中国科学院大学 考研《半导体物理》考试大纲

合集下载

831半导体物理考试大纲

831半导体物理考试大纲

831半导体物理考试大纲
对于半导体物理考试大纲,我们需要从多个角度来进行分析和
回答。

首先,我们可以从课程内容和重点知识点入手,其次可以探
讨考试形式和题型,最后可以谈论备考方法和建议。

从课程内容和重点知识点来看,半导体物理考试大纲通常涵盖
以下内容,半导体的基本概念、晶体结构与晶格常数、载流子的统
计物理、半导体的能带结构、半导体的导电性质、PN结与二极管、
场效应晶体管、光电子器件等。

学生需要掌握半导体物理的基本理
论知识,包括晶体结构、能带理论、载流子的行为以及半导体器件
的工作原理等内容。

在考试形式和题型方面,半导体物理考试大纲可能涵盖选择题、填空题、计算题和简答题等多种题型。

选择题考察学生对知识点的
掌握程度,填空题和计算题考察学生对公式和理论的运用能力,而
简答题则考察学生对概念的理解和分析能力。

针对备考方法和建议,学生可以通过系统地复习课本内容、做
大量的习题和模拟试卷来巩固知识,同时也可以结合实际应用场景,加深对知识的理解。

此外,建议学生多与老师和同学讨论,多加强
实验操作,以便更好地理解和掌握半导体物理的知识。

总的来说,半导体物理考试大纲涵盖了广泛的知识点和题型,
学生需要通过系统的复习和实践来全面准备,以取得理想的成绩。

希望以上回答能够帮助你对半导体物理考试大纲有一个全面的了解。

《半导体物理》考试大纲

《半导体物理》考试大纲

《半导体物理》考试大纲一、考试内容(一)、晶格结构和结合性质§1.1晶体的结构晶格的周期性、金刚石结构、闪锌矿结构和钎锌矿结构§1.2半导体的结合性质共价结合和离子结合、共价四面体结构、混合键(二)、半导体中的电子状态§2.1 晶体中的能带原子能级和固体能带、晶体中的电子状态§2.2 晶体中电子的运动§2.3 导电电子和空穴§2.4 常见半导体的能带结构§2.5 杂质和缺陷能级施主能级和受主能级、n型半导体和p型半导体、类氢模型、深能级杂质、等电子杂质(三)、电子和空穴的平衡统计分布§3.1 费米分布函数§3.2 载流子浓度对费米能级的依赖关系态密度、载流子浓度§3.3 本征载流子浓度§3.4 非本征载流子浓度杂质能级的占用几率、单一杂质能级情形、补偿情形(四)、输运现象§4.1 电导和霍尔效应的分析§4.2 载流子的散射§4.3 电导的统计理论(五)、过剩载流子§5.1 过剩载流子及其产生和复合§5.2 过剩载流子的扩散一维稳定扩散、爱因斯坦关系§5.3 过剩载流子的漂移和扩散§5.7 直接复合§5.8 间接复合§5.9 陷阱效应(六)、pn结§6.1 pn结及其伏安特性§6.3 pn结的光生伏特效应§6.4 pn结中的隧道效应(七)、半导体表面层和MIS结构§7.1 表面感生电荷层§7.2 MIS电容理想MIS结构的C-V特性、实际MIS结构的C-V特性、Si-SiO2系统中电荷的实验研究(八)、金属半导体接触和异质结§8.1 金属-半导体接触§8.2 肖特基二极管的电流越过势垒的电流、两极管理论、扩散理论、隧穿电流和欧姆接触§8.4 异质结§8.6 半导体超晶格注:以上的考试大纲内容大约是参考书内容的一半,这是必须掌握的,也是考试的主要范围,其余部分可作进一步学习的参考。

820--《半导体物理》考试大纲

820--《半导体物理》考试大纲

820--《半导体物理》考试大纲一、基本要求《半导体物理》硕士研究生入学考试内容主要包括半导体物理的基本概念、基础理论和基本计算;考试命题注重测试考生对相关的物理基本概念的理解、对基本问题的分析和应用,强调物理概念的清晰和对半导体物理问题的综合分析。

二、考试范围1、半导体中电子状态1.1 半导体的晶格结构和结合性质1.2 半导体中的电子状态和能带1.3 半导体中电子的运动有效质量1.4 本征半导体的导电机构空穴1.5 回旋共振1.6 硅,锗和砷化镓的能带结构2、半导体中杂质和缺陷能级2.1 硅、锗晶体中的杂质能级2.2 Ⅲ-Ⅴ族化合物中的杂质能级2.3 缺陷、位错能级3、半导体中载流子的统计分布3.1 状态密度3.2 费米能级和载流子的统计分布3.3 本征半导体的载流子浓度3.4 杂质半导体的载流子浓度3.5 一般情况下的载流子统计分布3.6 简并半导体4、半导体的导电性4.1 载流子的漂移运动迁移率4.2 载流子的散射4.3 迁移率与杂质浓度和温度的关系4.4 电阻率及其与杂质浓度和温度的关系4.5 玻耳兹曼方程电导率的统计理论4.6 强电场下的效应热载流子5、非平衡载流子5.1 非平衡载流子的注入和复合5.2 非平衡载流子的寿命5.3 准费米能级5.4 复合理论5.5 陷阱效应5.6 载流子的扩散运动5.7 载流子的漂移运动,爱因斯坦关系式5.8 连续性方程6、 p-n结6.1 p-n结及其能带图6.2 p-n结电流电压特性6.3 p-n结电容6.4 p-n结击穿。

中国科学院大学硕士学位研究生入学统一考试试题:半导体物理

中国科学院大学硕士学位研究生入学统一考试试题:半导体物理

中国科学院大学2020年招收攻读硕士学位研究生入学统一考试试题科目名称:半导体物理考生须知:1.本试卷满分为150分,全部考试时间总计180分钟。

2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。

3.可以使用无字典存储和编程功能的电子计算器。

一、(共50分,每题5分)解释下列名词或概念1. 等同的能谷间散射2. 杂质电离能3. 理想MIS 结构的平带状态4. 准费米能级5. pn 结扩散电容6. 价带的有效状态密度7. 表面复合速度 8. 自由载流子吸收9. 费米分布函数 10. 半导体的汤姆逊效应二、(共20分,每题10分)简答题1. 简述理想MIS 结构的高频C-V 特性(以p 型半导体为例)。

2. 1963年,Gunn 发现,给n 型GaAs 两端电极加以电压使得GaAs 内电场超过3⨯103V/cm 时,电流便会以很高的频率振荡,这个效应称为耿氏效应(Gunn effect )。

1964年Koremer 指出,这与微分负阻理论一致。

请结合GaAs 的能带结构,简述GaAs 在高场下出现负阻效应的原因。

三、(20分)某正方结构二维晶体,晶格常数为a 。

与原子能级i ε对应的能带具有色散关系:)cos (cos 2),(10a k a k J J k k E y x i y x +++=ε,J 0和J 1为小于零的常数。

(1) 该二维晶体的倒格子是什么结构?给出第一布里渊区k 的取值范围。

(2) 画出第一布里渊区内沿[1,1]方向,电子有效质量随波矢k 的变化关系曲线m e *(k )。

(3) 设该能带为满带,在能带底处去除一个电子,形成一个空穴,计算倒空间中沿[1,1]方向的空穴的有效质量和运动速度。

四、(20分)掺硼的非简并p型硅中含有一定浓度的铟,在室温(300K)下,测得电阻率ρ=2.84Ω·cm。

已知所掺硼浓度为N A1=1016cm-3,硼的电离能ΔE A1=E A1-E V=0.045eV,铟的电离能ΔE A2=E A2-E V=0.16eV。

2023 804半导体物理大纲

2023 804半导体物理大纲

2023年804半导体物理大纲一、导言在当今信息社会,半导体技术正在发挥着日益重要的作用。

而要学习半导体技术,就必须首先了解半导体物理这门学科的基本知识。

本文将介绍2023年804半导体物理的大纲内容。

二、大纲内容1. 半导体基本概念(1) 半导体的定义和特性(2) 半导体材料的分类与特点(3) 禁带宽度和载流子2. 半导体的基本物理过程(1) 载流子的产生与复合(2) PN结的形成和特性(3) 势垒和击穿电压3. 半导体器件(1) PN结二极管的特性和应用(2) 晶体管的结构和工作原理(3) MOS场效应管的特性和应用4. 半导体材料特性(1) 硅(Si)材料的物理特性(2) 加工工艺与性能测试(3) 新型半导体材料的研究进展5. 半导体器件的制造工艺(1) 制造工艺的基本流程(2) 光刻、腐蚀、沉积等工艺的原理和方法(3) 半导体器件的后工艺处理6. 半导体器件的应用(1) 信息通信领域(2) 光电子领域(3) 消费电子领域三、大纲解读本大纲内容涵盖了半导体物理学科的基本理论、典型器件原理和制造工艺,并涉及到半导体材料的特性和应用。

通过学习这些内容,能够使学生对半导体物理学科有一个系统和全面的了解,为今后从事相关领域的研究和应用打下良好的基础。

四、总结半导体技术的发展日新月异,学习半导体物理知识已经成为大势所趋。

深入了解半导体物理的基本知识和原理是十分必要的。

希望通过本文的介绍,能够对读者理解2023年804半导体物理大纲内容有所帮助。

在2023年,半导体技术已经成为信息技术、通信、光电子、消费电子等领域的关键支撑,半导体物理的重要性也日益凸显。

在这样的背景下,学习半导体物理已经成为许多科学技术专业的必修课程。

2023年804半导体物理大纲的内容将更加注重半导体技术的前沿研究和创新应用,以适应日益发展的半导体产业需求。

在半导体基本概念部分,除了介绍半导体的定义和特性外,还将加入对新型半导体材料如石墨烯、氮化镓等的介绍,以及其在半导体器件中的应用。

半导体物理考试大纲

半导体物理考试大纲

《半导体物理》考试大纲考试科目名称:半导体物理Ⅱ考试科目代码:[829]一、考试要求:要求考生系统地掌握半导体物理的基本概念和基本原理,并能利用基本原理分析半导体的物理性能。

要求考生对半导体的晶体结构和能带论、载流子统计分布、载流子输运过程、p-n结理论、金属-半导体接触理论、半导体光电效应等基本原理有很好的掌握,并能熟练运用分析半导体的光电特性。

二、考试内容:1)半导体晶体结构和能带论a:半导体晶格结构及电子状态和能带b:半导体中电子的运动c:本征半导体的导电机构d:硅和锗及常用化合物半导体的能带结构2)杂质半导体理论a:硅和锗晶体中的杂质能级b: 常用化合物半导体中的杂质能级c: 缺陷、位错能级3)载流子的统计分布a:状态密度与载流子的统计分布b:本征与杂质半导体的载流子浓度c:一般情况下载流子统计分布d: 简并半导体4)半导体的导电性a:载流子的漂移运动与散射机构b:迁移率、电阻率与杂质浓度和温度的关系c:多能谷散射、耿氏效应5)非平衡载流子a:非平衡载流子的注入、复合与寿命b:准费米能级c:复合理论、陷阱效应d:载流子的扩散、电流密度方程e:连续性方程6)p-n结理论a: p-n结及其能带图b: p-n结电流电压特性c: p-n结电容、p-n结隧道效应7)金属-半导体接触理论a:金-半接触、能带及整流理论b:欧姆接触8)半导体光电效应a:半导体的光学性质(光吸收和光发射)b:半导体的光电导效应c:半导体的光生伏特效应d:半导体发光二极管、光电二极管三、试卷结构:a)考试时间:180分钟,满分:150分b)题型结构a:概念及简答题(60分)b:论述题(90分)c)内容结构a:半导体晶体结构和能带论及杂质半导体理论(30分)b: 载流子的统计分布(20分)c: 半导体的导电性(20分)d: 非平衡载流子(20分)e: p-n结理论和金属-半导体接触理论(30分)f: 半导体光电效应(30分)四、参考书目1. 刘恩科,朱秉升,罗晋升编著. 半导体物理学. 电子工业出版社, 2011.03.2. [美]施敏(S.M.Sze),半导体器件物理,电子工业出版社,1987.12.。

850半导体物理初试大纲

850半导体物理初试大纲
4. 半导体载流子在电场、磁场中的运动
1) 载流子的漂移运动及迁移率,电导率与电阻率; 2) 载流子的散射理论,杂质散射、晶格散射及其影响因素和规律; 3) 迁移率、电阻率与杂质浓度和温度的关系等; 4) 强电场效应,GaAs半导体的负微分电导效应; 5) 霍尔效应及其机理,霍尔系数及其特点,霍尔器件。
2. 半导体中的杂质和缺陷能级
1) 半导体中杂质、缺陷的作用; 2) 硅、锗半导体中的浅能级杂质,施主杂质和受主杂质; 3) 半导体中的杂质电离,多子和少子,P型半导体和N型半导体; 4) 硅、锗半导体中深能级杂质特点和作用; 5) 深能级杂质和浅能级杂质的区别; 6) 浅能级杂质电离能的计算; 7) 杂质补偿作用及其产生的原因; 8) III-V 化合物等电子陷阱、等电子络合物以及两性杂质等概念; 9) 元素半导体、化合物半导体中的缺陷(主要是点缺陷)能级。
二、内容
1. 半导体中的电子状态和运动 1) 半导体的典型晶体结构、结合键; 2) 半导体中电子的共有化运动、半导体能带的形成; 3) 半导体能带结构,导体、半导体、绝缘体的能带结构与导电性能的差异; 4) 半导体中电子的运动,平均速度、加速度,以及有效质量的概念和意义; 5) 半导体中的本征激发,本征半导体的导电机构; 6) 半导体空穴的概念及其特点; 7) 典型半导体材料锗、硅和砷化镓的能带结构。
考试科目 850半导体物理 考试时间 180 分钟
考试形式 笔试(闭卷) 考试总分 150 分
一、总体要求
要求学生对半导体物理的基本概念有深刻理解,系统掌握半导体物理学基础理论,并能灵活 应用基础理论和基本概念去理解半导体中的载流子分布、输运特性以及导电性能,分析金属/半 导体接触界面中的能带结构、载流子运动以及电学性能,具有较强的分析问题和解决问题的能力。

《半导体物理学》考研大纲

《半导体物理学》考研大纲

《半导体物理学》(科目代码843)考试大纲
特别提醒:本考试大纲仅适合2010年微电子学与固体电子学专业的《半导
体物理》考试科目。

1.考研建议参考书目
刘恩科等著《半导体物理学》,国防工业出版社; 或西安交通大学出版社ISBN 7-5605-1010-8/TN.54。

2.基本要求
(1)掌握半导体中的电子状态和能带;本征半导体中的导电机构和空穴;半导体中电子的运动和有效质量;硅和锗的能带结构和Ⅲ-Ⅴ族化合物半导体的能带结构。

(2)掌握半导体中杂质和缺陷能级;重点掌握硅、锗晶体中的杂质能级和Ⅲ-Ⅴ族化合物中的杂质能级。

(3)掌握半导体中载流子的统计分布理论以及简并半导体的基础理论;并掌握本征半导体和杂质半导体的载流子浓度和一般情况下的载流子统计分布。

(4)掌握半导体的导电性理论;载流子的散射;迁移率、电阻率及其杂质浓度和温度的关系;强电场下的热载流子效应和耿氏效应。

(5)掌握非平衡载流子的注入、复合、寿命;准费米能级;复合理论。

并掌握载流子的扩散运动;漂移运动和爱因斯坦关系式及连续性方程。

(6)掌握p-n结及其能带图,p-n结电流电压特性,p-n结电容和p-n结击穿与隧道效应的基础知识。

(7)掌握金属与半导体的接触及其能带图;金属半导体接触整流理论基础知识。

(8)掌握半导体表面和表面电场效应;MIS结构的电容-电压特性,硅-二氧化硅系统的性质。

(9)掌握异质结及其能带图,异质结的电流输运机构基础知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国科学院大学考研《半导体物理》考
试大纲
本《半导体物理》考试大纲适用于中国科学院大学微电子学与固体电子学专业的硕士研究生入学考试。

半导体物理学是现代微电子学与固体电子学的重要基础理论课程,它的主要内容包括半导体的晶格结构和电子状态;杂质和缺陷能级;载流子的统计分布;载流子的散射及电导问题;非平衡载流子的产生、复合及其运动规律;半导体的表面和界面─包括p-n 结、金属半导体接触、半导体表面及MIS结构、异质结;半导体的光、热、磁、压阻等物理现象和非晶半导体部分。

要求考生对其基本概念有较深入的了解,能够系统地掌握书中基本定律的推导、证明和应用,并具有综合运用所学知识分析问题和解决问题的能力。

一、考试形式
(一)闭卷,笔试,考试时间180分钟,试卷总分150分
(二)试卷结构
第一部分:名词解释,约50分
第二部分:简答题,约20分
第三部分:计算题、证明题,约80分
二、考试内容
(一)半导体的电子状态:
半导体的晶格结构和结合性质,半导体中的电子状态和能带,半导体中的电子运动和有效质量,本征半导体的导电机构,空穴,回旋共振,硅和锗的能带结构,III-V族化合物半导体的能带结构,II-VI族化合物半导体的能带结构
(二)半导体中杂质和缺陷能级:
硅、锗晶体中的杂质能级,III-V族化合物中杂质能级,缺陷、位错能级
(三)半导体中载流子的统计分布
状态密度,费米能级和载流子的统计分布,本征半导体的载流子浓度,杂质半导体的载流子浓度,一般情况下的载流子统计分布,简并半导体
(四)半导体的导电性
载流子的漂移运动,迁移率,载流子的散射,迁移率与杂质浓度和温度的关系,电阻率及其与杂质浓度和温度的关系,玻尔兹曼方程,电导率的统计理论,强电场下的效应,热载流子,多能谷散射,耿氏效应
(五)非平衡载流子
非平衡载流子的注入与复合,非平衡载流子的寿命,准费米能级,复合理论,陷阱效应,载流子的扩散运动,载流子的漂移运动,爱因斯坦关系式,连续性方程式
(六)p-n结
p-n结及其能带图,p-n结电流电压特性,p-n结电容,p-n结击穿,p-n结隧道效应
(七)金属和半导体的接触
金属半导体接触及其能级图,金属半导体接触整流理论,少数载流子的注入和欧姆接触
(八)半导体表面与MIS结构
表面态,表面电场效应,MIS结构的电容-电压特性,硅─二氧化硅系数的性质,表面电导及迁移率,表面电场对p-n结特性的影响
(九)异质结
异质结及其能带图,异质结的电流输运机构,异质结在器件中的应用,半导体超晶格
(十)半导体的光、热、磁、压阻等物理现象
半导体的光学常数,半导体的光吸收,半导体的光电导,半导体的光生伏特效应,半导体发光,半导体激光,热电效应的一般描述,半导体的温差电动势率,半导体的玻尔帖效应,半导体的汤姆孙效应,半导体的热导率,半导体热电效应的应用,霍耳效应,磁阻效应,磁光效应,量子化霍耳效应,热磁效应,光磁电效应,压阻效应,声波和载流子的相互作用。

三、考试要求
(一)半导体的晶格结构和电子状态
1.了解半导体的晶格结构和结合性质的基本概念。

2.理解半导体中的电子状态和能带的基本概念。

3.掌握半导体中的电子运动规律,理解有效质量的意义。

4.理解本征半导体的导电机构,理解空穴的概念。

5.熟练掌握空间等能面和回旋共振的相关公式推导、并能灵活运用。

6.理解硅和锗的能带结构,掌握有效质量的计算方法。

7.了解III-V族化合物半导体的能带结构。

8.了解II-VI族化合物半导体的能带结构。

(二)半导体中杂质和缺陷能级
1.理解替位式杂质、间隙式杂质、施主杂质、施主能级、受主杂质、受主能级的概念。

2.简单计算浅能级杂质电离能。

3.了解杂质的补偿作用、深能级杂质的概念。

4.了解III-V族化合物中杂质能级的概念。

5.理解点缺陷、位错的概念。

(三)半导体中载流子的统计分布
1.深入理解并熟练掌握状态密度的概念和表示方法。

2.深入理解并熟练掌握费米能级和载流子的统计分布。

3.深入理解并熟练掌握本征半导体的载流子浓度的概念和表示方法。

4.深入理解并熟练掌握杂质半导体的载流子浓度的概念和表示方法。

5.理解并掌握一般情况下的载流子统计分布。

6.深入理解并熟练掌握简并半导体的概念,简并半导体的载流子浓度的表示方法,简并化条件。

了解低温载流子冻析效应、禁带变窄效应。

(四)半导体的导电性
1.深入理解迁移率的概念。

并熟练掌握载流子的漂移运动,包括公式。

2.深入理解载流子的散射的概念。

3.深入理解并熟练掌握迁移率与杂质浓度和温度的关系,包括公式。

4.深入理解并熟练掌握电阻率及其与杂质浓度和温度的关系,包括公式。

5.深入理解电导率的统计理论。

并熟练掌握玻尔兹曼方程。

6.了解强电场下的效应和热载流子的概念。

7.了解多能谷散射概念和耿氏效应。

(五)非平衡载流子
1.深入理解非平衡载流子的注入与复合的概念,包括表达式。

2.深入理解非平衡载流子的寿命的概念,包括表达式、能带示意图。

3.深入理解准费米能级的概念,包括表达式、能带示意图。

4.了解复合理论,理解直接复合、间接复合、表面复合、俄歇复合的概念,包括表达式、能带示意图。

5.了解陷阱效应,包括表达式、能带示意图。

6.深入理解并熟练掌握载流子的扩散运动,包括公式。

7.深入理解并熟练掌握载流子的漂移运动,爱因斯坦关系式。

并能灵活运用。

8.深入理解并熟练掌握连续性方程式。

并能灵活运用。

(六)p-n结
1.深入理解并熟练掌握p-n结及其能带图,包括公式、能带示意图。

2.深入理解并熟练掌握p-n结电流电压特性,包括公式、能带示意图。

3.深入理解p-n结电容的概念,熟练掌握p-n结电容表达式、能带示意图。

4.深入理解雪崩击穿、隧道击穿热击穿的概念。

5.了解p-n结隧道效应。

(七)金属和半导体的接触
1.了解金属半导体接触及其能带图。

理解功函数、接触电势差的概念,包括公式、能带示意图。

了解表面态对接触势垒的影响。

2.了解金属半导体接触整流理论。

深入理解并熟练掌握扩散理论、热电子发射理论、镜像力和隧道效应的影响、肖特基势垒二极管的概念。

3.了解少数载流子的注入和欧姆接触的概念。

(八)半导体表面与MIS结构
1.深入理解表面态的概念。

2.深入理解表面电场效应,空间电荷层及表面势的概念,包括能带示意图。

深入理解并熟练掌握表面空间电荷层的电场、电势和电容的关系,包括公式、示意图。

并能灵活运用。

3.深入理解并熟练掌握MIS结构的电容-电压特性,包括公式、示意图。

并能灵活运用。

4.深入理解并熟练掌握硅─二氧化硅系数的性质,包括公式、示意图。

并能灵活运用。

5.理解表面电导及迁移率的概念。

6.了解表面电场对p-n结特性的影响。

(九)异质结
1.理解异质结及其能带图,并能画出示意图。

2.了解异质结的电流输运机构。

3.了解异质结在器件中的应用。

4.了解半导体超晶格的概念。

(十)半导体的光、热、磁、压阻等物理现象
1.了解半导体的光学常数,理解折射率、吸收系数、反射系数、透射系数的概念。

了解半导体的光吸收现象,理解本征吸收、直接跃迁、间接跃迁的概念。

了解半导体的光电导的概念。

理解并掌握半导体的光生伏特效应,光电池的电流电压特性的表达式。

了解半导体发光现象,理解辐射跃迁、发光效率、电致发光的概念。

了解半导体激光的基本原理和物理过程,理解自发辐射、受激辐射、分布反转的概念。

2. 了解热电效应的一般描述,半导体的温差电动势率,半导体的珀耳帖效应,半导体的汤姆孙效应,半导体的热导率,半导体热电效应的应用。

3. 理解并掌握霍耳效应的概念和表示方法。

理解磁阻效应。

了解磁光效应,量子化霍耳效应,热磁效应,光磁电效应,压阻效应。

了解声波和载流子的相互作用。

四、主要参考书目
刘恩科,朱秉升,罗晋生.《半导体物理学》,电子工业出版社,2008。

小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。

2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。

加油!。

相关文档
最新文档