭复数的点关于x 轴对称,∴B 点表示z .选B.3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈ 答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D.5.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A.6.抛物线y 2=4x的焦点到双曲线x 2-y 23=1的渐近线的距离是( ) A.12 B.32C .1 D. 3答案 B 解析 抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线是y =±3x ,即3x ±y =0,∴所求距离为|3±0|(3)2+(±1)2=32.选B.7.函数y =x 23x -1的图象大致是( )答案 B解析 对于函数y =x 23x -1定义域为{x ∈R ,且x ≠0}去掉A ,当x <0时,3x -1<0,x 2>0,∴y <0,去掉C 、D ,选B.8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为a b 有A 25种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C.9.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78答案 C解析 设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为X 、Y ,X 、Y 相互独立,由题意可知⎩⎪⎨⎪⎧0≤X ≤40≤Y ≤4|X -Y |≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P (|X -Y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.10.设函数f (x )=e x +x -a (a ∈R ,e 为自然对数的底数),若曲线y =sin x 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1] C .[1,e +1] D .[e -1-1,e +1]答案 A解析 由于f (x )=e x +x -a (a ∈R )在其定义域上为单调递增函数,所以其反函数f -1(x )存在,由于y 0∈[-1,1],且f (f (y 0))=y 0,∴f -1(f (f (y 0)))=f -1(y 0),即f (y 0)=f -1(y 0),∴y =f (x )与y =f -1(x )的交点在y =x 上.即e x +x -a =x 在x ∈[-1,1]上有解,即e x +x -a =x 在[0,1]上有解.∴a =e x +x -x 2,x ∈[0,1],a ′=e x -2x +1,当0<x <1时,a ′=e x -2x +1>e 0-2×1+1=0,∴a =e x +x -x 2在[0,1]上递增,当x =0时,a 最小=1;当x =1时,a 最大=e ,故a 的取值范围是[1,e],选A.第二卷二、填空题11.二项式(x +y )3的展开式中,含x 2y 3的项的系数是________.(用数字作答) 答案 10 解析 T r +1=C r 5x5-r y r (r =0,1,2,3,4,5),由题意知⎩⎪⎨⎪⎧5-r =2r =3,∴含x 2y 3的系数为C 35=5×4×33×2×1=10.12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________. 答案 2解析 由于ABCD 为平行四边形,对角线AC 与BD 交于点O ,∴AB →+AD →=AC →=2AO →,∴λ=2.13.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 答案3解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝⎛⎭⎫π2,π,∴sin α≠0,2cos α+1=0即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.14.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________. 答案 {x |-7<x <3}解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,故有f (x )=⎩⎪⎨⎪⎧ x 2-4x ,x ≥0,x 2+4x ,x <0.再求f (x )<5的解,由⎩⎪⎨⎪⎧x ≥0,x 2-4x <5,得0≤x <5;由⎩⎪⎨⎪⎧x <0,x 2+4x <5,得-5<x <0,即f (x )<5的解为(-5,5).由于f (x )向左平移两个单位即得f (x+2),故f (x +2)<5的解集为{x |-7<x <3}.15.设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号) 答案 ①④解析 ①正确,因为C 点到A 、B 的距离之和小于AB 上其它点到A 、B 的距离之和;②不正确,因为直角三角形斜边上的点到三个顶点的距离是可变的;③不正确,不妨认为B 、C 在线段AD 上,则线段BC 上的任一点到A 、B 、C 、D 距离之和均最小;④正确,每条对角线上的点到其两端点的距离之和最小,所以交点到梯形四个顶点的距离之和最小.三、解答题16.在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和. 解 设该数列公差为d ,前n 项和为S n ,由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ). 所以,a 1+d =4,d (d -3a 1)=0, 解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3. 所以,数列{a n }的前n 项和S n =4n 或S n =3n 2-n2.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4,根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.18.某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i=1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………2 100 1 027376697当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.解(1)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=12;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=13;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=16.所以,输出y的值为1的概率为12,输出y的值为2的概率为13,输出y的值为3的概率为16.(2)当n=2 100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3. P (ξ=0)=C 03×⎝⎛⎭⎫130×⎝⎛⎭⎫233=827,P (ξ=1)=C 13×⎝⎛⎭⎫131×⎝⎛⎭⎫232=49, P (ξ=2)=C 23×⎝⎛⎭⎫132×⎝⎛⎭⎫231=29, P (ξ=3)=C 33×⎝⎛⎭⎫133×⎝⎛⎭⎫230=127, 故ξ的分布列为ξ 0 1 2 3 P8274929127所以,E (ξ)=0×827+1×49+2×29+3×127=1.即ξ的数学期望为1.19.如图,在三棱柱ABCA 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面ADD 1A 1; (2)设(1)中的直线l 交AB 于点M ,交AC 于点N ,求二面角AA 1MN 的余弦值. 解(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .由已知,AB =AC ,D 是BC 的中点,所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC ,所以AA 1⊥直线l . 又因为AD ,AA 1在平面ADD 1A 1内, 且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1.(2)方法一 连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF .由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN . 所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角AA 1MN 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点, 且AP =12,AM =1,所以,在Rt △AA 1P 中,A 1P =52; 在Rt △A 1AM 中,A 1M = 2.从而AE =AA 1·AP A 1P =15,AF =AA 1·AM A 1M =12,所以sin θ=AE AF =25.所以cos θ=1-sin 2θ=1-⎝⎛⎭⎪⎫252=155. 故二面角AA 1MN 的余弦值为155.方法二 设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以A 1E →,A 1D 1→,A 1A →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1).因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点,故M ⎝⎛⎭⎫32,12,1,N ⎝⎛⎭⎫-32,12,1,所以A 1M →=⎝⎛⎭⎫32,12,1,A 1A →=(0,0,1),NM →=(3,0,0).设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1⊥A 1M →,n 1⊥A 1A →,即⎩⎪⎨⎪⎧n 1·A 1M →=0,n 1·A 1A →=0,故有⎩⎪⎨⎪⎧ (x 1,y 1,z 1)·⎝⎛⎭⎫32,12,1=0,(x 1,y 1,z 1)·(0,0,1)=0,从而⎩⎪⎨⎪⎧32x 1+12y 1+z 1=0,z 1=0.取x 1=1,则y 1=-3,所以n 1=(1,-3,0). 设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2⊥A 1M →,n 2⊥NM →,即⎩⎪⎨⎪⎧n 2·A 1M →=0,n 2·NM →=0,故有⎩⎪⎨⎪⎧(x 2,y 2,z 2)·⎝⎛⎭⎫32,12,1=0,(x 2,y 2,z 2)·(3,0,0)=0,从而⎩⎪⎨⎪⎧32x 2+12y 2+z 2=0,3x 2=0.取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角AA 1MN 的平面角为θ,又θ为锐角, 则cos θ=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2| =⎪⎪⎪⎪⎪⎪(1,-3,0)·(0,2,-1)2·5=155.故二面角AA 1MN 的余弦值为155.20.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝⎛⎭⎫43,13. (1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ |2=1|AM |2+1|AN |2,求点Q 的轨迹方程.解 (1)由椭圆定义知,2a =|PF 1|+|PF 2| =⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=2 2. 所以a = 2.又由已知,c =1.所以椭圆C 的离心率e =c a =12=22. (2)由(1)知,椭圆C 的方程为x 22+y 2=1. 设点Q 的坐标为(x ,y ),①当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q 的坐标为⎝⎛⎭⎫0,2-355. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 21,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2.由2|AQ |2=1|AM |2+1|AN |2,得 2(1+k 2)x 2=1(1+k 2)x 21+1(1+k 2)x 22,即 2x 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22.* 将y =kx +2代入x 22+y 2=1中,得 (2k 2+1)x 2+8kx +6=0.**由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由**可知,x 1+x 2=-8k 2k 2+1,x 1x 2=62k 2+1, 代入*中并化简,得x 2=1810k 2-3.*** 因为点Q 在直线y =kx +2上,所以k =y -2x,代入***中并化简,得10(y -2)2-3x 2=18. 由***及k 2>32,可知0<x 2<32, 即x ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62.又⎝⎛⎭⎫0,2-355满足10(y -2)2-3x 2=18, 故x ∈⎝⎛⎭⎫-62,62.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1,又由10(y -2)2=18+3x 2有(y -2)2∈⎣⎡⎭⎫95,94且-1≤y ≤1,则y ∈⎝⎛⎦⎤12,2-355. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x ∈⎝⎛⎭⎫-62,62,y ∈⎝⎛⎦⎤12,2-355.21.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a ,x <0,ln x ,x >0,其中a 是实数,设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2.(1)指出函数f (x )的单调区间;(2)若函数f (x )的图象在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f (x )的图象在点A ,B 处的切线重合,求a 的取值范围.解 (1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1.当x <0时,对函数f (x )求导,得f ′(x )=2x +2,因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1,所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1, 当且仅当-(2x 1+2)=2x 2+2=1, 即x 1=-32且x 2=-12时等号成立. 所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 21+2x 1+a )=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1. 两切线重合的充要条件是⎩⎪⎨⎪⎧1x 2=2x 1+2, ①ln x 2-1=-x 21+a , ②由①及x 1<0<x 2知,0<1x 2<2. 由①②得,a =ln x 2+⎝⎛⎭⎫12x 2-12-1=-ln 1x 2+14⎝⎛⎭⎫1x 2-22-1. 令t =1x 2,则0<t <2,且a =14t 2-t -ln t . 设h (t )=14t 2-t -ln t (0<t <2) 由h ′(t )=12t -1-1t =(t -1)2-32t<0, 所以h (t )(0<t <2)为减函数,则h (t )>h (2)=-ln 2-1,a >-ln 2-1.而当t ∈(0,2)且趋近于0时,h (t )无限增大,所以a 的取值范围是(-ln 2-1,+∞),故当函数f (x )的图象在点A 、B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。
2013年成都二诊数学理科考试 【试卷及答案】WORD版
机密★启用前试卷类型A2013年3月成都市普通高中高三二诊摸拟测试数学(理科)本试题卷共6页,共22题,其中第15、16题为选考题。
满分150分。
考试用时120分钟。
注意事项:1. 答卷前,请考生认真阅读答题卡上的注意事项。
非网评考生务必将自己的学校、班级、姓 名、考号填写在答题卡密封线内,将考号最后两位填在登分栏的座位号内。
网评考生务必 将自己的姓名、考号填写在答题卡上指定位置,贴好条形码或将考号对应数字涂黑。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需 改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3. 填空题和解答题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域 内,答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B铅笔涂黑。
考 生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内, 答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,监考人员将答题卡和机读卡一并收回,按小号 在上,大号在下的顺序分别封装。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设复数z的共轭复数为,若(l-i) =2i,则复数z=A. -1-iB. -1 +iC. iD. -i2. 命题p:“”,则是A. B.C. D.3. 如图所示的韦恩图中,若A={x|0x2},B={x|x>1},则 阴影部分表示的集合为A. {x||0<x<2}B. {x|1<x2}C. {x|0x1或 x2}D. {x|0x1或x>2}4. 一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图如 图所示,则该几何体的侧视图可以为5. 在等差数列{an}中,若a4+ a6+ a8 + a10 + a12 = 90,则的值为A. 12 :B. 14C. 16D. 186. 已知(1-2x)2013 =a0 + a1x + a2x2 + a3x3 +••• + a2013x2013 (xR),则 的值是A. -2B. -1C. ID. 27. 在矩形ABCd中,AB= 4, BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则 四面体ABCD的外接球的体积为A. B. C. D.8. 已知抛物线y2=2px(p>0)的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为A.B. 2C.D.9. 已知a是实数,则函数f(x)=1+asinax的图象不可能是10. 已知f(x)、g(x)都是定义域为R的连续函数.已知:g(x)满足:①当x > O时, 恒成立;②都有g(x)= g(-x). f(x)满足:①都有;②当时,f(x)=x3-3x.若关于;C的不等式对恒成立,则a的取值范围是A. RB. [O, 1]C. D. (-∞, O]U[1, +∞)二.填空题(本大题共6小题,考生共需作答5小题,每小题5分,共25分。
2013年高考理科数学四川卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。
2013成都二诊理综试题答案公布(word版)下载
成都市2013届高中毕业班第二次诊断性检测理科综合物理部分理科综合共300分,考试用时150分钟。
1. 物理试卷分为第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页,第II卷 3至5页,共110分。
2. 答卷前,考生务必将自己的姓名、考籍号填写在答题卡上;并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,只将答题卡交回。
第I卷注意事项:1. 每题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共7题,每题6分,共42分。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.下列说法正确的是A牛顿测出了引力常量B. 爱因斯坦提出了系统的电磁理论C. 理想实验不能用于科学研究D.2.2012年,四川超特高压输电量首破千亿千瓦时。
如图所示是远距离输电示意图,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变。
下列说法正确的是A若用户用电功率增加,升压变压器的输出电压将增大B. 若用户用电功率增加,降压变压器的输入电压将增大C. 若输电功率一定,采用特高压输电可减少输电线上损耗的功率D. 若输电功率一定,采用特高压输电会降低输电的效率3. 如图所示,轻绳下端拴接一小球,上端固定在天花板上。
用外力F将小球沿圆弧从图中实线位置缓慢拉到虚线位置,F始终沿轨迹切线方向,轻绳中的拉力为T。
则A F保持不变,T逐渐增大B. F逐渐减小,T逐渐增大C. F逐渐增大,T逐渐减小D. F与T的合力逐渐增大4. 2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P,这个行星围绕某恒星Q做勻速圆周运动。
测得P的公转周期为T,公转轨道半径为r,已知引力常量为G则A. 恒星QB. 行星PC. 以7.9 m/s的速度从地球发射的探测器可以到达该行星表面D. 以11.2kWs的速度从地球发射的探测器可以到达该行星表面5. —列简谐机械横波沿J:轴负方向传播,波速u=l m/s。
四川省成都七中2013届高三3月二诊模拟考试数学理试题扫描版含答案
成都七中高2013级高三数学测试题(理科)参考答案一、C C D B C B D D C A二、15 ; 15 ; ; ; 三、16.(1)证明:正弦和差角公式打开即得(2)1(2) 18.解(1)分别以CA 、CB 、CC 1为x 、y 、z 轴建立空间直角坐标系 所以)1,0,(),0,21,22(),21,1,0(x P Q M 由0=⋅PQ CM 得CM PQ ⊥(2)取面B AA 1的法向量)0,2,1(1=n ,取面B CA 1的法向量)2,0,1(2-=n , 31331,cos 21=⨯>=<n n 19.解(1)由题意得2,1,3===a cb 椭圆方程为13422=+y x (2)1,1222111--=-=x x x x λλ 所以1)()(21121212121221121++-+-=-+-=-x x x x x x x x x x x x λλ 联立01248)43(1243)1(222222=-+-+⇒⎩⎨⎧=+-=k x k x k y x x k y 所以2221222143124,438kk x x k k x x +-=+=+得3821=-λλ 20.解(1)21)1(1+=++n n a a ,取对数得)1(log 2)1(log 313+=++n n a a 所以1312-=-n n a (2)43211111=++=a a b ,且0>n b ,所以43≥n S 先证明不等式)11(212111nn n n a a a a -<++-,令)3(,322≥=-n t n 则只需证明11111212222---<++-t t t t 只需证明0141212222>+-⇐--<+t t t t t 当4>t 时显然成立 所以18079218014039)1821801(2140943<<-+<-+++<n n n a a S(3)∑=-=n k k k n T T S 1132 21.解(1)0)1()(22/≤--=x x x f 所以)(x f 在),0(+∞上单调递减(2)又0)1(=f所以当1>x 时,211ln 0ln 210ln 2122<-<⇒<-⇒<--x x x x x x x x x 当10<<x 时, 211ln 0ln 210ln 2122<-<⇒>-⇒>--x x x x x x x x x 所以211ln 02<-<x x x (3)右端不等式只需证明0ln 21ln 21≤--⇐-≤n n nn n n 当1≥n 时成立 左端不等式只需证明n nln 11-≥ 令x n =1,只需证明x x ln 1≥-显然成立。
四川省成都七中2013届高三3月二诊模拟考试理科综合试题 Word版含答案.pdf
10、(17分)如图所示,光滑绝缘斜面的倾角为,斜面上放置一质量为,电阻为、边长为的正方形导线框,通过细线
绕过光滑的定滑轮与一质量为的重物相连,连接线框的细线与线框共面,滑轮和绳的质量均不计.斜面上有两个匀强磁
场区域I和Ⅱ,其宽度均为,磁感应强度大小均为B,磁场方向分别垂直于斜面向上和垂直于斜面向下线框的边距磁场区
V,内电阻为
Ω.(所有结果保留3位有效数字).
三、计算题(52分)
要求写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案,而未写出主要演算过程的,不能得分。有
关物理量的数值计算问题,答案中必须明确写出数值和单位.
9.(15分) 2011年8月10日,改装后的瓦良格号航空母舰进行出海航行试验,中国成为拥有航空母舰的国家之一.已
:2MnO4-+3H2O2+6H+=2Mn2++6H2O+O2↑.用铜作电极电解饱和食盐水:2Cl-+2H2OCl2↑+H2↑+2OH-D..设NA为阿
伏加德罗常数的值,下列叙述正确的是 A.标准状况下,0.56 L丙烷中含有共价键的数目为0.2NAB.0.1 mol H2O和
D2O组成的混合物中含有的中子数是NAC.标准状况下,224LCl2溶于水,转移的电子数目为01NA
成了两种无毒无害的气体,其离子反应方程式为_______________________;处理100 m3这种污水,至少需要ClO2
_____________ mol。
.A、B、C、D是元素周期表中前36号元素,它们的核电荷数依次增大。第二周期元素A原子的核外成对电子数是未
成对电子数的2倍,B原子的最外层p轨道的电子为半充满结构,C是地壳中含量最多的元素。D是第四周期元素,其原子核
2013年高考理科数学四川卷试题与答案word解析版
读一切好书,就是和许多高尚的人谈话。
——笛卡尔 2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ). A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ). A .2,π3-B .2,π6-C .4,π6-D .4,π3 6.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ). A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫ ⎪⎝⎭. (1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lg a b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg a b的值相等,则不同值的个数为20-2=18(个),故选C .9.答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10.答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )为增函数,∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0,∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.二、填空题:本大题共5小题,每小题5分,共25分.11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10. 12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α=.∴sin 2α=cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα. 14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3).15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3. 所以,数列的前n 项和S n =4n 或S n =232n n -. 17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-, 即cos(A -B )cos B -sin(A -B )sin B =35-. 则cos(A -B +B )=35-,即cos A =35-. (2)由cos A =35-,0<A <π,得sin A =45, 由正弦定理,有sin a b A =,所以,sin B =sin 2b A a =. 由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B . 18. 解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=033128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭, P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭, P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以,E ξ=0×27+1×9+2×9+3×127=1. 即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .由已知,AB =AC ,D 是BC 的中点,所以,BC ⊥AD ,则直线l ⊥AD .因为AA 1⊥平面ABC ,所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交,所以直线l ⊥平面ADD 1A 1.(2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF .由(1)知,MN ⊥平面AEA 1,所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE .所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA1=1,则由AB =AC =2AA1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1.又P 为AD 的中点,所以M为AB 中点,且AP =12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M. 从而11AA AP AEA P ⋅== 11AA AM AF A M ⋅==. 所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1).因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭. 所以1AM=1,122⎛⎫ ⎪ ⎪⎝⎭,1A A =(0,0,1),NM =,0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1=所以n 1=(1,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++== 取y 2=2,则z 2=-1,所以n 2=(0,2,-1).设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则cos θ=1212||||⋅⋅n n n n5=.20.解:(1)由椭圆定义知, 2a =|PF 1|+|PF 2|=所以a =又由已知,c =1. 所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1. 设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得 22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得 (2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上, 所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛⎫- ⎪ ⎪⎝⎭满足10(y -2)2-3x 2=18, 故x∈22⎛⎫- ⎪ ⎪⎝⎭.由题意,Q (x ,y )在椭圆C 内,所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛- ⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛ ⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1.当x <0时,对函数f (x )求导,得f ′(x )=2x +2.因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1.所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立. 所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是 12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0.由①②得,a =x 12+11ln 22x +-1=x 12-ln(2x 1+2)-1. 设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数.则h (x 1)>h (0)=-ln 2-1,所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).鱼我所欲也[ 先秦] 《孟子》鱼,我所欲也;熊掌,亦我所欲也。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市2013届高中毕业班第二次诊断性检测
数学(理工农医类)
本试卷分选择题和非选择题两部分。
第I 卷(选择题)1至2页,第II 卷(非选择题)3至 4页,共4页,满分150分,考试时间120分钟。
注意事项:
1. 答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改
动,用 橡皮擦擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位
置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
5. 考试结束后,只将答题卡交回。
第I 卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且 只有一项是符合题目要求的.
(i 为虚数单位)对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 2. 已知全集U ={x|x >0},M ={x|x 2<2x},则M C U =
(A){x|x ≥2}
(B){x|x>2}
(C){X |x ≤0 或 x ≥2} (D) {X |0<x<2}
3.若直线(a+l)x+2y=0与直线x 一ay =1互相垂直,则实数a 的值等于 (A)-1
(B)O
(C)1
(D)2
4. 已知直线l 和平面a ,若l//a ,P ∈a ,则过点P 且平行于l 的直线
(A)只有一条,不在平面a 内 (B)只有一条,且在平面a 内
(C)有无数条,一定在平面a 内 (D)有无数条,不一定在平面a 内
5.
—个几何体的三视图如图所示,其中正视图是一个正三角 形,则该几何体的体积为
(A)
(C)
3
6.
(A)O 个
(B)1个
(C)2个
(D)3个
)0,0(122>>=-b a b
y (a>0,b>0)的一条渐近线与曲线1
2-=x y 相切,则该双曲 线的离心率为
(A) 22
记y n =f(a n ),则数列{y n }的前9项和为
(A)O
(B)-9
(C)9
(D)1
1O.某算法的程序框图如图所示,则执行该程序后输出
的S 等于
(A) 24 (B) 26 (C) 30 (D) 32
第II 卷(非选择题,共100分)
二、填空題:本大题共5小题,每小题5分,共25分.
12.若(1-2x)4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则a 1+a 2 +a 3 +a 4 =_______
13. 设G 为ΔABC 的重心,若ΔABC 所在平面内一点P 满足02=+PA
=0,则
14. 已知集合⎪⎭
⎪
⎬⎫⎪⎩
⎪
⎨⎧⎪⎩
⎪
⎨⎧≥-≥+≤-+00042)
,(y x y x y x y x 表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P 的坐标满足不等式x 2
+y 2
≤
2的概率为_______
15.对于定义在区间D 上的函数f(x),若满足对D x x ∈∀21,,且x 1<x 2时都有
)()(21x f x f ≥,则称函数f(x)为区间D 上的“非增函数”.若f(x)为区间[0,1]上的“非
增函数”且f(0) = l ,f f(x)+f(l —x) = l ,又当]4
1
,0[∈x 时,f(x)≤-2x+1恒成立.有
下列命题:
①0)(],1,0[≥∈∀x f x ;
②当,且2121]1,0[,x x x x ≠∈时,f (x 1)≠f(x) ③ 2)8
7
()137()115(
)81(=f f f f +++; ④当]4
1,0[∈x 时,)())((x f x f f ≤. 其中你认为正确的所有命题的序号为________
三、解答题:本大题共6小题,共75分
. 16.(本小题满分12分)
在ΔABC 中,已知内角A ,B ,C 的对边分别为a ,b c B =+
)4
s
i n (π
(I)求角A 的大小.,
(II)若ΔABC 为锐角三角形,求sinBsinC 的取值范围.
17.(本小题满分12分)
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:
试根据图表中的信息解答下列问题:
(I)求全班的学生人数及分数在[70,80)之间的频数;
(II)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人数X的分布列和数学期望.
18. (本小题满分12分)
如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC—A1B1C1中,
=900,点D是侧棱CC1延长线上一点,EF是平面
AC=AA1=2AB = 2,BAC
ABD与平面A1B1C1的交线.
(I)求证:EF丄A1C;
时,求DC 1
的长.
19. (本小题满分12分)
设函数f(x)=x 2
过点C 1(1,0)作X 轴的垂线l 1
交函数f(x)图象于点A 1,以A 1为切 点
作函数f(x)图象的切线交X 轴于点C 2,再过C 2作X 轴的垂线l 2交函数f(x)图象于点
A 2,…,以此类推得点A n ,记A n 的横坐标为a n ,*N n ∈.
(I)证明数列{a n }为等比数列并求出通项公式a n ;
(II)设直线l n 与函数g(x)=
x 2
1log :的图象相交于点B n ,记
n n OB OA bn .=(其中O 为
坐标原点),求数列{b n }的前n 项和S n .
20. (本小题满分13分)
巳知椭圆E.. )0(12222>>=+b a b
y a x (a>b>0)以抛物线y 2
=8x 的焦点为顶点,且
(I )求椭圆E
的方程;
(II )若直线l:y=kx+m 与椭圆E 相交于A 、B 两点,与直线x= -4相交于Q 点,P 是 椭圆
E 上一点且满足OP += (其中O
为坐标原点),试问在X 轴上是否存在一点T , 使
得TQ OP .为定值?若存在,求出点了的坐标及TQ OP .的值;若不存在,请说明理由.
21. (本小题满分14分)
已知函数
a x x
x x g x a x x x f )(ln 1
)(,ln 1)(-+=--
=,其中x>0,a ∈R (I )若函数f (x )无极值,求a 的取值范围;
(I I )当a 取(I )中的最大值时,求函数g (x )的最小值;
(III)证明不等式
∑
=+∈+>+n
k n n k k N n 1
1
*)(122ln )12(21
.。