2013级数学中考基础训练(3)
2013年中考数学第一次模拟考试题(含答案邯郸市)
2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。
中考数学基础过关(3)
数学基础过关(3)1.如图,在△ABC中,∠ABC=90°,∠A=65°,D是AC的中点,连接BD,则∠ADB =度.2.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.3.一个直角三角形斜边上的中线和高线的长分别是5cm和4.8cm,这个三角形的面积为cm2.4.如图,在以AB为斜边的两个直角△ABD和△ABC中,∠ACB=∠ADB=90°,CD=m,AB=2m,则∠AEB=.5.如图,在△ABC中,∠ACB=90°,D为AB的中点,E为线段BD上一点,且AC=CE,若∠DCE=30°,则∠B的度数为.6.如图,OA⊥OB,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是度.7.如图,将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若∠NEC=32°,∠FMN=°.8.如图,把一张长方形的纸片ABCD分别沿EM、FM折叠,折叠后的MB'与MC'在同一条直线上,则∠EMF的值是.9.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.10.如图,将矩形ABCD沿EF折叠,C点落在C′处,D点落在D′处.若∠EFC=119°,则∠BFC′=°.二.解答题(共40小题)11.如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.12.如图,点B、F、C、E在同一条直线上,∠B=∠E,∠A=∠D,BF=CE.求证:△ABC≌△DEF.13.如图,已知B、D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°.求证:△AED≌△CFB.14.如图,已知等边三角形ABC,延长BA至点D,延长AC至点E,使AD=CE,连接CD,BE.求证:△ACD≌△CBE.15.如图,在△ABC中,AB=AC,D是边BC延长线上一点,连接AD.AE∥BD,∠BAC=∠DAE,连接CE交AD于点F.(1)若∠D=36°,求∠B的度数;(2)若CA平分∠BCE,求证:△ABD≌△ACE.16.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.17.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE 是平行四边形.18.如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)试判断:四边形AECD的形状,并证明你的结论.19.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.20.如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.(1)求证:四边形ABCD是平行四边形;(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.21.如图,∠ACB=90°,点E是AB边的中点.点F恰是点E关于AC所在直线的对称点.(Ⅰ)证明:四边形CF AE为菱形;(Ⅱ)连接EF交AC于点O.若BC=2,求线段OF的长.22.如图,△ABC中,D、E分别是边AB、AC的中点,点F是BC上一点,∠B=∠DEF.(1)求证:四边形BDEF是平行四边形;(2)直接写出当△ABC满足什么条件时,四边形BDEF是菱形.23.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:△ABC≌△DEF;(2)若∠ABC=90°,AB=4,BC=3,当AF为多少时,四边形BCEF是菱形.24.如图,在▱ABCD中,E,F分别为边AB,CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,请证明四边形BEDF是菱形.25.如图△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在射线DE上,并且EF=AC(1)求证:AF=CE;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形,请回答并证明你的结论.26.已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM 的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.27.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,则当∠BOD=°时,四边形BECD是矩形.28.已知:点D是△ABC边BC上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F.(1)若∠B=∠C,BF=CE,求证:△BFD≌△CED.(2)若∠B+∠C=90°,求证:四边形AEDF是矩形.29.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.30.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.31.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.32.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.33.如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=时四边形BECD是正方形.34.如图,在矩形ABCD中,∠ABC的角平分线交对角线AC于点M,ME⊥AB,MF⊥BC,垂足分别是E,F.判定四边形EBFM的形状,并证明你的结论.35.如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当BC=AB时,四边形ABFG是菱形;(3)若∠B=60°,当BC=AB时,四边形AECG是正方形.36.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理、绘制成部分统计图如下请根据图中信息,解答下列问题:(1)该调查的样本容量为;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?37.2020年中考阅卷期间,某教师对某省中考数学试卷中一道概率题的得分情况进行了统计分析.他随机记录了部分学生的得分情况,并绘制了两幅统计图表(表和图).试根据图表中的信息解答下列问题.得分人数统计百分比/%0a40122332b410586275c (1)该次分析统计中,样本的总体个数是;(2)上述人数统计表中,a的值为,b的值为,c的值为;(3)在扇形统计图中,圆心角α的度数为,β的度数为;(4)2020年中考,该省约有49万学生参加,试估计该省此题得6分的学生共有多少人?38.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,0<x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)扇形统计图中,α=%,C级对应的圆心角为度;(3)请你利用你所学的统计知识,估计本次抽取所有学生的综合评定成绩的平均分.39.某校为了解九年级学生的物理实验操作情况,进行了抽样调查.随机抽取了40名同学进行实验操作,成绩如下:21222223232323222424 25232125242523222425 23232424242423252521 21232324252422242224整理上面数据,得到如下统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值m2423根据以上信息,解答下列问题:(1)如表中平均数m的值为.(2)扇形统计图中“24分”部分的圆心角大小为度.(3)根据样本数据,请估计该校九年级320名学生中物理实验操作得满分(25分)的学生人数.40.某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为图①中m的值为;(2)本次调查获取的样本数据的众数为,中位数为;(3)求本次调查获取的样本数据平均数;(4)根据样本数据,估计该校一周的课外阅读时间大于6h的学生人数.41.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,3),(1,4),(4,3).(1)在图中画出点P,使点P到A,B,C三点的距离都相等;(2)在图中画出点D,使点D在格点上,且∠ADB=∠ACB.(画出一种情况即可)42.图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点.点A、B、C均在格点上.在图①、图②、图③给定的网格中按要求画图.(1)在图①中,画△ABC的高线AD.(2)在图②中,画△ABC的中线CE.(3)在图③中,画△ABC的角平分线BF.要求:借助网格,只用无刻度的直尺,不要求写出画法.43.如图,在▱ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).(1)在图1中,过点A画出△ABF中BF边上的高AG;(2)在图2中,过点C画出C到BF的垂线段CH.44.如图,在△ABC中,已知AB=AC,AD⊥BC于点D.(1)如图①,点P为AB上任意一点,请你用无刻度的直尺在AC上找出一点P′,使AP=AP′.(2)如图②,点P为BD上任意一点,请你用无刻度的直尺在CD上找出一点P′,使BP=CP′.45.如图矩形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度的直尺画图(保留作图痕迹).(1)在图1中,画出∠DAE的平分线;(2)在图2中,画出∠AEC的平分线.46.订书机是由推动器、托板、压形器、底座、定位轴等组成.如图1是一台放置在水平桌面上的大型订书机,将其侧面抽象成如图2所示的几何图形.若压形器EF的端点E固定于定位轴CD的中点处,在使用过程中,点D和点F随压形器及定位轴绕点C旋转,CO⊥AB于点O,CD=12cm连接CF,若∠FED=45°,∠FCD=30°(1)求FC的长(2)若OC=2cm求在使用过程中,当点D落在底座AB上时,请计算CD与AB的夹角及点F运动的路线之长(结果精确到0.1cm,参考数据:sin9.6°≈0.17.π≈3.14, 1.732)47.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.(1)求圆形滚轮的半径AD的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).48.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732,=4.583)49.近两年房地产以开发电梯房为主,如图为某小区的电梯房,其中A楼为标志楼房,张华为测量A楼的高,站在距离A楼30米的B楼顶端,测得看A楼顶端的仰角为60°,看A 楼底端的俯角为75°,请你帮张华求出A楼的高.(参考数据:sin75°=0.97,cos75°=0.26,tan75°=3.73,sin60°=0.87,cos60°=0.5,tan60°=1.73,结果精确到0.1米)50.智能手机如果安装了一款测量软件“Smart Measure”后,就可以测量物高、宽度和面积等.如图,打开软件后将手机摄像头的屏幕准星对准脚部按键,再对准头部按键,即可测量出人体的高度.其数学原理如图②所示,测量者AB与被测量者CD都垂直于地面BC.(1)若手机显示AC=1m,AD=1.8m,∠CAD=60°,求此时CD的高.(结果保留根号)(2)对于一般情况,试探索手机设定的测量高度的公式:设AC=a,AD=b,∠CAD=α,即用a、b、α来表示CD.(提示:sin2α+cos2α=1)。
2013年数学中考模拟试题及答案
2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。
设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。
11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。
2013长春中考数学试题(解析版)
吉林省长春市2013年中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2013•长春)的绝对值等于()B的绝对值等于|=2.(3分)(2013•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()B3.(3分)(2013•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的B5.(3分)(2013•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()6.(3分)(2013•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()7.(3分)(2013•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD 的长为()B=,即=CD=8.(3分)(2013•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()Bxx二、填空题(每小题3分,共18分)9.(3分)(2013•长春)计算:a2•5a=5a3.10.(3分)(2013•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).天平均每天接待游客故答案为:.11.(3分)(2013•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.12.(3分)(2013•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.中,13.(3分)(2013•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.AOB==60=3)在反比例函数3,.14.(3分)(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.y=时,三、解答题(本大题共10小题,共78分)15.(6分)(2013•长春)先化简,再求值:,其中x=.时,原式16.(6分)(2013•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率..17.(6分)(2013•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.=,18.(7分)(2013•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.19.(7分)(2013•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C 距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)CAE=,==20.(7分)(2013•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.21.(8分)(2013•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.25=(22.(9分)(2013•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.BC××23.(10分)(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))x xy=﹣x=,x=x=x﹣m﹣.的值为DN=CN=CM=CN=2CM=2MNx x x=,﹣x x x=,解得m=x x x=,解得﹣x x x=x x x=,解得﹣﹣.24.(12分)(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.时,根据三角形的面积公式分别求出<时,当<<t=,==时,如图②.=t=.时,如图④.t=<≤时,线段.t=.t=,t=。
2013年中考数学复习基础训练1
2013年数学中考备考资料之基础训练(一)第1章 有理数与实数班级: 学号: 姓名: 评价:一、选择题(本大题共10小题,每小题3分,共30分)1、下列各数是正整数的是A .-1B .2C .0.5D . 22、据某市统计局公布的第六次人口普查数据,某市常住人口760.57万人,其中760.57万人用科学记数法表示为A . 7.6057×105人B 、7.6057×106人C 、7.6057×107人D 、0.76057×107人3、-3的绝对值是( )A .3B .-3C .- 13D .134、一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2011(B )2011(C )2012(D )20135、若a < c < 0 < b ,则abc 与0的大小关系是( ). A .abc < 0B .abc = 0C .abc > 0D .无法确定6、下列各数中,比0小的数是( )A .-1B .1C .2D .π7、如果60m 表示“向北走60m ”,那么“向南走40m ”可以表示为A. -20mB. -40mC. 20mD. 40m8、如果用+0.02克表示一只乒乓球质量超出标准质量0.02 克,那么一只乒乓球质量低于标准质量0.02克记作( ) .A . +0.02克 B.-0.02克 C. 0 克 D .+0.04克 9、某种细胞的直径是5×10﹣4毫米,这个数是( )A.0.05毫米B.0.005毫米C.0.0005毫米D.0.00005毫米(第4题)… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫10、-4的倒数的相反数是( )A .-4B .4C .-41 D .41二、填空题(本大题共6小题,每小题4分,共24分)11、根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 12、按下面程序计算:输入x =3,则输出的答案是__ _ .13、如图,是一个数值转换机.若输入数为3,则输出数是______.14、定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________.15、已知23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)16、对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算3★-1=三、解答题一(本大题共3小题,每小题5分,共15分) 17、计算:|-1|-128-(5-π)0+4cos45°.18、计算:0021)452+- 19、计算:()317223-÷-⨯四、解答题二(本大题共3小题,每小题8分,共24分) 20、计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---( )2-1输出数减去521、计算:()11-3cos 301.2π-︒⎛⎫+-+- ⎪⎝⎭22、计算:|-3|+(-1)2011×(π-3)0-327+(12)-2五、解答题三(本大题共3分,每小题9分,共27分) 23、设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S nn +++设...S =+S (用含n 的代数式表示,其中n 为正整数).24、观察下面的变形规律:211⨯ =1-12;321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .25、同学们,我们曾经研究过n ×n 的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n —1)×n=13n(n+1)(n—1)时,我们可以这样做: (1)观察并猜想:12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2) 12+22+32=(1+0)×1+(1+1)×2+(1+2)×3=1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3)12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+=1+0×1+2+1×2+3+2×3+ =(1+2+3+4)+( ) ……(2)归纳结论:12+22+32+…+n 2=(1+0)×1+(1+1)×2+(1+2)×3+…+n=1+0×1+2+1×2+3+2×3+…+n+(n 一1)×n =( ) += + =16×(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .。
(完整版)山东省潍坊市2013年中考数学真题试题(解析版)
2013年潍坊市初中学业水平考试数学试题一、选择题(本题共 12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确 的选项选出来•每小题选对得3分,选错、不选或选出的答案超过一个均记 0分.)1.实数0.5的算术平方根等于()•A.2B. 2C. —D. 12 2答案:C.考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键 2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()答案:A.考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.2012年,我国财政性教育经费支出实现了占国内生产总值比例达 务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达 “865.4亿元”用科学记数法可表示为()元.答案:B.考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同 . 其中的一名学生想要知道自己能否进入前 5名,不仅要了解自己的成绩, 还要了解这9名学 生成绩的(). A.众数 B.方差 C. 平均数 D. 中位数 答案:D.D.4%的目标.其中在促进义865.4亿元.数据89A. 865 10B. 8.65 10C. 8.65 101011D. 0.865 10答案:C.考点:科学记数法的表示。
点评:此题考查了科学记数法的表示方法•科学记数法的表示形式为 1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图是常用的一种圆顶螺杆,它的俯视图正确的是().a x 10n 的形式,其中B.考点:统计量数的含义•点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用 ,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑 •与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度 k6.设点A x 1, y 1和B x 2, y 2是反比例函数y图象上的两个点,当x 1 v x 2 v 0时,y 1 vxy ,则一次函数y 2x k 的图象不经过的象限是()考点:变量间的关系,函数及其图象 •点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
2013北京中考数学试题、答案解析版
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
2014年中考数学复习基础训练3
2013年数学中考备考资料之基础训练(三)第3章 一元方程(组)班级: 学号: 姓名: 评价: 一、选择题(本大题共10小题,每小题3分,共30分)1、已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.22、某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ) (A )54盏 (B )55盏 (C )56盏 (D )57盏3、下列方程组中是二元一次方程组的是( )A . 12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩4、二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩5、方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x6、已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A .-1 B .1 C .2 D .37、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为A . (1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -=8、对于非零的两个实数a 、b ,规定abb a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( )A .23 B .31 C .21 D . 21-9、方程组31x y x y +=⎧⎨-=-⎩,的解是( )A .12.x y =⎧⎨=⎩, B .12.x y =⎧⎨=-⎩, C .21.x y =⎧⎨=⎩, D .01.x y =⎧⎨=-⎩,10、灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人?A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人二、填空题(本大题共6小题,每小题4分,共24分)11、已知方程||x 2=,那么方程的解是 12、请写出一个解为x=2的一元一次方程:_____________。
2013年四川省乐山市中考数学试题及参考答案(word解析版)
2013年四川省乐山市中考数学试题及参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求. 1.﹣5的倒数是( ) A .﹣5 B .15C .15D .5 2.乐山大佛景区2013年5月份某周的最高气温(单位:℃)分别为:29,31,23,26,29,29,29.这组数据的极差为( ) A .29 B .28 C .8 D .63.如图,已知直线a ∥b ,∠1=131°.则∠2等于( )A .39°B .41°C .49°D .59° 4.若a >b ,则下列不等式变形错误的是( ) A .a+1>b+1 B .22ab>C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b 5.如图,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF=3,DE=2,则▱ABCD 的周长为( )A .5B .7C .10D .146.如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是43,则sinα的值为( )A .45 B .54 C .35 D .537.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( ) A .1101002x x =+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 8.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π9.如图,圆心在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1),过点P (0,﹣7)的直线l 与⊙B 相交于C ,D 两点.则弦CD 长的所有可能的整数值有( )A .1个B .2个C .3个D .4个 10.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数k y x =的图象上,且OA ⊥OB ,cosA=3,则k 的值为( )A .﹣3B .﹣6C .D .- 二、填空题:本大题共6小题,每小题3分,共18分.11.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作 千米.12.在一个布口袋里装有白、红、黑三种颜色的小球.它们除颜色之外没有任何其他区别,其中白球有5只,红球3只,黑球1只.袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是 .13.把多项式分解因式:ax 2﹣ay 2= .14.如图,在四边形ABCD 中,∠A=45°.直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2= .15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 .16.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若1122n x n -+≤<,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论: ①(1.493)=1; ②(2x )=2(x ); ③若1142x ⎛⎫-=⎪⎝⎭,则实数x 的取值范围是9≤x <11; ④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x ); ⑤(x+y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号). 三、解答题(本大题共3小题,每小题9分,共27分)17.(9分)计算:|﹣2|﹣4sin45°+(﹣1)2013 18.(9分)如图,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法); (2)在(1)中所作的直线l 上任意取两点M ,N (线段AB 的上方).连结AM ,AN ,BM ,BN .求证:∠MAN=∠MBN .19.(9分)化简并求值:22112x yx y x y x y⎛⎫-+÷⎪-+-⎝⎭,其中x ,y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.四、解答题(本大题共2个小题,每小题10分,共20分)20.(10分)中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名中学生家长;(2)将图1补充完整;(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?21.(10分)如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B的仰角分别为60°和45°.求山的高度BC.(结果保留根号)五、(选做题):从22、23两题中选做一题。
2013年黑龙江哈尔滨中考数学试题及答案(解析版)
哈尔滨市2013年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.(2013哈尔滨,1,3分)-13的倒数是( ).A .3B .-3C .-13D .13【答案】B . 2.(2013哈尔滨,2,3分)下列计算正确的是( ).A .a 3+a 2=a 3B .a 3·a 2=a 6C .(a 2)3=a 6D .(a2)2=a 22【答案】 C . 3.(2013哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D . 【答案】 D . 4.(2013哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的).【答案】 A .5.(2013哈尔滨,5,3分)把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =x 2+2D .y =x 2-2 【答案】 D .6.(2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C . 7.(2013哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ).A .4B .3C .52D .2(第7题图) 【答案】 B . 8.(2013哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2013哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2013哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2013哈尔滨,11,3分)把98000用科学记数法表示为_______________.【答案】9.8×104.12.(2013哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________. 【答案】x ≠3.13.(2013哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2013哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1.15.(2013哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y );16.(2013哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2013哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2013哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%. 19.(2013哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13. 20.(2013哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin∠BOE 的值为________.EODC B A(第20题图)【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(2013哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2.【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2, ∴原式=1a +2=1 23-2+2=1 23=36. 22.(2013哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 2 23.(2013哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2013哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2013哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE .(1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BO AB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB ,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt △BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2013哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得 45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天.(2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天. 27.(2013哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB 为等边三角形,∴∠BAC =∠AOB =60º,∵BC ⊥AB ,∴∠ABC =90º,∴∠ACB =30º,∠OBC =30º,∴∠ACB =∠OBC ,∴OC =OB =AB =OA =3,∴AC =6,∴BC =32AC =33.(2)解:如图1,过点Q 作QN ∥OB 交x 轴于点N ,∴∠QNA =∠BOA =60º=∠QAN ,∴QN =QA ,∴△AQN 为等边三角形,∴NQ =NA =AQ =3-t ,∴ON =3-(3-t )=t ,∴PN =t +t =2t ,∵OE ∥QN ,∴△POE ∽△PNQ ,∴OE QN =OP PN ,∴OE3-t=12,OE =32-12t ,∵EF ∥x 轴,∴∠BFE =∠BCO =∠FBE =30º,∴EF =BE ,∴m =BE =OB -OE =12t +32(0<t <3).(3)如图2,∵∠BE ′F ′=∠BEF =180º-∠EBF -∠EFB =120º,∴∠AE ′G =60º=∠E ′AG ,∴GE ′=GA ,∴△AE ′G 为等边三角形.∵QE ′=BE ′-BQ =m -t =12t +32-t =32-12t ,∴GE ′=GA =AE ′=AB -BE ′=32-12t =QE ′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA =90º,∴QG =3AG =323-123t ,∵EF ∥OC ,∴BF BC =BE OB ,∴BF 33=m 3,∴BF =3m =323+123t ,∵CF =BC -BF =323-123t ,CP =CO -OP =3-t ,∴CF CB =323-123t 33=3-t 6=CP AC .∵∠FCP =∠BCA ,∴△FCP ∽△BCA ,∴PF AB =CP AC ,∴PF =3-t 2,∵2BQ -BF =33QG ,∴2t -3-t 2=33×(323-123t ),∴t =1.∴当t =1时,2BQ -PF =33QG .28.(2013哈尔滨,28,10分) 已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 点点G . (1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,FA =FC ,∴FE =FA ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GFA ,∴△AFG ∽△BFA ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .。
2013年历年初三数学中考模拟试卷及答案
2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。
2013年数学中考模拟试题(含答案)共两套
2013年数学中考模拟试题一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图是( ) A .61 B .31 C .21 D .326题图 7题图题图8中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在使△ABE ≌△12题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。
2013年武汉市中考数学模拟试题3勤学早(三)及标准答案
勤学早21013年武汉市四月调考逼真模拟试题(三)一、选择题(每小题3分,共10小置,共30分)1.在0,-3,1,2这四个数中,最小的数是( )A.0 B.-3 C .1 D.22.在函数y=错误!中,自变.量x 的取值范围是( )A x>2B .x≠0C .x <-2 D.x≠23.不等式组{0201≤->-x x 的解集在数轴上表示为( )4.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上的概率是0.5.B.a 是实数,1+a ≥0.C.某运动员跳高的最好成绩是50.1米. D .从车间刚生产的产品中任意抽取一个,是次品.5.若方程x 2-3x -1=O的两根为x 1、x 2,则1x 1+\f(1,x 2)的值为( ) A. 3 B.- 错误! C.错误! D.-3 6.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒如图所示,则它的主视图是( )7.如图,四边形ABPC 中,PA =PB =PC,且∠BP C=156°,那么∠B AC 的大小是( )A .l00°B.101°C.102°D.103°8.古希腊的毕达哥拉斯学派把1,3,6,10,…,这样的数称为“三角形数”,把1,4,9,16,……,这样的数称为“正方形数”.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式中,符合以上规律的是( )A.6+15=21B.36+45=81C.9+16=25D.30+34=649.某校参加区教育局举办的学生英语口语竞赛,比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分),依据统计数据绘制了如下尚不完整的统计图表,根据图中信息,这些学生的平均分数是( )A . 8.5 B.8.46 C 8.36 D .8.2510.为美化小区环境,某小区有一块面积为30mz 的等腰三角形草地,测得其一边长为10m.现要给这块三角形草地围上白色的低矮栅栏,现在准备这种低矮栅栏的长度分别有以下三种:①10+2,61米;②20+2错误!米;③20+6错误! 米,则符合要求的是( )A.只有①②B.只有①③ C .只有②③ D.①②③二、填空题(每小题3分,共6题,共18分)l l.cos60°=________.12.光年是天文学中的距离单位,1光年约是95km .数据9 500 000 000000用科学计数法表示为_________.13.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分别为:12,1.3 ,13,14,12,13,15,13,则他们年龄的众数为________,中位数为________.14.甲、乙二人从A、B 两地同时出发相向而行,相遇后,甲立即返回,先于乙回到A 地,两人相距的路程y(千米)与行驶时间,(小时)之间的函数关系如图所示,则乙从B 地到A 地需时间________.15.直线y =-错误!x+2k 与双曲线y=-错误! ,其中k >0,交于B、C 两点(其中B 在点C 的上方),直线与y 轴的交点为A 点,若AB+AC=错误!,则k 的值是________.16.在平面直角坐标系中,直线y=-x+6分别与x轴、y 轴交于点A 、B两点,点C 在y 轴左边,且∠AC B=90°,则点C 的横坐标x c 的取值范围是________.三、解答题(共9题,共72分)17.(本题6分)解分式方程:xx 32121=+.18.(本题6分)在平面直角坐标系中,直线2-=kx y 经过点(-2,2),求不等式2-kx >0的解集,19.(本题6分)如图,AE =BF ,∠A=∠B,点C 、D 在线段AB 上,连接DE 、CF 、D E与CF 相交于点0.且AC=BD .求证:DE =CF20.(本题7分)如图所示的地面被分成8个全等的三角形区域,其中,标有字母a 、b 、c 、d 的4个。
2013年中考数学试题及答案
2013年中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 320答案:A3. 下列哪个表达式等价于 \( a^2 - b^2 \)?A. \( (a + b)(a - b) \)B. \( (a - b)(a + b) \)C. \( (a + b)^2 \)D. \( (a - b)^2 \)答案:B4. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 100答案:B5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 20答案:D6. 下列哪个数是无理数?A. 3.14B. 2.71828C. \( \sqrt{2} \)D. 1/3答案:C7. 一个数的3/4加上它的1/2等于21,这个数是多少?A. 12B. 16C. 24D. 8答案:B8. 一个圆的直径是14cm,那么它的半径是多少厘米?A. 7B. 14C. 28D. 21答案:A9. 一个数的1/3与它的1/4的和是10,这个数是多少?A. 24B. 30C. 40D. 60答案:B10. 下列哪个数是最小的负整数?A. -1B. -2C. -3D. -4答案:A11. 一个数的2倍加上3等于这个数的3倍减去5,求这个数。
A. 8B. 5C. 10D. 6答案:B12. 一个等腰三角形的两个底角相等,顶角是80度,那么底角是多少度?A. 50B. 60C. 70D. 80答案:A二、填空题(每题4分,共24分)13. 一个数的1/2加上它的1/3等于22,这个数是________。
答案:3614. 一本书的价格是36元,打8折后的价格是________元。
数学中考基础训练13
中考基础训练13时间:30分钟你实质使用分钟班级姓名学号成绩1.函数y=3x11的自变量x的取值范围是()2x4A.x≥1且x≠2B.x≠2C.x>1且x≠2D.全体实数2.已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于()A.-1B.0C.1D.23.假如sin2α+sin2300=1那么锐角α的度数是()A.150B.300C.450D.6004.已知⊙O的半径OA=6,扇形OAB的面积等于12π,则弧AB所对的圆周角的度数是()A.1200B.900C.600D.3005.一次函数y=kx+b知足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.已知实数x知足x21x10,那么x1的值是()x2x xA.1或-2B.-1或2C.1D.-27.已知对于x的一元二次方程x2-2(R+r)x+d2=0没有实数根,此中R、r分别为⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的地点关系是()A.外离B.订交C.外切D.内切8.扇形的半径为30cm,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cmB.20cmC.10πcmD.20πcm9.如图2把一个正方形三次对折后沿虚线剪下,则所得图形大概是()10.锐角A知足2sin(A-150)= 3 则∠A=____.某企业建立3年以来,踊跃向国家上交利税,由第一年的200万元,增加到800万元,则均匀每年增加的百分数是____.工程上常用钢珠来丈量部件上小孔的直径。
假定钢珠的直径是12毫米,测得钢珠顶端离部件表面的距离9毫米,如6所示,个小孔的直径AB是____毫米.一条抛物的称是x=1且与x有唯一的公共点,而且张口方向向下,条抛物的分析式是___(任写一个)14.察以下等式(等式中的“!”是一种数学运算符号),1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,⋯算:n!=_____(n正整数)15.已知函数y=-kx(k≠0)与y=4的象交于A、B两点,点A作ACx垂直于y,垂足点C,△BOC的面____。
2013年中考数学专题复习基础训练及答案(49页)
目录第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规作图第4讲图形的相似第5讲解直角三角形第三部分统计与概率第七章统计与概率第1讲统计第2讲概率基础知识反馈卡·1.1时间:15分钟 满分:50分一、选择题(每小题4分,共24分) 1.-4的倒数是( )A .4B .-4 C.14 D .-142.下面四个数中,负数是( ) A .-5 B .0 C .0.23 D .6 3.计算-(-5)的结果是( )A .5B .-5 C.15 D .-154.数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .3 C .-3 D .6或-65.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A .4.6×108 B .46×108 C .4.6×109 D .0.46×1010 6.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( ) A .-500元 B .-237元 C .237元 D .500元 二、填空题(每小题4分,共12分) 7.计算(-3)2=________.8.13-=______;-14的相反数是______.9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”).图J1-1-1答题卡题号1 2 3 4 5 6 答案7.__________ 8.__________ __________ 9.__________三、解答题(共14分) 10.计算:︱-2︱+(2+1)0--113⎛⎫ ⎪⎝⎭+tan60°.基础知识反馈卡·1.2时间:15分钟满分:50分一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-32.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为()A.30元B.60元C.120元D.150元3.下列运算不正确的是()A.-(a-b)=-a+b B.a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a二、填空题(每小题4分,共24分)4.当a=2时,代数式3a-1的值是________.5.“a的5倍与3的和”用代数式表示是____________.6.当x=1时,代数式x+2的值是__________.7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为____________.输入x―→x2―→+2―→输出图J1-2-19.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.图J1-2-2答题卡题号12 3答案4.____________5.____________6.____________7.____________8.____________9.____________三、解答题(共14分)10.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中x=2+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.计算2x +x 的结果是( ) A .3x 2 B .2x C .3x D .2x 2 2.x 3表示( )A .3xB .x +x +xC .x ·x ·xD .x +3 3.化简-2a +(2a -1)的结果是( ) A .-4a -1 B .4a -1 C .1 D .-1 4.下列不是同类项的是( )A .0与12 B .5x 与2yC .-14a 2b 与3a 2bD .-2x 2y 2与12x 2y 25.下列运算正确的是( )A .(-2)0=1B .(-2)-1=2 C.4=±2 D .24×22=28 二、填空题(每小题4分,共12分)6.单项式-x 3y 3的次数是________,系数是________. 7.计算:3-2=__________.8.计算(ab )2的结果是________.答题卡题号1 2 3 4 5 答案6.__________ __________7.__________ 8.__________三、解答题(共18分)9.先化简,再求值:3(x -1)-(x -5),其中x =2.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.把多项式x2-4x+4分解因式,所得结果是()A.x(x-4)+4 B.(x-2)(x+2)C.(x-2)2D.(x+2)22.下列因式分解错误的是()A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.利用因式分解进行简便计算:7×9+4×9-9,正确的是()A.9×(7+4)=9×11=99 B.9×(7+4-1)=9×10=90C.9×(7+4+1)=9×12=108 D.9×(7+4-9)=9×2=184.下列各等式中,是分解因式的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)C.10x2-5x=5x(2x-1)D.x2-16x+3x=(x+4)(x-4)+3x5.如果x2+2(m-1)x+9是完全平方式,那么m的结果正确的是()A.4 B.4或2C.-2 D.4或-2二、填空题(每小题4分,共16分)6.因式分解:a2+2a+1=______________.7.因式分解:m2-mn=____________.8.因式分解:x3-x=____________.9.若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k为常数,则m+k=____________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.若分式32x -1有意义,则x 的取值范围是( )A .x ≠12B .x ≠-12C .x >12D .x >-122.计算1x -1-xx -1的结果为( )A .1B .2C .-1D .-23.化简a -1a ÷a -1a2的结果是( )A.1a B .a C .a -1 D.1a -14.化简1x -1x -1可得( )A.1x 2-x B .-1x 2-x C.2x +1x 2-x D.2x -1x 2-x 二、填空题(每小题4分,共24分)5.化简:a a -b -ba -b =__________.6.化简x (x -1)2-1(x -1)2的结果是____________. 7.若分式x +12x -2的值为0,那么x 的值为__________.8.若分式-12a -3的值为正,则a 的取值范围是__________.9.化简x (x -1)2-1x -1的结果是__________. 10.化简2x 2-1÷1x -1的结果是__________.答题卡题号1 2 3 4 答案5.____________6.____________7.____________8.____________ 9.____________ 10.____________ 三、解答题(共10分)11.先化简,再求值:21211a a a -⎛⎫- ⎪+-⎝⎭÷1a +1,其中a =3+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.3最接近的整数是( ) A .0 B .2 C .4 D .5 2.|-9|的平方根是( ) A .81 B .±3 C .3 D .-3 3.下列各式中,正确的是( ) A.(-3)2=-3 B .-32=-3 C.(±3)2=±3 D.32=±34.对任意实数a ,下列等式一定成立的是( ) A.a 2=a B.a 2=-a C.a 2=±a D.a 2=|a |5.下列二次根式中,最简二次根式( ) A.15B.0.5C. 5D.50二、填空题(每小题4分,共12分) 6.4的算术平方根是__________. 7.实数27的立方根是________.8.计算:12-3=________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________三、解答题(每小题9分,共18分)9.计算:|2 2-3|-212-⎛⎫- ⎪⎝⎭+18.10.计算:212-⎛⎫⎪⎝⎭-2cos45°+(3.14-π)0+128+(-2)3.时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.方程5x -2=12的解是( )A .x =-13B .x =13C .x =12D .x =22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x =13B .2(x +1)+3x =13C .2x +3(x +1)=13D .2x +3(x -1)=13 3.二元一次方程组20x y x y +=⎧⎨-=⎩,的解是( )A.02x y =⎧⎨=⎩,B.11x y =⎧⎨=⎩,C.20x y =⎧⎨=⎩,D.11x y =-⎧⎨=-⎩,4.有下列各组数:①22x y =⎧⎨=⎩,;②21x y =⎧⎨=⎩,;③22x y =⎧⎨=-⎩,;④16x y =⎧⎨=⎩,,其中是方程4x +y =10的解的有( )A .1个B .2个C .3个D .4个5.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2 900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程组是( )A. 14250802900x y x y ⎧+=⎪⎨⎪+=⎩,B.158********x y x y +=⎧⎨+=⎩, C. 14802502900x y x y ⎧+=⎪⎨⎪+=⎩,D.152********x y x y +=⎧⎨+=⎩, 二、填空题(每小题4分,共16分)6.方程3x -6=0的解为__________.7.已知3是关于x 的方程3x -2a =5的解,则a 的值为________.8.在x +3y =3中,若用x 表示y ,则y =______;若用y 表示x ,则x =______. 9.对二元一次方程2(5-x )-3(y -2)=10,当x =0时,y =__________;当y =0时,x =________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ __________9.__________ __________ 三、解答题(共14分)10.解方程组: 281.x y x y +=⎧⎨-=⎩,基础知识反馈卡·2.1.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.分式方程2x -42+x=0的根是( )A .x =-2B .x =0C .x =2D .无实根2.分式方程12x 2-9-2x -3=1x +3的解为( )A .3B .-3C .无解D .3或-33.分式方程xx -3=x +1x -1的解为( )A .x =1B .x =-1C .x =3D .x =-34.有两块面积相同的试验田,分别收获蔬菜900 kg 和1 500 kg.已知第一块试验田每亩收获蔬菜比第二块少300 kg ,求第一块试验田每亩收获蔬菜多少千克?设第一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A.900x +300=1 500xB.900x =1 500x -300C.900x =1 500x +300D.900x -300=1 500x 5.解分式方程1x -1=3(x -1)(x +2)的结果为( )A .1B .-1C .-2D .无解 二、填空题(每小题4分,共16分)6.方程xx +2=3的解是________.7.方程1x -1=4x 2-1的解是________.8.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =________________________________________________________________________.9.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解方程:3x -2=2x +1.基础知识反馈卡·2.1.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .-3 B .3 C .0 D .0或32.已知一元二次方程x 2-4x +3=0的两根为x 1,x 2, 则x 1·x 2的值为( ) A .4 B .3 C .-4 D .-3 3.方程x 2+x -1=0的一个根是( ) A .1- 5 B.1-52C .-1+ 5 D.-1+524.用配方法解一元二次方程x 2+4x =5时,此方程可变形为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=95.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x .根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .100(1+x )2=121D .100(1-x )2=121 二、填空题(每小题4分,共16分)6.一元二次方程3x 2-12=0的解为__________. 7.方程x 2-5x =0的解是__________.8.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2+ x 1·x 2的值是________. 9.关于x 的一元二次方程kx 2-x +1=0有两个不相等的实数根,则k 的取值范围是_____________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分) 10.滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?基础知识反馈卡·2.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.若a <b ,则下列各式中一定成立的( )A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc2.不等式x -1>0的解集是( ) A .x >1 B .x <1 C .x >-1 D .x <-1 3.不等式10,324x x x ->⎧⎨>-⎩的解集是( )A .x <1B .x >-4C .-4<x <1D .x >14.如图J2-2-1,数轴上表示的是下列哪个不等式组的解集( )图J2-2-1A.5,3x x ≥-⎧⎨>-⎩B.5,3x x >-⎧⎨≥-⎩C.5,3x x <⎧⎨<-⎩D.5,3x x <⎧⎨>-⎩5.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .30x +50>280B .30x -50≥280C .30x -50≤280D .30x +50≥280 二、填空题(每小题4分,共16分)6.若不等式ax |a -1|>2是一元一次不等式,则a =______________.7.把不等式组的解集表示在数轴上,如图J2-2-2,那么这个不等式组的解集是______________.图J2-2-28.已知不等式组321,0x x a +≥⎧⎨-<⎩无解,则实数a 的取值范围是______________.9.不等式组10,240x x -≤⎧⎨+>⎩的整数解是__________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解不等式组34,26x x +>⎧⎨<⎩并把解集在如图J2-2-3的数轴上表示出来.图J2-2-3基础知识反馈卡·3.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.点M (-2,1)关于y 轴对称的点的坐标是( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(1,-2) 2.在平面直角坐标系中,点M (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.点M (-3,2)到y 轴的距离是( ) A .3 B .2 C .3或2 D .-35.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1) C .(4,1) D .(0,1) 二、填空题(每小题4分,共16分)6.已知函数y =2x,当x =2时,y 的值是________.7.如果点P (2,y )在第四象限,那么y 的取值范围是________.8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y (单位:元)与购买这种商品的件数x (单位:件)之间的关系式为__________________.9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点E 的坐标为________.图J3-1-1答题卡题号1 2 3 4 5 答案6.________________7.________________ 8.________________ 9.________________ 三、解答题(共14分)10.在图J3-1-2的平面直角坐标系中,描出点A (0,3),B (1,-3),C (3,-5),D (-3,-5),E (3,2),并回答下列问题:(1)点A到原点O的距离是多少?(2)将点C向x轴的负方向平移6个单位,它与哪个点重合?(3)点B分别到x、y轴的距离是多少?(4)连接CE,则直线CE与y轴是什么关系?图J3-1-2基础知识反馈卡·3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.直线y=x-1的图象经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=3x+b的图象经过第一、二、三象限,则b的值可以是() A.-2 B.-1C.0 D.24.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()5.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2) B.(-1,-2)C .(2,1)D .(1,-2)二、填空题(每小题4分,共16分)6.写出一个具体的y 随x 的增大而减小的一次函数解析式________.7.已知一次函数y =2x +1,则y 随x 的增大而________(填“增大”或“减小”). 8.(1)若一次函数y =ax +b 的图象经过第一、二、三象限,则a ____0,b ____0; (2)若一次函数y =ax +b 的图象经过二、三、四象限,则a ____0,b ____0. 9.将直线y =2x -4向上平移5个单位后,所得直线的表达式是____________.答题卡题号1 2 3 4 5 答案6.________7.________8.(1)______ ______ (2)______ ______ 9.____________三、解答题(共14分)10.已知直线l 1∶y 1=-4x +5和直线l 2∶y 2=12x -4.(1)求两条直线l 1和l 2的交点坐标,并判断交点落在哪一个象限内;(2)在同一个坐标系内画出两条直线的大致位置,然后利用图象求出不等式-4x +5>12x-4的解.基础知识反馈卡·3.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是( )A .k >12B .k <12C .k =12D .不存在2.下列各点中,在函数y =-6x图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.1,32⎛⎫- ⎪⎝⎭3.对于反比例函数y =1x ,下列说法正确的是( )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.已知如图J3-3-1,A 是反比例函数y =kx的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是2,则k 的值是( )图J3-3-1A .2B .-2C .4D .-45.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )二、填空题(每小题4分,共16分)6.如图J3-3-2,已知点C 为反比例函数y =-6x上的一点,过点C 向坐标轴引垂线,垂足分别为A ,B ,那么四边形AOBC 的面积为____________.图J3-3-2 图J3-3-3 图J3-3-47.如图J3-3-3,点P 是反比例函数y =-4x上一点,PD ⊥x 轴,垂足为D ,则S △POD=__________.8.(2012年江苏盐城)若反比例函数的图象经过点P (-1,4),则它的函数关系是________. 9.如图J3-3-4所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分) 10.如图J3-3-5,已知直线y =-2x 经过点P (-2,a ),点P 关于y 轴的对称点P ′在反比例函数y =kx(k ≠0)的图象上.图J3-3-5(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.基础知识反馈卡·3.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.抛物线y =-(x +2)2+3的顶点坐标是( ) A .(2,-3) B .(-2,3) C .(2,3) D .(-2,-3)2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位3.二次函数y =x 2-2x -3的图象如图J3-4-1.当y >0时,自变量x 的取值范围是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-1或x >3图J3-4-1图J3-4-24.如图J3-4-2,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A .1B .2C .3D .45.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( ) A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 二、填空题(每小题4分,共16分)6.将二次函数y =x 2-4x +5化为y =(x -h )2+k 的形式,则y =__________. 7.将抛物线y =x 2+1向下平移2个单位,则此时抛物线的解析式是____________. 8.若二次函数y =-x 2+2x +k 的部分图象如图J3-4-3,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2=________.9.y=2x2-bx+3的对称轴是直线x=1,则b的值为________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),求该抛物线的表达式.基础知识反馈卡·4.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个图形中,∠1与∠2是对顶角的图形为()2.如图J4-1-1,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.120°D.150°图J4-1-1图J4-1-23.一只因损坏而倾斜的椅子,从背后看到的形状如图J4-1-2,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是()A.75°B.115°C.65°D.105°4.如图J4-1-3,AB∥CD,∠C=65°,CE⊥BE,垂足为点E,则∠B的度数为() A.15°B.25°C.35°D.75°图J4-1-3图J4-1-45.将一直角三角板与两边平行的纸条如图J4-1-4所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)6.线段AB=4 cm,在线段AB上截取BC=1 cm,则AC=__________cm.7.有如下命题:①三角形三个内角的和等于180°;②两直线平行,同位角相等;③矩形的对角线相等;④相等的角是对顶角.其中属于假命题的有__________.8.如图J4-1-5,请填写一个适当的条件:____________,使得DE∥AB.图J4-1-5图J4-1-69.如图J4-1-6,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________度.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-1-7,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.图J4-1-7基础知识反馈卡·4.2.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列各组线段能组成三角形的一组是()A.5 cm,7 cm,12 cm B.6 cm,8 cm,10 cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,8 cm2.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线3.如图J4-2-1,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()图J4-2-1A.BC=EF B.∠A=∠DC.AC∥DF D.AC=DF4.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线的交点()A.高B.角平分线C.中线D.垂直平分线5.下列说法中不正确的是()A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等二、填空题(每小题4分,共16分)6.如图J4-2-2,要测量的A,C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E,F,量得E,F两点间的距离等于23米,则A,C两点间的距离为__________米.图J4-2-27.如图J4-2-3,△ABC≌△ABD,且△ABC的周长为12,若AC=4,AB=5,则BD =________.图J4-2-3图J4-2-4图J4-2-58.将一副三角尺按如图J4-2-4所示放置,则∠1=________度.9.已知:如图J4-2-5,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________°.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-6,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.图J4-2-6基础知识反馈卡·4.2.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.有一个内角是60°的等腰三角形是()A.钝角三角形B.等边三角形C.直角三角形D.以上都不是2.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形3.如图J4-2-7,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于() A.3 cm B.4 cm C.1.5 cm D.2 cm图J4-2-7图J4-2-84.如图J4-2-8,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC 为()A.55°B.65°C.75°D.85°5.边长为4的正三角形的高为()A.2 B.4 C. 3 D.2 3二、填空题(每小题4分,共16分)6.如图J4-2-9,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A=________度,∠B=________度.图J4-2-97.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是____________.8.已知等腰三角形的一个内角为80°,则另两个角的度数是______________.9.如图J4-2-10,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC 边上一点,且BE=BP,CP=CF,则∠EPF=________度.图J4-2-10答题卡题号1234 5答案6.________________________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-11,已知在直角三角形ABC中,∠C=90°,BD平分∠ABC且交AC 于点D,∠BAC=30°.(1)求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BP A的度数.图J4-2-11基础知识反馈卡·4.3.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.平行四边形一边长是6厘米,周长是28厘米,则这条边的邻边长为()A.22厘米B.16厘米C.11厘米D.8厘米2.如图J4-3-1所示,在□ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()图J4-3-1A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD3.若一个多边形的内角和等于900°,则这个多边形的边数是()A.6 B.7 C.8 D.94.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A B C D5.下列条件中,不能判别四边形是平行四边形的是()A.一组对边平行且相等B.两组对边分别相等C.两条对角线垂直且相等D.两条对角线互相平分二、填空题(每小题4分,共16分)6.五边形的外角和等于________度.7.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是________.8.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是________.9.如果一个多边形的内角和与外角和相等,则此多边形是________.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-2,已知E,F是四边形ABCD的对角线AC上的两点,AE=CF,BE =DF,BE∥DF.求证:四边形ABCD是平行四边形.图J4-3-2基础知识反馈卡·4.3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.如图J4-3-3,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40图J4-3-3图J4-3-4图J4-3-53.如图J4-3-4,把矩形ABCD沿EF对折,若∠1=60°,则∠AEF等于()A.115°B.130°C.120°D.65°4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 5.如图J4-3-5,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB =4 cm,则AC的长为()A.4 cm B.8 cm C.12 cm D.4 5 cm二、填空题(每小题4分,共16分)6.如图J4-3-6,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=5,则图中阴影部分的面积为________.图J4-3-67.如图J4-3-7,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD =8 cm,则这个菱形的面积是________cm2.图J4-3-7 图J4-3-88.如图J4-3-8所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明□ABCD是矩形的有____________(填写序号).9.已知四边形ABCD中,∠A=∠B=∠C=90°,添加条件_____________________,此四边形即为正方形(填一个即可).答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-9,矩形ABCD中,已知对角线AC与BD交于点O,△OBC的周长为16,其中BC=7,求矩形对角线AC的长.图J4-3-9基础知识反馈卡·4.3.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列说法正确的是()A.平行四边形是一种特殊的梯形B.等腰梯形的两底角相等C.等腰梯形可能是直角梯形D.有两邻角相等的梯形是等腰梯形2.如图J4-3-10,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°B.45°C.50°D.60°图J4-3-10 图J4-3-113.下面命题错误的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形4.有一等腰梯形纸片ABCD(如图J4-3-11),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5.如图J4-3-12,等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,则图中相等的线段共有()图J4-3-12A.2对B.3对C.4对D.5对二、填空题(每小题4分,共16分)6.如图J4-3-13,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.图J4-3-137.等腰梯形的中位线长是15 ,一条对角线平分一个60°的底角,则梯形的周长为______.8.如图J4-3-14,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是________.图J4-3-149.顺次连接等腰梯形四边中点所得的四边形是________形.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.已知:如图J4-3-15,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.图J4-3-15基础知识反馈卡·5.1时间:15分钟满分:50分一、选择题(每小题4分,共16分)1.如图J5-1-1,点A,B,C都在⊙O上,若∠AOB=40°,则∠C=()A.20°B.40°C.50°D.80°图J5-1-1图J5-1-2图J5-1-3图J5-1-42.如图J5-1-2,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A 的度数为()A.70°B.35°C.30°D.20°3.如图J5-1-3,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为()A. 2 B.2 2 C.22 D.624.如图J5-1-4,∠AOB=100°,点C在⊙O上,且点C不与点A,B重合,则∠ACB 的度数为()A.50°B.80°或50°C.130°D.50°或130°二、填空题(每小题4分,共20分)5.如图J5-1-5,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A,B两点,点P在优弧AB上,且与点A,B不重合,连接P A,PB,则∠APB的大小为________度.图J5-1-5图J5-1-6图J5-1-76.如图J5-1-6,AB是⊙O的弦,OC⊥AB于点C,若AB=8 cm,OC=3 cm,则⊙O 的半径为________cm.7.如图J5-1-7,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=______.8.如图J5-1-8,在⊙O的内接四边形ABCD中,若∠BCD=110°,则∠BOD=______度.图J5-1-8图J5-1-99.如图J5-1-9,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,若BD=BC,则∠D=________度.答题卡题号123 4答案5.________6.________7.________8.________9.________三、解答题(共14分)10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图J5-1-10,污水水面宽度为60 cm,水面至管道顶距离为10 cm,问:修理人员应准备内径多大的管道?图J5-1-10基础知识反馈卡·5.2时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A B C D2.如图J5-2-1,四边形ABCD内接于⊙O,若∠C=30°,则∠A的度数为()图J5-2-1A.36°B.56°C.72°D.144°3.若线段OA=3,⊙O的半径为5,则点A与⊙O的位置关系为()A.点在圆外B.点在圆上C.点在圆内D.不能确定4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离6.如图J5-2-2,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()图J5-2-2A.3 cmB.4 cmC.6 cmD.8 cm二、填空题(每小题4分,共12分)7.如图J5-2-3,P A,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC =25°,则∠P=________度.图J5-2-3图J5-2-4图J5-2-58.如图J5-2-4,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=________.9.如图J5-2-5,点P是⊙O外一点,P A是⊙O的切线,切点为A,⊙O的半径OA =2 cm,∠P=30°,则PO=______cm.答题卡题号12345 6答案7.__________8.__________9.__________三、解答题(共14分)10.如图J5-2-6,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD;(2)△ABC≌△ODB.图J5-2-6基础知识反馈卡·5.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.在半径为12的⊙O 中,60°圆心角所对的弧长是( ) A .6π B .4π C .2π D .π2.一条弦分圆周为5∶4两部分,则这条弦所对的圆周角的度数为( ) A .80° B .100° C .80°或100° D .以上均不正确 3.如图J5-3-1,半径为1的四个圆两两相切,则图中阴影部分的面积为( ) A .4-π B .8-π C .2(4-π) D .4-2π图J5-3-1 图J5-3-2 图J5-3-34.如图J5-2-2是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( ) A .60° B .90° C .120° D .180°5.如图J5-3-3,P A ,PB 是⊙O 的切线,切点是A ,B ,已知∠P =60°,OA =3,那么∠AOB 所对的弧的长度为( )A .6πB .5πC .3πD .2π 二、填空题(每小题4分,共16分)6.圆锥底面半径为12,母线长为2,它的侧面展开图的圆心角是______.7.正多边形的一个内角为120°,则该多边形的边数为________.8.已知扇形的半径为3 cm ,扇形的弧长为π cm ,则该扇形的面积是________cm 2,扇形的圆心角为________度.9.如图J5-3-4,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是________.图J5-3-4答题卡题号1 2 3 4 5 答案6.________7.________8.________ ________ 9.________ 三、解答题(共14分)10.如图J5-3-5,⊙O 的半径为1,弦AB 和半径OC 互相平分于点M .求扇形OACB 的面积(结果保留π).图J5-3-5基础知识反馈卡·6.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列图形中,是轴对称图形的有()①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2个B.3个C.4个D.5个2.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车.A.2种B.3种C.4种D.5种3.如图J6-1-1,香港特别行政区区徽是由五个同样的花瓣组成的,它可以看作是由其中一个花瓣通过怎样的变化而得到的()A.平移B.对称C.旋转D.先平移,后旋转图J6-1-1图J6-1-24.如图J6-1-2,△ABC与△A′B′C′关于点O成中心对称,下列结论不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′5.下列既是轴对称图形又是中心对称图形的是()A B C D二、填空题(每小题4分,共16分)6.正五角星的对称轴的条数是________.7.如图J6-1-3,△ABC按逆时针方向旋转一定的角度后到达△AB′C′的位置,则旋转中心是点________,旋转角度是________度.图J6-1-3 图J6-1-4 图J6-1-58.如图J6-1-4,△ABC 中,AB =AC =14 cm ,D 是AB 的中点,DE ⊥AB 于点D ,交AC 于点E ,△EBC 的周长是24 cm ,则BC =________.9.正方形ABCD 在坐标系中的位置如图J6-1-5,将正方形ABCD 绕点D 按顺时针方向旋转90°后,点B 的坐标为________.答题卡题号1 2 3 4 5 答案6.______________7.______________ ______________ 8.______________ 9.______________ 三、解答题(共14分) 10.画图题.如图J6-1-6,将△ABC 绕点O 顺时针旋转180°后得到△A 1B 1C 1,请你画出旋转后的△A 1B 1C 1 ;图J6-1-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013级数学中考基础训练(3)
一、选择题(每小题3分,共30分)
1、2cos45°的值等于( )
(A )22 (B )2 (C )4
2 (D )22 2、化简(-3x 2)·2x 3的结果是( )
(A )-6x 5 (B )-3x 5 (C )2x 5 (D )6x 5
3、北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情 传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学记数法表示为( )
(A )13.7×104千米 (B )13.7×105千米(C )1.37×105千米 (D )1.37×106千米
4、用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是( )
(A )4 (B )5 (C )6
(D )7 5、下列事件是必然事件的是( )
(A )打开电视机,任选一个频道,屏幕上正在播放天气预报
(B )到电影院任意买一张电影票,座位号是奇数
(C )在地球上,抛出去的篮球会下落
(D )掷一枚均匀的骰子,骰子停止转动后偶数点朝上
6、在函数y=3x 中,自变量x 的取值范围是( )
(A )x ≥ - 3 (B )x ≤ - 3 (C )x ≥ 3 (D )x ≤ 3
7、如图1,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )
(A )∠B=∠E,BC=EF (B )BC=EF ,AC=DF
(C )∠A=∠D ,∠B=∠E (D )∠A=∠D ,BC=EF
图1 图2
8、一交通管理人员星期天在伏龙市市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图2所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为( )
(A )15,15 (B )10,15 (C )15,20 (D )10,20
9、如图1,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )
(A )12πcm 2 (B )15πcm 2 (C )18πcm 2 (D )24πcm 2
图1 图2 图3
10、有下列函数:①y = - 3x ;②y = x – 1:③y = - x
1 (x < 0);④y = x
2 + 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有( )
(A )①② (B )①④ (C )②③ (D )③④
二、填空题:(每小题4分,共16分)
11、 现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,
则身高较整齐的球队是 队.
12、已知x = 1是关于x 的一元二次方程2x 2 + kx – 1 = 0的一个根,则实数k 的值是 .
13、如图2,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .
14、如图3,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是 .
三、(第15题每小题6分,第16题6分,共18分)
15、 解答下列各题:
(1)计算:231)2008(41
0-+⎪⎭
⎫ ⎝⎛--+- . (2)化简:).4(2)12(22-⋅-+-x x x x x x
16、解不等式组⎪⎩
⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整式解.
四、(每小题8分,共16分)
17、如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)
18、如图,已知反比例函数y = x
m 的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B.
(1)试确定这两个函数的表达式;
(2)求点B 的坐标.
形ABCD 的面积ABCD S 梯形的值;
(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k ·EF (k 为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.。