车辆动力学-系统动力学模型

合集下载

汽车系统动力学第二章 车辆动力学建模方法及基础理论

汽车系统动力学第二章  车辆动力学建模方法及基础理论

第二章车辆动力学建模方法及基础理论§2-1 动力学方程的建立方法在车辆动力学研究中,建立系统运动微分方程的传统方法主要有两种:一是利用牛顿矢量力学体系的动量定理及动量矩定理,二是利用拉格朗日的分析力学体系。

本节将对这两种体系作一简单回顾,并介绍几个新的原理。

一牛顿矢量力学体系(1)质点系动量定理质点系动量矢p对时间的导数等于作用于质点系的所有外力F i的矢量和(即主矢),其表达式为:二、分析力学体系分析力学是用分析的方法来讨论力学问题,较适合处理受约束的质点系。

(1)动力学普遍方程动力学普遍方程由拉格朗日(Lagrange)于1760年给出的,方程建立的基本依据是虚位移原理,表示如下:(2-6)(2)拉格朗日方程拉格朗日法的基本思想是将系统的总动能和总势能均以系统变量的形式表示,然后将其代入拉格朗日方程,再对其求偏导数,即可得到系统的运动方程。

拉格朗日方程形式如下:利用此方程推导车辆动力学方程时,因采用广义坐标,从而使描述系统位移的坐标数量大大减少,并可以自动消去无功内力。

但也存在下述问题:①应用拉格朗日方程时,有赖于广义坐标选取得是否得当,而适当地选择广义坐标有时要靠经验;②拉格朗日能量函数对于刚体系统的表达式可能非常复杂,代人拉格朗日方程后要作大量运算。

而对于复杂的车辆系统,写出能量函数的表达式就更加困难。

三、虚功率原理若丹(Jourdain)于1908年推导出另一种形式的动力学普遍方程,其所依据的原理称之为虚功率原理。

虚功率形式的动力学普遍方程为:四、高斯原理1829年,高斯(Gauss)提出动力学普遍方程的又一形式,称为高斯原理,其表达式为:§2-2 非完整系统动力学一、非完整系统动力学简介1894年,德国学者Henz第一次将约束系统分成“完整”和“非完整”两大类,从此开辟了非完整系统动力学(Nonholonomie System)的新领域,如今它已成为分析力学的一个重要分支。

系统动力学及vensim建模与模拟技术

系统动力学及vensim建模与模拟技术

系统行为分析
预测系统行为
在构建系统动力学模型时,需要对系统的行为进行预测和分析,了 解系统在不同条件下的响应和变化规律。
分析行为特征
通过对系统行为的深入分析,可以了解系统的动态特性和变化趋势, 为模型建立提供依据。
确定行为目标
在分析系统行为的基础上,需要确定系统的行为目标,即希望系统 达到的状态或结果,以便对模型进行有效的优化和控制。
定义模型规则
根据系统行为的特点,定义模型规则,如时 间延迟、逻辑规则等。
参数化模型
根据已知数据和经验,为模型中的参数赋值。
模型验证与测试
01
模型验证
通过对比历史数据和模拟结果,验 证模型的准确性和可靠性。
模型测试
通过多种情景模拟,测试模型的预 测能力和适用范围。
03
02
敏感性分析
分析模型对参数变化的敏感性,了 解参数对系统行为的影响。
详细描述
城市交通系统是一个复杂的网络,包括道路、交通信号、车辆、行人等。通过 建立城市交通系统模型,可以模拟不同交通政策或基础设施改进方案的效果, 为城市交通规划提供决策支持。
案例三:企业运营系统模拟
总结词
企业运营系统模拟是应用系统动力学和Vensim建模与模拟技术的实际应用案例 ,用于优化企业资源配置和提高运营效率。
03 系统动力学模型构建
系统边界设定
1 2
确定研究范围
在构建系统动力学模型时,首先需要明确系统的 研究范围,即确定系统的边界,以避免不必要的 复杂性和不确定性。
排除外部因素
在设定系统边界时,应将注意力集中在系统内部 的相互关系上,暂时忽略外部因素的影响。
3
确定主要变量
在确定系统边界后,应确定对系统行为有重要影 响的主要变量,这些变量将成为模型中的状态变 量。

汽车系统动力学第一章 车辆动力学概述

汽车系统动力学第一章 车辆动力学概述

绪篇概论和基础理论本篇首先介绍:1.车辆动力学的发展历史;2.车辆动力学理论对实际车辆设计所作的贡献;3.车辆动力学的研究内容和范围及其未来的发展趋势;4.介绍车辆动力学模型建立的基础理论和方法。

第一章车辆动力学概述§1-1 历史回顾车辆动力学是近代发展起来的一门新兴学科。

有关车辆行驶振动分析的理论研究,最早可追溯到100年前。

事实上,直到20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester(兰切斯特)、美国的Olley(奥利尔)、法国的Broulhiet(勃劳希特)开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。

开始出现有关转向、稳定性、悬架方面的文章。

同时,人们对轮胎侧向动力学的重要性也开始有所认识。

1.首先要肯定Frederick (费雷德里克)W.Lanchester对这门学科的早期发展所做的贡献。

在他所处的时代,尽管缺乏成熟的理论,但作为当时最杰出的工程师,他对车辆设计的见解不但敏锐,而且深刻。

即使在今天,Lanchester的思想仍有一定的借鉴意义。

2.对本学科发展有卓越贡献的人物是Maurice (莫里斯)Olley,他率先系统地提出了操纵动力学分析理论。

3.Olley这样总结了20世纪30年代早期的车辆设计状况:“那时,已经零星出现了一些尝试性的方法,其目的在于提高车辆的行驶性能,但实际上却几乎没有什么作用。

坐在后座的乘客仍然象压载物一般,被施加在后轮后上方的位置。

人们对车辆转向不稳定的表现已习以为常,而装有前制动器的前桥摆振几乎成为了汽车驾驶中的必然现象。

工程师使所有的单个部件都制作得精致完好,但将它们组装成整车时,却很少能得到令人满意的性能。

”就在这个时期,人们对行驶平顺性和操纵稳定性之间的重要协调关系开始有所认识。

但对车辆性能的评价,仍主要凭经验而非数学计算。

1932年,Olley在美国凯迪拉克(Cadillac)公司建立了著名的“K2”试验台(一个具有前、后活动质量的车架),来研究前后悬架匹配及轴距对前后轮相位差的影响。

车辆动力学模型推导__概述及解释说明

车辆动力学模型推导__概述及解释说明

车辆动力学模型推导概述及解释说明1. 引言1.1 概述本文旨在介绍车辆动力学模型推导的相关内容。

车辆动力学模型是研究汽车运动时所遵循的物理规律的数学表达式,通过建立和分析这些模型,可以深入了解车辆运动过程中涉及的各种参数和因素,并且为设计、控制和优化车辆性能提供有效依据。

1.2 文章结构本文共包括五个部分。

引言部分对文章进行概述,并介绍各部分内容安排。

第二部分将探讨车辆动力学模型推导的理论基础、参数定义以及模型假设。

第三部分将详细描述动力学模型的数学建立与推导过程,包括前提假设与约束条件说明、基本方程推导过程以及对动力学模型的解释与说明。

第四部分将通过实例分析介绍具体应用场景,并进行可行性分析和结果对比评估。

最后一部分是结论与展望,总结研究内容重点,展望未来研究方向以及对成果应用前景进行分析。

1.3 目的目前,随着社会科技的不断发展和人们对汽车性能的不断追求,对于车辆动力学模型推导的需求日益增加。

本文的目的是系统地介绍车辆动力学模型推导的相关理论和方法,以帮助读者更好地理解和应用这些模型。

此外,通过实例分析与应用场景探讨,也旨在展示动力学模型在实际问题中的应用价值,并提供未来研究方向和成果应用前景的思考。

2. 车辆动力学模型推导:2.1 理论基础:车辆动力学是研究车辆在不同路况条件下的运动规律的一门学科。

它主要涉及到车辆的加速度、速度和位移等运动参数。

在车辆动力学模型推导中,我们需要建立一组数学方程来描述车辆运动的规律性和物理特性。

2.2 动力学参数定义:在推导车辆动力学模型之前,首先需要定义一些重要的参数。

这些参数包括车辆质量、惯性矩阵、轮胎摩擦系数以及驱动力等。

这些参数对于建立准确的车辆动力学模型非常重要,并且可以通过实验或者工程估算得到。

2.3 模型假设:在推导车辆动力学模型时,通常会做出一定的假设,以简化问题并减少计算复杂度。

例如,我们可能会假设车辆是刚体、忽略空气阻力、平均考虑轮胎与地面之间的接触等。

carsim的动力学模型基础方程

carsim的动力学模型基础方程

汽车动力学模型基础方程在汽车工程中,动力学模型是一个重要的概念,它描述了汽车在运动过程中的力学特性和行为。

其中,汽车动力学模型的基础方程起着至关重要的作用,它们是描述汽车动力学特性的数学表达式,是汽车工程中的核心理论基础。

一、运动方程汽车在运动中受到多种力的作用,这些力包括牵引力、阻力、重力等。

通过牛顿第二定律,可以得到描述汽车运动的基本方程:F = ma其中,F是受到的合外力,m是汽车的质量,a是汽车的加速度。

根据牵引力、阻力和重力的关系,可以得到更加细致的运动方程:F_traction - F_drag - F_roll - F_grade = ma其中,F_traction是牵引力,F_drag是阻力,F_roll是滚动阻力,F_grade是上坡或下坡时产生的力。

这些力可以通过具体的公式计算得到,从而得到汽车的加速度。

二、转向方程在汽车运动中,转向是一个重要的问题。

汽车的转向能力与转向系的设计和轮胎的特性有关。

描述汽车转向行为的基础方程可以通过转向角速度、侧向力和横摆刚度等参数建立,具体方程如下:Mz = Iz * ωz + Fy * a其中,Mz是横摆力矩,Iz是车辆绕垂直轴的惯性矩,ωz是车辆的横摆角速度,Fy是轮胎的侧向力,a是车辆的横向加速度。

这个方程描述了汽车在转向过程中受到的各种力的平衡关系。

三、刹车方程刹车是汽车行驶中不可或缺的部分,汽车刹车性能与刹车系统、轮胎和路面特性等有关。

汽车刹车性能的基础方程可以描述如下:Fbrake = μ * Fz其中,Fbrake是刹车力,μ是刹车系数,Fz是轮胎受力。

刹车系数与刹车系统和轮胎的摩擦特性有关,它是刹车性能的一个重要参数。

总结通过以上的分析可以看出,汽车动力学模型的基础方程是汽车工程中的核心内容,它涉及到多个力学和运动学的概念,并且需要深入的数学和物理知识。

汽车动力学模型的基础方程不仅对汽车设计和优化具有重要意义,对于理解汽车行驶过程中的各种力学特性也有着重要意义。

车辆系统动力学

车辆系统动力学

2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。

车辆系统动力学

车辆系统动力学

下面介绍一下键合图的基本知识。
根据我们所学到知识,存在如下几种功率形式,虽然它 们表现为机械能、液压能和电能,但是具有共同的功率表 达形式,即可表达为:势变量与流变量的乘积。
势量(e) 流量(f) 功率变量(p)
机械直线运动 力(F) 速度(v)
功率(F·v)
机械转动
转矩(M) 速度(ω) 功率(M·ω)
1.3.3.1. 各种数学方程式 微分方程式,差分方程,状态方程,传递
函数等。
1.3.3.2. 用数字和逻辑符号建立符号模型—方框图 方框图又称动态结构图,采用它便于求传
递函数,同时能形象直观地表明输入函数在对 象中的传递过程。
方框图如图1-6是一些符号组成的,有表示输 入和输出的通路及箭头,有表示信号进行加减 的综合点,还有一些方框,方框两侧为输入量 和输出量,方框内写入该输入、输出的传递函 数。
本文主要是研究人工的物理系统及其特性。
如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一、什么叫做系统?
钱学森对系统作如下定义:“把极其 复杂的研究对象称为系统,即由相互作 用和相互依赖的若干组成部分结合而成 具有特定功能的有机整体,而且这个系 统的本身又是它所从属的一个更大系统 的组成部分”。
1.2.2 汽车系统动力学的研究内容归 纳为以下四点:
1. 路面特性分析、环境分析及环境与 路面对汽车的作用;
2. 汽车系统及其部件的运动学和动力 学;汽车内各个子系统的相互作用;
3. 汽车系最佳控制和最佳使用;
4. 车辆-人系统的相互匹配和模型的作 用,驾驶员模型,以及车辆的工程技术设 计适合于人的使用,从而使人-机系统对工 作效率最高。
2. 如已知输入和输出来研究系统的特性,这 样的任务叫系统识别;

车辆动力学模型课件

车辆动力学模型课件

发动机模型与特性
发动机模型
发动机是车辆的动力源,其模型和特性 对车辆的动力学性能有很大的影响。
VS
发动机特性
发动机的特性包括功率、扭矩、燃油消耗 等,这些特性会影响车辆的加速性能、最 高速度和燃油经济性。
04
车辆动力学模型的建立与 验证
车辆动力学模型的建模方法
基于物理学的建模方法
01
根据车辆的物理规律和运动特性,建立相应的数学模型。
车辆动力学模型的分类
根据应用领域和目的的不同,车辆动力学模型可 以分为不同的类型,例如基本动力学模型、制动 系统模型、悬挂系统模型、转向系统模型等。
制动系统模型和悬挂系统模型分别描述车辆的制 动系统和悬挂系统的动态行为,这些模型可以用 于预测和优化车辆在不同条件下的制动性能和乘 坐舒适性。
基本动力学模型主要描述车辆的整体动态行为, 包括车辆的加速度、速度和位置等变量,以及它 们之间的相互作用关系。
车辆动力学模型课件
contents
目录
• 车辆动力学模型概述 • 车辆空气动力学模型 • 车辆动力学模型的关键参数 • 车辆动力学模型的建立与验证 • 车辆动力学模型的发展趋势与挑战
01
车辆动力学模型概述
车辆动力学模型的定义
车辆动力学模型是一种描述车辆动态行为的数学模型,它基 于力学、运动学和动力学原理,将车辆视为一个系统,并对 其进行数学描述。
集成化
未来的车辆动力学模型将更加重视不同领域之间的集成,例如将车辆动力学与能源、环境 、交通等多个领域进行集成,实现多领域的协同优化。
车辆动力学模型面临的挑战
01
高维度
车辆动力学模型具有高维度和非线性的特点,这使得模型的建立和求解
变得非常复杂和困难。因此,需要发展新的数值方法和计算技术来处理

车辆系统动力学

车辆系统动力学
ห้องสมุดไป่ตู้
2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
1.3 汽车系统动力学的 研究方法
• 1.3.1 比例的物理模型 • 1.3.2 数学等效模型 • 1.3.3 数学模型
1.3.1 比例的物理模型
模型与实物的物理本质相同,仅在尺 寸上有差别。
尺寸比例为 1 :1 的,即称为足尺模 型,如撞车试验中的汽车模型。
按比例缩小的,即为缩尺模型。例 如风洞试验中的汽车模型,用以预测空气 动力学性能;造波池中船体模型;土木工 程中结构模型;光弹分析中金属零件的塑 料模型以及电路设计中的电路板模型。
车辆系统动力学
目录
第一章 绪论 第二章 路面 第三章 汽车空气动力学 第四章 充气轮胎动力学 第五章 汽车转向系统动力学 第六章 驾驶员-汽车闭环操纵系统动力学 第七章 汽车前轴和转向轮系统的振动 第八章 动力转向系统动力学 第九章 汽车悬架控制系统动力学 第十章 汽车碰撞研究的几个基本问题 第十一章 多刚体系统动力学及其在汽车中的应用
根据美国著名学者绪方胜彦的定义: “讨论动态系统的数学模型和响应的学 科”。
1.2 汽车系统动力学的研究内 容和特点
1.2.1 汽车系统动力学的研究特点:
1. 系统动力学要对系统所处环境进行研究,并找 出其特性,如路面不平整特性、空气动力特性等, 在此基础上对系统在真实环境下进行动态分析;

车辆系统动力学

车辆系统动力学
2. 如已知输入和输出来研究系统的特性,这 样的任务叫系统识别;
3. 如已知系统的特性和输出来研究输入则称 为环境预测,例如对一振动已知的汽车,测定 它在某一路面上行驶时所得的振动响应值(如车 身上的振动加速度),则可以判断路面对汽车的 输入特性,从而了解到路面的不平特性。
• 什么叫做系统动力学?
ⅲ.反馈连接的等效变换。
• 一个方框的输出,输入到另一个方 框,得到的输出,再返回作用于前一个 方框的输入端,这种结构称为反馈连 接,图1—9示,它可等效为图1—9所示 的一个方框。这是因为:
1.3.3.3. 功率键合图
• 1. 键合图概述 • 2. 键合图定义 • 3. 三个基本元件 • 4. 通口解 • 5. 绘制步骤
(即另一口),e为输出,f为输入。我们
把键端的短线称为因果关系号。
3) 信号键
信号键表示了作用于系统的信号。用带 全箭头的线段表示,图1-12所示。
图1-11 因果关系表示 图1-12 信号键表示
3. 三个基本元件
三个基本元件包括惯性元件、阻性 元件和容性元件。
i)惯性元件:表示电系统中电感效应 和机械系统的质量和液体系统中的惯性效 应,其键合图符号为I;如图(1-13)
•这个定义表明系统具有以下四个特征:
1. 系统具有层次性; 2. 系统具有整体性; 3. 系统具有目的性 ; 4. 系统具有功能共性。
1. 系统具有层次性
系统是由两个以上(或更多)元素(或 称为元件)组成的事物。一个大系统往往 可以分成几个子系统,每个子系统是由 更小的子系统(称为二级系统)构成。每个 子系统或更小的子系统都有自己的属 性,以便和其它系统加以区别。所以, 如果将大系统分解,可以形成很多层次 的结构,这就是系统层次性。

车辆动力学-传动系统动力学讲义【北京理工大学】

车辆动力学-传动系统动力学讲义【北京理工大学】

传动系统动力学讲义2009-2010学年前言一、传动系统简介传动装置的功用是把发动机的功率传递到主动轮驱动车辆行驶,实现减速增矩;实现车辆变速;实现车辆的倒挡行驶、车辆制动、停车和必要时切断发动机动力;利用发动机制动、拖车起动发动机等。

除上述的基本功用外,传动装置还可以有一些辅助的功用:输出功率带动压气机、风扇、喷水式推进器、泵等等。

为车辆辅助系统、工程车辆和水陆两栖车辆提供动力输出。

(1(2)液力传动以液体动能来传递或交换能量,优点是无级变速、变矩能力,动力性好;具有自动适应性,提高了操纵方便性和车辆在坏路面上的通过性;充分发挥发动机性能,有利于减少排气污染;减振、吸振、减缓冲击,提高传动、动力寿命和乘坐舒适性。

缺点是效率低,结构复杂,成本高。

(3)定轴传动由于结构简单,制造成熟,成本低而被广泛应用。

行星传动结构紧凑、寿命长、噪音小,工艺要求高,成本高。

二、传动系统载荷车辆在使用中传动装置可能发生的故障,分为两类:1. 当作用在零件上的应力超过材料的强度极限时,产生的突然破坏;2. 在使用期间内,在零件上由于逐渐累积的损坏而产生的破坏,例如:疲劳损坏、磨损、塑性变形不可恢复的累积等。

车辆传动装置的零部件承受的载荷性质主要是发动机和道路激励以及传动系内部的冲击等交变载荷,在这种随时间变化的载荷的作用下,其破坏形式一般是疲劳破坏。

统计资料表明,零件的破坏50%~90%为疲劳破坏。

随着车辆传动装置向高转速、高功率密度方向发展,其零部件的应力越来越高,使用条件越来越恶劣,发生疲劳破坏的现象越来越多。

因此,在车辆传动装置的设计中,仅进行静强度计算,是远远不够的,必须计算零件的疲劳寿命。

传动装置稳态工况是车辆以等速在不变路面条件下行驶的工况,在这种工况下传动装置各构件的转矩和转速是保持不变的。

严格说来,这种车辆行驶工况很少能遇到,从实际应用来说,认为转矩和转速对其自身的最大值在%10±的范围内变化的工况是稳态工况。

TESIS DYNAware-车辆动力学及动力系统实时仿真模型

TESIS DYNAware-车辆动力学及动力系统实时仿真模型

TESIS DYNAware-车辆动力学及动力系统实时仿真模型德国TESIS公司是专门从事车辆仿真研究工作的高科技公司,长期以来一直为Audi、BMW等整车厂商提供车辆开发所需的仿真模型及工具。

TESIS模型既可以进行离线的仿真,也支持硬件在回路(HIL)仿真的环境下实时运行。

TESIS模型可以为各种车辆,例如轿车、卡车、拖车、农用机械、F1 方程式赛车,以及各种内燃机系统以及混合动力系统仿真提供精确、实用和便利的模型。

TESIS模型主要应用于车辆及其动力单元的控制算法开发和测试、在线诊断(OBD)、控制器和部件的硬件在回路测试,以及与试验车辆的联合测试。

TESIS DYNAware产品组成:•en-DYNA:内燃机实时仿真模型。

主要应用于发动机性能分析,发动机控制单元测试的硬件在回路仿真,控制算法的开发与测试。

•ve-DYNA:车辆动力学实时仿真模型。

主要应用于车辆动力学分析,车辆管理单元控制算法开发与测试,模型可供实时和离线研究使用•Realtime Brake Hydraulics Library:液压制动系统的实时仿真模型TESIS DYNAware产品特点:•半物理模型:综合物理建模和MAP图建模两种方法搭建,既精确仿真实际车辆,又兼顾了模型运行速度的要求,适应了电控系统开发的需求•全参数化模型:模块和参数完全独立,用户可以通过修改参数,方便的将同一模型配置为不同参数的发动机或者车辆•基于MATLAB/Simulink环境:方便扩展和修改,用户可以对模型进行修改和整合已有模型•丰富的外部接口:方便集成第三方软件,如(C,ADAMS)•支持多种硬件平台:ETAS、dSPACE、National Instruments、ADI、Opal-RT、The MathWorks xPC模型介绍1. en-DYNA模型enDYNA主要对发动机的气路、油路、排气系统、燃烧扭矩计算、冷却系统及电器系统进行建模,还包括传动系统、驾驶员、控制单元模型。

车辆系统动力学资料课件

车辆系统动力学资料课件
车辆系统动力学资料课件
• 车辆系统动力学概述 • 车辆动力学模型建立与仿真 • 车辆系统动力学性能分析与优化 • 车辆系统动力学控制策略与应用 • 总结与展望
01 车辆系统动力学概述
车辆系统动力学的发展历程
20世纪60年代
20世纪70年代
车辆系统动力学开始得到关注和研究,主 要涉及车辆的稳定性、操纵性和乘坐舒适 性等方面。
车辆系统动力学优化实例
实例1
某型汽车的稳定性优化,通过优化悬挂系统和车身结构,显著提高 了车辆在高速行驶和弯道行驶时的稳定性。
实例2
某型卡车的平顺性优化,通过优化驾驶室和货箱的结构,有效降低 了驾驶员在长途运输中的疲劳程度和货物的破损率。
实例3
某型跑车的操控性优化,通过优化车身结构、悬挂系统和制动系统 ,提高了车辆在高速行驶和紧急制动情况下的操控性能。
03
研究成果与应用
研究人员已经将车辆系统动力学控制 策略应用于实际车辆中,并取得了良 好的控制效果。
车辆系统动力学控制算法设计与实现
控制算法设计
算法实现方法
算法实现方法包括基于MATLAB/Simulink的仿真 实现、基于实际车辆的实验实现等。
车辆系统动力学控制算法的设计需要考虑多 种因素,如车辆动力学特性、道路条件、驾 驶员行为等。
随着计算机技术的发展,车辆系统动力学 开始进入仿真模拟阶段,通过计算机模拟 来研究车辆的动力学行为。
20世纪80年代
20世纪90年代至今
车辆系统动力学的研究范围不断扩大,开 始涉及到安全、控制、智能驾驶等领域。
车辆系统动力学得到了广泛应用,不仅在 汽车领域,还在航空、航天、军事等领域 得到应用。
车辆系统动力学的研究对象和研究方法

车辆动力学概述

车辆动力学概述
极端天气条件下的车辆动 力学
研究在极端天气条件下,如暴雨、大雪、冰 冻等,如何保证车辆的行驶稳定性和安全性 。
复杂道路条件下的车辆动力 学
分析在复杂道路条件下,如山路、弯道、陡坡等, 如何优化车辆的动力学性能和操控稳定性。
多车协同与编队行驶动力 学
研究多车协同和编队行驶中的动力学问题, 实现更加高效、安全的智能交通系统。
问题,相关研究逐渐丰富。
03
成熟阶段
进入21世纪后,随着计算机技术和数值模拟方法的广泛应用,车辆动力
学研究进入精细化、系统化的成熟阶段,为现代车辆设计提供了强有力
的支持。
02
车辆动力学基本原理
车辆动力学模型
1
车辆动力学模型是描述车辆运动特性的数学模型, 包括车辆的平移运动和旋转运动。
2
车辆动力学模型通常由一组微分方程或差分方程 表示,用于描述车辆在不同工况下的运动状态。
05
未来展望与研究方向
车辆动力学与人工智能的融合
总结词
随着人工智能技术的不断发展,车辆动力学与人工智能的融合成为未来研究的 重要方向。
详细描述
通过人工智能技术,可以实现车辆动力学系统的自适应调节,提高车辆的稳定 性和安全性。同时,人工智能还可以用于预测和优化车辆的运动轨迹和性能表 现,为自动驾驶技术的发展提供有力支持。
车辆动力学概述
目录
• 车辆动力学简介 • 车辆动力学基本原理 • 车辆动力学在车辆设计中的应用 • 车辆动力学研究前沿与挑战 • 未来展望与研究方向
01
车辆动力学简介
车辆动力学定义
车辆动力学是研究车辆在行驶过程中受到的力和力矩,以及 这些力对车辆运动状态的影响的科学。它涉及到车辆的纵向 、横向和垂直方向的动态特性,以及车辆在启动、加速、减 速、转弯、侧倾和制动等不同工况下的运动规律。

车辆系统动力学结构模型

车辆系统动力学结构模型

2,4,6,8
1,3,5,7
34
客车系统动力学模型拓扑图(正视)
28
24
32
36
19 20
35
31
23
27
26
22
30
34
17 18
33
29
21
25
15,16
13,14
11,12
9,10
7,8
5,6
3,4
1,2
1-8 17-20 25-28 33-36
轮轨力 中央悬挂力 抗蛇行减振器阻尼力 牵引拉杆力
24
m 1000 kg, k 108 N/m, c 104 N s/m, t 10-4 , 0.5
(1):
x1 x0 x 0 0 t 2 0 x 1 x 0 0 t 0 x x 1 (mg cx 1 kx1 ) / m 1000 9.81/ 1000 9.81 x
10
车辆系统作用力描述
• 无间隙弹簧阻尼力描述 • 有间隙弹簧阻尼力描述 • 摩擦力作用力描述
11
无间隙弹簧阻尼力描述
c Mi k Mj
F F0 kx cv
12
有间隙弹簧阻尼力描述
Fx Kc
Fy Kc
X
x y x y
Y
13
摩擦力作用力描述
Fx x Fpz Fy y Fpz
后构架点头: I b b ( 2)
轮对垂向:
后构架垂向: mb zb(2) Fp (3) Fp (4) Fs (2) mb g
w(i ) Fw(i ) Fp(i ) mw g mw z

车辆动力学基础

车辆动力学基础

车辆动力学基础第一章1.车体在空间的位置由6个自由度的运动系统描述。

浮沉、摇头、点头、横摆、伸缩、侧滚2.轴重:铁道车辆的轴重是指车辆每一根轮轴能够承受的允许静载。

3.轴距:是指同一转向架下两轮轴中心之间的纵向距离。

4.轴箱悬挂:是将轴箱和构架在纵向、横向以及垂向联结起来、并使两者在这三个方向的相对运动受到相互约束的装置。

5.中央悬挂:是将车体和构架/侧架联结在一起的装置,一般具有衰减车辆系统振动、提高车辆运行平稳性和舒适性的作用。

6.曲线通过:曲线通过是指车辆通过曲线时,曲线通过能力的大小,反映在系统指标上,主要表现为车辆轮轨横向力、轮对冲角以及轮轨磨耗指数等的大小上。

7.自由振动:是指在短时间内,由于某种瞬间或过渡性的外部干扰而产生的振动,其振动振幅如果逐渐变小,该系统将趋于稳定;相反,若振幅越来越大,则系统将不稳定。

第二章1.车辆的动力性能主要包括运行稳定性(安全性)、平稳性(舒适性)以及通过曲线能力等。

2.车辆脱轨根据过程不同大体可分为爬轨脱轨、跳轨脱轨、掉道脱轨。

3.目前我国车辆部门主要采用脱轨系数和轮重减载率两项指标。

4.当横向力作用时间t小于0.05s时,用0.04/t计算所得的值作为标准值。

5.不仅仅依靠脱轨系数来判断安全性的原因:(1)轮重较小时与其对应的横向力一般也较小,计算脱轨系数时受到轮重和横向力的测量误差的影响就较大,因此要获得正确的脱轨系数比较困难。

(2)垂向力较小时,使用该垂向力和与其对应的横向力得到的脱轨系数很容易达到脱轨限界值;另一方面,单侧车轮轮重减小时,另一侧车轮轮重一般会增大,此时极小的轮对冲角变化会导致较大的横向力,从而加大了脱轨的危险性。

(3)根据多次线路试验来看,与其说脱轨系数值较大容易导致列车脱轨,还不如说轮重减少的越多越容易导致列车脱轨。

6.评价铁道车辆乘坐舒适性最直接的指标就是车体振动加速度。

第三章1.轮对的组成:轮对由一根车抽和两个相同的车轮组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不能实现驾驶员的干预换档。经济性差, 实际中只有少数军用车辆上有所应用, 目的是减少换档次数,发挥车辆动力性 能。
一、换挡规律
2. 双参数换挡规律
?
B? A?
1
等延迟型换档规律:换档延迟不随油门开 度的变化而变化
驾驶员可干预,可提前换入高档或提前降 到低档,很大程度上改善了车辆的燃油经 济性。
?2
二、闭锁规律
1. 变矩器的闭锁控制 (1)改善传动性能的闭、解锁。 (2)换档时变矩器的缓冲解锁。
二、闭锁规律
2.闭锁点的选择
一般把闭锁点设计在偶合器工况点附近,以保证得到较高的效 率和牵引力。闭锁点应随油门开度而变,油门开度越小,闭锁点的 转速则越低。
在闭锁点与解锁点之间,也要有一定的解锁速差,以免过于频 繁的闭锁一解锁循环。
可以充分利用变矩器变矩性能,提高动力性;高档闭锁
nT较低,以便尽早闭锁,利用机械传动,提高传动效率。
闭锁工况的 工作区
3. 单参数闭锁控制
2)按车速进行闭锁控制
把涡轮转速改成变速箱 输出轴转速。只要当车速达 到某一定值时,就能实现变 矩器闭锁。
这可以避免低挡范围内 频繁闭锁,减少由此引起的 冲击和磨损。
单参数换挡规律 双参数换挡规律 三参数换挡规律
一、换挡规律
2. 单参数换挡规律
?
B? A?
换档重叠或换档延迟
1
1) 换入新档后不会因车速稍有变化而
重新换回原来的排档,保证了换档过程
的稳定性;


2) 有利于减少换档循环,防止控制元 件加速磨损与降低乘坐舒适性;
BA
?1 ? 2
?
降档线
升档线
3) 变化换挡延迟可改变换挡规律。
单参数控制
按涡轮转速 按车速 按挡位
按转速比控制 双参数控制 按涡轮转速和油门开度
按车速和油门开度
3. 单参数闭锁控制
1)按(涡轮转速)进行闭锁控制
只要涡轮转速达到某个固定不变的 数值时,变矩器就闭锁。 这种控制方法只能在少部分油门开 度下保证有合理的动力性与经济性。
对于多档变速器各档均闭锁时,一般低档闭锁 nT 较高,
第二章 传动系统动力学模型
第一节 传动系统的控制
控 换挡规律 制 器 闭锁规律
自动换挡、自动闭解锁的车辆
一、换挡规律
1. 换挡规律
排挡之间自动换挡点的控制参数(车速υ、油门开度α)变化规律。 每一个自动换挡系统都有一个换挡规律,它的曲线形状取决于车 辆传动的要求,由自动换挡系统的结构和参数来实现。 换档特性是由牵引特性和换档规律组合而成的。当牵引特性一定 时,换档规律对车辆动力性、经济性和使用性能有决定意义。
四档变速箱
一、换挡规律
阿里逊CLBT-6061重型车辆的换档规律? (a)采用收敛型换档规律。当油门 (全b开)时在,75降%-档10速0%差油最门小开,度有范利围于内得,升 档况动高缩档到时档次前 , 力 了 减 设(采档降定率(升变效优,重数变发性经到计用点档转较档矩区cd良降叠,))矩动,济,3了与前速高前器的的档工也0在在器机又性使-单油发,的始基范动速作有72小已转具。降0参门动也区终本围5力差区利转%于进速有当档数开机可域在上内-性最,于/7入也很油时2的度转使工液位工分5能大可提5%闭很高门得%换无速变作力于作,油。,以高油锁高的全到档关不矩。传高。采门在得大经门后,传开很规。低器动效用开小到大济开的既动时好律这于保工区了度油广减性度机得效,的,样最持况或等范门泛少。范械到率降功其可小在下接速围开的换围传 良 , 档 率换使稳效工近差内度 多 档内动好也速利作高的,,工的提差用,降。
门开度范围内得到不同的车辆性能。 常见的组合型换档规律:小油门开度以舒适、稳定及少污染为
主;大油门开度则以动力性能为主;在中等油门开度下,首先要求 很好的燃料经济性,其次要有满意的动力性能。
(b)多规律换档控制 并列有几种不同换档规律的控制器,驾驶员改变选择开关,就
可使同一变速箱改换用另一种换档规律进行控制。
一、换挡规律
消除循环换档的措施:
①改变油门开度予以消除。这是因为改变油门开度可以极大地改变 输出的牵引力,消除出现循环换挡的起因; ②在换挡规律的设计中,增大降挡速差能减轻或消除循环换挡现象。 ③在恶劣路面,强制挂低挡。
一、换挡规律
3.其它换档规律
(a)组合型换档规律 由两段或多段不同变化规律所组成的换档规律,便于在不同油
一、换挡规律
2. 双参数换挡规律
?
12
23
12
23
v
收敛型换档规律:换档延迟随油门开度增 大而减小,呈收敛状分布,也称减延迟型 换档规律 。
1 )在升降档时都有较好的功率利用,动 力性好。 2 )低速时,可以松油门提前换高挡,改 善燃油经济性。
发动机可以在较低转速下工作,燃油经济 性好、噪声低、行驶平稳舒适。该规律适 合于比功率较低的货车。
干预换挡:松油门提前换高挡,猛踩油门强制换低挡
一、换挡规律
2. 双参数换挡规律
?
1
2
23
1
22
3
v
发散型换档规律:换档延迟随油门开度的 增大而增大,呈发散状分布,也称增延迟 型换档规律。
优点: 1 )大油门时换档延迟大,可减少换档次数。 2 )大油门时,升档车速高,接近最大功率点, 动力性好 。
缺点: 大油门降档时的车速低,功率利用差,较适用 于后备功率大的轻型车辆。
一、换挡规律
丰田小轿车换档规律的特点?
(在降档耐(性设(8力得度(开入机利5节档次久a和计%性升时bd)度低转用c油))气速数性)排在能入,采达档速和门升合门差,,设放较变超换用,,动开挡理8全都有且计。高坏速挡5发提改力度点使-开较利经了各车,档点9散高善性以的用0和大于济强油速换。车%型了了。上设超中,提性时制门。挡小速的降降,计速等大高也,降下规于较换档档为,档开大变良可档升律高档后后2了考。度减速好以,5挡规些规的的%不虑在时少箱。提当点定,油律发功使动大,换的前油都不减门,动率动力于降门开 小排放。其余中等开度,使用 超速档节油。
a
bⅠⅡ1来自油门开度不变,假设为 ? 2?1 B A
车速达到 v 2 时,I 挡自动升入II 挡 车速降到 v1 时,II 挡自动换回I 挡
?1 ? 2
2)车速不变,假设为 v1
?
行驶阻力减小,油门开度小于 ? 1时,自动升入II 挡
降档线
升档线
行驶阻力增加,油门开度大于 ? 2 时,自动换入I 挡
相关文档
最新文档