高中数学2.2等差数列(二)
人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
人教版高中数学必修五 2.2 等差数列
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
【优化方案】2012高中数学 第2章2.2.2等差数列的性质课件 新人教A版必修5
(4)若{an}是有穷等差数列,则与首、末两项等距 若 是有穷等差数列, 是有穷等差数列 则与首、 离的两项之和都相等,且等于首、末两项之和, 离的两项之和都相等,且等于首、末两项之和, 即a1+an=a2+an-1=…=ai+1+an-i=…. = + - - (5)数列 n+b}(λ、b是常数 是公差为 的等差数 数列{λa 是常数)是公差为 数列 、 是常数 是公差为λd的等差数 列.
方法感悟
若数列{a 是公差为 的等差数列,则有: 若数列 n}是公差为 d 的等差数列,则有: an-a1 am-ak (1)d= (m、n、k∈N*). = = 、 、 ∈ . n-1 m-k - - (2)若 m+n=p+q(m、n、p、q∈N*),则 am+an 若 + = + 、 、 、 ∈ , =ap+aq. m+n + (3)若 若 =k,则 am+an=2ak(m、n、k∈N*). , 、 、 ∈ . 2
差d<0,所以利润构成的数列是一个递减数列, < ,所以利润构成的数列是一个递减数列, 即随着n的增大, 的值越来越小, 即随着 的增大,an的值越来越小,an<0时(此处 的增大 时 此处 暗含a - 成立 公司将出现亏损. 成立)公司将出现亏损 暗含 n-1≥0成立 公司将出现亏损.
变式训练2 变式训练
体考虑问题. 利用 利用2a 利用a 体考虑问题.(1)利用 4=a3+a5,(2)利用 n= 利用 am+(n-m)d. -
解析】 【 解析】 (1)∵a3+ a4+a5=12,∴ 3a4= 12,a4 ∵ , , =4. ∴a1+a2+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+ + + + a4=7a4=28. (2)在等差数列 n}中,根据 an=am+(n-m)d, 在等差数列{a 中 在等差数列 - , 1 ∴a51=a11+40d,∴d= (54+26)=2. , = + = 40 =-26+ × =- =-20. ∴a14=a11+3d=- +3×2=- =-
高中数学第二章数列 第2课时等差数列的性质学案含解析新人教A版必修
第2课时等差数列的性质[目标] 1.记住等差数列的一些常见性质;2.会用等差数列的性质解答一些简单的等差数列问题.[重点] 等差数列性质的应用.[难点] 等差数列性质的理解.知识点一等差数列的重要性质[填一填]1.a n=a m+(n-m)d(m,n∈N*).2.若m+n=p+q(m,n,q,p∈N*),则a m+a n=a p+a q.[答一答]1.在等差数列{a n}中,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q成立吗?提示:不一定.若数列{a n}是常数列,则m+n=p+q不一定成立.2.在公差为d的等差数列{a n}中,若m+n=2p(m,n,p∈N*),则2a p与a m,a n有何关系?提示:2a p=a m+a n.3.在等差数列{a n}中,若m+n=p,则a m+a n=a p成立吗?提示:不成立.知识点二等差数列的其他性质[填一填]1.若{a n}是公差为d的等差数列,则下列数列:(1){c+a n}(c为任一常数)是公差为d的等差数列;(2){ca n}(c为任一常数)是公差为cd的等差数列;(3){a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.2.若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[答一答]4.在等差数列中,如何判断数列的单调性?提示:在等差数列{a n}中,a n=a1+(n-1)d.当d>0时,{a n}是递增数列;当d=0时,{a n}是常数列;当d<0时,{a n}是递减数列.5.判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”. (1)等差数列去掉前面若干项后,剩下的项仍构成等差数列.( √ ) (2)摆动数列不可能是等差数列.( √ )(3)在等差数列{a n }中,若m +n +p =3t ,则a m +a n +a p =3a t .( √ )类型一 等差数列的性质应用[例1] (1)已知等差数列{a n },a 5=10,a 15=25,求a 25的值; (2)已知等差数列{a n },a 3+a 4+a 5+a 6+a 7=70,求a 1+a 9的值;(3)已知数列{a n },{b n }都是等差数列,且a 1=2,b 1=-3,a 7-b 7=17,求a 19-b 19的值. [分析] 分析题目,可利用等差数列的性质,也可利用通项公式求解. [解] (1)方法一:设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25,解得⎩⎪⎨⎪⎧a 1=4,d =32,故a 25=a 1+24d =4+24×32=40.方法二:因为5+25=2×15,所以在等差数列{a n }中有a 5+a 25=2a 15,从而a 25=2a 15-a 5=2×25-10=40.方法三:因为5,15,25成等差数列,所以a 5,a 15,a 25也成等差数列,因此a 25-a 15=a 15-a 5,即a 25-25=25-10,解得a 25=40.(2)由等差数列的性质,得a 3+a 7=a 4+a 6=2a 5=a 1+a 9,所以a 3+a 4+a 5+a 6+a 7=5a 5=70,于是a 5=14,故a 1+a 9=2a 5=28.(3)令c n =a n -b n ,因为{a n },{b n }都是等差数列,所以{c n }也是等差数列,设其公差为d ,由已知,得c 1=a 1-b 1=5,c 7=17,则5+6d =17,解得d =2,故a 19-b 19=c 19=5+18×2=41.在等差数列中,一般存在两种运算方法:一是利用基本量运算,借助于a 1,d 建立方程组进行运算,这是最基本的方法;二是利用性质运算,运用等差数列的性质可简化计算,往往会有事半功倍的效果.[变式训练1] (1)在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( B ) A .-9 B .-8 C .-7 D .-4解析:∵{a n }是等差数列,∴a 6-a 4=6=2d . ∴d =3.∴a 1+d =-5.∴a 1=-8.(2)若数列{a n }的公差为2,则数列{3a n -2}的公差为( D ) A .3 B .4C.5 D.6解析:∵数列{a n}的公差为2,∴数列{3a n-2}的公差为3×2=6.(3)设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由a n+b n所组成的数列的第37项的值为( C )A.0 B.37C.100 D.-37解析:设c n=a n+b n,则c1=a1+b1=25+75=100,c2=a2+b2=100.故d=c2-c1=0.故c n=100(n∈N*).从而c37=100.类型二等差数列的实际应用[例2] 有一批影碟机原销售价为每台800元,在甲、乙两家商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所买各台单价均减少20元,但每台最低不低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪一家商场购买花费较少?[分析] 先求出购买n台时甲商场的售价,再与购买n台时乙商场的售价作差比较.[解]设该单位需购买影碟机n台,在甲商场购买单价为a n元,当a n不低于440时,a1,a2,…,a n构成等差数列,则a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于或等于18台时,每台售价为(800-20n)元,当购买台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600(元).又(800-20n)n-600n=20n(10-n),所以,当n<10时,600n<(800-20n)n;当n=10时,600n=(800-20n)n;当10<n≤18时,(800-20n)n<600n;当n>18时,440n<600n.所以当购买台数少于10台时,到乙商场购买花费较少;当购买10台时,到两商场购买花费相同;当购买台数多于10台时,到甲商场购买花费较少.1.在实际问题中,若涉及一组与顺序有关的数的问题,可考虑利用数列方法解决,若这组数依次成直线上升或下降,则可考虑利用等差数列方法解决.2.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.[变式训练2] 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?解:由题知:a 1=3,a 2=5,a 3=7,a 4=9,…,可知其是以3为首项,2为公差的等差数列,则a n =2n +1,当n =102时,a 102=205,当a n =999时,2n +1=999,n =499.答:第102个雕塑是由205只蝴蝶组成的;由999只蝴蝶组成的雕塑是第499个. 类型三 等差数列的综合应用[例3] 已知两个等差数列5,8,11,…和3,7,11,…都是100项,求它们有多少个共同的项.[分析] 先写出两数列的通项公式,利用两通项公式寻找共同的项. [解] 解法一:设两个数列分别为{a n }与{b k }, 则a 1=5,d 1=8-5=3,通项a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项b k =3+(k -1)·4=4k -1. 设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,即3n +2=4k -1. ∵n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1,由条件知⎩⎪⎨⎪⎧1≤3r ≤100,1≤4r -1≤100,解得12≤r ≤1014,又∵r ∈N *,∴1≤r ≤25(r ∈N *). ∴共有25个共同的项.解法二:由解法一知两数列的通项分别为a n =3n +2,b k =4k -1,设共同项构成新数列{c n },则c 1=11,∵数列{a n },{b n }均为等差数列,∴数列{c n }仍为等差数列,且公差为d =12. ∴c n =11+(n -1)·12=12n -1. 又∵a 100=302,b 100=399, ∴c n =12n -1≤302,∴n ≤25.25,∴两数列有25个共同项.本题是探求两个数列的公共项问题,解法一是常规解法,解法二利用了最小公倍数.通常是从通项公式入手,建立a n =b m 这样的方程,再求其一定范围内的整数解.本题常见的错误是求得数列a n =3n +2,b n =4n -1,即令3n +2=4n -1,解得n =3,所以有一个公共项11,这显然是错误的.[变式训练3] 把数列{2n +1}中的项依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第104个括号内的各数之和为( D )A .2 036B .2 048C .2 060D .2 072解析:由观察发现,每四个括号是一个循环,一个循环由10个数组成,104个括号有26个循环,则第104个括号内有四个数,这四个数为数列3,5,7,9,…的第257项、第258项、第259项、第260项,分别为3+(257-1)×2,3+(258-1)×2,3+(259-1)×2,3+(260-1)×2,即515,517,519,521,其和为2 072.故选D.1.等差数列{a n }中,若a 2+a 4 024=4,则a 2 013=( A ) A .2 B .4 C .6 D .-2解析:∵2a 2 013=a 2+a 4 024=4,∴a 2 013=2.2.已知等差数列{a n }中,a 7=π4,则tan(a 6+a 7+a 8)等于( C )A .-33B .- 2C .-1D .1解析:∵在等差数列{a n }中,a 6+a 7+a 8=3a 7=3π4,∴tan(a 6+a 7+a 8)=tan 3π4=-1.3.如果等差数列{a n }中,a 1=2,a 3=6,则数列{2a n -3}是公差为4的等差数列. 解析:设数列{a n }的公差为d ,则a 3-a 1=2d =4, 即d =2.故数列{2a n -3}的公差为4.4.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=13. 解析:设等差数列{a n }的公差为d . ∵a 5=a 2+6,∴a 5-a 2=6,即3d =6,d =2. ∴a 6=a 3+3d =7+3×2=13. 5.在等差数列{a n }中: (1)若a 5=a ,a 10=b ,求a 15; (2)若a 3+a 8=m ,求a 5+a 6; (3)若a 5=6,a 8=15,求a 14. 解:(1)∵a 5+a 15=2a 10,∴a 15=2a 10-a 5=2b -a .(2)解法一:∵a 3+a 8=(a 1+2d )+(a 1+7d ) =2a 1+9d =m ,∴a 5+a 6=(a 1+4d )+(a 1+5d )=2a 1+9d =m . 解法二:∵5+6=3+8, ∴a 5+a 6=a 3+a 8=m .(3)解法一:∵a 8=a 5+(8-5)d , 即15=6+3d ,∴d =3.∴a 14=a 8+(14-8)d =15+6×3=33. 解法二:∵数列{a n }是等差数列,∴数列a 5,a 8,a 11,a 14,…是等差数列,首项a 5=6,公差d =a 8-a 5=15-6=9, ∴第四项a 14=6+3×9=33.——本课须掌握的问题运用等差数列的性质,能够简化问题,提高准确性.常用的性质主要有: (1)d =a m -a n m -n(m ,n ∈N *,且n ≠m ); (2)a n =a m +(n -m )d (n ,m ∈N *); (3)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m +a n =a p +a q .特别地,若m +n =2p (m ,n ,p ∈N *), 则a m +a n =2a p .在解决等差数列问题时要注意项数(即项的下标)之间的关系.。
人教高中数学必修五 第二章 2.2 等差数列求和公式(共55张PPT)
或
跟踪练习
1. 在等差数列{an}中; (1)已知a6=10,S5=5,求a8和S10; (2)已知a3+a15=40,求S17.
解
5×4 S5=5a1+ d=5, 2 (1) a6=a1+5d=10,
解得 a1=-5,d=3. ∴a8=a6+2d=10+2×3=16. 10×9 S10=10a1+ d=10×(-5)+5×9×3=85. 2 17×a1+a17 17×a3+a15 17×40 (2)S17= = = =340. 2 2 2
又当 n=1 时,a1=21 1=1≠5,
-
5 ∴an= n-1 2
n=1, n≥2.
(2)法一
an+12 (消 Sn);由 Sn= (n∈N*),得 4an+1=4(Sn+ 4
2
1-Sn)=(an+1+1)
-(an+1)2
化简得(an+1+an)(an+1-an-2)=0, 因为an>0,∴an+1-an=2, 又4S1=4a1=(a1+1)2得a1=1, 故{an}是以1为首项,2为公差的等差数列,所以an=2n-1.
法二
(消 an):由上可知
2 Sn=an+1,∴2 Sn=Sn-Sn-1+1(n≥2), 化简可得( Sn-1)2=Sn-1, ( Sn+ Sn-1-1)( Sn- Sn-1-1)=0, 又 S1=1,{an}的各项都为正数, 所以 Sn- Sn-1=1. 所以 Sn=n,从而 Sn=n2, 所以 an=Sn-Sn-1=2n-1(n≥2),a1=1 也适合,故 an =2n-1.
4S n 4S1 4S 2 ... Sn 3. 已知数列{an}中, a1=2,a1 2 a2 2 an 2
,
求 an.
人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
2019-2020学年高中数学第二章数列2.2等差数列第二课时等差数列的性质及简单应用
解:设某单位需购买影碟机n台,在甲商场购买每台售价不低于440元 时,售价依台数成等差数列{an},则an=780+(n-1)(-20)=800-20n, 解不等式an≥440,800-20n≥440,得n≤18. 当购买台数小于18时,每台售价为(800-20n)元, 在台数大于或等于18时,每台售价440元. 到乙商场购买,每台售价为800×75%=600(元). 又(800-20n)n-600n=20n(10-n),所以,当n<10时,600n<(80020n)n; 当n=10时,600n=(800-20n)n;当10<n<18时,(800-20n)n<600n; 当n≥18时,440n<600n. 所以当购买台数少于10台时,到乙商场购买花费较少;当购买10台时, 到两商场购买花费相同;当购买多于10台时,到甲商场购买花费较少.
an=
1 6
(n+1)(n+2).…………………12
分
方法技巧 解决数列综合问题的方法策略 (1)结合等差数列的性质或利用等差中项. (2)利用通项公式,得到一个以首项a1和公差d为未知数的方程或不 等式. (3)利用函数或不等式的有关方法解决.
即时训练2-1:已知{an}是等差数列,且a1+a2+a3=12,a8=16. (1)求数列{an}的通项公式;
方法技巧
(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进 而解决问题,是处理等差数列问题的最基本方法. (2)巧妙地利用等差数列的性质,可以大大简化解题过程. (3)通项公式的变形形式an=am+(n-m)d(m,n∈N*),它又可变形为d= am an ,应注意把握,并学会应用.
人教版高中数学必修五《数列》2.2等差数列(2)
等差数
第二课时
2012年3月28日星期三
1、等差数列的定义 从第二项起,每一项与它的前一项的差等于同一个常数 2、等差中项的概念 公差
3、等差数列的通项公式 4、等差数列的第二通项公式 5、等差数列的性质1
2012年3月28日星期三
探究:
请看图
2012年3月28日星期三
探究:
结论:
4
●
5
6
7
8
9
10
10 9 8 7 6 5 4 3 2 1 0
(3)数列:4,4,4,4,4,4,4,…
●
●
●
●
●
●
●
●
●
●
1
2
3
5
6
7
8
9
10
等差数列的性质
第三通项公式
性质2
性质3
课时作业9
2012年3月28日星期三
10 9 8 7 6 5 4 3 2 1 0 1
● ● ● ● ●
●
●
(1)数列:-2,0,2,4,6,8,…
2
3
4
5
6
7
8
9
10
10 9 8 7 6 5 4 3 2 1 0 1
(2)数列:7,4,1,-2,…
●
●
●
2
3
2012年3月28日星期三
结论: 点评:
2012年3月28日星期三
思考:
点评:
2012年3月28日星期三
探究:
结论:
2012年3月28日星期三
结论:
注意:在该性质应用时,要使得等号两边的项数相同 并且是所有项的和。
人教版高中数学必修⑤2.2《等差数列》教学设计
课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。
2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。
并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。
3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。
教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:1.概括通项公式推导过程中体现出的数学思想方法。
2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。
高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式aa高二数学
中项.事实上,若 a,A,b 成等差数列,即 A= a b ,则 A 就是 a 与 b 的等差中项;若 A= a b ,
2
2
即 A-a=b-A,则 a,A,b 成等差数列.
在等差数列{an}中,任取相邻的三项 an-1,an,an+1(n≥2,n∈N*),则 an 是 an-1 与 an+1 的等差 中项.
15
15
2021/12/9
第十四页,共二十九页。
法二 因为 a60=a15+(60-15)d,所以 d= 20 8 = 4 ,所以 60 15 15
a75=a60+(75-60)d=20+15× 4 =24. 15
法三
由数列{an}是等差数列,可设
an=kn+b.由
a15=8,a60=20
得
15k 60k
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
10 6 4 4
2021/12/9
第十页,共二十九页。
3.我国古代数学(shùxué)著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,
.
a1+(n-1)d
通项公式的推导,教材是根据等差数列的定义,通过归纳的方式得出的,还可以采
用以下的推导方法:
法一(累加法)
an-an-1=d,
an-1-an-2=d,
an-2-an-3=d, …
因为{an}是等差数列,所以
a2-a1=d, 两边分别相加得an-a1=(n-1)d,所以an=a1+(n-1)d.
2022年高中数学第二章数列2等差数列第2课时练习含解析人教版必修
第2课时一、选择题1.等差数列{a n}中,a6+a9=16,a4=1,则a11=( )A.64 B.30C.31 D.15[答案] D[解析] 解法一:∵,∴,∴,∴a11=a1+10d=15.解法二:∵6+9=4+11,∴a4+a11=a6+a9=16,∴a11=15.2.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=( ) A.14B.21C.28D.35[答案] C[解析] ∵a3+a4+a5=3a4=12,∴a4=4.又a1+a2+…+a7=7a4=28.3.已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( )A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0[答案] D[解析] 由题设a1+a2+a3+…+a101=101a51=0,∴a51=0.4.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于( ) A.-1B.1C.3D.7[答案] B[解析] ∵{a n}是等差数列,∴a1+a3+a5=3a3=105,∴a3=35,a2+a4+a6=3a4=99,∴a4=33,∴d=a4-a3=-2,a20=a4+16d=33-32=1.5.在a和b之间插入n个数构成一个等差数列,则其公差为( )A. B.C.D.[答案] C[解析] ∵a1=a,a n+2=b,∴公差d==.6.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于( )A.120 B.105C.90 D.75[答案] B[解析] ∵a1+a2+a3=3a2=15,∴a2=5,又∵a1a2a3=80,∴a1a3=16,即(a2-d)(a2+d)=16,∵d>0,∴d=3.则a11+a12+a13=3a12=3(a2+10d)=105.二、填空题7.等差数列{a n}中,已知a2+a3+a10+a11=36,则a5+a8=__________.[答案] 18[分析] 利用等差数列的性质求解,或整体考虑问题,求出2a1+11d的值.[解析] 解法1:根据题意,有(a1+d)+(a1+2d)+(a1+9d)+(a1+10d)=36,∴4a1+22d=36,则2a1+11d=18.∴a5+a8=(a1+4d)+(a1+7d)=2a1+11d=18.解法2:根据等差数列性质,可得a5+a8=a3+a10=a2+a11=36÷2=18.8.已知等差数列{a n}中,a3、a15是方程x2-6x-1=0的两根,则a7+a8+a9+a10+a11=__________.[答案] 15[解析] ∵a3+a15=6,又a7+a11=a8+a10=2a9=a3+a15,∴a7+a8+a9+a10+a11=(2+)(a3+a15)=×6=15.三、解答题9.已知等差数列{a n}的公差d>0,且a3a7=-12,a4+a6=-4,求{a n}的通项公式.[解析] 由等差数列的性质,得a3+a7=a4+a6=-4,又∵a3a7=-12,∴a3、a7是方程x2+4x-12=0的两根.又∵d>0,∴a3=-6,a7=2.∴a7-a3=4d=8,∴d=2.∴a n=a3+(n-3)d=-6+2(n-3)=2n-12.10.四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.[解析] 设四个数为a-3d,a-d,a+d,a+3d,据题意得,(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=94⇒2a2+10d2=47.①又(a-3d)(a+3d)=(a-d)(a+d)-18⇒8d2=18⇒d=±代入①得a=±,故所求四数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1.一、选择题1.设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{a n+b n}的第37项为( )A.0B.37C.100D.-37[答案] C[解析] ∵数列{a n},{b n}都是等差数列,∴{a n+b n}也是等差数列.又∵a1+b1=100,a2+b2=100,∴{a n+b n}的公差为0,∴数列{a n+b n}的第37项为100.2.数列{a n}中,a2=2,a6=0且数列{}是等差数列,则a4等于( )A. B.C.D.[答案] A[解析] 令b n=,则b2==,b6==1,由条件知{b n}是等差数列,∴b6-b2=(6-2)d=4d=,∴d=,∴b4=b2+2d=+2×=,∵b4=,∴a4=.3.等差数列{a n}中,a2+a5+a8=9,那么关于x的方程:x2+(a4+a6)x+10=0( )A.无实根B.有两个相等实根C.有两个不等实根D.不能确定有无实根[答案] A[解析] ∵a4+a6=a2+a8=2a5,即3a5=9,∴a5=3,方程为x2+6x+10=0,无实数解.4.下列命题中正确的个数是( )(1)若a,b,c成等差数列,则a2,b2,c2一定成等差数列;(2)若a,b,c成等差数列,则2a,2b,2c可能成等差数列;(3)若a,b,c成等差数列,则ka+2,kb+2,kc+2一定成等差数列;(4)若a,b,c成等差数列,则,,可能成等差数列.A.4个B.3个C.2个D.1个[答案] B[解析] 对于(1)取a=1,b=2,c=3⇒a2=1,b2=4,c2=9,(1)错.对于(2),a=b=c⇒2a=2b=2c,(2)正确;对于(3),∵a,b,c成等差数列,∴a+c=2B.∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),(3)正确;对于(4),a=b=c≠0⇒==,(4)正确,综上选B.二、填空题5.若x≠y,两个数列x,a1,a2,a3,y和x,b1,b2,b3,b4,y都是等差数列,则=________.[答案] [解析] 设两个等差数列的公差分别为d1,d2,由已知,得即解得=,即==.6.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.[答案] 15[解析] 设△ABC的三边长为a-4,a,a+4(a>4),则=-,解得a=10,三边长分别为6,10,14.所以S△ABC=×6×10×=15.三、解答题7.在△ABC中,三边a、b、c成等差数列,、、也成等差数列,求证△ABC为正三角形.[证明] ∵+=2,平方得a+c+2=4b,又∵a+c=2b,∴=b,故(-)2=0,∴a=b=C.故△ABC为正三角形.8.设数列{a n}是等差数列,b n=()a n又b1+b2+b3=,b1b2b3=,求通项a n.[解析] ∵b1b2b3=,又b n=()a n,∴()a1·()a2·()a3=.∴()a1+a2+a3=,∴a1+a2+a3=3,又{a n}成等差数列∴a2=1,a1+a3=2,∴b1b3=,b1+b3=,∴或,即或,∴a n=2n-3或a n=-2n+5.。
人教版高中数学选修二4.2.2等差数列的前n项和公式(二)课件
法二:(结构特征法)由 Sn=-n2+33n 知 Sn 是关于 n 的缺常数项的二次
d
2=-1,
型函数,所以{an}是等差数列,由 Sn 的结构特征知
a1-d=33,
2
解得 a1=32,d=-2,所以 an=34-2n.
(2)法一:(公式法)令 an≥0,得 34-2n≥0,所以 n≤17,
故数列{an}的前 16 项或前 17 项的和最大.
(3)由(2)知,当 n≤17 时,an≥0;
当 n≥18 时,an<0.
所以当 n≤17 时,Sn′=b1+b2+…+bn
=|a1|+|a2|+…+|an|
=a1+a2+…+an=Sn=33n-n2.
当 n≥18 时,
Sn′=|a1|+|a2|+…+|a17|+|a18|+…+|an|
课堂小结
等差数列前 n 项和 Sn 的最值
(1)若 a1<0,d>0,则数列的前面若干项为负数项(或 0),所以将这些项相加即
小
得{Sn}的最 值.
(2)若 a1>0,d<0,则数列的前面若干项为正数项(或 0),所以将这些项相加即
得{Sn}的最大 值.
特别地,若 a1>0,d>0,则S1 是{Sn}的最小值;若 a1<0,d<0,则 S1是{Sn}的
{Sn}中最大项为 S6,D 不正确.
故正确的是 AB]
2.已知等差数列{an}中,|a5|=|a9|,公差 d>0,则使得前 n 项和 Sn 取得最小
值的正整数 n 的值是________.
【答案】6 或 7
[由|a5|=|a9|且 d>0 得 a5<0,a9>0,且 a5+a9=0⇒2a1+12d=0⇒
高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案
等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。
高中数学《2.2等差数列》第2课时课件新人教A版必修
请您根据提供的信息说明,求 (1)第2年养鸡场的个数及全县出产鸡的总只数; (2)到第6年这个县的养鸡业比第1年是扩大了还是缩小 了?请说明理由. (3)哪一年的规模最大?请说明理由. 审题指导 本题为图表信息题,综合考查了等差数列的知 识和等差数列的函数特征. [规范解答] 由题干图可知,从第1年到第6年平均每个鸡场 出产的鸡数成等差数列,记为{an},公差为d1,且a1=1, a6=2;从第1年到第6年的养鸡场个数也成等差数列,记 为{bn},公差为d2,且b1=30,b6=10; 从第1年到第6年全县出产鸡的总只数记为数列{cn}, 则cn=anbn. (2分)
fx2-fx1 (2) k= (x1≠x2). x2-x1 当k=0时,对于常数函数f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. 如am,an是等差数列{an}的任意两项,由an=am+(n-m)d, an-am 类比直线方程的斜率公式得 d= . n-m
即a=1,a2-9d2=-8, ∴d2=1,∴d=1或d=-1. 又四个数成递增等差数列,所以d>0, ∴d=1,故所求的四个数为-2,0,2,4. 法二 若设这四个数为a,a+d,a+2d,a+3d(公差为d), 依题意,2a+3d=2,且a(a+3d)=-8, 3 把 a=1- d 代入 a(a+3d)=-8, 2
解 由等差数列{an}的性质知:a3+a7=a4+a6,从而a3a7 =-12,a3+a7=-4,故a3,a7是方程x2+4x-12=0的两 根,又d>0,解之,得a3=-6,a7=2. a1+2d=-6, a1=-10, 再解方程组 解得 a1+6d=2, d=2, 则an=a1+(n-1)d=-10+(n-1)×2=2n-12, 即an=2n-12.
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.2.1(二)
md 组成公差为____的等差数列; λd ③数列{λan+b}(λ,b是常数)是公差为____的等差数列;
④数列{an+bn}仍是等差数列,公差为______; d+d′
λd+μd′ ⑤数列{λan+μbn}(λ,μ是常数)仍是等差数列,公差为_______.
研一研·问题探究、课堂更高效
2.2.1(二)
pd1+qd2 qbn}(p、q是常数)是公差为______________的等差数列.
研一研·问题探究、课堂更高效
2.2.1(二)
探究点一 问题
本 课 时 栏 目 开 关
等差数列的常用性质
设等差数列{an}的首项为a1,公差为d,则有下列性质:
(1)若m+n=p+q(m,n,p,q∈N*), 则am+an=ap+aq. (2)若m+n=2k(m,n,k∈N*), 则am+an=2ak. 请你给出证明.
研一研·问题探究、课堂更高效
方法二 ∵a1+a4+a7=a1+(a1+3d)+(a1+6d)
2.2.1(二)
=3a1+9d=39, ∴a1+3d=13,①
本 课 时 栏 目 开 关
∵a2+a5+a8=(a1+d)+(a1+4d)+(a1+7d) =3a1+12d=33. ∴a1+4d=11,②
a +3d=13 1 由①②联立 a1+4d=11 d=-2 ,得 a1=19
研一研·问题探究、课堂更高效
2.2.1(二)
跟踪训练2 四个数成递增等差数列,中间两数的和为2,首末两 数的积为-8,求这四个数. 解 方法一 设这四个数为a-3d,a-d,a+d,a+3d(公差为
本 课 时 栏 目 开 关
2d). 依题意,得2a=2,且(a-3d)(a+3d)=-8, 即a=1,a2-9d2=-8, ∴d2=1,∴d=1或d=-1. 又四个数成递增等差数列,所以d>0, ∴d=1,故所求的四个数为-2,0,2,4.
高中数学第二章数列2.2等差数列第2课时等差数列的性质课件新人教A版必修5
a1n为等差数列
由等差数列 通―项―公→式
求a1n
―→
求an
[规范解答] (1)数列a1n是等差数列,理由如下: ∵a1=2,an+1=a2n+an2,∴an1+1=an2+an2=12+a1n, 4分
∴an1+1-a1n=12,
6分
即a1n是首项为a11=12,公差为d=12的等差数列.
等差数列的性质
• (1)若{an}是公差为d的等差数列,则下列数列: • ①{c+an}(c为任一常数)是公差为d ____的等差数列; • ②{c·an}(c为任一常数)是公差为c_d___的等差数列; • ③ 列{.an+an+k}(k为常数,k∈N*)是公差2为d ___的等差数
• (数 的2)列等若差{{paa数nn}+,列q{.bbnn}}(分p,别q是是公常差数为)是pdd11公+,差qdd22为的_等__差__数__列__,__则_
• 【错解】 由已知两等差数列的前三项,容易求得 它们的通项公式分别为:
• an=3n-1,bn=4n-3(1≤n≤40,且n∈N*), • 令an=bn,得3n-1=4n-3,即n=2. • 所以两数列只有1个数值相同的项,即第2项.
• 【错因】 本题所说的是数值相同的项,但它们的 项数并不一定相同,也就是说,只看这个数在两个 数列中有没有出现过,而并不是这两个数列的第几 项.
•
利用等差数列的定义巧设未知量,可
以 的简项化数计n为算奇.数一时般,地可有设如中下间规一律项:为当a等,差再数用列公差{an为} d
向两边分别设项:…a-2d,a-d,a,a+d,a+
2d,…;当项数为偶数项时,可设中间两项为a-d,
a+d,再以公差为2d向两边分别设项:…a-3d,a
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.2.2(二)
n≤5, n≥6.
练一练·当堂检测、目标达成落实处
2.2.2(二)
1.已知数列{an}的前n项和Sn=n2,则an等于
例2 在等差数列{an}中,an=2n-14,试用两种方法求该数列 前n项和Sn的最小值.
解
本 课 时 栏 目 开 关
方法一
∵an=2n-14,∴a1=-12,d=2.
∴a1<a2<…<a6<a7=0<a8<a9<…. ∴当n=6或n=7时,Sn取到最小值. 易求S7=-42,∴(Sn)min=-42.
填一填·知识要点、记下疑难点
2.2.2(二)
1.前n项和Sn与an之间的关系
本 课 时 栏 目 开 关
对任意数列{an},Sn是前n项和,Sn与an的关系可以表示为 S1 n=1, an= Sn-Sn-1 n≥2.na +a nn-1 1 n na1+ d 2 2.等差数列前n项和公式Sn=__________=____________. 2 3.若等差数列{an}的前n项和公式为Sn=An2+Bn+C,则A
-4,…,
-n +5n Sn=_______
2
(Sn)max=____, 6
2或3 此时n=______
4
-1,-2,-3, a1=___, -1 -4,-5,…, d=____ -1
1 1 -1 - n2- n (Sn)max=_____, 2 2 Sn=_________
此时n=____ 1
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
2.2.2(二)
跟踪训练2 在等差数列{an}中,a1=25,S17=S9,求Sn的最大 值.
高中数学必修5高中数学必修5《2.2等差数列(二)》教案
2.2等差数列(二)一、教学目标1、掌握"判断数列是否为等差数列"常用的方法;2、进一步熟练掌握等差数列的通项公式、性质及应用.3、进一步熟练掌握等差数列的通项公式、性质及应用.二、教学重点、难点重点:等差数列的通项公式、性质及应用.难点:灵活应用等差数列的定义及性质解决一些相关问题.三、教学过程(一)、复习1.等差数列的定义.2.等差数列的通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+或 n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d:① d=n a -1-n a ② d=11--n a a n ③ d=m n a a m n -- 4. {a n }是首项a1=1, 公差d=3的等差数列, 若a n =2005,则n =( )A. 667B. 668C. 669D. 6705. 在3与27之间插入7个数, 使它们成为等差数列,则插入的7个数的第四个数是( )A. 18B. 9C. 12D. 15二、新课1.性质:在等差数列{a n }中,若m + n=p + q, 则a m + a n = a p + a q特别地,若m+n=2p, 则a m +a n =2a p例1. 在等差数列{a n }中(1) 若a 5=a, a 10=b, 求a 15;(2) 若a 3+a 8=m, 求a 5+a 6;(3) 若a 5=6, a 8=15, 求a 14;(4) 若a 1+a 2+…+a 5=30, a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解: (1) 2a 10=a 5+a 15,即2b=a+a 15 , ∴a 15=2b ﹣a;(2) ∵5+6=3+8=11,∴a 5+a 6=a 3+a=m(3) a8=a 5+(8﹣3)d, 即15=6+3d, ∴d=3,从而a 14=a 5+(14-5)d=6+9×3=33.13030802)( )(2 )(2)()(2 ,22,1277 ,11166)4(5211076151211107652115121112271116=-⨯=+++-+++=+++∴+++=++++++++=+=∴+=++=+a a a a a a a a a a a a a a a a a a a a a a a a 从而2.判断数列是否为等差数列的常用方法:(1) 定义法: 证明a n -a n-1=d (常数)例2. 已知数列{a n }的前n 项和为S n =3n 2-2n, 求证数列{a n }成等差数列,并求其首项、公差、通项公式. 解: 当n=1时,a 1=S 1=3﹣2=1;当n ≥2时,a n =Sn ﹣S n ﹣1=3n 2﹣2n ﹣ [3(n ﹣1)2﹣2(n ﹣1)]=6n ﹣5;∵n=1时a 1满足a n =6n ﹣5,∴a n =6n ﹣5首项a 1=1,a n ﹣a n ﹣1=6(常数)∴数列{a n }成等差数列且公差为6.(2)中项法: 利用中项公式, 若2b=a+c,则a, b, c 成等差数列.(3)通项公式法: 等差数列的通项公式是关于n 的一次函数.例3. 已知数列}{n a 的通项公式为,q pn a n +=其中p 、q 为常数,且p ≠0,那么这个数列一定是等差数列吗?分析:判定}{n a 是不是等差数列,可以利用等差数列的定义,也就是看1--n n a a (n >1)是不是一个与n 无关的常数。
新教材2023版高中数学第一章数列2等差数列2
题型三 利用an与Sn的关系求解数列问题 例3 已知正项数列{an}的前n项和为Sn,且8Sn=(an+2)2. (1)求证:{an}为等差数列; (2)求{an}的通项公式.
方法归纳 在给出数列的an与Sn的关系式时,可根据an=Sn-Sn-1(n≥2)将关系 式中的Sn(或an)消去,从而求得an与an-1(或Sn与Sn-1)的关系,然后借 助等差数列或其他特殊数列中的方法求解.
=0.解得n=7,n=-20(舍去),所以相遇是在开始运动后7分钟.
5.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N+).求 {an}的通项公式.
解析:当n=2时,S2=a1+a2=a2+22-1,即a1=3,当n≥2时,Sn=an+n2-1, Sn-1=an-1+(n-1)2-1,
多少路程?
方法归纳
(1)本题属于与等差数列前n项和有关的应用题,其关键在于构造合 适的等差数列.
(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立 数列模型,具体解决要注意以下两点:
①抓住实际问题的特征,明确是什么类型的数列模型. ②深入分析题意,确定是求通项公式an,或是求前n项和Sn,还是求 项数n.
跟踪训练3 已知数列{an}的前n项和为Sn,且满足a1=1,an+2SnSn -1=0(n≥2).
(1)求证:数列 1 是等差数列;
Sn
(2)求{an}的通项公式.
[课堂十分钟]
1.设数列{an}的前n项和Sn=n2,则a8的值为( )
A.15
B.16
C.49
D.64
答案:A
解析:a8=S8-S7=82-72=15. 故选A.
(1)求a1时不能使用an=Sn-Sn-1,因为S0在数列前n项和中无意义,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数)
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列.
这个等差数列的首项与公差分 别是多少?
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少? 公差d=p.
首项a1=p+q
总结:
如果一个数列的通项公式是关于
正整数n的一次型函数,那么这个
它们的平方和为116,求这三个数. 7. 已知四个数成等差数列,它们的和为
28,中间两项的积为40,求这四个数.
讲授新课
1. 性质 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq. 特别地,
若m+n=2p,则am+an=2ap.
讲解范例:
例1. 在等差数列{an}中
(1) 若a5=a, a10=b, 求a15;
数列必定是等差数列.
探究:
1. 在直角坐标系中,画出通项公式为
an=3n-5的数列的图象.这个图象有
什么特点?
探究:
2. 在同一个直角坐标系中,画出函数 y=3x-5的图象,你发现了什么?据
此说一说等差数列an=pn+q与一次
函数y=px+q的图象之间有什么关系.
课堂小结
1. 等差数列的性质;
Байду номын сангаас
推导出公式:an=am+(n-m)d .
复习引入
1. 等差数列定义:
即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
推导出公式:an=am+(n-m)d .
或an=pn+q (p、q是常数)
复习引入
3. 有几种方法可以计算公差d:
d a n a n 1
湖南省长沙市一中卫星远程学校
复习引入
3. 有几种方法可以计算公差d:
d a n a n 1
an a1 d n1
an am d nm
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
5. 在3与27之间插入7个数,使它们成 为等差数列,则插入的7个数的第四 个数是( ) A. 18 B. 9 C. 12 D. 15
练习
6. 三个数成等差数列,它们的和为18,
复习引入
3. 有几种方法可以计算公差d:
d a n a n 1
an a1 d n1
Grammar
金手指考试网 / 2016年金手指驾驶员考试科目一 科目四 元贝驾考网 科目一科目四仿真考试题C1
讲解范例:
例2. 已知数列{an}的前n项和为 Sn=3n2-2n,求证数列{an}成
等差数列,并求其首项、公差、
通项公式.
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列.
(3) 通项公式法: 等差数列的通项公式是
关于n的一次函数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
2. 判断数列是否为等差数列
常用的方法.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读教材P.36到P.39;
2. 《习案》作业十二.
湖南省长沙市一中卫星远程学校
2.2 等差数列(二)
复习引入
1. 等差数列定义:
即an-an-1 =d (n≥2).
复习引入
1. 等差数列定义:
即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
复习引入
1. 等差数列定义:
即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).