大学概率论总复习-.ppt
概率论与数理统计总复习
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论绪论PPT课件
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
概率论与数理统计ppt课件(完整版)
高校教育精品PPT
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
高校教育精品PPT
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
高校教育精品PPT
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
(2)A B
A B
(3)A B
S 高校教育精品PPT
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
s
A B
(4)A B
高校教育精品PPT
10
5.事件的互不相容(互斥): 若A B ,则称A与B是互不相容的,或互斥的,即
概率论与数理统计完整ppt课件
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计复习
一般正态分布的标准化
定理 设 X ~ N(, 2), 则 Y ~ N(0, 1).
Y X ,
结论:
若 X ~ N(, 2),
则
F(x)
x
例
设 X ~ N(10, 4),
求 P(10<X<13), P(|X10|<2).
解: P(10<X<13) = (1.5)(0) = 0.9332 0.5 = 0.4332
第一章 随机事件与概率
1、随机事件的表示, 由简单事件的运算表达复杂事件; 2、概率的运算性质,如加法公式,减 法公式,乘法公式等; 3、条件概率公式,全概率公式,贝叶 斯公式; 4、事件独立性定义
例. 试用A、B、C 表示下列事件:
① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC
条件概率 乘法公式
全概率公式的例题
• 甲口袋有a只白球、b只黑球;乙口袋有n只白球、 m只黑球. 从甲口袋任取一球放入乙口袋,然后 从乙口袋中任取一球,求从乙口袋中取出的是白 球的概率.
• 概率为:
a n1 b n ab nm1 ab nm1
已知“结果” ,求“原 因”
第二章 随机变量及其分布
1、会由随机变量的已知分布律或密度函数求出 其分布函数; 2、六种重要分布的分布律和密度函数; 3、有关正态分布的概率计算; 4、会求随机变量函数的分布;
一、分布函数、分布律、密度函数、概率之间关系
例 已知 X 的分布列如下:
X0 1 2 P 1/3 1/6 1/2
求 X 的分布函数.
f
X
(h(
y)) | 0,
概率论与数理统计--第二章PPT课件
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
概率论与数理统计_知识点总复习
随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m −=从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m−=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列1特殊排列相邻彼此隔开顺序一定和不可分辨2重复排列和非重复排列(有序)3对立事件4顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。
A、B 中至少有一个发生的事件:A ∪B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。
A、B 同时发生:A ∩B ,或者AB 。
A ∩B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∪∩∞=∞==11i ii i AA B A B A ∩∪=,BA B A ∪∩=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P ∪常称为可列(完全)可加性。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
大学概率论与数理统计第一章(2)-56页PPT资料
练习
等可能概型
解:从袋中取两球,每一种取法就是一个基本事件。
设 A= “ 取到的两只都是白球 ”,
B= “ 取到的两只球颜色相同 ”,
C= “ 取到的两只球中至少有一只是白球”。
有放回抽取:
42
4222
P(A) 62 0.444 P(B) 62 0.556
22 P(C)1P(C)1620.889
例(会面问题) 两人约定在早上8点至9点在某地会
面,先到者等15分钟离去。假定每人在1小时的任 何时刻到达都是等可能的,求两人会面的概率。
解:设两人的到达时刻分别为x和y,则
0 x 6,0 0 y 60
两人能会面的充要条件是
xy 15
如图,问题转化为平面区域:
{x ( ,y)0x 6,0 0 y 6}0
n! n 1 !.... n m !
4 随机取数问题
例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率 (2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率
解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
频率的性质
(1) 0 fn(A) 1; (2) fn(S)=1; fn( )=0 (3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A),即可将 P(A)作为事件A的概率
四. 概率的公理化定义(数学定义)
练习
等可能概型
例 2 一口袋装有6只球,其中4只白球、2只红球。从 袋中取球两次,每次随机的取一只。考虑两种取球方 式:
概率论第一章ppt课件
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
3
第一章 概率论的基本概念
§1.1 随机事件及其运算 §1.2 概率的定义及其性质 §1.3 古典概型与几何概型 §1.4 条件概率 §1.5 独立性
4
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类:
一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现象 成为随机现象。
概率论与数理统计
1
概率论与数理统计是研究什么的?
随机现象:不确定性与统计规律性 概率论——从数量上研究随机现象的统计规律性的
科学。
数理统计——从应用角度研究处理随机性数据,建 立有效的统计方法,进行统计推理。
概率论ppt课件
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
概率论复习
例 一个大学毕业生给四家单位各发出一份 求职信,假定这些单位彼此独立,通知他去 面试的概率分别是 1/2,1/3,1/4,1/5。问这 个学生至少有一次面试机会的概率是多大?
解. 分析:考虑对立事件,一次面试机会都 没有的概率是
1/2×2/3×3/4×4/5 = 1/5,
所以至少有一次面试的概率是 4/5。
x 2, 3,
1,
x 3.
0, x 1,
1 , 1 x 2,
4 3
,
2 x 3,
4
1, x 3.
由 F(x) P{X x},
得 P{X 1} F(1) 1 ,
2
24
P{3 X 5} F(5) F(3) 3 1 1 ,
2
2 2 2 44 2
P{2 X 3} F(3) F(2) P{X 2} 1 3 1 3. 42 4
0
0
第三章 多维随机变量及其分布
PX Y 1
y
f x, ydxdy
x y1 1
12 dx e 3x4 ydy
0 1 x
12 dx e 3x4 ydy
1
0
x+y=1
1
O
4e 3 3e 4
1
x
边缘分布函数
定义 设 F ( x, y) 为随机变量( X ,Y ) 的分布函数, 则 F( x, y) P{X x,Y y} . 令 y , 称 P{X x} P{X x,Y } F( x,) 为随机变量( X ,Y ) 关于X的边缘分布函数. 记为 FX ( x) F ( x,). 同理令 x ,
FY ( y) F (, y) P{ X ,Y y} P{Y y}
为随机变量 ( X,Y )关于Y 的边缘分布函数.
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
复习 第1章
(5) P( AB) = P( A) P(B).
(6) P ( AB ) = P ( A)P (B )
P (BC ) = P (B )P (C ) A ,B,C 相互独立 P ( AC ) = P ( A)P (C ) P( ABC) = P( A)P(B)P(C)
(7)若随机事件 A 与 B 相互独立,则 相互独立, ) 也相互独立. A 与B、 与B、 与B 也相互独立 A A 是相互独立的事件, (8)若 A 1 , A 2 ,L A n是相互独立的事件,则 )
《概率论与数理统计》课程总结 概率论与数理统计》 第一章主要内容及要求: 第一章主要内容及要求:
1)熟练掌握事件的关系与运算法则:包含、交、 )熟练掌握事件的关系与运算法则:包含、 互不相容、对立等关系和德摩根定律。 并、差、互不相容、对立等关系和德摩根定律。会 用事件的关系表示随机事件。 用事件的关系表示随机事件。
P(A U A ULU A ) = 1 2 n
= 1− P(A A LA )= 1− P(A )P(A )LP(A ) 1 2 n 1 2 n
第一章 概率论的基本概念
为三个随机事件, 例1 设 A, B, C 为三个随机事件,用A, B, C 的运 算关系表示下列各事件. 算关系表示下列各事件 (1)A 发生 ) 发生.
P ( A) = P (BC ) = 1 − P BC = 1 − P (B U C )
5n 8n 4n = 1− − + 9n 9n 9n
( ) = 1 − [P (B ) + P (C ) − P (B C )]
第一章 概率论的基本概念
袋中有10个黑球 个黑球, 个白球 个白球. 例 4 袋中有 个黑球,5个白球.现掷一枚均匀的 骰子,掷出几点就从袋中取出几个球. 骰子,掷出几点就从袋中取出几个球.若已知取 出的球全是白球,求掷出3点的概率 点的概率. 出的球全是白球,求掷出 点的概率. 解 设B={ 取出的球全是白球 }
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
概率论总复习 知识总结
P{X = xi ,Y = y j } = P{X = xi }P{Y = y j }
p(x, y) = pX (x) pY ( y)
F(x0+ ) = lim F(x) = F(x0 ). +
x→x0
10
分布函数的几点说明 1)分布函数 F(x) 是一个普通的函数, F(x) 在 x 处 2)离散型: 若 P( X = xk ) = pk 由于 F(x) 是X 取 ≤ x 的诸值
F(x)
pk
xk <x xk <x
的值表示了X落在 (−∞, x) 内的概率。
p(t)dt
F(x)= ( X ≤ x) ∫ P =
x
−∞
0
x
p (x)
x
P(x1 < X ≤ x2 )= (x2 ) − F( x1 ) F
= ∫
在
x2
x1
p(t) d t
x1 < x2
0
x1 x2 x
p( x) 的 续 处 连 点 , p( x) = F′( x)
12
4、随机变量函数的分布 、 1、问题:若 X,Y是随机变量, = ϕ(X ). 其中 y = ϕ(x) Y 是 x的函数。 已知X 的分布,求 Y = ϕ(X ) 的分布。 2、基本方法 1)由 Y = ϕ(X ) 研究 X,Y 之间的事件等价关系。 2)由 X,Y 之间的事件的关系再求 X,Y 之间的分布 关系和分布函数关系。 3)把Y的分布用表(离散型)或Y的密度(连续性) 表述出来。 3、具体讨论
F(x) P( X ≤ x) ∫ = =
x
−∞
p(u)du
p( x) ≥ 0 x ∈(− ∞,+∞)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
P( A1 ) P( A2 ) L
P( An ห้องสมุดไป่ตู้
, n
Ai {i }
5. 概率的古典定义 对于古典概型:
(1) 设所有可能的试验结果构成的样本空间为:
1,2,L ,n
(2) 事件 A k1 ,k2 ,L ,kr
其中k1, k2,L , kr为1, 2, …, n中的r个不同的数 则定义事件A的概率为:
概率 事件A的概率
频率的稳定值 P( A) p
事件A
准确的数值
当试验次数足够大时
事件A的频率
事件A的概率
近似地代替
4. 古典概型:
古典概型的基本特征:
(1) 有限性:试验的可能结果只有有限个;
样本空间Ω是个有限集
1,2,L ,n
(2) 等可能性:各个可能结果出现是等可能的.
基本事件的概率均相同
P( AB) P(B)P( A | B)
P( A | B) P( AB) P(B)
3. 全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组, 且P(Ai )>0 (i=1,2,...,n),则对任一随机 事件B,有:
n
P(B) P( Ai )P(B | Ai ) i 1
A1 P( A1 ) P(B | A1 )
并集 A B
交集 A B
差集 A B
补集
A
第二章 事件的概率
第一节 概率的概念 第二节 古典概型 第三节 几何概型 第四节 概率的公理化定义
第二章 基本知识点
1. 随机事件的频率
设随机事件A在n次随机试验中出现了r次, 则称这n次试验中事件A出现的频率为:
fn ( A)
r n
事件A出现的次数r 试验的总次数n
给定一个随机试验,设Ω为其样本空间,则:
随机事件A,B,... 随机事件间的关系
Ω的子集A,B,...
各种集合间的关系
概率论与集合论之间的关系
概率论
集合论
样本空间 必然事件
不可能事件
子事件 A B 并事件 A B 交事件 A B 差事件 A B 对立事件 A
全集
全集
空集
子集 A B
A2 P( A2 ) P(B | A2 )
P(B)
A3 P( A3 ) P(B | A3 )
4. 贝叶斯公式
设A1,A2,…, An构成完备事件组,且每个
P(Ai)>0,B为样本空间的任意事件且P(B) >0 ,
则有:
P( Ak | B)
P( Ak )P(B | Ak )
n
(k 1, 2,L , n)
第三章 基本知识点
1. 条件概率的定义
设A,B为同一随机试验中的两个随机事件 , 且 P(A) > 0, 则称已知A发生条件下B发生 的概率为B的条件概率,记为
P(B | A) P( AB)
2. 乘法定理
P( A)
P( AB) P( A)P(B | A) P(B | A) P( AB)
P( A)
2. 频率的稳定性
随机事件A在相同条件下重复多次时,事件 A 发生的频率在一个固定的数值p附近摆动, 随着试验次数的增加更加明显.
3. 概率的统计定义
对任意事件A,在相同的条件下重复进行 n 次试验,事件A 发生的频率随着试验次 数的增大而稳定地在某个常数p附近摆动, 那么称p为事件A的概率,记为
7. 概率的公理化定义 设随机试验的样本空间为Ω,若对任一 事件A,有且只有一个实数P(A)与之对应, 满足如下公理:
(1) 非负性: 0 P( A) 1
(2) 规范性: P() 1
(3) 完全可加性:对任意一列两两互斥事件A1,
U A2,…,有:P
An
P( An )
n1 n1
P( A) r n
事件A包含的基本事件r 的基本事件n
6. 几何概型
古典概型中的有限性推广到无限性,而保留等可能性
1. 基本特征:
(1) 有一个可度量的几何图形Ω
(2) 试验E看成在Ω中随机的一点ω
事件A=“随机点落在Ω中的子区域SA中”
P( A)
SA ||
S
的几何度量
A
的几何度量
长度、面积或体积
4. 随机事件
在随机试验中,可能出现也可能不出现,而在大 量的重复试验中具有某种规律性的事件叫做随机 事件,简称事件.
5. 样本点
随机试验中的每一个可能出现的试验结果称为
这个试验的一个样本点,记作 i (i 1,.2,L )
6. 样本空间
全体样本点组成的集合称为这个试验的样本空间, 记作Ω.即
1,2,L ,n,L
则称P(A)为事件A的概率
8. 概率的性质
性质1 P() 0 不可能事件的概率为零 性质2 P( A) 1 P( A) 逆事件的概率
性质3 性质4
互不相容事件概率的有限可加性
对任意有限个互斥事件A1,A2,… An ,
U 有:P
n
Ak
n
P( Ak )
k1 k1
P( A B) P( A) P(B) P( AB) 加法定理
7. 随机事件
仅含一个样本点的随机事件称为基本事件. 含有多个样本点的随机事件称为复合事件.
8. 必然事件Ω
一次随机试验中,必然会发生的随机事件.
9. 不可能事件Φ
一次随机试验中,不可能会发生的随机事件.
10. 事件关系和运算 概率论 事件 事件之间的关系 事件的运算
集合论 集合 集合之间的关系 集合的运算
性质5 若A B,则:P(B A) P(B) P( A) 且 P( A) P(B) 差事件的概率
性质6 加法定理的推广形式
P(A B C) P( A) P(B) P(C )
P( AB) P(BC ) P( AC ) P( ABC )
A
B
C
第三章 条件概率与事件的独立性
第一节 条件概率 第二节 全概率公式 第三节 贝叶斯公式 第四节 事件的独立性 第五节 伯努利试验和二项概率 第六节 主观概率
概率论 总复习
第一章 随机事件
第一节 样本空间和随机事件 第二节 事件关系和运算
第一章 基本知识点 1. 概率论
概率论就是研究随机现象的统计规律性的数学学科
2. 确定性现象与随机现象
3. 随机试验
(1) 试验在相同的条件下可重复进行 (2) 每次试验的结果具有多种可能性,而且在试验之前
可以确定试验的所有可能结果 (3) 每次试验前不能准确预言试验后会出现哪种结果.
P( Ai )P(B | Ai )
i 1
5. 事件独立的定义
P(B|A) = P(B)
A与B相互独立的 充要条件
P( AB) P( A)P(B)