江苏省无锡市2017年中考数学真题试题(含解析1) (1)
【精校】2017年江苏省无锡市中考真题数学
2017年江苏省无锡市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分)1. -5的倒数是( )A.1 5B.±5C.5D.-1 5解析:根据倒数的定义,即可求出-5的倒数. 答案:D.2.函数y=2xx中自变量x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2解析:根据分式有意义的条件,分母不等于0,可以求出x的范围. 答案:A.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2·a3=a5解析:利用幂的运算性质直接计算后即可确定正确的选项.答案:D.4.下列图形中,是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.答案:C.5.若a-b=2,b-c=-3,则a-c等于( )A.1B.-1C.5D.-5解析:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1.答案:B.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数解析:根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.答案:A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20%B.25%C.50%D.62.5%解析:设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.答案:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3解析:说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b 的值分别难度验证即可.答案:B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A.5B.6解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得OA OFBD BH,延长即可解决问题.答案:C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2B.5 4C.5 3D.7 5解析:如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.答案:D.二、填空题(本大题共8小题,每小题2分,共16分)11._____.=(a≥0,b≥0)进行计算即可得出答案.答案:6.12.分解因式:3a2-6a+3=_____.解析:首先提取公因式3,进而利用完全平方公式分解因式得出答案.答案:3(a-1)2.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为_____.解析:将250000用科学记数法表示为:2.5×105.答案:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是_____℃.解析:求出每天的最高气温与最低气温的差,再比较大小即可. 答案:11.15.若反比例函数y=kx的图象经过点(-1,-2),则k 的值为_____. 解析:由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数. 答案:2.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_____cm 2. 解析:圆锥的侧面积=底面周长×母线长÷2. 答案:15π.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB在圆心O 1和O 2的同侧),则由»AE ,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于_____.解析:连接O 1O 2,O 1E ,O 2F ,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O 1G=12,得到∠O 1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.答案:346π--.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于_____.解析:根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD 的值. 答案:3.三、解答题(本大题共10小题,共84分) 19.计算:(1)|-6|+(-2)3)0;(2)(a+b)(a-b)-a(a-b)解析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案; (2)根据平方差公式以及单项式乘以多项式法则即可求出答案. 答案:(1)原式=6-8+1=-1;(2)原式=a 2-b 2-a 2+ab=ab-b 2.20.(1)解不等式组:()2311222x x x +⎧⎪⎨-≤+⎪⎩>①② (2)解方程:53212x x =-+. 解析:(1)分别解不等式,进而得出不等式组的解集; (2)直接利用分式的性质求出x 的值,进而得出答案. 答案:(1)解①得:x >-1, 解②得:x ≤6,故不等式组的解集为:-1<x ≤6; (2)由题意可得:5(x+2)=3(2x-1), 解得:x=13,检验:当x=13时,(x+2)≠0,2x-1≠0, 故x=13是原方程的解.21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF.解析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证. 答案:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE ,在△CED 和△BEF 中,DCB FBE CE BE CED BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CED ≌△BEF(ASA), ∴CD=BF , ∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)解析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 答案:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率=41123=.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=_____,b=_____;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是_____(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.解析:(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;答案:(1)由题意a=3903+653=4556,b=5156-4556=600.(2)统计图如图所示:(3)①正确.3353-153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC 上.解析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC 于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.答案:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为_____;若点M经过T变换后得到点N(6,-,则点M的坐标为_____.(2)A 是函数y=2x 图象上异于原点O 的任意一点,经过T 变换后得到点B. ①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.解析:(1)连接CQ 可知△PCQ 为等边三角形,过Q 作QD ⊥PC ,利用等边三角形的性质可求得CD 和QD 的长,则可求得Q 点坐标;设出M 点的坐标,利用P 、Q 坐标之间的关系可得到点M 的方程,可求得M 点的坐标;(2)①可取A(2,利用T 变换可求得B 点坐标,利用待定系数示可求得直线OB 的函数表达式;②由待定系数示可求得直线AB 的解析式,可求得D 点坐标,则可求得AB 、AD 的长,可求得△OAB 的面积与△OAD 的面积之比.答案:(1)如图1,连接CQ ,过Q 作QD ⊥PC 于点D ,由旋转的性质可得PC=PQ ,且∠CPQ=60°, ∴△PCQ 为等边三角形, ∵P(a ,b), ∴OC=a ,PC=b , ∴CD=12PC=12b ,DQ=2PQ=2b ,∴Q(a+2b ,12b); 设M(x ,y),则N 点坐标为(x+2y ,12y), ∵N(6,),∴612x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得9x y =⎧⎪⎨=-⎪⎩∴M(9,;(2)①∵A 是函数y=2x 图象上异于原点O 的任意一点, ∴可取A(2,∴722=,122=, ∴B(72,2), 设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7, ∴直线OB 的函数表达式为; ②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得272k b k b ⎧'+=⎪⎨'+=⎪⎩,解得k b ⎧'=⎪⎪⎨⎪=⎪⎩, ∴直线AB 解析式为y=-3x+3, ∴D(0,3),且A(2),B(72,2), ∴=,=∴34OAB OAD S AB S AD ===V V .26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?解析:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.答案:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有2344442x yx y+=⎧⎨+=⎩,解得108xy=⎧⎨=⎩.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.解析:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.首先证明△ACP∽△ECH,推出12AC PC APCE CH HE===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出144PB DP nEH DH n===,可得31264mm-=+,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x-5),求出E点坐标代入即可解决问题.答案:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.∵EH∥AP,∴△ACP∽△ECH,∴12 AC PC APCE CH HE===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴144 PB DP nEH DH n===,∴31 264mm-=+,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,=∴,∴E(9,),∵抛物线的对称轴为CD,∴(-3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x-5),把E(9,)代入得到a=8,∴抛物线的解析式为(x+3)(x-5),即2x x--.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.解析:(1)如图1中,设PD=x.则PA=6-x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.答案:(1)如图1中,设PD=x.则PA=6-x.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6-x)2=62,∴或舍弃),∴,∴)s时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ 是矩形,∴CM=EQ=3,∠M=90°,∴==,∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME ,AD DC DM EM=, ∴7AD =,∴,如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3.作EQ ⊥BC 于Q ,延长QE 交AD 于M.则EQ=3,CE=DC=4在Rt △ECQ 中,,由△DME ∽△CDA , ∴DM EM CD AD=,1AD=,∴AD=7, 综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线≤m<.BC的距离等于3,这样的m的取值范围7考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
2017江苏省无锡市中考数学试卷解析陆
2017年江苏省无锡市中考数学试卷解析 陆亚彬1. D ,解析:本题考查了实数的倒数,掌握求倒数的方法是解题的关键.∵-5×(-15)=1,∴-5的倒数是-15. 2.A ,解析:本题考查了函数自变量的取取值范围,掌握函数解析式有意义的条件是解题的关键.由分母不为0,得2-x ≠0,∴x ≠2.3.D ,解析:本题考查了幂的运算,掌握幂的运算法则是解题的关键.∵()4312aa =,∴选项A 错的;∵()222ab a b =,∴选项B 错的;∵826a a a ÷=,∴选项C 错的;∵246a a a ⋅=,∴选项D 正确,故选D .4.C ,解析:本题考查了中心对称图形的判断,掌握其判定方法是解题的关键.根据中心对称图形的定义可知选项C 是中心对称图形;根据轴对称图形的定义可知选项A ,C 是轴对称图形;根据旋转对称的定义可知选项D 是旋转对称图形,故本题选C 。
5. B ,解析 (a -b ) + (b -c )=a -c =2-3=-1.6 A ,解析:本题考查了数据的平均数和中位数,求出这组数据的平均数和中位数是解题的关键.x 男生=(5×70+10×80+7×90)÷(5+10+7)=89011; x 女生=(4×70+13×80+4×90)÷(4+13+4)=5607<89011;男生有22人,成绩的中位数是第11位与第12位数的平均数80; 女生有21人,成绩的中位数是最中间的数80; 故本题选A.7.C ,解析:本题考查了平均增长率的应用,掌握平均增长率的计算公式是解题的关键.设该店销售额平均每月的增长率是x ,根据题意,得2(1+x )2=4.5 解得(1+x )2=2.25∴1+x =±1.5 ∴x 1=0.5=50%,x 2=-2.5(舍去). ∴该店销售额平均每月的增长率是50%.8. B ,解析:本题考查了命题的概念,掌握判别假命题的方法是解题的关键.当a =-3,b =2时,a 2>b 2,但a <b .故本题选B.9.C ,解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320, ∴AB•DH=320, ∴DH=16,在Rt △ADH 中,AH=√AD 2−DH 2=12, ∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=√DH 2+BH 2=8√5, 设⊙O 与AB 相切于F ,连接AF . ∵AD=AB ,OA 平分∠DAB , ∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°, ∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°, ∴△AOF ∽△DBH ,∴OA BD =OF BH , ∴8√5=OF 8, ∴OF=2√5. 故选C .10.D ,解析: 如图,连接BE 交AD 于点F .∵△ABC中,∠BAC=90°,AB=3,AC=4,∴BC5.∵点D是BC的中点,∴CD=BD=AD=2.5.∵将△ABD沿AD翻折得到△AED,∴AE=AB=3,ED=BD=2.5,∠ADE=∠ADB.∴A、B、C、E在⊙D上.∴∠BEC=90°.∵ED=CD,∴∠DEC=∠DCE.∵2∠ECD=2∠ADB,∴∠ECD=∠ADB.∴CE∥AD.∴AD⊥EB.∴AB2-AF2=BD2-DF2.即32-(2.5-DF)2=2.52-DF2.∴DF=7 10.∵点D是BC的中点,CE∥AD,∴DF=12 CE.∴CE=75.11.6,解析:本题考查了二次根式的乘法,掌握二次根式乘法的法则是解题的关键.6.12.3(a-1)2,解析:3a2-6a+3=3(a2-2a+1)=3(a-1)2.13.2.5×105,解析:250000=2.5×105.14.11,解析:根据图中信息可知,这7天中,周日的日温差最大,最大的日温差是16-5=11(C o ).15.2,解析:本题考查了点与函数的关系,掌握函数上点的特征是解题的关键.把点(-1,-2)代入y =k x ,得-2=1k-,∴k =2. 16. 15π,解析:本题考查了圆锥侧面积的计算,掌握扇形的面积公式是解题的关键.圆锥的底面半径为3cm ,则圆锥的底面周长为6πcm . ∵母线长为5cm ,∴它的侧面展开图的扇形面积=12×6π×5=15π(cm 2). 17.3-6π·,解析:本题考查了是解题的关键.如图,连接AE ,延长FE 交AD 于G ,则EG ⊥AD .∵AB =3,EF =2,∴EG =0.5. ∵AD =2,∴O 1 A =O 1E =1. ∴∠AO 1E =30°. ∴O 1G. ∴AG =1.∵弓形AmE 的面积=扇形O 1AE 的面积-△O 1AE 的面积=2301360π⋅⋅-12O 1A ·EG=12π-12×1×0.5 =12π-14· ∴图中阴影部分的面积=梯形的面积-2×弓形AmE 的面积 =12( EF +AB )·AG -2×(12π-14) =12( 2+3)·(1)-6π+12G O 2O=52-6π+12=3-6π·18.3,解析:如图,利用网格添加辅助线,使EF ∥CD ,BG ⊥EF 于H ,则tan ∠BOD =tan ∠BIH =3.19. 思路分析:(1)先计算|-6|=6,(-2)3=-8,,)0=1,再进行有理数的加减运算;(2)先算整式乘法,后进行整式加减. 解:(1)原式=6-8+1=-1.(2)原式=a 2-b 2-a 2+ab =ab -b 2.20.思路分析:(1)分别解不等式①,②,取不等式①,②的公共解为不等式组的解集;(2)①方程两边都乘以(2x -1)(x +2),化分式方程为整式方程;②解所得的整式方程;③验根;④写出分式方程的解. 解:(1)解不等式①,得x >-1,解不等式②,得x ≤6.∴原不等式组的解集为-1<x ≤6.(2)方程两边都乘以(2x -1)(x +2), 化为整式方程5(x +2)=3(2x -1). 解这个的整式方程x =13.经检验,x =13是原分式方程的解, ∴原分式方程的解是x =13.. 21.证明:平行四边形ABCD 中,∵AB ∥CD ,∴∠C =∠CBF . ∵E 是BC 边的中点,∴BE =EC .CBEDG∵∠CED =∠BEF ,∴△CED ≌△BEF . ∴BF =CD . ∵AB =CD , ∴AB =BF . 22. 解:列表如下∴共有12种情况,其中甲、乙两人拿到相同颜色的(记为事件A )有4种.∴P (A )=13.23.思路分析:(1)①a =3903+653=4556;②b =5156-4556=600; (2)补充完整统计图;(3)①正确,因3353-153=3200;②错误,从表格得第4天有所下降;③错误,因5881-3200=2681;④;⑤. 解:(1)4556,600;(2)补充完整统计图,如图,(3)①.第5天第4天第3天第2天第1天每天新加入人数的条形统计图800600400人数200024.思路分析:(1)三角形各边中垂线的交点即△ABC的外心O.(2)由(1)知点O到顶点A的距离是它到对边中点的一半,作OA的中垂线交AB于点D,以O为圆心,OD为半径作圆交AB,BC,CA于E,F,G,H,I,连接EF,GH,正六边形DEFGHI即为所求.解:(1)如图,点O为△ABC的外心.(2)如图,正六边形DEFGHI,即为所求.25.思路分析:(1)①构造等边三角形,利用等边三角形的性质和勾股定理求得点Q的坐标;②利用上面的结论求点M的坐标;(2)①由(1)中的结论求得点B的坐标;然后再求直线OB的解析式;②根据同底三角形的面积比等于其对应高的比,再利用比例的性质可得结论.解:(1)∵点P(a,b),∴OC=a,PC=b.如答图1,连接CQ,则△PCQ是等边三角形,∴PC=PQ=b.过点Q作QE⊥PC于E.则PE =CE =12b ,EQb .∴点Q (a+2b ,12b ). 由(1)的结论得,若点M (x ,y ),则点N (xy ,12y ). ∵点N (6x=6,12y∴x =9,y =-∴点M (9,-.(2)①如答图2,∵点A 是函数y图像上异于原点O 的任意一点,经过T 变换后得到点B .∴设A (x),由(1)中的结论得B (x +34x,). 设直线OB 的解析式为y =kx ,把B 点的坐标代入,x =k (x +34x ),解得k=√37,.∴经过点O 、点B 的直线的函数表达式y =k=√37x ;②如图,过点A 作AF ⊥y 轴于F ,过点B 作BG ⊥y 轴于G .∵△ODB与△OAD同底,∴S△ODB:S△OAD=BG:AF=(x+34x):x=74:1.∴S△OAB:S△OAD=(S△ODB-S△OAD):S△OAD =(S△ODB:S△OAD)-1==74-1=34.∴△OAB的面积与△OAD的面积比为3 4 .26.解:(1)设每台A型处理器的价格为x万元、每台B型处理器的价格为y万元.根据题意得2344,442. x yx y+=⎧⎨+=⎩解得10,8. xy=⎧⎨=⎩答:每台A型处理器的价格为10万元、每台B型处理器的价格为8万元.(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.思路分析:(1)过点E作E F⊥x轴于F,设P(m,0).①由相似三角形的判定与性质证得AF=3AP,BF=3PB;②由关系式AF-BF=AB,可得m=1.∴点P的坐标(1,0).(2)①由已知证得A(-3,0),E(9,),抛物线过点(5,0);②用待定系数法可得抛物线的函数表达式.解:(1)过点E作E F⊥x轴于F,∵CD⊥AB,∴CD∥EF,PC=PD.∴△ACP∽△AEF,△BPD∽△BEF. ∵AC:CE=1:2.∴AC:AE=1:3.∴APAF=CPEF=13,DPEF=PBBF=13.∴AF=3AP,BF=3PB.∵AF-BF=AB.又∵⊙O的半径为3,设P(m,0),∴3(3+m)-3(3-m)=6∴m=1.∴P(1,0)(2)∵P(1,0),∴OP=1,A(-3,0).∵OA=3,∴AP=4,BP=2.∴AF=12.连接BC.∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴△ACP∽△CBP.∴APCP=CPBP.∴CP2=AP·BP=4×2=8.∴CP=.∴EF=3CP=.∴E (9,.∵抛物线的顶点在直线CD 上,∴CD 是抛物线的对称轴,∴抛物线过点(5,0).设抛物线的函数表达式为y =a x 2+bx +c .根据题意得09-30255819a b c a b c a b c ⎧⎪+⎨⎪+⎩=+,=+,+,解得48a b c ⎧⎪⎪⎪⎪⎨⎪⎪-⎪⎪⎩=-= ∴抛物线的函数表达式为yx 2x28.思路分析:(1))如图,P 、E 、B 三点在同一直线上,连接EC .①在Rt △BEC 中,计算BE 的值;②在Rt △ABP 中,利用勾股定理列出关于的方程,解之t 值可求;(2)如图,P 、E 、B 三点在同一直线上,连接EC ,过点E 作EF ⊥BC 于F .①在Rt △EFC 中,利用勾股定理求出CF ;②利用相似三角形的判定与性质求得BF ;③根据m =BC =BF +CF 计算m 的值解:(1)如图,P 、E 、B 三点在同一直线上,连接EC .∵四边形ABCD 是矩形,∴AB =CD ,AD =BC .∵PD =t ,m =6,∴PA =6-t .∵点D ,点E 关于直线PC 的对称.∴PE =t ,EC =DC =AB =4,∠CEP =∠CDP =90°.在Rt △BCE 中,∵BC =6,CE =4,D∴BE在Rt △ABP 中,∵AB 2+AP 2=BP 2,即42+(6-t )2=(t )2,∴t =6-(2)如图2中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形,∴CM=EQ=3,∠M=90°,∴EM=√EC 2−CM 2=√42−32=√7,∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME ,AD DM =DC EM , ∴AD 7=√7, ∴AD=4√7,如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3. 作EQ ⊥BC 于Q ,延长QE 交AD 于M .则EQ=3,CE=DC=4在Rt △ECQ 中,QC=DM=√42−32=√7,由△DME ∽△CDA ,∴DM CD =EM AD, ∴√74=1AD, ∴AD=4√77, 综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围4√77≤m <4√7.。
江苏省无锡市2017年中考数学试题(解析版)
2017年江苏省无锡市中考数学试卷一、选择题(共10小题)1.(2017无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。
专题:探究型。
分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2017无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。
分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(2017无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。
分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(2017无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。
专题:计算题。
分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(2017无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。
江苏省无锡市2017年中考数学真题试题(含解析1)
2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.下列图形中,是中心对称图形的是()A.B.C. D.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是.12.分解因式:3a2﹣6a+3= .13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:(2)解方程: =.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣【考点】17:倒数.【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【考点】E4:函数自变量的取值范围.【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.下列图形中,是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【考点】44:整式的加减.【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【考点】AD:一元二次方程的应用.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【考点】O1:命题与定理.【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【考点】MC:切线的性质;L8:菱形的性质.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是 6 .【考点】75:二次根式的乘除法.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.贵州FA ST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【考点】18:有理数大小比较;1A:有理数的减法.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【考点】G7:待定系数法求反比例函数解析式.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【考点】T7:解直角三角形.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(1)解不等式组:(2)解方程: =.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED 和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【考点】X6:列表法与树状图法.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【考点】VC:条形统计图.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b, b);若点M经过T 变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【考点】FI:一次函数综合题.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b, b);设M(x,y),则N点坐标为(x+y, y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b, b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【考点】MR:圆的综合题.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.【考点】LO:四边形综合题.【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC 的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E 到BC的距离为3;【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴=,∴=,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。
江苏省无锡市中考数学试卷
2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A.B.±5 C.5 D.﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A.B.C.D.5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3= .13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC 和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.【点评】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.8.(3分)(2017•无锡)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.(3分)(2017•无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O 与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.(3分)(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE 是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2017•无锡)计算×的值是 6 .【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(2分)(2017•无锡)分解因式:3a2﹣6a+3= 3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.(2分)(2017•无锡)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)(2017•无锡)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.(2分)(2017•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.16.(2分)(2017•无锡)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.17.(2分)(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过FH⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,G=,∴O1E=1,∵O1∴GE=,∴=;EG=30°,∴∠O1E=30°,∴∠AO1F=30°,同理∠BO2∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.18.(2分)(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.三、解答题(本大题共10小题,共84分)19.(8分)(2017•无锡)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•无锡)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式方程的解法去分母,进而求出x的值,再检验得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.【点评】此题主要考查了解分式方程以及解不等式组,正确掌握基本解题方法是解题关键.21.(8分)(2017•无锡)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE 并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【点评】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.(8分)(2017•无锡)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①【点评】本题考查条形统计图,解题的关键是能读懂表格以及条形图的信息,属于中考常考题型.24.(6分)(2017•无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC 和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形,作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.25.(10分)(2017•无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB 的函数表达式;②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD 的长,可求得△OAB的面积与△OAD的面积之比.方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=.【点评】本题为一次函数的综合应用,涉及等边三角形的判定和性质、待定系数法、三角形的面积及方程思想等知识,理解题目中的T变换是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•无锡)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为10×8+8=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=10+90=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.27.(10分)(2017•无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B 两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m+6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.【点评】本题考查圆综合题、平行线的性质、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.28.(8分)(2017•无锡)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=t.则PA=6﹣t.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=t.则PA=6﹣t.。
年江苏省无锡市中考数学试卷及解析
2017年江苏省无锡市中考数学试卷及解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.ﻩB.±5ﻩC.5ﻩD.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2ﻩB.x≥2ﻩC.x≤2ﻩD.x>2【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2ﻩC.a6÷a3=a2ﻩD.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是( )A.ﻩB.C. D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于( )A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5107女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20% B.25%C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.【点评】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.8.(3分)(2017•无锡)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2 B.a=﹣3,b=2C.a=3,b=﹣1ﻩD.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.(3分)(2017•无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O 与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A.5ﻩB.6ﻩC.2ﻩD.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.(3分)(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2 B. C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2017•无锡)计算×的值是6 .【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(2分)(2017•无锡)分解因式:3a2﹣6a+3= 3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.(2分)(2017•无锡)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)(2017•无锡)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.(2分)(2017•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.16.(2分)(2017•无锡)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.17.(2分)(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.18.(2分)(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3 .【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.三、解答题(本大题共10小题,共84分)19.(8分)(2017•无锡)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•无锡)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.【点评】此题主要考查了解分式方程以及解不等式组,正确掌握基本解题方法是解题关键.21.(8分)(2017•无锡)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【点评】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.(8分)(2017•无锡)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= 4556 ,b= 600;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①【点评】本题考查条形统计图,解题的关键是能读懂表格以及条形图的信息,属于中考常考题型.24.(6分)(2017•无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI 即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.25.(10分)(2017•无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T 变换后得到点N(6,﹣),则点M的坐标为(9,﹣2) .(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.【点评】本题为一次函数的综合应用,涉及等边三角形的判定和性质、待定系数法、三角形的面积及方程思想等知识,理解题目中的T变换是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•无锡)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.27.(10分)(2017•无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA =m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E (9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.【点评】本题考查圆综合题、平行线的性质、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.28.(8分)(2017•无锡)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D 出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=x.则PA=6﹣x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=x.则PA=6﹣x.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6﹣x)2=62,∴x=6﹣2或6+2(舍弃),∴PD=6﹣2,∴t=(6﹣2)s时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.【点评】本题考查四边形综合题、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2017年江苏省无锡市中考数学试卷含答案
二、填空题(每小题 2 分,共 16 分)
11.计算 12 3 的值是
.
12.分解因式: 3a2 6a 3
Hale Waihona Puke .13. 贵 州 FAST 望 远 镜 是 目 前 世 界 第 一 大 单 口 径 射 电 望 远 镜 , 反 射 面 总 面 积 约
250 000 m2 ,这个数据用科学记数法可表示为
则 O 的半径长等于
()
A. 5
B. 6
C. 2 5
D. 3 2
10.如图, △ABC 中, BAC 90 , AB 3 , AC 4 ,点 D 是 BC
的中点,将 △ABD 沿 AD 翻折得到 △AED ,连接 CE ,则线段
CE 的长等于 A. 2 C. 5
3
()
B. 5 4
D. 7 5
绝密★启用前 在
江苏省无锡市 2017 中考试卷
数学
本试卷满分 130 分,考试时间 120 分钟. 此 一、选择题(每小题 3 分,共 30 分)
1. 5 的倒数是
()
A. 1
B. 5
C. 5
5
卷
2.函数
y
2
x
x
中自变量
x
的取值范围是
()
A. x 2
B. x ≥ 2
C. x ≤ 2
上 3.下列运算正确的是 ()
27.(10 分)如图,以原点 O 为圆心、3 为半径的圆与 x 轴分别交于 A 、B 两点( B 点在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 O 分别交于 C 、D 两点 (点 C 在点 D 的上方),直线 AC 、DB 交于点 E .若 AC :CE 1:2 . (1)求点 P 的坐标; (2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.
2017年江苏省无锡市中考真题数学
2017年江苏省无锡市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分)1. -5的倒数是( )A.1 5B.±5C.5D.-1 5解析:根据倒数的定义,即可求出-5的倒数. 答案:D.2.函数y=2xx中自变量x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2解析:根据分式有意义的条件,分母不等于0,可以求出x的范围. 答案:A.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2·a3=a5解析:利用幂的运算性质直接计算后即可确定正确的选项.答案:D.4.下列图形中,是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.答案:C.5.若a-b=2,b-c=-3,则a-c等于( )A.1B.-1C.5D.-5解析:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1.答案:B.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数解析:根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.答案:A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20%B.25%C.50%D.62.5%解析:设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.答案:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3解析:说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b 的值分别难度验证即可.答案:B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A.5B.6解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得OA OFBD BH,延长即可解决问题.答案:C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2B.5 4C.5 3D.7 5解析:如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.答案:D.二、填空题(本大题共8小题,每小题2分,共16分)11.的值是_____.=≥0,b≥0)进行计算即可得出答案.答案:6.12.分解因式:3a2-6a+3=_____.解析:首先提取公因式3,进而利用完全平方公式分解因式得出答案.答案:3(a-1)2.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为_____.解析:将250000用科学记数法表示为:2.5×105.答案:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是_____℃.解析:求出每天的最高气温与最低气温的差,再比较大小即可. 答案:11.15.若反比例函数y=kx的图象经过点(-1,-2),则k 的值为_____. 解析:由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数. 答案:2.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_____cm 2. 解析:圆锥的侧面积=底面周长×母线长÷2. 答案:15π.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB在圆心O 1和O 2的同侧),则由AE ,EF ,FB ,AB 所围成图形(图中阴影部分)的面积等于_____.解析:连接O 1O 2,O 1E ,O 2F ,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O 1G=12,得到∠O 1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.答案:346π--.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于_____.解析:根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD 的值. 答案:3.三、解答题(本大题共10小题,共84分) 19.计算:(1)|-6|+(-2)3;(2)(a+b)(a-b)-a(a-b)解析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案; (2)根据平方差公式以及单项式乘以多项式法则即可求出答案. 答案:(1)原式=6-8+1=-1;(2)原式=a 2-b 2-a 2+ab=ab-b 2.20.(1)解不等式组:()2311222x x x +⎧⎪⎨-≤+⎪⎩>①② (2)解方程:53212x x =-+. 解析:(1)分别解不等式,进而得出不等式组的解集; (2)直接利用分式的性质求出x 的值,进而得出答案. 答案:(1)解①得:x >-1, 解②得:x ≤6,故不等式组的解集为:-1<x ≤6; (2)由题意可得:5(x+2)=3(2x-1), 解得:x=13,检验:当x=13时,(x+2)≠0,2x-1≠0, 故x=13是原方程的解.21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF.解析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证. 答案:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE ,在△CED 和△BEF 中,DCB FBE CE BE CED BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CED ≌△BEF(ASA), ∴CD=BF , ∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)解析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 答案:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率=41123=.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=_____,b=_____;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是_____(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.解析:(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;答案:(1)由题意a=3903+653=4556,b=5156-4556=600.(2)统计图如图所示:(3)①正确.3353-153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC 上.解析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC 于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.答案:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为_____;若点M经过T变换后得到点N(6,-,则点M的坐标为_____.(2)A 是函数y=2x 图象上异于原点O 的任意一点,经过T 变换后得到点B. ①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.解析:(1)连接CQ 可知△PCQ 为等边三角形,过Q 作QD ⊥PC ,利用等边三角形的性质可求得CD 和QD 的长,则可求得Q 点坐标;设出M 点的坐标,利用P 、Q 坐标之间的关系可得到点M 的方程,可求得M 点的坐标;(2)①可取A(2,利用T 变换可求得B 点坐标,利用待定系数示可求得直线OB 的函数表达式;②由待定系数示可求得直线AB 的解析式,可求得D 点坐标,则可求得AB 、AD 的长,可求得△OAB 的面积与△OAD 的面积之比.答案:(1)如图1,连接CQ ,过Q 作QD ⊥PC 于点D ,由旋转的性质可得PC=PQ ,且∠CPQ=60°, ∴△PCQ 为等边三角形, ∵P(a ,b), ∴OC=a ,PC=b , ∴CD=12PC=12b ,DQ=2PQ=2b , ∴Q(a+2b ,12b);设M(x ,y),则N 点坐标为(x+2y ,12y),∵N(6,),∴612x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得9x y =⎧⎪⎨=-⎪⎩∴M(9,;(2)①∵A 是函数y=2x 图象上异于原点O 的任意一点, ∴可取A(2,∴7222+=,122=, ∴B(72,2), 设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7, ∴直线OB 的函数表达式为x ; ②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2722k b k b ⎧'+=⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 解析式为y=-3x+3, ∴D(0,3),且A(2,B(72,2), ∴=,=∴34OAB OAD SAB S AD ===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?解析:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.答案:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有2344442x yx y+=⎧⎨+=⎩,解得108xy=⎧⎨=⎩.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.解析:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.首先证明△ACP∽△ECH,推出12AC PC APCE CH HE===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出144PB DP nEH DH n===,可得31264mm-=+,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x-5),求出E点坐标代入即可解决问题.答案:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.∵EH∥AP,∴△ACP∽△ECH,∴12 AC PC APCE CH HE===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴144 PB DP nEH DH n===,∴31 264mm-=+,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,=∴∴E(9,),∵抛物线的对称轴为CD,∴(-3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x-5),把E(9,代入得到a=8,∴抛物线的解析式为(x+3)(x-5),即2x x-.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.解析:(1)如图1中,设PD=x.则PA=6-x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.答案:(1)如图1中,设PD=x.则PA=6-x.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6-x)2=62,∴舍弃),∴∴时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ 是矩形,∴CM=EQ=3,∠M=90°,∴==∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME ,AD DC DM EM=, ∴7AD =,∴如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3. 作EQ ⊥BC 于Q ,延长QE 交AD 于M.则EQ=3,CE=DC=4在Rt △ECQ 中,=, 由△DME ∽△CDA , ∴DM EM CD AD=,1AD=,∴AD=7, 综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线≤m<BC的距离等于3,这样的m的取值范围7。
江苏无锡2017中考试题数学卷(含解析)
2 22 15 2 【答案】 (1) P 〔 1, 0〕. (2) y=x ﹣x ﹣8.84【解析】试题分析:〔 1〕如图,作 EF ⊥ y 轴于 F ,DC 的延长线交EF 于 H .设 H 〔 m ,n 〕,那么 P 〔 m ,AC PC AP1 0〕, PA=m+3 , PB=3 ﹣ m .首先证明 △ACP ∽△ ECH ,推出CH HE,推出CE2 PB DP n 1CH=2n , EH=2m=6 , 再 证 明△DPB ∽ △ DHE , 推 出DH44 , 可 得EHn3- m 1,求出 m 即可解决问题;2m 64〔2〕由题意设抛物线的解析式为 y=a 〔x+3 〕〔 x ﹣5〕,求出 E 点坐标代入即可解决问题 .∴ AC PC AP1,CE CH HE2∴C H=2n ,EH=2m=6 ,∵CD⊥AB ,∴P C=PD=n ,∵PB ∥HE,∴△ DPB ∽△ DHE ,∴ PB DP n1,EH DH4n4∴ 3- m 1 ,2m64∴m=1 ,∴P〔 1, 0〕.(2〕由〔 1〕可知, PA=4, HE=8 , EF=9 ,连接 OP,在 Rt△OCP 中, PC= OC2OP222 ,∴CH=2PC=4 2 ,PH=6 2 ,∴E〔 9,6 2 〕,∵抛物线的对称轴为CD,∴〔﹣ 3, 0〕和〔 5, 0〕在抛物线上,设抛物线的解析式为y=a〔 x+3 〕〔 x﹣ 5〕,把 E〔9,6 2〕代入得到 a= 2 ,8∴抛物线的解析式为2222152 y=〔x+3 〕〔 x﹣ 5〕,即 y=x﹣x﹣8.884考点:圆的综合题.28.如图,矩形ABCD 中, AB=4 , AD=m ,动点 P 从点 D 出发,在边 DA 上以每秒 1个单位的速度向点 A 运动,连接 CP,作点 D 关于直线 PC 的对称点 E,设点 P 的运动时间为 t〔s〕.〔1〕假设 m=6,求当 P,E, B 三点在同一直线上时对应的t 的值.〔2〕 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻t,使点∴ AC PC AP1,CE CH HE2∴C H=2n ,EH=2m=6 ,∵CD⊥AB ,∴P C=PD=n ,∵PB ∥HE,∴△ DPB ∽△ DHE ,∴ PB DP n1,EH DH4n4∴ 3- m 1 ,2m64∴m=1 ,∴P〔 1, 0〕.(2〕由〔 1〕可知, PA=4, HE=8 , EF=9 ,连接 OP,在 Rt△OCP 中, PC= OC2OP222 ,∴CH=2PC=4 2 ,PH=6 2 ,∴E〔 9,6 2 〕,∵抛物线的对称轴为CD,∴〔﹣ 3, 0〕和〔 5, 0〕在抛物线上,设抛物线的解析式为y=a〔 x+3 〕〔 x﹣ 5〕,把 E〔9,6 2〕代入得到 a= 2 ,8∴抛物线的解析式为2222152 y=〔x+3 〕〔 x﹣ 5〕,即 y=x﹣x﹣8.884考点:圆的综合题.28.如图,矩形ABCD 中, AB=4 , AD=m ,动点 P 从点 D 出发,在边 DA 上以每秒 1个单位的速度向点 A 运动,连接 CP,作点 D 关于直线 PC 的对称点 E,设点 P 的运动时间为 t〔s〕.〔1〕假设 m=6,求当 P,E, B 三点在同一直线上时对应的t 的值.〔2〕 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻t,使点∴ AC PC AP1,CE CH HE2∴C H=2n ,EH=2m=6 ,∵CD⊥AB ,∴P C=PD=n ,∵PB ∥HE,∴△ DPB ∽△ DHE ,∴ PB DP n1,EH DH4n4∴ 3- m 1 ,2m64∴m=1 ,∴P〔 1, 0〕.(2〕由〔 1〕可知, PA=4, HE=8 , EF=9 ,连接 OP,在 Rt△OCP 中, PC= OC2OP222 ,∴CH=2PC=4 2 ,PH=6 2 ,∴E〔 9,6 2 〕,∵抛物线的对称轴为CD,∴〔﹣ 3, 0〕和〔 5, 0〕在抛物线上,设抛物线的解析式为y=a〔 x+3 〕〔 x﹣ 5〕,把 E〔9,6 2〕代入得到 a= 2 ,8∴抛物线的解析式为2222152 y=〔x+3 〕〔 x﹣ 5〕,即 y=x﹣x﹣8.884考点:圆的综合题.28.如图,矩形ABCD 中, AB=4 , AD=m ,动点 P 从点 D 出发,在边 DA 上以每秒 1个单位的速度向点 A 运动,连接 CP,作点 D 关于直线 PC 的对称点 E,设点 P 的运动时间为 t〔s〕.〔1〕假设 m=6,求当 P,E, B 三点在同一直线上时对应的t 的值.〔2〕 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻t,使点∴ AC PC AP1,CE CH HE2∴C H=2n ,EH=2m=6 ,∵CD⊥AB ,∴P C=PD=n ,∵PB ∥HE,∴△ DPB ∽△ DHE ,∴ PB DP n1,EH DH4n4∴ 3- m 1 ,2m64∴m=1 ,∴P〔 1, 0〕.(2〕由〔 1〕可知, PA=4, HE=8 , EF=9 ,连接 OP,在 Rt△OCP 中, PC= OC2OP222 ,∴CH=2PC=4 2 ,PH=6 2 ,∴E〔 9,6 2 〕,∵抛物线的对称轴为CD,∴〔﹣ 3, 0〕和〔 5, 0〕在抛物线上,设抛物线的解析式为y=a〔 x+3 〕〔 x﹣ 5〕,把 E〔9,6 2〕代入得到 a= 2 ,8∴抛物线的解析式为2222152 y=〔x+3 〕〔 x﹣ 5〕,即 y=x﹣x﹣8.884考点:圆的综合题.28.如图,矩形ABCD 中, AB=4 , AD=m ,动点 P 从点 D 出发,在边 DA 上以每秒 1个单位的速度向点 A 运动,连接 CP,作点 D 关于直线 PC 的对称点 E,设点 P 的运动时间为 t〔s〕.〔1〕假设 m=6,求当 P,E, B 三点在同一直线上时对应的t 的值.〔2〕 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻t,使点。
2017年江苏省无锡市中考数学试卷-答案
江苏省无锡市2017中考试卷数学答案解析90,90∠,ABEOA90,∴△,∴885a b ab=【考点】二次根式的乘法.∠,同理30,30,∴30230π11-(2360224630,根据三角形,梯形,扇形的面积公式即可得90,∵∠L OL OL,390,【解析】解:根据题意画图如下:【提示】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 【考点】等可能事件的概率. 23.【答案】(1)4556,600 (2)答案见解析 (3)①【解析】解:(1)由题意3903653455651564556600a b =+==-=,. (2)统计图如图所示,(3)①正确.33531533200-=故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数1535506536007252681=++++=,故错误. 【提示】(1)观察表格中的数据即可解决问题. (2)根据第4天的人数600,画出条形图即可. (3)根据题意一一判断即可. 【考点】统计表,条形统计图. 24.【答案】(1)答案见解析 (2)答案见解析【解析】解:(1)如图所示:点O 即为所求.(2)如图所示:六边形DEFGHI 即为所求正六边形.60,∴△3的面积与OAD △的面积之比.方法2.先确定出OAB △比OAD △(B 与A 横坐标绝对值的比更简单)得出面积关系,即可得出结论.【考点】旋转的性质.26.【答案】(1)答案见解析(2)84万元【解析】解:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2344442x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩. 所以每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)购买9台A 型污水处理器,费用为1099()0⨯=万元;购买8台A 型污水处理器,1台B 型污水处理器,费用为1088=88()⨯+万元购买7台A 型污水处理器,2台B 型污水处理器,费用为10782=86()⨯+⨯万元购买6台A 型污水处理器,3台B 型污水处理器,费用为10683=84()⨯+⨯万元购买5台A 型污水处理器,5台B 型污水处理器,费用为10585=90()⨯+⨯万元购买4台A 型污水处理器,6台B 型污水处理器,费用为10486=88()⨯+⨯万元购买3台A 型污水处理器,7台B 型污水处理器,费用为10387=86()⨯+⨯万元购买2台A 型污水处理器,9台B 型污水处理器,费用为10289=92()⨯+⨯万元购买1台A 型污水处理器,10台B 型污水处理器,费用为101810=90()⨯+⨯万元购买11台B 型污水处理器,费用为∴()1,0P .290,∴EM 作于,延长交AD 于M .则34EQ CE DC ===,DM EM。
2017年无锡数学中考试卷
2017年无锡市初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5-的倒数是( )A .15B .5±C .5D .15- 2.函数2x y x =-中自变量x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≤ D .2x >3.下列运算正确的是( )A .()437a a =B .()22ab ab = C .824a a a ÷= D .246a a a ⋅= 4.下列图形中,是中心对称图形的是( )A .B . C. D .5.若2a b -=,3b c -=-,则a c -等于( )A .B .1- C.5 D .5-6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数 D .男生成绩的中位数小于女生成绩的中位数7.某商店今年月份的销售额是2万元,3月份的销售额是4.5万元,从月份到3月份,该店销售额平均每月的增长率是( )A .20%B .25% C.50% D .62.5%8.对于命题“若22a b >,则a b >.”下面四组关于a 、b 的值中,能说明这个命题是假命题的是( )A .3a =,2b =B .3a =-,2b = C.3a =,1b =- D .1a =-,3b =9.如图,菱形CD AB 的边20AB =,面积为320,D 90∠BA <o ,O e 与边AB 、D A 都相切,10AO =,则O e 的半径长等于( )A .5B .6 C.25 D .3210.如图,C ∆AB 中,C 90∠BA =o ,3AB =,C 4A =,点D 是C B 的中点,将D ∆AB 沿D A 翻折得到D ∆AE ,连C E ,则线段C E 的长等于( )A .2B .54 C.53 D .75第Ⅱ卷(共100分)二、填空题(每题2分,满分16分,将答案填在答题纸上)11.计算123⨯的值是 .12.分解因式:2363a a -+= .13.贵州F S A T 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约2500002m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 C o .15.已知反比例函数k y x=的图像经过点()1,2--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面展开图的面积等于 2cm .17.如图,已知矩形CD AB 中,3AB =,D 2A =,分别以边D A 、C B 为直径在矩形CD AB 的内部作半圆1O 和半圆2O ,一平行于AB 的直线F E 与这两个半圆分别交于点E 、点F ,且F 2E =(F E 与AB 在圆1O 和2O 的同侧),则由»AE、F E 、»F B 、AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都在格点处,AB与CD相交于O,则tan D∠BO的值等于.三、解答题(本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分8分)计算:(1)()()03627-+-+;(2)()()()a b a b a a b+---.20. (本题满分8分)(1)解不等式组:()2311222xx x+>⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎧⎪⎨-≤+⋅⋅⋅⋅⎪⎩①②;(2)解方程:53212x x=-+.21. (本题满分8分)已知,如图,平行四边形CDAB中,E是CB边的中点,连D E并延长交AB的延长线于点F,求证:FAB=B.22. (本题满分8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23. (本题满分8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a = ,b = ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(本题满分6分)如图,已知等边C ∆AB ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作C ∆AB 的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形D FG E HI ,使点F ,点H 分别在边C B 和C A 上.25.(本题满分10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作C x P ⊥轴于点C ,点C 绕点P 逆时针旋转60o 得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(),a b P 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,3N ,则点M 的坐标为 .(2)A 是函数3y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求∆OAB 的面积与D ∆OA 的面积之比.26.(本题满分10分)某地新建的一个企业,每月将产生1960吨污水.为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元;售出的台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(本题满分10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O e 分别交于C 、D 两点(点C 在点D 的上方),直线C A 、D B 交于点E .若C :C 1:2A E =,(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(本题满分8分) 如图,已知矩形CD AB 中,4AB =,D m A =.动点P 从点D 出发,在边D A 上以每秒个单位的速度向点A 运动,连接C P ,作点D 关于直线C P 的对称点E .设点P 的运动时间为()s t .(1)若6m =,求当P 、E 、B 三点在同一直线上时对应的的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻,使点E 到直线C B 的距离等于3,求所有这样的m 的取值范围.。
2017年江苏省无锡市中考数学试卷及答案
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前江苏省无锡市2017中考试卷数学 .......................................................................................... 1 江苏省无锡市2017中考试卷数学答案解析 .. (5)江苏省无锡市2017中考试卷数学本试卷满分130分,考试时间120分钟.一、选择题(每小题3分,共30分) 1.5-的倒数是( ) A .15B .5±C .5D .15- 2.函数2xy x=-中自变量x 的取值范围是( ) A .2x ≠B .2x ≥C .2x ≤D .2x > 3.下列运算正确的是( ) A .235()a a =B .22()ab ab =C .632a a a ÷=D .235a a a = 4.下列图形中,是中心对称图形的是( )5.若2,3a b b c -=-=-,则a c -等于( )A .1B .1-C .5D .5- 6.下表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C .男生成绩的中位数大于女生成绩的中位数D .男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20%B .25%C .50%D .62.5%8.对于命题“若22a b >,则a b >”,下面四组关于,a b 的值中,能说明这个命题是假命题的是( )A .3,2a b ==B .3,2a b =-=C .3,1a b ==-D .1,3a b =-=9.如图,菱形ABCD 的边20AB =,面积为320,90,BAD ∠<O 与边,AB AD 都相切,10AO =,则O 的半径长等于( )A .5B .6C .D .10.如图,ABC △中,90,3,4BAC AB AC ∠===,点D 是BC 的中点,将ABD △沿AD 翻折得到AED △,连接CE ,则线段CE 的长等于( )A .2B .54 C .53D .75二、填空题(每小题2分,共16分) 11.的值是 . 12.分解因式:2363a a -+= .13.贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约ABC D 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)2250000m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.15.若反比例函数ky x=的图象经过点(1,2)--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积等于2cm .17.如图,已知矩形ABCD 中,3,2AB AD ==,分别以边,AD BC 为直径在矩形ABCD 的内部作半圆1O 和半圆2O ,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且2EF =(EF 与AB 在圆心1O 和2O 的同侧),则由,,,AE EF FB AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A B C D 、、、都在格点处,AB 与CD 相交于O ,则tan BOD ∠的值等于 . 三、解答题(本大题共10小题,共84分) 19.(8分)计算:(1)30|6|(2)-+-+ ; (2)()()().a b a b a a b +---20.(8分)(1)解不等式组:231,12(2)2x x x +⎧⎪⎨-+⎪⎩>①≤②; (2)解方程:53.212x x =-+21.(8分)如图,平行四边形ABCD 中,E 是BC 边的中点,连接DE 并延长交AB 的延长线于点F ,求证:AB BF =.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了(1)表格中a = ,b = ; (2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边ABC △,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹): (1)作ABC △的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形DEFGHI ,使点F 、点H 分别在边BC 和AC 上.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)25.(10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC x ⊥轴于点C ,点C 绕点P 逆时针旋转60得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(,)P a b 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,N -,则点M 的坐标为 . (2)A是函数y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求B OA △的面积与OAD △的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器已知商家售出的2台型、3台型污水处理器的总价为44万元;售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A B 、两点(B 点在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O 分别交于C D 、两点(点C 在点D 的上方),直线AC DB 、交于点E .若12AC CE =::. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD 中,4AB AD m ==,.动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E .设点P的运动时间为(s)t . (1)若6m =,求当P E B 、、三点在同一直线上时对应的t 的值. (2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,求所有这样的m 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017江苏省无锡市中考数学试卷解析陆
2017年江苏省无锡市中考数学试卷解析 陆亚彬1. D ,解析:本题考查了实数的倒数,掌握求倒数的方法是解题的关键.∵-5×(-15)=1,∴-5的倒数是-15. 2.A ,解析:本题考查了函数自变量的取取值范围,掌握函数解析式有意义的条件是解题的关键.由分母不为0,得2-x ≠0,∴x ≠2 .3.D ,解析:本题考查了幂的运算,掌握幂的运算法则是解题的关键.∵()4312a a =,∴选项A 错的;∵()222ab a b =,∴选项B 错的;∵826a a a ÷=,∴选项C 错的;∵246a a a ⋅=,∴选项D 正确,故选D .4.C ,解析:本题考查了中心对称图形的判断,掌握其判定方法是解题的关键.根据中心对称图形的定义可知选项C 是中心对称图形;根据轴对称图形的定义可知选项A ,C 是轴对称图形;根据旋转对称的定义可知选项D 是旋转对称图形,故本题选C 。
5. B ,解析 (a -b ) + (b -c )=a -c =2-3=-1.6 A ,解析:本题考查了数据的平均数和中位数,求出这组数据的平均数和中位数是解题的关键.x 男生=(5×70+10×80+7×90)÷(5+10+7)=89011; x 女生=(4×70+13×80+4×90)÷(4+13+4)=5607<89011; 男生有22人,成绩的中位数是第11位与第12位数的平均数80;女生有21人,成绩的中位数是最中间的数80;故本题选A.7.C ,解析:本题考查了平均增长率的应用,掌握平均增长率的计算公式是解题的关键.设该店销售额平均每月的增长率是x ,根据题意,得2(1+x )2=4.5解得(1+x )2=2.25∴1+x =±1.5∴x 1=0.5=50%,x 2=-2.5(舍去).∴该店销售额平均每月的增长率是50%.8. B ,解析:本题考查了命题的概念,掌握判别假命题的方法是解题的关键.当a =-3,b =2时,a 2>b 2,但a <b .故本题选B.9.C ,解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt △ADH 中,AH= =12,∴HB=AB ﹣AH=8,在Rt △BDH 中,BD= =8 ,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴ = , ∴ = , ∴OF=2 .故选C .10.D ,解析: 如图,连接BE 交AD 于点F .∵△ABC 中,∠BAC =90°,AB =3,AC =4, FEAD C B∴BC =22AB AC +=2234+=5.∵点D 是BC 的中点,∴CD =BD =AD =2.5.∵将△ABD 沿AD 翻折得到△AED ,∴AE =AB =3,ED =BD =2.5,∠ADE =∠ADB .∴A 、B 、C 、E 在⊙D 上.∴∠BEC =90°.∵ED =CD ,∴∠DEC =∠DCE .∵2∠ECD =2∠ADB ,∴∠ECD =∠ADB .∴CE ∥AD .∴AD ⊥EB .∴AB 2-AF 2=BD 2-DF 2.即32-(2.5-DF )2=2.52-DF 2.∴DF =710. ∵点D 是BC 的中点,CE ∥AD ,∴DF =12CE . ∴CE =75. 11. 6,解析:本题考查了二次根式的乘法,掌握二次根式乘法的法则是解题的关键.12×3=36=6.12. 3(a -1)2,解析:3a 2-6a +3=3(a 2-2a +1)=3(a -1)2.13. 2.5×105,解析:250000=2.5×105.14.11,解析:根据图中信息可知,这7天中,周日的日温差最大,最大的日温差是16-5=11(C ).15.2,解析:本题考查了点与函数的关系,掌握函数上点的特征是解题的关键.把点(-1,-2)代入y =k x ,得-2=1k -,∴k =2. 16. 15π,解析:本题考查了圆锥侧面积的计算,掌握扇形的面积公式是解题的关键.。
江苏省无锡市2017年中考数学真题试题(含解析)[精品]
数法可表示为
.
【答案】2.5×105.
【解析】
试:科学记数法—表示较大的 数.
14.如图是我市某连续 7 天的最高气温与最低气温的变化图,根据图中信息可知,这 7 天中最大的日温差
是
℃.
【答案】11. 【解析】 试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃= 8℃;周三的日温 差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周 日的日温差=16℃﹣5℃=11℃, ∴这 7 天中最大的日温差是 11℃.
∵菱形 ABCD 的边 AB=20,面积为 320, ∴AB•DH=32O, ∴DH=16,
在 Rt△ADH 中,AH= AD 2 − DH 2 =12,
∴HB=AB﹣AH=8,
在 Rt△BDH 中,BD= DH 2 + BH 2 = 8 5 ,
设⊙O 与 AB 相切于 F,连接 AF. ∵AD=AB,OA 平分∠DAB, ∴AE⊥BD,
,b=
;
(2)请把下面的条形统计图补充完整;
(3)根据以上信息,下列说法正确的是
(只要填写正确说法前的序号).
①在活动之前,该网站已有 3200 人加入;
②在活动期间,每天新加入人数逐天递增;
2
③在活动期间,该网站新加入的总人数为 2528 人.
【答案】(1)4556;600;(2)补图见解析;(3)①
c m2.
考点:圆锥的计算. 17.如图,已知矩形 ABCD 中,AB=3,AD=2,分别以边 AD,BC 为直径在矩形 ABCD 的内部作半圆 O1 和半圆 O2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.下列图形中,是中心对称图形的是()A.B.C. D.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是.12.分解因式:3a2﹣6a+3= .13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:(2)解方程: =.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣【考点】17:倒数.【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【考点】E4:函数自变量的取值范围.【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.下列图形中,是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【考点】44:整式的加减.【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【考点】AD:一元二次方程的应用.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【考点】O1:命题与定理.【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【考点】MC:切线的性质;L8:菱形的性质.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是 6 .【考点】75:二次根式的乘除法.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.贵州FA ST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【考点】18:有理数大小比较;1A:有理数的减法.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【考点】G7:待定系数法求反比例函数解析式.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【考点】T7:解直角三角形.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(1)解不等式组:(2)解方程: =.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED 和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【考点】X6:列表法与树状图法.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【考点】VC:条形统计图.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b, b);若点M经过T 变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【考点】FI:一次函数综合题.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD 的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b, b);设M(x,y),则N点坐标为(x+y, y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b, b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【考点】MR:圆的综合题.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.【考点】LO:四边形综合题.【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E 到BC的距离为3;【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴=,∴=,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。