2020.1北京市西城区初一年级第一学期期末-数学试题及答案(图片版)
2020-2021学年北京西城区七年级上期末数学试卷
第 1 页 共 14 页
2020-2021学年北京西城区七年级上期末数学试卷
一.选择题(共10小题,满分30分)
1.(3分)﹣4的倒数是( )
A .14
B .−14
C .4
D .﹣4 【解答】解:﹣4的倒数是−14.
故选:B .
2.(3分)根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000
用科学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
【解答】解:将16000000用科学记数法表示为:1.6×107次.
故选:B .
3.(3分)下列运算中,正确的是( )
A .2a +3b =5ab
B .2a 2+3a 2=5a 2
C .3a 2﹣2a 2=1
D .2a 2b ﹣2ab 2=0 【解答】解:A .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;
B .2a 2+3a 2=5a 2,故本选项符合题意;
C .3a 2﹣2a 2=a 2,故本选项不合题意;
D .2a 2b 与﹣2ab 2不是同类项,所以不能合并,故本选项不合题意.
故选:B .
4.(3分)如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是
( )
A .两点之间,线段最短
B .两点确定一条直线
C .两点之间,直线最短
D .直线比线段长 【解答】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是:两点之间,线段最短,。
2020-2021学年北京西城区七年级上期末数学试卷及答案解析
第 1 页 共 20 页 2020-2021学年北京西城区七年级上期末数学试卷
一.选择题(共10小题,满分30分)
1.(3分)﹣4的倒数是( )
A .14
B .−14
C .4
D .﹣4
2.(3分)根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000
用科学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
3.(3分)下列运算中,正确的是( )
A .2a +3b =5ab
B .2a 2+3a 2=5a 2
C .3a 2﹣2a 2=1
D .2a 2b ﹣2ab 2=0 4.(3分)如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是
( )
A .两点之间,线段最短
B .两点确定一条直线
C .两点之间,直线最短
D .直线比线段长 5.(3分)下列解方程去分母正确的是( )
A .由x 3−1=1−x 2,得2x ﹣1=3﹣3x
B .由x−22
−x 4=−1,得 2x ﹣2﹣x =﹣4 C .由y 3−1=y 5,得 2 y ﹣15=3y
D .由y+12=y 3+1,得 3( y +1)=2 y +6
6.(3分)若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )
A .﹣1
B .1
C .2
D .3
7.(3分)有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A .ab >0
B .a ﹣b >0
C .a +b <0
D .|a |<|b |。
2020-2021学年北京市西城区七年级上学期期末数学试卷(附解析)
2020-2021学年北京市西城区七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列各组数的比较大小中,不正确的是()A. −65>−(−35) B. −(+3)<−(−4)C. 0>−|−3|D. +(−2)<−(−1)2.“嫦娥一号”月球探测卫星于2007年10月24日成功发射,11月26日国家航天局正式公布“嫦娥一号”传回的第一幅月面图象.该幅月球表面图,成像区域的面积为128800平方公里.这个数据用科学记数法表示为()A. 1288×102平方公里B. 0.1288×106平方公里C. 1.288×106平方公里D. 1.288×105平方公里3.化简−(−x+y)−[−(x−y)]得()A. 2yB. 2xC. 2x−2yD. 04.下列说法错误的是()A. 直棱柱的侧面都是长方形B. 正方体的所有棱长都相等C. 棱柱的侧面可能是三角形D. 圆柱的侧面展开图为长方形5.下列说法错误的是()A. 若a=b,则3−2a=3−2bB. 若ac =bc,则a=bC. 若|a|=|b|,则a=bD. 若a=b,则ca=cb6.从甲的位置看乙,乙处在北偏西30°,那么从乙的位置看甲,甲处在()A. 南偏东60°B. 南偏西60°C. 南偏东30°D. 南偏西30°7.已知b−a=3,ab=2,计算:a2b−ab2等于()A. −6B. 6C. 5D. −18.如果a2=4,|b|=2,且ab<0,则a+b的值是()A. 0B. 4C. ±4D. 6或29.若∠A=53°20′,则∠A的补角的度数为()A. 36°40′B. 126°40′C. 127°40′D. 146°40′10.如果有2014名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2014名学生所报的数是()A. 1B. 2C. 3D. 4二、填空题(本大题共9小题,共19.0分)11.兰州至乌鲁木齐的高速铁路于2014年年底开通运营,这条长1700km的高速铁路使两地旅行时间由原来的20ℎ缩短到8ℎ,将这条铁路的长用科学计数法可表示为__________m.12.若方程6x+3=0与关于y的方程4y+m=15的解相等,则m=______.13.地球与月球的平均距离大约为384000km,用科学记数法表示这个数据为_______km若与是同类项,则________.14. 若∠A=20.25°,∠B=20°18′,则∠A______ ∠B(填“>”、“<”或“=”).15. 当−1<a<0时,试比较大小:a______1a.16. 一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程______ .17. 如图所示,已知线段AB=100厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=18厘米,则PM的长是_________厘米.18. 将m的2倍与n的5倍的差用代数式表达为______ .19. 观察下列单项式a、12a2、13a3、14a4、15a5…按照这些单项式的系数和指数的变化规律,第十个单项式应该是______ .三、解答题(本大题共10小题,共80.0分)20. 画一个菱形,使它的两条对角线长度分别为4cm,3cm.21. 规定∣∣a cb d∣∣=ad−bc,如∣∣∣2−130∣∣∣=2×0−3×(−1)=3.(1)若∣∣∣−2+x5x1∣∣∣>2,求x的取值范围;(2)若∣∣∣32y x ∣∣∣=m +5,∣∣∣∣112y x ∣∣∣∣=12(m −1),求x −y 的值.22. 计算:(1)√24−3√23−√−273; (2)先化简,再求值:−a 2b +(3ab 2−a 2b)−2(2ab 2−a 2b),其中,a =−1,b =−2.23. (1)计算:0.25×(−2)3−[4÷(−23)2+1]+(−1)2017(2)解方程:x +2(x−3)3=6−x−76;24. 解方程组(1){y =x +37x +5y =9; (2){3(x −1)=y +55(y −1)=3(x +5).25. 小明同学看课本中的阅读材料(初识“几何画板”)时,在电脑上尝试探索.先画了射线OA ,OB ,OC .(1)如图1,小明用“构造(C)”菜单中的“角平分线”功能分别构造∠AOB 的平分线OD 和∠BOC 的平分线OE .①小明度量两角的大小如图,则∠BOC =______°,∠DOE =______°.②拖动点B,使点B在∠AOC内部移动,射线OD,OE随之变动,变动过程中∠DOE的度数改变吗?请说明理由.(2)如图2若小明在∠AOB,∠BOC内部分别以每秒3°和每秒1°的速度绕点O逆时针旋转射线OA,OB得到OM,ON,若同时旋转t秒后有∠MOC=∠AON=90°,且满足∠CON∠AOC =211,求此时∠BOM的度数.26. 某学校在商场购买了A、B两种品牌的足球,已知购买4个A品牌的足球和6个B品牌足球共需620元;购买6个A品牌的足球和8个B品牌的足共需860元.(1)求A、B两种品牌的足球的单价.(2)为响应习总书记“足球进校园”的号召,所学状决定再次购买A、B两种品牌的足球共50个,恰逢该商场对足球的售价进行调整,A品牌足球的售价比第一次购买时提高了10%,如果此次购买A、B两种足球的总费用不超过2900元,那么这所学校最多可购买多少个B品牌的足球?27. 把下面的直线补充成一条数轴,然后在数轴上标出下列各数,并用“<”连接起来.−3,+l,212,−l.5.28. 经过平移,小鱼上的点A移到了点B.(1)请画出平移后的小鱼;(2)该小鱼是怎样从点A移到了点B?(上下左右)29. 在数轴上把下列各数表示出米,并用“<”连接各数.5,−2,|−4|,−(−1),0,−(+3)参考答案及解析1.答案:A解析:解:A、∵−(−35)=35,∴−65<−(−35),故本选项符合要求;B、∵−(+3)=−3,−(−4)=4,∴−(+3)<−(−4),故本选项不符合要求;C、∵−|−3|=−3,∴0>−|−3|,故本选项不符合要求;D、∵+(−2)=−2,−(−1)=1,∴+(−2)<−(−1),故本选项不符合要求;故选A.先根据相反数和绝对值化简符号,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较法则,相反数,绝对值的应用,能正确化简符号是解此题的关键.2.答案:D解析:解:128800=1.288×105.故选D.科学记数法表示为a×10n(1≤|a|<10,n是整数):确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.答案:C解析:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:--得+,−+得−,++得+,+−得−.运用整式的加减运算顺序,先去括号,再合并同类项.解:原式=x−y+(x−y)=x−y+x−y=2x−2y.故选C.4.答案:C解析:解:A、直棱柱的侧面都是长方形,说法是正确的,不符合题意;B、正方体的所有棱长都相等,说法是正确的,不符合题意;C、棱柱的侧面是长方形,不可能是三角形,原来的说法是错误的,符合题意;D、圆柱的侧面展开图为长方形,说法是正确的,不符合题意;故选:C.要根据各种几何体的特点进行判断.本题考查了认识立体图形,要准确掌握各种棱柱的特点.5.答案:C解析:解:(C)∵|a|=|b|,∴a=±b,故选:C.根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.6.答案:C解析:解:如图,甲的位置看乙,乙处在北偏西30°,那么从乙的位置看甲,甲处在南偏东30°.故选:C.作出图形,甲看乙的方向是北偏西25°,是以甲为标准,反之乙看甲的方向是甲相对于乙的方向与位置.本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物.7.答案:A解析:本题考查了分解因式和求代数式的值,能够整体代入是解此题的关键.先利用提取公因式法分解因式,再将b−a=3,ab=2代入求出其值即可.解:∵b−a=3,ab=2,∴a2b−ab2=−ab(b−a)=−2×3=−6.故选:A.8.答案:A解析:本题考查的是有理数的乘方、绝对值的性质以及有理数的混合运算,基础题根据乘方法则、绝对值的性质求出a、b,根据题意确定a、b的值,根据有理数的加法法则计算即可.解:∵a2=4,|b|=2,∴a=±2,b=±2,∵ab<0,∴a=2,b=−2或a=−2,b=2,则a+b=0,故选A.9.答案:B解析:解:∵∠A=53°20′,∴∠A的补角为180°−53°20′=126°40′.故选:B.根据补角的定义,∠A的补角等于180°减去∠A的度数即可.本题考查了补角的定义,要注意度、分、秒是60进制.10.答案:D解析:试题分析:本题考查观察能力。
北京市西城区七年级上期末数学试卷及答案解析
第 1 页 共 18 页2020-2021学年北京市西城区七年级上期末数学试卷一.选择题(共10小题,满分30分)1.(3分)3倒数等于( )A .3B .13C .﹣3D .−13 2.(3分)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1043.(3分)下列运算正确的是( )A .3a +2a =5a 2B .3a ﹣a =3C .2a 3+3a 2=5a 5D .﹣0.25ab +14ab =04.(3分)用两个钉子就可以把木条钉在墙上,其依据是( )A .两点之间线段最短B .两点之间直线最短C .两点确定一条射线D .两点确定一条直线 5.(3分)下列解方程去分母正确的是( )A .由x 3−1=1−x 2,得2x ﹣1=3﹣3xB .由x−22−x 4=−1,得 2x ﹣2﹣x =﹣4 C .由y 3−1=y 5,得 2 y ﹣15=3yD .由y+12=y 3+1,得 3( y +1)=2 y +66.(3分)已知(2x ﹣3)9=a 0+a 1x +a 2x 2+…+a 9x 9,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9的值为( )A .0B .1C .﹣1D .27.(3分)有理数a ,b 在数轴上的位置如图所示,则下列说法不正确的是( )A .a +b >0B .b ﹣a >0C .ab <0D .|a |>b8.(3分)下列说法中错误的是( )。
北京市西城区七年级上期末数学试卷(附答案解析)
第 1 页 共 17 页2020-2021学年北京市西城区七年级上期末数学试卷一.选择题(共10小题,满分30分)1.3倒数等于( )A .3B .13C .﹣3D .−13 2.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1043.下列运算正确的是( )A .3a +2a =5a 2B .3a ﹣a =3C .2a 3+3a 2=5a 5D .﹣0.25ab +14ab =04.用两个钉子就可以把木条钉在墙上,其依据是( )A .两点之间线段最短B .两点之间直线最短C .两点确定一条射线D .两点确定一条直线 5.下列解方程去分母正确的是( )A .由x 3−1=1−x 2,得2x ﹣1=3﹣3xB .由x−22−x 4=−1,得 2x ﹣2﹣x =﹣4 C .由y 3−1=y 5,得 2 y ﹣15=3yD .由y+12=y 3+1,得 3( y +1)=2 y +66.已知(2x ﹣3)9=a 0+a 1x +a 2x 2+…+a 9x 9,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9的值为( )A .0B .1C .﹣1D .27.有理数a ,b 在数轴上的位置如图所示,则下列说法不正确的是( )A .a +b >0B .b ﹣a >0C .ab <0D .|a |>b8.下列说法中错误的是( )A .经过三点中的两点画直线一定可以画三条直线B .两点之间,线段最短。
北京西城区七年级上期末数学试卷(附答案解析)
第 1 页 共 20 页2020-2021学年北京西城区七年级上期末数学试卷一.选择题(共10小题,满分30分)1.﹣4的倒数是( )A .14B .−14C .4D .﹣42.根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示为( )A .1.6×108B .1.6×107C .16×106D .1.6×1063.下列运算中,正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 2C .3a 2﹣2a 2=1D .2a 2b ﹣2ab 2=04.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是()A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长5.下列解方程去分母正确的是( )A .由x 3−1=1−x 2,得2x ﹣1=3﹣3xB .由x−22−x 4=−1,得 2x ﹣2﹣x =﹣4C .由y 3−1=y 5,得 2 y ﹣15=3yD .由y+12=y 3+1,得 3( y +1)=2 y +66.若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )A .﹣1B .1C .2D .37.有理数a ,b 在数轴上的对应点的位置如图所示,则( )A .ab >0B .a ﹣b >0C .a +b <0D .|a |<|b |8.下列说法:①经过三点中的两点画直线一定可以画三条直线:。
北京西城区2019-2020学年初一上学期期末数学试题及答案(word版)
北京市西城区2019—2020学年度第一学期期末试卷七年级数学 2020.1一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有一个. 1.4-的倒数是 A .14 B .14- C .4 D .4- 2.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示应为 A .0.3369×107B .3.369×106C .3.369×105D .3369×1033.下列计算中正确的是A .5611a b ab +=B .98a a -=C .2334a a a +=D .347ab ab ab +=4.如图,点A ,B 在直线l 上,点C 是直线l 外一点, 可知CA +CB >AB ,其依据是 A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长 5.下列解方程的步骤中正确的是A .由57x -=,可得75x =-B .由82(31)x x -+=,可得862x x --=C .由116x =-,可得16x =- D .由1324x x-=-,可得2(1)3x x -=- 6.已知231a a -=,则代数式2625a a --的值为A .3-B .4-C .5-D .7-7.有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①3a >;②0ab >;③0b c +<;④0b a ->. 上述结论中,所有正确结论的序号是 A .①② B .②③ C .②④ D .③④8.下列说法中正确的是x=,那么x一定是7B.a-表示的数一定是负数A.如果7C.射线AB和射线BA是同一条射线90°9A B C D10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:根据上图提供的信息,下列推断中不.合理的是A.2018年12月的增长率为0.0%,即与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是-0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大12.用四舍五入法将0.0586精确到千分位,所得到的近似数为 .13.已知x =3是关于x 的一元一次方程ax +b =0的解,请写出一组满足条件的a ,b 的值:a = ,b = .14.若2(1)20200x y ++-=,则y x = .15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何? 其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为 . 16.我们把a cb d 称为二阶行列式,且 ac b d=ad bc -.如:1 21(4)32103 4=⨯--⨯=--. (1)计算:2 63 5-=_________;(2)若 4 72 m -=6,则m 的值为__________.17.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =13BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为30,则BE 的长为__________.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a ,则商品包装盒的长为____________,图2中阴影部分的周长与图3中阴影部分的周长的差为________.(都用含a 的式子表示)图1 图2 图3三、计算题(本题共16分,每小题8分)19.计算:(1)(5)12(8)21-+---; (2)13(16)(1)45⨯-÷-.20.计算:(1)3778(1)()48127-+⨯-; (2)28[(3)(0.75)19](4)3---⨯-⨯-.四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.先化简,再求值:33364(2)2(3)y x xy y xy +---,其中2x =-,3y =.22.解方程:3221153x x +-=+.23.解方程组:436,28.x y x y +=⎧⎨-=⎩24.已知:如图,O 是直线AB 上一点,OD 是∠AOC 的平分线,∠COD 与∠COE 互余.求证:∠AOE 与∠COE 互补. 请将下面的证明过程补充完整:证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE =_______°. ∵OD 是∠AOC 的平分线, ∴∠AOD =∠_________. (理由:_______________________________________) ∴∠BOE =∠COE . (理由:_______________________________________)∵∠AOE +∠BOE =180°.∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中i ,j =1,2,3,4),如图1中第2行第1列的数字210a =;对第i 行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.图1 图2(1)图1代表的学生所在年级是__________年级,他的学号是__________; (2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.26.学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元. (1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.27.点O 为数轴的原点,点A ,B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为________;(2)若线段BM 的长为4.5,则线段AC 的长为__________; (3)若线段AC 的长为x ,求线段BM 的长(用含x 的式子表示).北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题2020.1一、填空题(本题6分)1.观察下列等式,探究其中的规律并解答问题:2=,1122343++=,2++++=,3456752++++++=,45678910k……(1)第4个等式中,k=_______;(2)第5个等式为:______________________________________;(3)第n个等式为:_______________________________________(其中n为正整数).二、解答题(本题共14分,每小题7分)2.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示).图1 图2(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为_____________;(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法;(要求:画出各块拼板的轮廓)(3)随着七巧板的发展,出现了一些形式不同的七巧板.如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形:大正方形的中间去掉一个小正方形.请在图4中画出拼图方法.(要求:画出各块拼板的轮廓)图3 图43.对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA ,OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM ,ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称.已知:如图2,在平面内,∠AOM=10°, ∠MON=20°.(1)若有两条射线OB 1,OB 2的位置如图3所示,且∠B 1OM=30°,∠B 2OM=15°,则在这两条射线中,与射线OA 关于∠MON 内含对称的射线是 ;图2 图3 图4(2)射线OC 是平面上绕点O 旋转的一条动射线,若射线OA 与射线OC 关于∠MON内含对称,设∠COM=x °,求x 的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH =20°.现将射线OH 绕点O 以每秒1°的速度顺时针旋转,同时将射线OE 和OF 绕点O 都以每秒3°的速度顺时针旋转.设旋转的时间为t 秒,且0<t <60.若∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,直接写出t 的取值范围.图1北京市西城区2019—2020学年度第一学期期末试卷七年级数学答案及评分参考2020.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题8分)19.解:(1)(5)12(8)21-+---=512821-++-………………………………………………………………1分=2620-+……………………………………………………………………3分=6-.…………………………………………………………………………4分(2)13(16)(1) 45⨯-÷-=181645⨯÷……………………………………………………………………2分=151648⨯⨯……………………………………………………………………3分=52.……………………………………………………………………………4分20.解:(1)3778 (1)() 48127-+⨯-=7778()()48127-+⨯-…………………………………………………………1分=2213-+-……………………………………………………………………3分=213 -.………………………………………………………………………4分(2)28[(3)(0.75)19](4)3---⨯-⨯-=(9219)(4)+-⨯-……………………………………………………………2分=(8)(4)-⨯-…………………………………………………………………3分=32.…………………………………………………………………………4分四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.解:33364(2)2(3)y x xy y xy +---=33364862y x xy y xy +--+ ……………………………………………………2分 =346x xy -. ………………………………………………………………………3分 当2x =-,3y =时,原式=34(2)6(2)3⨯--⨯-⨯ ………………………………………………………4分 =4. ……………………………………………………………………………5分22.3221153x x +-=+解:去分母,得 3(32)155(21)x x +=+-. ……………………………………………1分去括号,得 9615105x x +=+-. …………………………………………………2分 移项,得 9101556x x -=--. ……………………………………………………3分 合并,得 4x -=. ……………………………………………………………………4分 系数化为1,得 4x =-. ……………………………………………………………5分23.436,28.x y x y +=⎧⎨-=⎩解:由②得28y x =-.③ …………………………………………………………………1分 把③代入①,得43(28)6x x +-=. ……………………………………………………2分解得3x =. ………………………………………………………………………………3分 把3x =代入③,得2y =-. …………………………………………………………4分所以,原方程组的解为3,2.x y =⎧⎨=-⎩ ………………………………………………………5分24.证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE = 90 °. …………………………………………………1分 ∵OD 是∠AOC 的平分线, ∴∠AOD =∠ COD .(理由: 角平分线的定义 )…………………………3分 ∴∠BOE =∠COE .(理由: 等角的余角相等 ) ……………………………4分∵∠AOE +∠BOE =180°,∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.① ②25.解:(1)七,28; ………………………………………………………………………3分 (5分 26.解:(y 元. ……………………………………1分根据题意,得5101150,961170.x y x y +=⎧⎨+=⎩ ……………………………………………3分解得80,75.x y =⎧⎨=⎩ …………………………………………………………………4分答:篮球单价为80元,足球单价为75元.(2)购买5个篮球,24个足球;或购买20个篮球,8个足球.………………6分27.解:(1)1-; …………………………………………………………………………1分(2)2或16; ………………………………………………………………………3分 (3)①当点C 在点A 的右侧(或重合)时,如图1,点C 表示的数为5x +.∵M 为线段OC 的中点,∴点M 表示的数为52x+.∴BM =5(1)2x +--=72x+. ②当点C 在点A 的左侧时,点C 表示的数为5x -,∴点M 表示的数为52x -.ⅰ)若点M 在点B 的右侧(或重合),如图2, 则BM =5(1)2x ---=72x -.ⅱ)若点M 在点B 的左侧,如图3 则BM =512x ---=72x -.…………………………………………………………………………………5分第11页(共7页) 北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题答案及评分参考 2020.1一、填空题(本题6分)1.(1)7; ………………………………………………………………………………… 2分(2)256789101112139++++++++=; ………………………………………… 4分(3)2(1)(2)(32)(21)n n n n n ++++++-=-. ………………………………… 6分二、解答题(本题共14分,每小题7分)2.解:(1)8; ……………………………………………………………………………… 2分(2)答案不唯一,如: (3)答案不唯一,如:……………………………… 4分…………………………… 7分3.解:(1)OB 2; …………………………………………………………………………… 2分(2)当∠AOC 的平分线与OM 重合时,如图1.∵OM 平分∠AOC ,∴∠COM =∠AOM .∵∠AOM=10°,∴∠COM =10°. ……………………………… 3分 当∠AOC 的平分线与ON 重合时,如图2.∵ON 平分∠AOC ,∴∠CON =∠AON .∵∠AON=∠AOM +∠MON =10°+20°=30°,∴∠CON =30°.∴∠COM =∠CON +∠MON =30°+20°=50°.…………………………………………………… 4分∵射线OA 与射线OC 关于∠MON 内含对称,∴x 的取值范围是10≤x ≤50. …………… 5分(3)20≤t ≤32.5. ………………………………………………………………… 7分图2。
北京2020-2021学年西城区七年级上册期末数学试卷(含答案)试题
北京市西城区2020秋学年度第一学期期末试卷七年级数学 2021.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为( ).(A )673610⨯ (B )773.610⨯ (C )87.3610⨯ (D )90.73610⨯2. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个立体图形,得到的平面图形是( ).(A ) (B ) (C ) (D )3. 下列运算中,正确的是( ).(A )2(2)4=-- (B ) 224=- (C )236= (D )3(3)27-=-4. 下列各式进行的变形中,不.正确..的是( ). (A )若3a =2b ,则3a +2 =2b +2 (B )若3a =2b ,则3a -5 =2b - 5(C )若3a =2b ,则 9a =4b (D )若3a =2b ,则23a b = 5.若2(1)210x y -++=,则x +y 的值为( ). (A )12 (B )12- (C )32 (D )32-6. 在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转. 旋转门的三片旋转翼把空间等分..成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是().(A)100°(B)120°(C)135°(D)150°7. 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是(A)a > c(B)b +c > 0 (C)|a|<|d| (D)-b<d8. 如图,在下列各关系式中,不.正确..的是().(A)AD - CD=AB + BC(B)AC- BC=AD -DB(C)AC- BC=AC + BD(D)AD -AC=BD -BC9. 某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是().(A)(B)(C)(D).10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人? 如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( ).(A )10060(100)x x =- (B )60100(100)x x =-(C )10060(100)x x =+ (D )60100(100)x x =+二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)11.已知x = 2是关于x 的方程3x + a = 8的解,则a = . 12.一个有理数x 满足: x <0且2x <,写出一个满足条件的有理数x 的值: x = .13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为 .14.已知222x x +=,则多项式2243x x +-的值为 .15.已知一个角的补角比这个角的一半多30°,设这个角的度数为x °,则列出的方程是: .16.右图是一所住宅的建筑平面图(图中长度单位:m ),这所住宅的建筑面积为 m. .17.如图,点A ,O ,B 在同一条直线上,射线OD平分∠BOC ,射线OE 在∠AOC 的内部,且∠DOE =90°,写出图中所有互为余角的角: .18.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上.(1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为 千米(精确到0.1千米).三、计算题(本题共16分,每小题4分)19.(21)(9)(8)(12)---+---解:20. 311()()(2)424-⨯-÷- 解:21.31125(25)25()424⨯--⨯+⨯- 解:22.3213(2)0.254[()]4028-⨯-÷--- 解:四、解答题(本题共20分,每小题5分)23.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.解:24.解方程 12423x x +-+=.解:25.解方程组 253 1.x y x y +=⎧⎨-=⎩, 解:26.已知AB =10,点C 在射线 AB 上, 且12BC AB =,D 为AC 的中点. (1)依题意,画出图形;(2)直接写出线段BD 的长.解:(1)依题意,画图如下:(2)线段BD 的长为 .五、解答题(本题共13分,第27题6分,第28题7分)27.列方程或方程组解应用题为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?28. 如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;②若∠MON=40°,求∠BOD的度数.解:(1)答:∠AOC与∠BOD之间的数量关系为:;理由如下:(2)①补全图形;②备用图北京市西城区第一学期期末试卷七年级数学附加题2021.1试卷满分:20分一、填空题(本题共6分)1.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有2a b a b∆=;当a>b时,都有2a b ab∆=.那么,2△6 = ,2()3-△(3)-= .二、解答题(本题共14分,每小题7分)2.输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t(单位:分钟).他们使用的公式是:dVtD=,其中,V 是点滴注射液的容积,以毫升(ml)为单位,d 是点滴系数,即每毫升(ml)液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V 和d 保持不变的条件下,输完这瓶点滴注射液的时间将会发生怎样的变化?3.阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ 上(点R能与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为−1,点M表示的数为2.图1(1)①点B,C,D分别表示的数为−3,32,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E 表示的数为x,若点A与点E关于线段OM的径向对称,则x的取值范围是;(2)点N是数轴上一个动点,点F表示的数为6,点A与点F关于线段ON径向对称,线段ON的最小值是;(3)在数轴上,点H,K,L表示的数分别是−5,−4,−3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.解:(1)①与点A关于线段OM的径向对称;②x的取值范围是;(2)线段ON的最小值是;(3)北京市西城区第一学期期末试卷七年级数学参考答案及评分标准2021.1 一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题4分)19.(21)(9)(8)(12)---+---解:(21)(9)(8)(12)---+---= -21 + 9 - 8 + 12 ............................................................................................ 1分= -29 + 21 ............................................................................................................. 3分= -8 ....................................................................................................................... 4分20.311()()(2)424-⨯-÷-解:311()()(2)424-⨯-÷-319424=-⨯÷ ....................................................................................................... 2分314429=-⨯⨯ ....................................................................................................... 3分16=-.................................................................................................................... 4分21.31125(25)25()424⨯--⨯+⨯-解:31125(25)25()424⨯--⨯+⨯-=311252525424⨯+⨯-⨯............................................................................... 1分=31125()424⨯+-............................................................................................. 2分=25 .................................................................................................................................. 4分22.3213(2)0.254[()]4028-⨯-÷---解:3213(2)0.254[()]4028-⨯-÷---=1380.254()4048-⨯-÷-- ............................................................................... 1分 =180.254()408-⨯-÷-- .................................................................................. 2分=24840-+⨯- .................................................................................................... 3分=10- ................................................................................................................... 4分四、解答题(本题共21分,23~25题每小题5分,第26题6分)23.2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++ ............................................................................. 2分 =222x y + ............................................................................................................. 3分 当1x =-,3y =时,原式=22(1)23-+⨯ ............................................................................................. 4分=19. ............................................................................................................ 5分24.解方程12423x x +-+= . 解: 去分母,得 3(1)2(2)24x x ++-=. ......................................................... 1分去括号,得 332424x x ++-=. .............................................................. 2分 移项,得 322443x x +=+-. .................................................................. 3分 合并同类项,得 525x =. .......................................................................... 4分 系数化1,得 5x =. ..................................................................................... 5分25.253 1.x y x y +=⎧⎨-=⎩,解:由①得 52x y =-.③ .................................................................................. 1分把③代入②,得 3(52)1y y --=. ................................................................ 2分 解这个方程,得 2y =. .................................................................................. 3分 把2y =代入③,得 1x =. .......................................................................... 4分①②所以,这个方程组的解为 12.x y =⎧⎨=⎩,................................................................. 5分26.解:(1)依题意,画图如下:图1 图2.................................................................................................................... 4分 (2)15或5. ....................................................................................... 6分五、解答题(本题共13分,第27题6分,第28题7分)27.(1)525 ,585;....................................................................................................... 2分(2)解:设这个班购买x ( x >5 ) 盒乒乓球时,在甲、乙两家商店付款相同. .............................................................................................................................. 3分由题意,得100525(5)0.910050.925x x ⨯+-=⨯⨯+⨯. .......... 5分 解方程,得 30x =.答:购买30盒乒乓球时,在甲、乙两家商店付款相同. ................... 6分28.解:(1)∠AOC =∠BOD ; ....................................................................................... 1分理由如下:∵ 点A ,O ,B 三点在同一直线上,∴ ∠AOC +∠BOC = 180°. ................................................................ 2分 ∵ ∠BOD 与∠BOC 互补, ∴ ∠BOD +∠BOC = 180°.∴ ∠AOC =∠BOD . .......................................................................... 3分(2)①补全图形,如图所示.②设∠AOM =α,∵ OM 平分∠AOC , ∴ ∠AOC =2∠AOM =2α. ∵ ∠MON =40°,∴ ∠AON =∠MON +∠AOM =40°+ α. ∵ ON 平分∠AOD ,∴ ∠AOD =2∠AON =80° +2α. 由(1)可得 ∠BOD =∠AOC =2α, ∵∠BOD +∠AOD =180°, ∴ 2α. + 80 +2α.=180°. ∴ 2α. =50°.∴ ∠BOD =50°. ......................................................................... 7分D C B A D C B A七年级数学附加题参考答案及评分标准 2021.1一、填空题(本题共6分)1. 24,-6 ................................................................................................................ 6分 二、解答题(本题共14分,每小题7分)2.解:(1)由D = 50, d = 25, 360V =, dVt D=, ∴ 2536050t ⨯=. ........................................................................... 3分 ∴ t =180. ............................................................................. 4分答:输完点滴注射液的时间是180分钟.(2)设输的速率为D 1滴/分,点滴注射的时间为t 1分钟,则11dVt D =. ......................................................................................... 5分 输液速率缩小为112D 2,点滴注射的时间延长到t 2分钟, 则21112212dV dVt t D D ===, .................................................................... 6分 答:在d 和V 保持不变的条件下,D 将缩小到原来的12时,点输完滴注射的时间延长为原来的2倍. ......................................................................................... 7分 3.(1)①点C ,点D 与点A 是关于线段OM 的径向对称点; ............................ 2分②x 的取值范围是1≤x ≤5; ......................................................................... 4分 (2)52...................................................................................................................... 5分 (3)解:移动时间为t (t >0)秒时,点H ,K ,L 表示的数分别是−5+t ,−4+3t ,−3+3t .此时,线段HK 的中点R 1表示的数是922t -, 线段HL 的中点R 2表示的数是2t−4.当线段R 1R 2在线段OM 上运动时,线段KL 上至少存在一点与点P 关于线段OM 径向对称. 当R 2经过点O 时,2t−4=0时,t =2.当R 1经过点M 时,922t -=2时,t =134. ∴ 当2≤t ≤134时,线段R 1R 2在线段OM 上运动. 2113 4时,线段KL上至少存在一点与点P关于线段OM径向对称.∴2≤t≤。
2020-2021学年北京市西城区七年级(上)期末数学试卷(附答案详解)
2020-2021学年北京市西城区七年级(上)期末数学试卷1.−23的相反数是()A. −23B. 23C. 32D. −322.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为()A. 697.8×103B. 69.78×104C. 6.978×105D. 0.6978×1063.下列计算正确的是()A. −2(a−b)=−2a+bB. 2c2−c2=2C. 3a+2b=5abD. x2y−4yx2=−3x2y4.如图是某个几何体的平面展开图,则这个几何体是()A. 长方体B. 三棱柱C. 四棱锥D. 三棱锥5.下列方程变形中,正确的是()A. 方程x−12−x5=1,去分母得5(x−1)−2x=10B. 方程3−x=2−5(x−1),去括号得3−x=2−5x−1C. 方程23t=32,系数化为1得t=1D. 方程3x−2=2x+1,移项得3x−2x=−1+26.如图,OA表示北偏东20°方向的一条射线,OB表示南偏西50°方向的一条射线,则∠AOB的度数是()A. 100°B. 120°C. 140°D. 150°7.若x2−3x=4,则3x2−9x+8的值是()A. 20B. 16C. 4D. −48.如图,数轴上的点A表示的数为有理数a,下列各数中在0,1之间的是()A. |a|B. −aC. |a|−1D. a+19.下列说法正确的是()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别为45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)如果两个角的度数分别是73°42′和16°18′,那么这两个角互余(4)一个锐角的余角比这个锐角的补角小90°A. 1个B. 2个C. 3个D. 4个10.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a∗b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3∗1=2.若2∗3=(2x+1)∗2,则x的值为()A. 0,2B. 1,2C. 1,0D. 1,311.用四舍五入法取近似数:2.7682≈______.(精确到0.01)12.若x=−1是关于x的方程2x−m=5的解,则m的值是______.13.若−12x m+3y与2x4y n+3是同类项,则(m+n)21=______.14.如图所示的网格是正方形网格,则∠AOB______∠MPN.(填“>”,“=”或“<”)15.用符号[a,b]表示a,b两数中的较大者,用符号(a,b)表示a,b两数中的较小者,则[−1,−12]+(0,−32)的值为______.16.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个,依题意可列方程得______.17.如图,C,D,E为线段AB上三点,AB=2,则AB的长为______;(1)若DE=15CD,则CD的长为______.(2)在(1)的条件下,若点E是DB的中点,AC=1318.有四个大小完全相同的小长方形和两个大小完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是______(用含m,n的式子表示).19.如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是:______.20.计算:(1)13+(−24)−25−(−20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(−36); (4)−14−(1−0.5)×13×|1−(−5)2|.21. 先化简,再求值:(3ab 2−a 2b)−a 2b −2(2ab 2−a 2b),其中a =1,b =−2.22. 解下列方程:(1)3(x +1)=5x −1;(2)2x −13=2x +16−123. 解方程组:{2x +3y =−34x +5y =−7.24.请补全下面的解题过程(括号中填写推理的依据)已知:如图,点A,O,B在同一条直线上,OD平分∠AOE,∠COD=90°.求证:OC是∠BOE的平分线.证明:因为OD是∠AOE的平分线,所以∠AOD=∠DOE.(理由:______)因为∠COD=90°.所以∠DOE+∠______=90°,∠AOD+∠BOC=180°−∠COD=______°.因为∠AOD=∠DOE,所以∠______=∠______.(理由:______)所以OC是∠BOE的平分线.25.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.26.数轴上有A,B两个点,点A在点B的左侧,已知点B表示的数是2,点A表示的数是a.(1)若a=−3,则线段AB的长为______;(直接写出结果)(2)若点C在线段AB之间,且AC−BC=2,求点C表示的数;(用含a的式子表示)(3)在(2)的条件下,点D在数轴上C点左侧,AC=2AD,BD=4BC,求a的值.27.观察下列等式,探究其中的规律并回答问题:1+8=32,1+8+16=52,1+8+16+24=72,1+8+16+24+32=k2,…,(1)第4个等式中正整数k的值是______;(2)第5个等式是:______;(3)第n个等式是:______.(其中n是正整数)28.如图所示的三种拼块A,B,C,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如编号为A的拼块的面积为3个单位.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,且这三种拼块拼图时可平移、旋转,或翻转.(1)若用1个A种拼块,2个B种拼块,4个C种拼块,则拼出的正方形的面积为______个单位.(2)在图1和图2中,各画出了一个正方形拼图中1个A种拼块和1个B种拼块,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:所用的A,B,C三种拼块的个数与(1)不同,用实线画出边界线,拼块之间无缝隙,且不重叠.(AB+ 29.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=e2 CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是−3,−1,3,5,则线段EF,OT的相对离散度是______,线段FG,EH的相对离散度是______;(2)设数轴上点O右侧的点S表示的数是s,若线段OS,OT的相对离散度为e=1,2求s的值;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.答案和解析1.【答案】B【解析】解:−23的相反数为23.故选:B .一个非0数的相反数就是只有符号不同的两个数.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:697800用科学记数法表示为6.978×105,故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】D【解析】解:A 、−2(a −b)=−2a +2b ,故此选项错误;B 、2c 2−c 2=c 2,故此选项错误;C 、3a +2b ,无法合并,故此选项错误;D 、x 2y −4yx 2=−3x 2y ,正确.故选:D .直接利用合并同类项分别计算得出答案此题主要考查了整式的加减,正确合并同类项是解题关键.4.【答案】C【解析】解:由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体为四棱锥.故选:C.由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体.此题主要考查的是几何体的展开图,熟记几何体的侧面、底面图形特征即可求解.5.【答案】A【解析】解:∵方程x−12−x5=1,去分母得5(x−1)−2x=10,∴选项A符合题意;∵方程3−x=2−5(x−1),去括号得3−x=2−5x+5,∴选项B不符合题意;∵方程23t=32,系数化为1得t=94,∴选项C不符合题意;∵方程3x−2=2x+1,移项得3x−2x=1+2,∴选项D不符合题意.故选:A.根据等式的性质,逐项判断即可.此题主要考查了解一元一次方程的方法,要熟练掌握,注意等式的性质的应用.6.【答案】D【解析】解:因为OA表示北偏东20°方向的一条射线,OB表示南偏西50°方向的一条射线,所以∠AOB=20°+90°+(90°−50°)=150°.故选:D.根据方向角的定义可直接确定∠AOB的度数.本题考查了方向角及其计算.掌握方向角的概念是解题的关键.7.【答案】A【解析】解:∵x2−3x=4,∴3x2−9x−15=3(x2−3x)+8=3×4+8=20,故选:A.先把3x2−9x+8变形为3(x2−3x)+8,然后利用整体代入的方法计算.此题考查了代数式求值,利用了整体代入的思想进行解答是解题关键.8.【答案】C【解析】解:由图可知−2<a<−1,A、|a|>1,故A不符合题意,B、−a>1,故B不符合题意,C、1<|a|<2,则0<|a|−1<1,故C符合题意,D、−2<a<−1,则−1<a+1<0,故D不符合题意,故选:C.根据数轴上a的位置可得a得范围,从而得到答案.本题考查数轴、绝对值及有理数的运算,题目较容易,关键是根据数轴上点的位置判断a得范围.9.【答案】B【解析】解:(1)如果互余的两个角的度数之比为1:3,那么这两个角分别为22.5°和67.5°,故原说法错误;(2)如果两个角是同一个角的补角,那么这两个角一定相等,故原说法错误;(3)如果两个角的度数分别是73°42′和16°18′,那么这两个角互余,故原说法正确;(4)一个锐角的余角比这个锐角的补角小90°,故正确.正确的个数有2个,故选:B.根据余角和补角的定义,结合度分秒的换算逐项计算可判断求解.本题主要考查补角和余角,灵活运用余角和补角的性质及求解角的度数是解题的关键.10.【答案】C【解析】解:∵2∗3=(2x+1)∗2,∴(2x+1)∗2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.首先根据题意,由2∗3=(2x+1)∗2,可得:(2x+1)∗2=3,然后根据数表,可得:2x+1=3或2x+1=1,据此求出x的值为多少即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.11.【答案】2.77【解析】解:2.7682≈2.77.(精确到0.01).故答案为:2.77.把千分位上的数字8进行四舍五入即可;本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【答案】−7【解析】解:把x=−1代入方程得:−2−m=5,解得:m=−7,故答案是:−7.把x=−1代入方程计算即可求出m的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】−1【解析】解:由题意得:m +3=4,n +3=1,∴m =1,n =−2,∴(m +n)21=(1−2)21=−1,故答案为:−1.根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.本题考查了同类项.解题的关键是熟练掌握同类项的定义.14.【答案】=【解析】解:根据网格的特征以及角的表示可知,∠MPN =∠COD ,而∠COD =∠AOB ,因此∠MPN =∠AOB ,故答案为:=.根据正方形网格的特征,以及角叉开的程度进行判断即可.本题考查角的大小比较,理解角的意义和正方形网格特征是正确判断的前提.15.【答案】−2【解析】解:根据题意得:[−1,−12]+(0,−32)=−12+(−32)=−2.故答案为:−2.根据题意列出算式,计算即可得到结果.此题主要考查了有理数大小比较,熟记有理数大小比较的方法是解答本题的关键. 16.【答案】(x −6)+(x −3)+x +(x +3)+(x +6)=60【解析】解:设中间的那个人分得x 个,由题意得:(x −6)+(x −3)+x +(x +3)+(x +6)=60,故答案为:(x −6)+(x −3)+x +(x +3)+(x +6)=60.设中间的那个人分得x个,则其它四人各分得(x−6)个,(x−3)个,(x+3)个,(x+6)个,根据共分橘子60颗列出方程即可.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.17.【答案】10 92【解析】解:(1)∵DE=15AB=2,∴AB=10;(2)∵点E是DB的中点,DE=2,∴DB=2DE=4,∵AB=10,∴AD=AB−DB=10−4=6,∵AC=13CD,∴CD=34AD=92.故答案为92.(1)由15AB=2计算可求解AB的长;(2)由中点的定义可求得DB的长,结合AB的长可得AD=6,结合已知条件可求解CD 的长.本题主要考查线段的中点,两点间的距离,求解线段AD的长是解题的关键.18.【答案】m−n2【解析】解:设小长方形的长为x,宽为y,根据题意得:m+y−x=n+x−y,即2x−2y=m−n,整理得:x−y=m−n2.则小长方形的长与宽的差是m−n2.故答案为:m−n2.设小长方形的长为x,宽为y,根据题意由大长方形的长度相等列出方程求出x−y的值,即为长与宽的差.此题考查了二元一次方程的应用,解题关键是弄清题意,找到合适的等量关系,列出方程,注意整体思想的运用.19.【答案】两点之间,线段最短【解析】解:(1)如图,AB即为所求;(2)如图,射线AD即为所求;(3)直线BC即为所求;线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.(1)根据作图语句连接AB即可;(2)根据射线和线段的定义即可作射线AD,并在线段AD的延长线上用圆规截取DE= AB;(3)根据直线和射线定义即可作直线BC与射线AD交于点F,进而可得出结论的依据.本题考查了作图−复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本作图方法.20.【答案】解:(1)原式=13−24−25+20=−16;(2)原式=25×15×15×43=43;(3)原式=−79×(−36)+56×(−36)−34×(−36)=28−30+27 =25;×24(4)原式=−1−0.5×13=−1−4=−5.【解析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=3ab2−a2b−a2b−4ab2+2a2b=−ab2,当a=1,b=−2时,原式=−1×(−2)2=−4.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)去括号,可得:3x+3=5x−1,移项,可得:3x−5x=−1−3,合并同类项,可得:−2x=−4,系数化为1,可得:x=2.(2)去分母,可得:2(2x−1)=2x+1−6,去括号,可得:4x−2=2x+1−6,移项,可得:4x−2x=1−6+2,合并同类项,可得:2x=−3,.系数化为1,可得:x=−32【解析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.23.【答案】解:{2x +3y =−3①4x +5y =−7②, ②−①×2得:−y =−1,解得:y =1,把y =1代入①得:x =−3,则方程组的解为{x =−3y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.【答案】角平分线的定义 COE 90 COE BOC 等角的余角相等【解析】证明:因为OD 是∠AOE 的平分线,所以∠AOD =∠DOE.(理由:角平分线的定义),因为∠COD =90°.所以∠DOE +∠COE =90°,∠AOD +∠BOC =180°−∠COD =90°,因为∠AOD =∠DOE ,所以∠COE =∠BOC(理由:等角的余角相等),所以OC 是∠BOE 的平分线.故答案依次为:角平分线的定义,COE ,90,COE ,BOC ,等角的余角相等. 根据角平分线的定义,以及等角的余角相等逐步推理证明∠COE =∠BOC 即可求证OC 是∠BOE 的平分线.本题考查角平分线的定义以及证明推理过程的正确书写,熟练掌握角平分线的定义,以及等角的余角相等逐步推理证明∠COE =∠BOC 是解题的关键.25.【答案】解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95,解得:{x =25y =10, 答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元.(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,m <n ,依题意,得:25m +10n =200,∴m =8−25n.∵m ,n 均为正整数,∴n 为5的倍数,∴{m =6n =5或{m =4n =10或{m =2n =15, ∵m <n ,∴{m =6n =5不合题意舍去, ∴共2种购买方案,方案一:购进A 型车4辆,B 型车10辆;方案二:购进A 型车2辆,B 型车15辆.【解析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元”,列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,根据总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数即可得出各购买方案.本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.【答案】5【解析】解:(1)AB =2−(−3)=5.故答案为:5;(2)设点C 表示的数为x ,则AC =x −a ,BC =2−x ,∵AC −BC =2,∴x −a −(2−x)=2,解得x=2+ a2.∴点C表示的数为2+a2;(3)依题意AC=x−a=2+ a2−a=2− a2,AD=12AC=12(2− a2)=1−a4,AB=2−a,BD=4BC=4(2−x)=4(2−2− a2)=−2a.分两种情况:①当点D在点A的左侧时,∵BD=AB+AD,∴−2a=2−a+1−a4,解得a=−4;②当点D在点A的右侧,点C的左侧时,∵BD=AB−AD,∴−2a=2−a−1+a4,解得a=−45.综上,a的值是−4或−45.(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为x,则AC=x−a,BC=2−x,根据AC−BC=2,即可得出关于x的一元一次方程,解之即可得出结论;(3)根据题意得到AC=x−a=2− a2,AD=12AC=1−a4,AB=2−a,BD=4BC=−2a.再分①点D在点A的左侧时,BD=AB+AD;②点D在点A的右侧,点C的左侧时,BD=AB−AD,分别列出方程,解之即可.本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.【答案】9 1+8+16+24+32+40=1121+8+16+24+32+...+8n=(2n+ 1)2【解析】解:(1)1+8+16+24+32=k2,且k取正整数,∴k=9,故答案为:9;(2)观察上面的规律可得:第5个等式是:1+8+16+24+32+40=112,故答案为:1+8+16+24+32+40=112;(3)根据已知等式可归纳为:第n个等式是:1+8+16+24+32+...+8n=(2n+1)2.故答案为:1+8+16+24+32+...+8n=(2n+1)2.(1)根据给出的算式计算即可;(2)总结规律继续写出第5个算式即可;(3)根据上面的式子可归纳第n个等式为1+8+16+24+32+...+8n=(2n+1)2.本题主要考查数字的变化规律,总结归纳出数字的变化规律是解题的关键.28.【答案】25【解析】解:(1)1个A种拼块,2个B种拼块,4个C种拼块,面积=3+6+16=25,故答案为:25.(2)图形如图所示:(1)求出各个图形的面积和即可.(2)分别用3个A,2G B,1个C或4个A,1个吧,1个C,拼面积为25的正方形即可.本题考查利用旋转,平移设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.29.【答案】32【解析】解:(1)∵点E,F表示的数分别是−3,−1,∴EF=2,EF的中点M对应的数为−2.∵数轴上点O表示的数为0,点T表示的数为2,∴OT=2,OT的中点N所对应的数为1.∴MN=3.∵MN=e2(EF+OT),∴3=e2(2+2).∴e=32;∵数轴上点E,F,G,H表示的数分别是−3,−1,3,5,∴FG=4,FG的中点J对应的数为1,EH=8,EH的中点K对应的数为1,∴JK=0,∴e=0.故答案为:32;0;(2)设线段OS,OT的中点为L,K,∵数轴上点O右侧的点S表示的数是s,点T表示的数为2,∴OS=s,OT=2.∴点L,K在数轴上表示的数为s2,1,∴LK=|1−s2|.∵线段OS,OT的相对离散度为e=12,∴|1−s2|=12×12(s+2).∴s+2=|4−2s|.解得:s=23或s=6.答:s的值为23或6.(3)r≥2.理由:数轴上点P,Q在数轴上对应的数为m,n,∵数轴上点P,Q都在点O的右侧(其中点P,Q不重合),∴m>0,n>0,且m≠n.∵点R是线段PQ的中点,∴点R所表示的数r=m+n2.设线段OP,OT的中点为M,N,则M对应的数为m2,N点对应的数为1,∵线段OP,OT的相对离散度为e1,∴|m2−1|=e12(m+2).∴e1=|m−2|m+2.同理可得:e2=|n−2|n+2.∵e1=e2,∴|m−2|m+2=|n−2|n+2.①当m−2>0,n−2>0时,解得:m=n,∵点P,Q不重合,∴m≠n,舍去;②当m−2<0,n−2<0时,解得:m=n,同样,不合题意舍去;③当m−2>0,n−2<0时,解得:mn=4.④当m−2<0,n−2>0时,解得:mn=4.综上,mn=4.∵m2−2mn+n2=(m−n)2≥0,∴(m−n)2+4mn≥4mn.∴(m+n)2≥16.∴(m+n)24≥4.即(m+n2)2≥4.∴m+n2≥2.即r≥2.(1)依据相对离散度的计算公式,解答即可;(2)利用对离散度的计算公式,列出关于s的方程,解方程即可得出结论;(3)设P,Q对应的数为m,n,则R对应的数r=m+n;利用对离散度的计算公式,分2别得出e1,e2,利用e1=e2时,根据分类讨论的思想得到m,n的关系式,最终得出r 的取值范围.本题主要考查了数轴,数轴上的点的几何意义,绝对值的意义,非负数的应用.本题是阅读型题目,准确理解题目中的定义与公式并熟练应用是解题的关键.。
北京市西城区初一上学期期末数学试卷(附答案)
∴∠ACE =
,∠COF = 1 ∠COB,(理由:
)
2
∵ 点 C 在射线 OA 上,
∴∠ACD + ∠OCD = 180◦,
∵∠COB + ∠OCD = 180◦,
∴∠ACD = ∠
,(理由:
)
∴∠ACE = ∠COF .
27. 自 2014 年 12 月 28 日北京公交地铁开通以来,人们的出行成本发生了巨大变化,地铁和公交车票价如下表 所示:
1, =
14.
26. 如图,点 C 在射线 OA 上,CE 平分 ∠ACD,OF 平分 ∠COB 并与射线 CD 交于点 F .
(1) 依题意补全图形;
(2) 若 ∠COB + ∠OCD = 180◦,求证:∠ACE = ∠COF .
请将下面的证明过程补充完整.
证明:CE 平分 ∠ACD,OF 平分 ∠COB,
解得:
x = 10, y = 2.
答:小林乘坐地铁的里程为 10 公里,乘坐公交车的里程为 2 公里.
28. (1) 2;−2 (2) 由题意可知,点 P 表示的数为 −4 + 2t,而 B 点表示的数为 6, 则 BP = | − 4 + 2t − 6| = 2, |2t − 10| = 2, ∴ 2t − 10 = 2 或 2t − 10 = −2, ∴ t = 6 或 t = 4. (3) ①
C. 8x + 1 = 7x
D. 8x + 1 = 7x − 1
10. 下列四张正方形硬纸片,分别将阴影部分剪去后,再沿虚线折叠,其中可以围成一个封闭长方体包装盒的是 ()
A
B
C
D
二填空题每小题3分
2020北京西城初一(上)期末数学含答案
2020北京西城初一(上)期末数学 2020.1第1-10题均有四个选项,符合题意的选项只有一个.1. 的倒数是A. B. C. D.2.在国庆70周年的联欢活动中。
参与表演的名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有颗灯珠,约颗灯珠共同构成流光溢彩的巨幅光影图案。
给观众带来了震撼的视觉效果.将用科学记数法表示应为A. B. C. D.3. 下列计算中正确的是A. B.C. D.其依据是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 直线比线段长5.下列解方程的步骤中正确的是A. 由,可得B. 由,可得C. 由,可得D. 由,可得6. 已知,则代数式的值为A. B. C. D.7. 有理数在数轴上的对应点的位置如图所示,有如下四个结论:①||; ②③④上述结论中,所有正确结论的序号是A. ①②B. ②③C. ②④D. ③④8. 下列说法中正确的是A. 如果||,那么一定是7B. 表示的数一定是负数C. 射线和射线是同一条射线D. 一个锐角的补角比这个角的余角大°9. 下列图形中,可能是右面正方形的展开图示10. 居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标,据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:根据上图提供的信息,下列推断中不合理的是A. 2018年12月的增长率为,说明与2018年11月相比,全国居民消费价格保持不变B. 2018年11月与2018年10月相比,全国居民消费价格降低C. 2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是D. 2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共19分,第11~15题每小题2分,第16~18题每小题3分)11. 右图所示的网格是正方形网格,∠∠(填“”,“”或“”)12. 用四舍五入法将精确到千分位,所得到的近似数为.13. 已知是关于的一元二次方程的解,请写出一组满足条件的的值:,.14. 若||,则.15.《九章算术》是中国古代非常重要的一部数学典籍.被视为“算经之首”《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的.全书按题目的应用范围与解脱方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样-个问题:今有共买金.人出四百,盈三千四万;人出三百,盈一百.问人数、金价各几何?共大意是:假设合伙买金,每人出钱。
1.2020.1西城初一数学期末试题(含附加)
北京市西城区2019—2020学年度第一学期期末试卷七年级数学 2020.1一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有一个. 1.4-的倒数是 A .14 B .14- C .4 D .4- 2.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示应为 A .0.3369×107 B .3.369×106 C .3.369×105 D .3369×103 3.下列计算中正确的是A .5611a b ab +=B .98a a -=C .2334a a a +=D .347ab ab ab +=4.如图,点A ,B 在直线l 上,点C 是直线l 外一点, 可知CA +CB >AB ,其依据是 A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长 5.下列解方程的步骤中正确的是A .由57x -=,可得75x =-B .由82(31)x x -+=,可得862x x --=C .由116x =-,可得16x =- D .由1324x x-=-,可得2(1)3x x -=- 6.已知231a a -=,则代数式2625a a --的值为A .3-B .4-C .5-D .7-7.有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①3a >;②0ab >;③0b c +<;④0b a ->. 上述结论中,所有正确结论的序号是 A .①② B .②③ C .②④ D .③④8.下列说法中正确的是x=,那么x一定是7B.a-表示的数一定是负数A.如果7C.射线AB和射线BA是同一条射线90°9A B C D10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:根据上图提供的信息,下列推断中不.合理的是A.2018年12月的增长率为0.0%,即与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是-0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大精确到千分位,所得到的近似数为.13.已知x =3是关于x 的一元一次方程ax +b =0的解,请写出一组满足条件的a ,b 的值:a = ,b = .14.若2(1)20200x y ++-=,则y x = .15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何? 其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为 . 16.我们把a cb d 称为二阶行列式,且 ac b d=ad bc -.如:1 21(4)32103 4=⨯--⨯=--. (1)计算:2 63 5-=_________;(2)若 4 72 m -=6,则m 的值为__________.17.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =13BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为30,则BE 的长为__________.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a ,则商品包装盒的长为____________,图2中阴影部分的周长与图3中阴影部分的周长的差为________.(都用含a 的式子表示)图1 图2 图3三、计算题(本题共16分,每小题8分)19.计算:(1)(5)12(8)21-+---; (2)13(16)(1)45⨯-÷-.20.计算:(1)3778(1)()48127-+⨯-; (2)28[(3)(0.75)19](4)3---⨯-⨯-.四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.先化简,再求值:33364(2)2(3)y x xy y xy +---,其中2x =-,3y =.22.解方程:3221153x x +-=+.23.解方程组:436,28.x y x y +=⎧⎨-=⎩24.已知:如图,O 是直线AB 上一点,OD 是∠AOC 的平分线,∠COD 与∠COE 互余.求证:∠AOE 与∠COE 互补. 请将下面的证明过程补充完整:证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE =_______°. ∵OD 是∠AOC 的平分线, ∴∠AOD =∠_________. (理由:_______________________________________) ∴∠BOE =∠COE . (理由:_______________________________________)∵∠AOE +∠BOE =180°.∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中i ,j =1,2,3,4),如图1中第2行第1列的数字210a =;对第i 行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.图1 图2(1)图1代表的学生所在年级是__________年级,他的学号是__________; (2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.26.学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元. (1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.27.点O 为数轴的原点,点A ,B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为________;(2)若线段BM 的长为4.5,则线段AC 的长为__________; (3)若线段AC 的长为x ,求线段BM 的长(用含x 的式子表示).北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题2020.1一、填空题(本题6分)1.观察下列等式,探究其中的规律并解答问题:2=,112++=,23432++++=,3456752++++++=,45678910k……(1)第4个等式中,k=_______;(2)第5个等式为:______________________________________;(3)第n个等式为:_______________________________________(其中n为正整数).二、解答题(本题共14分,每小题7分)2.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示).图1 图2(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为_____________;(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法;(要求:画出各块拼板的轮廓)(3)随着七巧板的发展,出现了一些形式不同的七巧板.如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形:大正方形的中间去掉一个小正方形.请在图4中画出拼图方法.(要求:画出各块拼板的轮廓)图3 图43.对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA ,OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM ,ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称.已知:如图2,在平面内,∠AOM=10°, ∠MON=20°.(1)若有两条射线OB 1,OB 2的位置如图3所示,且∠B 1OM=30°,∠B 2OM=15°,则在这两条射线中,与射线OA 关于∠MON 内含对称的射线是 ;图2 图3 图4(2)射线OC 是平面上绕点O 旋转的一条动射线,若射线OA 与射线OC 关于∠MON内含对称,设∠COM=x °,求x 的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH =20°.现将射线OH 绕点O 以每秒1°的速度顺时针旋转,同时将射线OE 和OF 绕点O 都以每秒3°的速度顺时针旋转.设旋转的时间为t 秒,且0<t <60.若∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,直接写出t 的取值范围.图1。
1.2020.1西城区初一数学期末试题答案(含附加)
北京市西城区2019—2020学年度第一学期期末试卷七年级数学答案及评分参考2020.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题8分)19.解:(1)(5)12(8)21-+---=512821-++-………………………………………………………………1分=2620-+……………………………………………………………………3分=6-.…………………………………………………………………………4分(2)13(16)(1) 45⨯-÷-=181645⨯÷……………………………………………………………………2分=151648⨯⨯……………………………………………………………………3分=52.……………………………………………………………………………4分20.解:(1)3778 (1)() 48127-+⨯-=7778()()48127-+⨯-…………………………………………………………1分=2213-+-……………………………………………………………………3分=213 -.………………………………………………………………………4分(2)28[(3)(0.75)19](4)3---⨯-⨯-=(9219)(4)+-⨯-……………………………………………………………2分=(8)(4)-⨯-…………………………………………………………………3分=32.…………………………………………………………………………4分四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.解:33364(2)2(3)y x xy y xy +---=33364862y x xy y xy +--+ ……………………………………………………2分 =346x xy -. ………………………………………………………………………3分 当2x =-,3y =时,原式=34(2)6(2)3⨯--⨯-⨯ ………………………………………………………4分 =4. ……………………………………………………………………………5分22.3221153x x +-=+解:去分母,得 3(32)155(21)x x +=+-. ……………………………………………1分去括号,得 9615105x x +=+-. …………………………………………………2分 移项,得 9101556x x -=--. ……………………………………………………3分 合并,得 4x -=. ……………………………………………………………………4分 系数化为1,得 4x =-. ……………………………………………………………5分23.436,28.x y x y +=⎧⎨-=⎩解:由②得28y x =-.③ …………………………………………………………………1分 把③代入①,得43(28)6x x +-=. ……………………………………………………2分解得3x =. ………………………………………………………………………………3分 把3x =代入③,得2y =-. …………………………………………………………4分所以,原方程组的解为3,2.x y =⎧⎨=-⎩………………………………………………………5分24.证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE = 90 °. …………………………………………………1分 ∵OD 是∠AOC 的平分线, ∴∠AOD =∠ COD .(理由: 角平分线的定义 )…………………………3分 ∴∠BOE =∠COE .(理由: 等角的余角相等 ) ……………………………4分∵∠AOE +∠BOE =180°,∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.① ②25.解:(1)七,28; ………………………………………………………………………3分 (5分 26.解:(y 元. ……………………………………1分根据题意,得5101150,961170.x y x y +=⎧⎨+=⎩ ……………………………………………3分解得80,75.x y =⎧⎨=⎩…………………………………………………………………4分答:篮球单价为80元,足球单价为75元.(2)购买5个篮球,24个足球;或购买20个篮球,8个足球.………………6分27.解:(1)1-; …………………………………………………………………………1分(2)2或16; ………………………………………………………………………3分 (3)①当点C 在点A 的右侧(或重合)时,如图1,点C 表示的数为5x +.∵M 为线段OC 的中点, ∴点M 表示的数为52x+.∴BM =5(1)2x +--=72x+. ②当点C 在点A 的左侧时,点C 表示的数为5x -,∴点M 表示的数为52x-.ⅰ)若点M 在点B 的右侧(或重合),如图2,则BM =5(1)2x ---=72x-. ⅱ)若点M 在点B 的左侧,如图3 则BM =512x ---=72x -.北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题答案及评分参考2020.1一、填空题(本题6分) 1.(1)7; ………………………………………………………………………………… 2分 (2)256789101112139++++++++=; ………………………………………… 4分 (3)2(1)(2)(32)(21)n n n n n ++++++-=-. ………………………………… 6分二、解答题(本题共14分,每小题7分) 2.解:(1)8; ……………………………………………………………………………… 2分(2)答案不唯一,如: (3)答案不唯一,如:……………………………… 4分…………………………… 7分3.解:(1)OB 2; …………………………………………………………………………… 2分(2)当∠AOC 的平分线与OM 重合时,如图1. ∵OM 平分∠AOC , ∴∠COM =∠AOM . ∵∠AOM=10°, ∴∠COM =10°. ……………………………… 3分当∠AOC 的平分线与ON 重合时,如图2.∵ON 平分∠AOC , ∴∠CON =∠AON .∵∠AON=∠AOM +∠MON =10°+20°=30°, ∴∠CON =30°.∴∠COM =∠CON +∠MON =30°+20°=50°.…………………………………………………… 4分 ∵射线OA 与射线OC 关于∠MON 内含对称,∴x 的取值范围是10≤x ≤50. …………… 5分(3)20≤t ≤32.5. ………………………………………………………………… 7分图2。
2020学年北京市西城区人教版七年级上期末数学试卷含答案解析
2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2020秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)3D.(﹣2)22.(2020秋•西城区期末)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×1053.(2020秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)4.(2020秋•西城区期末)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab5.(2020秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣56.(2020秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%﹣41 ﹣30 ﹣52沸点近似值(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R127.(2020秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣18.(2020秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④9.(2分)(2020秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O10.(2分)(2020秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2020秋•宝应县期末)﹣2020的相反数是.12.(2020秋•西城区期末)单项式的次数是.13.(2020秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为.14.(4分)(2020秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠,这个余角的度数等于.15.(4分)(2020秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为℃.16.(2分)(2020秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是.17.(2分)(2020秋•泰兴市期末)一件商品按成本价提高2020价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.18.(2分)(2020秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为的点,…,第2020次“移位”后,他到达编号为的点.三、计算题(本题共16分,每小题12分)19.(12分)(2020秋•西城区期末)(1)(﹣12)﹣(﹣2020(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.20204分)(2020秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.四、先化简,再求值(本题5分)21.(5分)(2020秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.五、解答题(本题5分)22.(5分)(2020秋•西城区期末)解方程:.六、解答题(本题7分)23.(7分)(2020秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN 平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=.(理由:)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠+∠)=×90°=°.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2020秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.25.(5分)(2020秋•西城区期末)从2020年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2020年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2020年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2020年需要交1563元天然气费,他家2020年用了多少立方米天然气?八、解答题(本题6分)26.(6分)(2020秋•西城区期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.九、附加题(试卷满分:202027.(6分)(2020秋•西城区期末)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的2020如表中202000的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.28.(5分)(2020秋•西城区期末)推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:一班名次二班名次三班名次四班名次五班名次一班班长猜 3 5二班班长猜1 4三班班长猜 5 4四班班长猜 2 1五班班长猜3 4正确结果年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.29.(9分)(2020秋•西城区期末)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….①用a n的表达式表示a n,再用a0和n的表达式表示a n;﹣1②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.2020学年北京市西城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2020秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)3D.(﹣2)2【考点】正数和负数.【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.【点评】本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.2.(2020秋•西城区期末)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2 500 000用科学记数法表示为2.5×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2020秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)【考点】去括号与添括号.【专题】常规题型.【分析】分别根据去括号与添括号的法则判断各选项即可.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、﹣a+b=﹣(a﹣b),故本选项正确;D、2﹣3x=﹣(3x﹣2),故本选项错误.故选C.【点评】本题考查去括号与添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.4.(2020秋•西城区期末)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【解答】解:A、7a+a=8a,故本选项错误;B、3x2y﹣2yx2=x2y,故本选项正确;C、5y﹣3y=2y,故本选项错误;D、3a+2b,不是同类项,不能合并,故本选项错误;故选B.【点评】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.5.(2020秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣5【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:原式=2(a﹣b)﹣3,当a﹣b=1时,原式=2﹣3=﹣1.故选B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.(2020秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%﹣41 ﹣30 ﹣52沸点近似值(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R12【考点】有理数大小比较.【专题】应用题.【分析】数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.【解答】解:因为﹣52<﹣41<﹣32,所以这三种制冷剂按沸点从低到高排列的顺序是R410A,R22,R12,故选D【点评】此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.(2020秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣1【考点】代数式求值.【专题】新定义.【分析】把x=﹣1代入f(x)计算即可确定出f(﹣1)的值.【解答】解:根据题意得:f(﹣1)=1﹣3﹣5=﹣7.故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.(2020秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④【考点】直线、射线、线段;两点间的距离;余角和补角.【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【解答】解:①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选D.【点评】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.9.(2分)(2020秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【考点】数轴.【专题】探究型.【分析】根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选A.【点评】本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.10.(2分)(2020秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:A、加号的水平线上每个小正方形上面都有一个小正方形,故A正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故B 正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故C错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故D正确;故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2020秋•宝应县期末)﹣2020的相反数是﹣2020.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2020的相反数是﹣2020.故答案为:﹣2020..【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.(2020秋•西城区期末)单项式的次数是4.【考点】单项式.【分析】单项式中所有字母的指数的和叫单项式的次数.【解答】解:单项式的次数是4.故答案为:4.【点评】本题主要考查的是单项式的概念,掌握单项式的次数的定义是解题的关键.13.(2020秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为 3.89.【考点】近似数和有效数字.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:3.886≈3.89(精确到0.01).故答案为3.89.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.(4分)(2020秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=42°30′;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠AOD,这个余角的度数等于47°30′.【考点】余角和补角;度分秒的换算.【分析】(1)根据图形进行角的计算即可;(2)根据余角的概念作图、计算即可.【解答】解:(1)∠AOC=∠AOB﹣∠BOC=42°30′;(2)如图,∠AOC的余角是∠AOD,90°﹣42°30′=47°30′.故答案为:(1)42°30′;(2)AOD;47°30′.【点评】本题考查的是余角和补角的概念以及角的计算,掌握两个角的和为90°,则这两个角互余是解题的关键.15.(4分)(2020秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:6a﹣5;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为(a+10)℃.【考点】列代数式.【分析】(1)被减数是6a,减数为5,依此即可求解;(2)根据题意可得:中午12点的气温=最低气温+升高的气温,依此即可求解.【解答】解:(1)a的6倍为6a,小5即为6a﹣5;(2)中午12点的气温为(a+10)℃.故答案为:6a﹣5;(a+10).【点评】考查了列代数式,(1)题关键是找好题中关键词,如“倍”;(2)注意气温上升为加.16.(2分)(2020秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是﹣x或x+5.【考点】代数式求值.【专题】计算题;开放型.【分析】写出一个整式,使x=﹣2时值为3即可.【解答】解:答案不唯一,如﹣x或x+5.故答案为:﹣x或x+5【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.(2分)(2020秋•泰兴市期末)一件商品按成本价提高2020价,然后打9折出售,此时仍可获利16元,则商品的成本价为2020元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品的成本价是x元,则商品的标价为x(1+2020,等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+2020,由题意可得:x×(1+2020×90%=x+16,解得x=2020即这种商品的成本价是2020.故答案为:2020【点评】此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.18.(2分)(2020秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为3的点,…,第2020次“移位”后,他到达编号为4的点.【考点】规律型:数字的变化类;规律型:图形的变化类.【分析】从编号为4的点开始走4段弧:4→5→1→2→3,即可得出结论;依次求出第2,3,4,5次的结合寻找规律,根据规律分析第2020次的编号即可.【解答】解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3,1,2,4,”循环出现,2020÷4=504,整除,所以第2020次移位后他的编号与第四次相同,到达编号为4的点;故答案为:3,4.【点评】此题主要考查循环数列规律的探索与应用,根据已知求出部分数据找到循环周期是解题的关键.三、计算题(本题共16分,每小题12分)19.(12分)(2020秋•西城区期末)(1)(﹣12)﹣(﹣2020(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12+2020﹣15=﹣35+202015;(2)原式=﹣×3×(﹣8)=6;(3)原式=19.5×﹣1.5×=(19.5﹣1.5)×=18×=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20204分)(2020秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.【考点】有理数的混合运算.【专题】图表型;实数.【分析】(1)出错地方有2处,一是绝对值求错,一是乘除运算顺序错误,改正即可;(2)根据有理数运算顺序写出建议即可.【解答】解:(1)如图所示:(2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、先化简,再求值(本题5分)21.(5分)(2020秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2020﹣10ab3﹣2020+12ab3=2ab3,当a=﹣1,b=2时,原式=﹣16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(本题5分)22.(5分)(2020秋•西城区期末)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x﹣7x=21﹣3+21,合并,得﹣13x=39,系数化1,得x=﹣3,则原方程的解是x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.六、解答题(本题7分)23.(7分)(2020秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN 平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于45°;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠CDE+∠CED)=×90°=45°.【考点】角的计算;角平分线的定义.【分析】(1)根据题意画出图形,然后由角平分线的定义可求得∠EDN+∠NED=45°;(2)根据角平分线的定义以及证明过程进行填写即可.【解答】(1)解:如图所示:猜想∠EDN+∠NED=45°.(2)证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义),∵∵∠CDE+∠CED=90°,∴∠EDN+∠NED=(∠CDE+∠CED)==45°.故答案为:(1)45°;(2)CED;角平分线的定义;;CDE;CED;;45.【点评】本题主要考查的是角的计算、角平分线的定义,逆用乘法的分配律求得∠EDN+∠NED=(∠CDE+∠CED)是解题的关键.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2020秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.【分析】根据表内的各横行中,从第二个数起的数都比它左边相邻的数大m得出12+2m=18,解方程求出m的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出(12+m)+3n=30,解方程求出n的值;进而求得x的值.【解答】解:∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.此时x=12﹣2m+n=12﹣2×3+5=11.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(5分)(2020秋•西城区期末)从2020年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2020年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2020年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2020年需要交1563元天然气费,他家2020年用了多少立方米天然气?【分析】(1)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×300,计算即可;(2)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×350+2.5×(500﹣350),计算即可;(3)设设小冬家2020年用了x立方米天然气.首先判断出小冬家2020年所用天然气超过了500立方米,然后根据他家2020年需要交1563元天然气费建立方程,求解即可.【解答】解:(1)如果他家2020年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);(2)如果他家2020年全年使用500立方米天然气,那么需要交天然气费2.28×350+2.5×(500﹣350)=798+375=1173(元);(3)设小冬家2020年用了x立方米天然气.∵1563>1173,∴小冬家2020年所用天然气超过了500立方米.根据题意得2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,解得x=600.答:小冬家2020年用了600立方米天然气.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.八、解答题(本题6分)26.(6分)(2020秋•西城区期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=5﹣t,AQ=10﹣2t;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.【考点】一元一次方程的应用;数轴.。
2020-2021学年北京市西城区七年级上学期期末数学试卷(附答案解析)
2020-2021学年北京市西城区七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列说法:①符号相反的数互为相反数;②−a一定是一个负数;③正整数、负整数统称为整数;④一个数的绝对值越大,表示它的点在数轴上离原点越远;⑤当a≠0时,|a|总是大于0,正确的有()A. 4个B. 3个C. 2个D. 1个2.某蛋白质分子的直径是0.00000043米,用科学记数法表示为()A. 4.3×107米B. −4.3×107米C. 4.3×10−7米D. 0.43×10−6米3.计算(a−b)(a+b)(a2+b2)−(a4+b4)等于()A. 2a4B. 2b4C. −2a4D. −2b44.设计制作一个圆柱形状的包装纸盒,下列表面展开图的草图正确的是()A. B. C. D.5.6,根据下列表格对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的一个解x的范围是:()A. B.C. D.6. 某人从A出发沿北偏东80°方向行走到B处,又从B处沿北偏西30°方向行走到C处,此时调整到与出发相反的方向,应该如何调整()A. 左转110°B. 右转110°C. 左转70°D. 右转70°7. 当x=2时,整式px3+qx+1的值等于2002,那么当x=−2时,整式px3+qx+1的值为()A. 2001B. −2001C. 2000D. −20008. 下列说法中,正确的是()A. 0是最小的整数;B. 一个有理数的平方总是正数;C. 任何有理数的绝对值都是正数;D. 最大的负整数是−1.9. 将一副三角尺按下列几种方式摆放,则能使∠α=∠β的摆放方式为()A. B.C. D.10. 某同学解方程5x−1=□x+3时,把“□”处的系数看错了,解得x=−4,他把“□”处的系数看成了()A. 4B. −9C. 6D. −6二、填空题(本大题共9小题,共19.0分)11. ①307000000用科学记数法可表示为______ .②85.90是精确到______ 位的数.12. 若关于x的方程2x+a+5=0的解为x=−1,则a的值为______.13. 若3x m+5y2与−2x3y n是同类项,则m−n=______ 。