概率论大学课件

合集下载

概率论课件之随机事件PPT课件

概率论课件之随机事件PPT课件
(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)

成都理工大学概率论(2)全部PPT

成都理工大学概率论(2)全部PPT
表示 “第一次出现的是正面” S6 中事件 B1={t|t1000}表示 “灯泡是次品” 事件 B2={t|t 1000} 表示 “灯泡是合格品”
事件 B3={t|t1500}表示“灯泡是一级品”
例如在E4中,有{1},{2},{3},{4}, {5},{6}六个基本事件.
2. 几点说明
(1)
1) P( A B C ) P( A) P( B) P(C ) P( AB) P( AC ) P( BC ) P( ABC )
2) P( B A) P( B) P( AB)
B
加法公式的推广 A
对任意 n 个事件 A1 , P Ai P Ai i 1 i 1 P Ai A j
2048
6019
0.5096
0.5016
K •皮尔逊 12000
K •皮尔逊 24000 12012
0.5005
二 概率 事件发生
事件发生
的可能性的大小
的频繁程度
频 率 频率的性质 定义2
稳 定值
概率 概率的公理化定义
设 E 是随机试验,S 是它的样本空间,对于E 的每一个事件 A 赋予一个实数, 记为 P( A) , 称为事件 A 的概率,要求集合函数 满足 下列条件: P()
随机事件可简称为事件, 并以大写英文字母 A, B, C,
来表示.

例如 抛掷一枚骰子, 观察出现的点数. 可设 A = “点数不大于4”, B = “点数为奇数” 等等.
(2) 随机试验、样本空间与随机事件的关系 每一个随机试验相应地有一个样本空间, 样本空间的子集就是随机事件.
随机试验
样本空间 基本事件 随 机 复合事件 事 件

大学概率论随机事件与概率ppt课件

大学概率论随机事件与概率ppt课件
设10件产品中有3件次品现无放回的抽取2件在第一次抽到次品的条件下northuniversitychina上一页上一页下一页下一页回回结结录录第一章随机事件与概率概率统计电子教案二乘法公式12131211nnpapaapaaapaaanorthuniversitychina上一页上一页下一页下一页回回结结录录第一章随机事件与概率概率统计电子教案1212paaaa1212paapaa无放回取球求northuniversitychina上一页上一页下一页下一页回回结结录录第一章随机事件与概率概率统计电子教案ababababnorthuniversitychina上一页上一页下一页下一页回回结结录录第一章随机事件与概率概率统计电子教案第i个人摸到黑球i12
随机现象的统计规律性
随机现象在相同条件下进行大量观察或试验时出现 的结果的规律性.
NORTH UNIVERSITY OF CHINA
目 录 上一页 下一页 返 回 结 束
《概率统计》电子教案
第一章 随机事件与概率
概率论是一门研究客观世界随机现象统计
规律的 数学分支学科.
数理统计学是一门研究怎样去有效地收集、
7. 研究化学反应的时变率,要以《马尔
可夫过程》 来描述;
NORTH UNIVERSITY OF CHINA
目 录 上一页 下一页 返 回 结 束
《概率统计》电子教案
第一章 随机事件与概率
8. 许多服务系统,如电话通信、船舶
装卸、机器维修、病人候诊、存货控制、
水库调度、购物排队、红绿灯转换等,都
可用一类概率模型来描述,其涉及到 的知
NORTH UNIVERSITY OF CHINA
目 录 上一页 下一页 返 回 结 束
《概率统计》电子教案

概率论第二章(课件2)

概率论第二章(课件2)

条件概率具有非负性、规范性、乘法 法则和全概率公式等性质。
贝叶斯定理
贝叶斯定理的表述
对于任意两个事件A和B,有 P(B|A)=P(A|B)P(B)/P(A)。
贝叶斯定理的应用
贝叶斯定理常用于在已知某些条件 下,对其他条件的发生概率进行推 断和更新。
贝叶斯定理的意义
贝叶斯定理是概率论中的一个重要 定理,它提供了在已知某些信息的 情况下,对其他信息的可信度进行 评估的方法。
期望的计算
期望的计算公式为E(X)=∑xp(x),其中x为随机变量X的所有可能取值, p(x)为对应的概率。
方差与协方差
方差的定义
方差是随机变量与其期望之间的差的平方的期望,表示随机变量 取值与期望的偏离程度。
方差的性质
方差具有非负性,即对于任何随机变量X,D(X)≥0。
协方差的定义
协方差是两个随机变量的线性相关程度的度量,表示两个随机变量 同时偏离各自期望的程度。
自的概率分布相乘得到。
THANKS
感谢观看
02
随机变量及其分布
离散随机变量
离散随机变量定义
离散随机变量是在可数样本空间上的概率函数。
离散随机变量的概率分布
离散随机变量的概率分布由一个非负整数序列给出,表示在每个样 本点上随机变量取值的概率。
离散随机变量的期望值
离散随机变量的期望值是所有可能取值的概率加权和。
连续随机变量
连续随机变量念 • 随机变量及其分布 • 随机向量及其分布 • 随机变量的函数及其分布 • 随机变量的数字特征
01
概率论的基本概念
概率的定义与性质
01
02
03
概率的定义
概率是描述随机事件发生 可能性大小的数值,通常 用P表示。

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件
• 性质:
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计

《概率论讲义》课件

《概率论讲义》课件

THANKS
感谢观看
THE FIRST LESSON OF THE SCHOOL YEAR
大数定律在统计学、决策理论、经济学等领域都有广泛的应用,是这些领域中重要的理论基础之一。
大数定律的实例
比如在抛硬币的实验中,当抛硬币的次数足够多时,正面朝上的频率会趋近于0.5,这就是大数定律的一个实例。
中心极限定理的定义:中心极限定理是指在随机实验中,无论实验的个体分布是什么,只要实验次数足够多,随机变量的和就会趋近于正态分布。简单来说,就是无论每个个体是什么分布,只要数量足够多,它们的和就会呈现出正态分布的特征。
两个事件的发生互不影响。
独立性
在某个事件B已经发生的条件下,另一个事件A发生的概率,记为P(A|B)。
条件概率
条件概率满足非负性、规范性、可加性和乘法定理。
条件概率的性质
01
随机变量及其分布
01
02
03
01
02
03
连续型随机变量的定义:取值范围为某个区间内的随机变量。
连续型随机变量的概率密度函数:描述连续型随机变量取值的概率分布情况。
棣莫佛-拉普拉斯定理的定义
棣莫佛-拉普拉斯定理是指对于任意实数x和正整数n,有$(1+x)^n approx 1+nx$当$x$很小时。这个定理是二项式定理的特殊情况。
棣莫佛-拉普拉斯定理的证明
可以通过数学归纳法进行证明。首先证明$n=1$时成立,然后假设$n=k$时成立,再证明$n=k+1$时成立。
THE FIRST LESSON OF THE SCHOOL YEAR
《概率论讲义》ppt课件

CONTENTS
概率论的基本概念随机变量及其分布多维随机变量及其分布大数定律与中心极限定理贝叶斯统计推断概率论的应用

概率论高等院校概率论课件

概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的

随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布

《概率论讲义》课件

《概率论讲义》课件

线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3

中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。

高等数学 概率论与数理统计课件(一)

高等数学 概率论与数理统计课件(一)

高等数学概率论与数理统计课件(一)高等数学概率论与数理统计课件1. 课程简介•高等数学概率论与数理统计是大学数学专业的一门重要课程。

•它是数学学科的基础,也是应用数学的重要工具。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

2. 概率论部分2.1 概率的基本概念•概率的定义和性质•随机事件的概率计算方法•条件概率与独立事件2.2 随机变量和概率分布•随机变量的定义和性质•离散型随机变量和连续型随机变量•常见概率分布:离散型和连续型2.3 随机变量的数字特征•期望、方差、标准差的定义和计算•切比雪夫不等式•大数定律和中心极限定理3. 数理统计部分3.1 统计基础•总体和样本的统计特征•参数估计和区间估计•假设检验的基本思想3.2 参数估计•点估计和区间估计的概念•常见的参数估计方法:极大似然估计、矩估计等•置信区间的计算和解释3.3 假设检验•假设检验的基本原理•假设检验的步骤和流程•常见的假设检验方法:单样本、两样本和多样本检验4. 课程学习方法•注重理论和实践相结合,理论指导实践、实践检验理论。

•多做习题,通过刷题巩固知识点。

•参考相关教材和参考书,拓宽知识广度和深度。

•加强课后讨论和交流,与同学共同解决问题。

•关注概率论与数理统计的应用领域,扩展应用实践。

5. 课程考核方式•平时成绩:课堂参与、作业完成情况等。

•期中考试:对课程前半部分的知识进行考核。

•期末考试:对整个课程的知识进行考核。

•课程项目:根据实际情况进行论文、实验等形式进行综合评估。

6. 学习资源推荐•《高等数学》教材,北京大学出版社。

•《概率论与数理统计教程》教材,清华大学出版社。

•《概率论与数理统计习题集》辅导书,高等教育出版社。

•在线学习资源:Coursera、edX、网易云课堂等平台提供的相关课程。

7. 小结•高等数学概率论与数理统计课程是数学专业学生不可或缺的重要课程。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

《概率论》课件

《概率论》课件

物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。

清华大学概率论与数理统计课件强大数定理

清华大学概率论与数理统计课件强大数定理

lim
n
An
lim
n
An=lim n
An

lim
n
An为随机事件序列{
An
}的极限事件.
引理5.4.1 (博雷尔-康特立引理)
(1) 若随机事件序列{ An }满足 P( An ) ,则 n1
P
(lim n
An
)
0,
P(lim An ) 1 n
(2) 若随机事件序列{An }相互独立,则 P( An )=
定义 设A1, A2 , , An , 为一列事件,记
lnimAn
An
k 1 nk
称lnimAn为事件序列{ An }的上限事件. 记
lim An
An
n
k 1 nk
称lim An为事件序列系
上限事件lnimAn表示事件An发生无穷多次.下 限事件 lim An表示事件An至多只有有限个不发生.
若{i }是独立随机变量序列,Di
2 i
,
(i 1, 2, n),则对任意的 0,均有
P{max m jn
j
(i E(i ))
i 1
} 1 2
n
2 j
j 1
科尔莫戈罗夫不等式是概率论中最重要的不等 式之一,当n=1时,科尔莫戈罗夫不等式就退化为 车贝晓夫不等式,而咯依克-瑞尼不等式又是科 尔莫戈罗夫不等式的推广.
n1
成立的充要条件为
P(lnimAn ) 1,
或者 P(lim An ) 0 n
定理5.4.1 n ( ) a.s. ( ) n( ) P ( )
反例(p298例一) n ( ) a.s. ( ) NO n ( ) P ( )

概率论ppt课件

概率论ppt课件
先验概率与后验概率
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。

高等数学概率论与数理统计课件PPT大全

高等数学概率论与数理统计课件PPT大全
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组

东华大学《概率论与数理统计》课件-第3章概率论基础

东华大学《概率论与数理统计》课件-第3章概率论基础
重复排列:从n个不同元素中取r个(可重复),考 虑先后顺序共有nr=n n …. n种不同结果。
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,

浙江大学概率论课件1-1

浙江大学概率论课件1-1

在自然界,在生产、生活中,随机现象十分 普遍,也就是说随机现象是大量存在的。比如: 每期体育彩票的中奖号码、同一条生产线上生 产的灯泡的寿命等,都是随机现象。因此,我 们说:随机现象就是:在同样条件下,多次进 行同一试验或调查同一现象,所得结果不完全 一样,而且无法准确地预测下一次所得结果的 现象。随机现象这种结果的不确定性,是由于 一些次要的、偶然的因素影响所造成的。
如同一个工人在同一台机床上加工同一种零件 若干个,它们的尺寸总会有一点差异。又如, 一天进入某超市的顾客数。抛一枚硬币,有可 能正面朝上,也有可能反面朝上。某种型号电 视机的寿命等。
为什么在相同的情况下,会出现这种不确定 的结果呢?这是因为,我们说的“相同条件” 是指一些主要条件来说的,除了这些主要条件 外,还会有许多次要条件和偶然因素又是人们 无法事先一一能够掌握的。正因为这样,我们 在这一类现象中,就无法用必然性的因果关系, 对个别现象的结果事先做出确定的答案。事物 间的这种关系是属于偶然性的,这种现象叫做 偶然现象,或者叫做随机现象。
有一类随机事件,它具有两个特点:第一, 只有有限个可能的结果;第二,各个结果发生 的可能性相同。具有这两个特点的随机现象叫 做“古典概型”。
在客观世界中,存在大量的随机现象,随机 现象产生的结果构成了随机事件。如果用变量 来描述随机现象的各个结果,就叫做随机变量。
随机变量取值有有限和无限的区分,根据 变量的取值情况分成离散型随机变量和连续型 随机变量。 一切可能的取值能够按一定次序一一列举, 这样的随机变量叫做离散型随机变量; 如果可能的取值充满了一个区间,无法按次 序一一列举,这种随机变量就叫做连续型随机 变量。
概率论——是根据大量同类随机现象的统计 规律,对随机现象出现某一结果的可能性做出 一种客观的科学判断,对这种出现的可能性大 小做出数量上的描述;比较这些可能性的大小、 研究它们之间的联系,从而形成一整套数学理 论和方法。

概率论课件(总)

概率论课件(总)
则称P(A)为事件A的概率。
3.概率的性质
• • • • • • • • (1) 加法公式:若A与B为互斥事件,则有: P(AB)=P(A)+P(B ) (2)求逆公式: 设A、 A 互为对立事件,则有: P( A)=1-P( A ) (3)减法公式: 若AB,则 P(A-B)=P(A)-P(B) P(A)P(B) (4)广义加法公式:P(AB)=P(A)+P(B)-P(AB)
§1 概率论的基本概念
• 必然现象: 在一定条件下必然发生或必然
不发生的现象.
•随机现象: 在一定条件下可能出现这样的结 果,也可能出现那样的结果,结果 的出现呈现出一定的偶然性.
统计规律性
:
联想举例?
某一随机现象,其结果的出现就个别试验而 言好象没有规律性,但在大数次试验的情况 下又呈现出某种规律性。
二.随机事件
随机事件:随机试验的结果叫事件。因为结果的 出现是随机的,故也称为随机事件。随机事件常用 大写字母A、B、C、…等表示。 随机事件包括基本事件和复合事件。 基本事件:仅包含一个样本点的事件。 复合事件:包含两个及两个以上样本点的事件。 以掷一枚骰子为例,观察下列随机事件:
A={1}(表示掷出的点数是1) B= {1,2,3}; C={5,6} 样本空间S:S={1,2,3,4,5,6} 结论:随机事件可看作是样本空间的子集。
第一章 概率论基础
统计规律性 必然现象和随机现象 概率论是研究随机现象统计规律性的数 学学科. 概率论问题的起源: 1654年 De Mere Pascal(1623-1662) Fermat(1601-1665) 两赌徒各出32枚金币作为赌金,以先得3分 为赢。第一人现得2分,第二人仅得1分, 设赌局因故中断,问怎样分配赌金才算 公平?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档