新北师大版九年级上学期视图与投影练习题
北师大版九年级上册数学第五章 投影与视图 含答案
北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、由5个大小相同的正方体组成的几何体如图所示,其主视图是()A. B. C.D.2、如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A. B. C. D.3、如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A. B. C. D.4、下列四个几何体的俯视图中与众不同的是()A. B. C. D.5、如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长6、如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A. B. C. D.7、如图所示,该几何体的左视图是()A. B. C. D.8、如图所示的几何体是由4个相同的小正方体组成.其主视图为()A. B. C. D.9、用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同10、如图所示的是一个蒙古包所抽象出来的几何体,以下对这个几何体的三视图描述正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三个视图都相同11、如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.12、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.13、由5个完全相同的正方体组成的立体图形如图所示,从正面看这个立体图形得到的平面图形是( )A. B. C. D.14、如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.从前面看到的形状图的面积为5B.从左面看到的形状图的面积为3 C.从上面看到的形状图的面积为3 D.三种视图的面积都是4 15、如图,是由三个相同的小正方体组成的几何体,它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,电灯在横杆的正上方,在灯光下的影子为,,,,点到的距离为,则与间的距离是________ .17、如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为________ 秒.18、三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是________.19、由个相同的正方体组成一个立体图形,如图的图形分别是从正面和上面看它得到的平面图形,设能取到的最大值a,则多项式的值是________.20、将一个三角形放在太阳光下,它所形成的投影是________ .21、我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面________ ,这种投影称为正投影.22、太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是________.(说出一种形状即可)23、为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.24、如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________ (多填或错填得0分,少填酌情给分).25、如图所示,身高1.6m的小华站在距路灯杆5m的C点处,测得他在灯光下的影长CD为3.2m,则路灯AB的高度为________m.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.28、如图,铜亭广场装有智能路灯,路灯设备由灯柱AC与支架BD共同组成(点C处装有安全监控,点D处装有照明灯),灯柱AC为6米,支架BD为2米,支点B到A的距离为4米,AC与地面垂直,∠CBD=60°.某一时刻,太阳光与地面的夹角为45°,求此刻路灯设备在地面上的影长为多少?29、如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,请你画出它的主视图和左视图.30、如图①所示的组合几何体,它的下面是一个长方体,上面是一个圆柱.(1)图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”);(2)根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留π)参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、B5、B6、A7、D8、D9、A10、A11、A12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、30、。
2022学年北师大版九年级数学上册第五章《投影与视图》单元试题附答案解析
2022学年九年级数学上册第五章《投影与视图》单元试题(满分:120分)一、单选题1.一个画家有14个边长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()平方米.A.19B.21C.33D.362.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长3.如图是一根电线杆在一天中不同时刻的影长图,试按其 天中发生的先后顺序排列,正确的是()A.①①①①B.①①①①C.①①①①D.①①①①4.三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻三根木杆在太阳光下的影子合理的是()A.B.C.D.5.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子6.几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.97.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定8.下列立体图形中,主视图是圆的是()A.B.C.D.9.图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中①ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个10.如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和①B.①和①C.①和①D.①和①11.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.12.如图,是一个正六棱柱的主视图和左视图,则图中x的值为()A.2B.3CD二、填空题13.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)14.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.15.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是______________.16.一个几何体的三视图如图所示,则该几何体的表面积为____________.17.在同车道行驶的机动车,后车应当与前车保持一定的安全距离.如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 处,小林驾驶一辆小轿车,距大车尾xm ,若大巴车车顶高于小林的水平视线0.8m ,红灯下沿高于小林的水平视线3.2m ,若小林能看到整个红灯,则x 的最小值为_____.18.如图,在A 时测得一棵大树的影长为4米,B 时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.19.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.20.一块直角三角形板ABC ,90ACB ∠=︒,12cm BC =,8cm AC ,测得BC 边的中心投影11B C 长为24cm ,则11A B 长为__cm .三、解答题21.(1)如图1,若将一个小立方块①移走,则变化后的几何体与变化前的几何体从______看到的形状图没有发生改变;(填“正面”、“上面”或“左面”)(2)如图2,请画出由6个小立方块搭成的几何体从上面看到的形状图;(3)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图3所示,小正方形中的数字表示该位置上的小立方块的个数,请画出从左面看到的形状图.22.一个几何体的三种视图如图所示.(1)这个几何体的名称是__________.(2)求这个几何体的体积.(结果保留 )23.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.24.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长25.如图,身高为1.6m的小王晚上沿箭头的方向散步至一路灯下,她想通过自己的影子来估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己影子端点恰好在点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置;(2)估计路灯的高度,并求影长PQ.26.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.27.小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他向前再步行12m 到达Q 时,发现他的影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6m ,两个路灯的高度都是9.6m ,且m AP BQ x ==.(1)求:两个路灯之间的距离;(2)小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由。
北师大版数学九年级上册第五章投影与视图综合同步测试题(含答案)
北师大版数学九年级上册第五章投影与视图综合同步测试题(含答案)一、选择题:〔每题3分,共30分〕1.以下命题正确的选项是 〔 〕 A 三视图是中心投影 B 小华观察牡丹话,牡丹花就是视点C 球的三视图均是半径相等的圆D 阳光从矩形窗子里照射到空中上失掉的光区仍是矩形 2.平行投影中的光线是 〔 〕 A 平行的 B 聚成一点的 C 不平行的 D 向五湖四海发散的3.在同一时辰,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是 〔 〕A 两根都垂直于空中B 两根平行斜插在地上C 两根竿子不平行D 一根到在地上 4.有一实物如图,那么它的主视图 〔 〕A B C D5.假设用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )6.小明从正面观察以下图所示的两个物体,看到的是 〔 〕7.在同一时辰,身高1.6m 的小强的影长 是1.2m ,旗杆的影长是15m ,那么旗杆高为〔 〕 A 、16mB 、 18mC 、 20mD 、22m8.小明在操场上练习双杠时,在练习的进程中他发如今地上双杠的两横杠的影子 〔 〕 A. 相交 B. 平行 C. 垂直 D. 无法确定9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的状况,有意之中,他发现这四个时辰向日葵影子的长度各不相反,那么影子最长的时辰为 ( )A. 上午12时B. 上午10时C. 上午9时30分D. 上午8时 10,图中的几何体,其三种视图完全正确的一项为哪一项〔 〕 二.填空题:〔每题3分,共15分〕 11.在平行投影中,两人的高度和他们的影子 ;12.小军早晨到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他一定的说:〝广场上的大灯泡一定位于两人 〞;13.圆柱的左视图是 ,仰望图是 ; 14.如图,一几何体的三视图如右: 那么这个几何体是 ; 15.一个四棱锥的仰望图是 ;BACD正面ABCD俯视图左视图主视图三.〔此题共2小题, 每题8分,计16分〕16. 阳黑暗丽的一天,数学兴味小组的同窗们去测量一棵树的高度〔这棵树底部可以抵达,顶部不易抵达〕,他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜。
初中数学北师大版九年级上册第五章投影与视图练习题
初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。
最新北师版九年级初三数学上册第五章投影与视图第一节《投影》》试卷
北师大版数学九年级上册第五章投影与视图第一节《投影》一、选择题1.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B. 15 C. 10 D.3.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是()A. 正方形B. 长方形C. 线段D. 梯形4.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 逐渐变长D. 先变长后变短5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A. ①②③④B. ④①③②C. ④②③①D. ④③②①7.在阳光的照射下,一个矩形框的影子的形状不可能是()A. 线段B. 平行四边形C. 等腰梯形D. 矩形8.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A. 先变长,后变短B. 先变短,后变长C. 方向改变,长短不变D. 以上都不正确9.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A. 相等B. 长的较长C. 短的较长D. 不能确定10.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A. 3.2米B. 4.8米C. 5.2米D. 5.6米11.圆形物体在阳光下的投影不可能是()A. 圆形B. 线段C. 矩形D. 椭圆形12.如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A. 矩形B. 线段C. 平行四边形D. 一个点13.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A. ③①④②B. ③②①④C. ③④①②D. ②④①③14.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.15.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. B. C. D.二、填空题16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子________.(填“长”或者“短”)19.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.20.太阳光线下形成的投影是________投影.(平行或中心)三、解答题21.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.22.如图,分别是两根木杆及其影子的图形.(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.23.某一广告墙PQ旁有两根直立的木杆AB和CD ,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.答案解析部分一、选择题1.【答案】A【考点】平行投影【解析】【解答】A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.2.【答案】B【考点】平行投影【解析】解答:由题意得:DC=2R ,DE= ,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.分析:根据题意建立直角三角形DCE ,然后根据∠CED=60°,DE=可求出答案.3.【答案】D【考点】平行投影【解析】【解答】在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选:D.【分析】利用平行投影的特点:在同一时刻,平行物体的投影仍旧平行判定即可.4.【答案】B【考点】中心投影【解析】【解答】在小亮由A处径直走到路灯下时,他在地上的影子逐渐变短,当他从路灯下走到B处时,他在地上的影子逐渐变长.故选B.【分析】根据中心投影的特征可得小亮在地上的影子先变短后变长.5.【答案】A【考点】中心投影【解析】【解答】因为人往路灯下行走的这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选A.【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.6.【答案】B【考点】平行投影【解析】【解答】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北﹣北﹣东北﹣东,故分析可得:先后顺序为④①③②.故选B.【分析】北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.【答案】C【考点】平行投影【解析】【解答】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是等腰梯形.故选:C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.8.【答案】B【考点】平行投影【解析】【解答】旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B.【分析】根据太阳的运动规律和平行投影的特点和规律可知.9.【答案】D【考点】平行投影【解析】【解答】由于不知道两个物体的摆放情况,无法比较两物体.故选D.【分析】因不知道物体与地面的角度关系如何,即不知道与光线的角度大小,故无法比较其投影的长短.10.【答案】B【考点】平行投影【解析】解答:设旗杆的高为x,有,可得x=4.8米.故选:B.分析:由成比例关系,列出关系式,代入数据即可求出结果.11.【答案】C【考点】平行投影【解析】【解答】∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,但不可能是矩形,故选C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.12.【答案】D【考点】平行投影【解析】【解答】阳光斜射在地面上,当矩形纸片与太阳光垂直时,矩形纸片在地面上的影子为矩形;当矩形纸片与太阳光斜交时,矩形纸片在地面上的影子为平行四边形;当矩形纸片与太阳光平行时,矩形纸片在地面上的影子为线段.故选D.【分析】在太阳光下的投影为平行投影,平行投影不可能把矩形投影为一个点.13.【答案】C【考点】平行投影【解析】【解答】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.故选:C.【分析】根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.14.【答案】D【考点】平行投影【解析】【解答】依题意,光线是垂直照下的,故只有D符合.故选D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.15.【答案】B【考点】平行投影【解析】解答:第一次观察到的影子长为6×cot60°= (米);第二次观察到的影子长为6×cot30°= (米).两次观察到的影子长的差= = (米).故选B.分析:利用所给角的正切值分别求出两次影子的长,然后作差即可.二、填空题16.【答案】40【考点】平行投影【解析】【解答】∵,∴(m).故答案为:40米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.17.【答案】上午8时【考点】平行投影【解析】【解答】根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为:上午8时.【分析】根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长.故在上午影子最长的时刻为即最早的时刻:上午8时.18.【答案】短【考点】平行投影【解析】【解答】∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.【分析】根据太阳照射的角度从春天开始会逐渐开始直射,则影子会不断变短.19.【答案】太阳光下形成的影子;灯光下形成的影子【考点】平行投影,中心投影【解析】【解答】根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.故答案为:太阳光下形成的影子;灯光下形成的影子.【分析】根据平行投影和中兴投影的性质分别分析得出答案即可.20.【答案】平行【考点】平行投影【解析】【解答】太阳光线下形成的投影是平行投影.故答案为:平行.【分析】太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.三、解答题21.【答案】(1)解答:影子EG如图所示;;(2)解答:∵DG∥AC ,∴∠G=∠C ,∴Rt△ABC∽Rt△DGE ,∴,即,解得,∴旗杆的高度为.【考点】相似三角形的应用,平行投影【解析】【分析】连结AC ,过D点作DG∥AC交BC于G点,则GE为所求;先证明Rt△ABC∽△RtDGE ,然后利用相似比计算DE的长.22.【答案】(1)解答:上图为路灯下的情形,下图为太阳光下的情形;;(2)如图所示:【考点】平行投影,中心投影【解析】【分析】利用物体和影子关系得出光线方向,进而判断得出;利用上图两根木杆及其影子位置得出路灯的位置,进而得出小树的影子,利用下图两根木杆及其影子位置得出太阳光线方向,进而得出小树的影子.23.【答案】(1)解答:如图所示:;(2)设木杆AB的影长BF为x米,由题意,得,解得.答:木杆AB的影长是米.【考点】相似三角形的应用,平行投影【解析】【分析】根据木杆CD的影子刚好不落在广告墙上可以画出此时的太阳光线CE,根据太阳光线是平行的,可以画出木杆AB的影子BF;根据在同一时刻,物高与影子成比例进行求解.。
完整新北师大版九年级上学期视图与投影练习题
新北师大版九年级上册投影与视图单元测试(二)一、填空题(30分) 1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是、身高相同的甲、乙两人分别距同一路灯32米,路灯亮时,甲的影子比乙的影子米、2 (填“长”或“短”),,小刚比小明矮5cm3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m 此刻小明的影长是________m。
,小明站在A处测得他的影长与身4、墙壁D处有一盏灯(如图)到B处发现影子刚好落在,小明向墙壁走长相等都为1.6m1m =_______。
A点,则灯泡与地面的距离CD的正方体堆放而成,则这个5、下图的几何体由若干个棱长为数1 __________。
几何体的体积为.南平)如图是某个几何体的展开图,这个几何体是 6、(06左视图主视图俯视图则搭成这个几何体的小正方如图,是由几个相同的小正方体搭成的几何体的三种视图,7、体的个数是BA 如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影8、(05南京) 点时,她的影子顶端正好与树的影子顶端重合,测得A走去,当走到C由B到BC=3.2m ,CA=0.8m, 则树的高度为:00出去,测量了自己的影长,出去一段时间后回来时,9、春分时日,小明上午9 发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时。
10,0)-轴上的点A(米的小强面向y轴站在x10、直角坐标系内,身高为1.53,则站立的小强观察y(y>0)已知墙高2米轴时,,处,他的前方5米处有一堵墙421盲区(视力达不到的地方)范围是21二、选择题:(30分)11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A 小明的影子比小强的影子长B 小明的影长比小强的影子短C 小明的影子和小强的影子一样长D 无法判断谁的影子长13下图中几何体的主视图是().(A) (B) (C) (D))( 14、对左下方的几何体变换位置或视角,则可以得到的几何体是)非选择题,共98分第Ⅱ卷(、若干桶方便面摆放在桌子上,实物图片左边所给的是它15的三视图,则这一堆方便面共有() 12桶(桶D)(桶(A)5 (B) 6桶C)9上面嵌有一根黑色的金属丝,16、一个全透明的玻璃正方体,)如图,金属丝在俯视图中的形状是(A DC B 题第1617.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()412A CBD18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数()A 5个B 6个 C 7个 D 8个左视图主(正)视图俯视图19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A.O B. 6 C.快 D.乐20、(06常州)图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P、Q、M、N表示小明在N地面上的活动区域,小明想同时看到该建筑物的三个侧面,他PM区域 C M区域 B Q区域区域 D NA P应在()分)三、解答题(60Q21米,一座高米长的木杆影长分21、(6)中午,一根1.51.02图1图米远的商业楼上?傍晚,18米的住宅楼的影子是否会落在相距题13第米,这时住宅楼的影子是否会落在商业楼上?为什么?2.0该木杆的影子长为22、(12分)画出下列几何体的三视图:6分)将下列所示的几何体进行两种不同的分类,并说明理由。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
_北师大版九年级数学上册第五章 投影与视图练习题
第五章投影与视图一.选择题1.有阳光的某天下午,小明在不同时刻拍了相同的三张风景照A,B,C,冲选后不知道拍照的时间顺序了,已知投影长度l A>l C>l B,则A,B,C的先后顺序是()A.A、B、C B.A、C、B C.B、A、C D.B、C、A2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.3.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m4.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB 在x轴上的投影长为()A.3B.5C.6D.75.下列现象不属于投影的是()A.皮影B.素描画C.手影D.树影6.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形7.如图1是用5个相同的小立方块搭成的几何体,若由图1变化至图2,则从正面、上面、左面看到的形状图发生变化的是()A.从正面看到的形状图B.从左面看到的形状图C.从上面看到的形状图D.从上面、左面看到的形状图8.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm310.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是( )A .B .C .D .二.填空题11.一天下午,小红先参加了校运动会女子200m 比赛,然后又参加了女子400m 比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m 比赛的照片是 .(填“图1”或“图2”)12.如图,一棵树(AB )的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE )为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干 米才可以不被阳光晒到?13.如图,甲楼AB 高18米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=米.(结果保留根号)14.如图,物体在灯泡发出的光照射下形成的影子是 投影.(填“平行”或“中心”).15.由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加 个小正方体,该几何体可成为一个正方体.16.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是 .17.如图,是一个实心圆柱体的三视图(单位:cm ),根据图中数据计算这个圆柱体的体积是 cm 3.(圆柱体体积公式:πr 2h ,r 为底面圆的半径,h 为圆柱体的高)18.一个几何体从正面和上面看到的图形如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a +b = .三.解答题19.画出如图所示几何体的三视图.20.如图,在平整的地面上,由若干个完全相同小正方体堆成一个几何体,请在网格中画出它的三视图.21.由几个相同的棱长的小正方体搭成的几何体的俯视图如图所示,正方形中的数字表示该位置上小正方体的个数,在网格中画出这个几何体的主视图和左视图.(注:网格中小正方形的边长等于小正方体的棱长)22.画出下面几何体的三视图.23.如图1,在平整的地面上,用8个棱长都为1cm的小正方体堆成一个几何体.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.24.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.25.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG 与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.。
北师大新版数学九年级上学期第五章投影与视图投影同步练习
北师大新版数学九年级上学期第五章投影与视图投影同步练习一.选择题〔共10小题〕1.当太阳光线与空中成40°角时,在空中上的一棵树的影长为10m,树高h〔单位:m〕的范围是〔〕A.3<h<5B.5<h<10C.10<h<15D.15<h<20 2.假定线段CD是线段AB的正投影,那么AB与CD的大小关系为〔〕A.AB>CD B.AB<CD C.AB=CD D.AB≥CD3.在以下四幅图形中,能表示两棵小树在同一时辰阳光下影子的图形的能够是〔〕A.B.C.D.4.平行投影中的光线是〔〕A.平行的B.聚成一点的C.不平行的D.向五湖四海发散的5.木棒长为1.2m,那么它的正投影的长一定〔〕A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m6.圆桌面〔桌面中间有一个直径为0.4m的圆洞〕正上方的灯泡〔看作一个点〕收回的光线照射平行于空中的桌面后,在空中上构成如下图的圆环形阴影.桌面直径为1.2m,桌面离空中1m,假定灯泡离空中3m,那么空中圆环形阴影的面积是〔〕A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm27.如图,早晨小明由甲处径直走到乙处的进程中,他在路灯M下的影长在空中上的变化状况是〔〕A.逐突变短B.先变短后变长C.先变长后变短D.逐突变长8.某舞台的上方共挂有a,b,c,d四个照明灯,当只要一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如下图,那么亮的照明灯是〔〕A.a灯B.b灯C.c灯D.d灯9.小阳和小明两人从远处沿直线走到路灯下,他们规则:小阳在前,小明在后,两人之间的距离一直与小阳的影长相等.在这种状况下,他们两人之间的距离〔〕A.一直不变B.越来越远C.时近时远D.越来越近10.当你乘车沿一条平整的小道向前行驶时,你会发现,前方哪些高一些的修建物似乎〝沉〞到了位于它们前面哪些矮一些的修建物前面去了.这是由于〔〕A.汽车开的很快B.盲区减小C.盲区增大D.无法确定二.填空题〔共6小题〕11.小新的身高是1.7m,他的影子长为5.1m,同一时辰水塔的影长是42m,那么水塔的高度是m.12.为了测量水塔的高度,我们取一竹竿,放在阳光下,2米长的竹竿投影长为1.5米,在同一时辰测得水塔的投影长为30米,那么水塔高为米.13.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰恰垂直,那么旗杆的高度是米.14.如图,太阳光线与空中成60°的角,照在空中的一只排球上,排球在空中的投影长是,那么排球的直径是cm.15.如下图,此时树的影子是在〔填太阳光或灯光〕下的影子.16.如图,路灯离空中的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三.解答题〔共5小题〕17.如图,小明与同窗协作应用太阳光线测量旗杆的高度,身高1.6m的小明落在空中上的影长为BC=2.4m.〔1〕请你在图中画出旗杆在同一时辰阳光照射下落在空中上的影子EG;〔2〕假定小明测得此刻旗杆落在空中的影长EG=16m,央求出旗杆DE的高度.18.如下图,太阳光线AC和A′C′是平行的,同一时辰两个修建物在太阳下的影子一样长,那么修建物能否一样高?说明理由.〔注:太阳光线可看成是平行的〕19.以下是我国南方某地一物体在阳光下,分上、中、下午不同时辰发生的影子.〔1〕观察到以上各图片的人是站在物体的南侧还是北侧?〔2〕区分说出三张图片对应的时间是上午、半夜,还是下午?〔3〕为防止阳光照射,你在上、中、下午区分应站在A、B、C哪个区域?20.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.如图,两幅图片中竹竿的影子是在太阳光下构成的,还是在灯光下构成的?请你画出两图中小树的影子.参考答案一.选择题1.B.2.D.3.D.4.A.5.D.6.D.7.B.8.B.9.D.10.C.二.填空题11.14.12.40米.13.6.14.21.15.太阳光16.4.三.解答题17.解:〔1〕影子EG如下图;〔2〕∵DG∥AC,∴∠G=∠C,∴Rt△ABC∽△Rt△DGE,∴=,即=,解得DE=,∴旗杆的高度为m.18.解:修建物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′〔ASA〕∴AB=A′B′.即修建物一样高.19.解:〔1〕站在物体北侧.〔2〕图〔1〕是半夜,图〔2〕是下午,图〔3〕是上午.〔3〕上午、半夜、下午均选B区域.20.解:21.解:如下图:图①是灯泡光线构成的,图②是太阳光线构成的.。
北师大新版九上数学《投影与视图》单元训练题
北师大新版九上数学《投影与视图》单元训练题一.选择题(共8小题)1.如图,一面有宽度的墙面上有一个圆形和方形的通风口,则下列几何体可以同时堵住这2个通风口的是()A.B.C.D.2.下列几何体中,左视图是矩形的是()A.B.C.D.3.如图所示的三视图是下列哪个几何体的三视图()A.B.C.D.4.一个几何体由若干个相同的正方体组成,其主视图和左视图如图所示,则这个几何体中正方体最多有()个.A.3B.4C.5D.65.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是()A.B.C.D.6.正在热映的春节档电影电影《满江红》中所使用的印信道具是中国悠久的金石文化的代表之一,它的表面均由正方形和等边三角形组成,可以看成图②所示的几何体,该几何体的主视图是()A.B.C.D.7.如图,在水平的桌面上放置圆柱和长方体实物模型,则它们的左视图是()A.B.C.D.8.下面的四幅图中,灯光与影子的位置最合理的是()A.B.C.D.二.填空题(共6小题)9.已知一个几何体的三视图如图所示,其中主视图和俯视图都是矩形,左视图是直角三角形,则它的表面积等于.10.如果一个几何体从正面和左面看到的形状图都是三角形,从上面看到的形状图是带有圆心的圆,那么这个几何体是.11.从正面和左面看一个长方体得到的形状图如图所示(单位:cm),则其从上面看到的形状图的面积为cm2.12.由一些完全相同的小立方块搭成的几何体,从正面和上面看得到的形状图如图所示,则搭成该几何体的小立方块最多有个.13.如图,小莉用灯泡O照射一个矩形硬纸片ABCD,在墙上形成矩形影子A'B'C'D',现测得OA=2cm,OA'=5cm,纸片ABCD的面积为8cm2,则影子A'B'C'D'的面积为cm2.14.平行投影是由光线形成的.三.解答题(共15小题)15.如图①是一张长为20cm,宽为12cm的长方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V=cm3;(用含x的代数式表示即可,不需化简)(2)请写出a,b值;x/cm12345V/cm3180a252192b (3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.16.如图,在平整的地面上,用7个棱长都为1cm的小正方体搭成一个几何体.(1)请利用图中的网格画出从正面、左面和上面看到的几何体的形状图.(一个网格为小立方体的一个面)(2)图中7个小正方体搭成的几何体的表面积(不包括与地面接触的部分)是cm2.17.如图,在圆桌的正上方有一盏吊灯.在灯光下,圆桌在地板上的投影是面积为4πm2的圆.已知圆桌的高度为1.5m,圆桌面的半径为1m,试求吊灯距圆桌面的高度.18.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)19.在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.20.如图,在Rt△ABC中,∠C=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D,(1)试写出边AC、BC在AB上的投影;(2)试探究线段AC、AB和AD之间的关系;(3)线段BC、AB和BD之间也有类似的关系吗?请直接写出结论.21.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)22.如图,是某几何体从三个方向分别看到的图形.(1)说出这个几何体的名称;(2)画出它的一种表面展开图;(3)若图①的长为15cm,宽为4cm;图②的宽为3cm;图③直角三角形的斜边长为5cm,试求这个几何体的所有棱长的和是多少?它的侧面积多大?23.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)24.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的从正面看和从左面看到的图.25.如图是由几个小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面和左面看该几何体的形状图.26.如图,是小红用八块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面看所得到的几何体的形状图.(在答题卡上画完图后请用黑色笔描图)27.如图记录的是一棵大树在一天中的四个时刻里因阳光照射而在地面上形成的影子的方向,请你按时间先后顺序进行排序,并说明理由.28.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.29.如图,是同一时刻两根木桩和它们的影子,小华想在图中画出形成木桩影子的光线,而且想知道它们是太阳的光线还是灯光的光线,你能帮她吗?。
新北师大版九年级数学上册单元测试卷附答案第五章投影与视图
第五章投影与视图一、选择题(共15小题;共45分)1. 下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是A. B.C. D.2. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是A. B.C. D.3. 把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是A. B.C. D.4. 由个相同的小立方体搭成的几何体如图所示,则它的主视图是A. B.C. D.5. 如图是一个几何体的俯视图,则该几何体可能是A. B.C. D.6. 如图所示的几何体的俯视图是A. B.C. D.7. 如图,放置的一个机器零件(图),若从正面看到的图形如(图)所示,则从上面看到的图形是A. B.C. D.8. 如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数为A. 个B. 个C. 个D. 个9. 如图所示的几何体的左视图为A. B.C. D.10. 如图是从三个方向看某个几何体得出的平面图形,该几何体是A. 棱柱B. 圆柱C. 圆锥D. 球11. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是A. B.C. D.12. 下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.13. 如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为,且三角板的一边长为.则投影三角板的对应边长为A. B.14. 在一张桌子上摆放着一些碟子,从个方向看到的种视图如图所示,则这个桌子上的碟子共有A. 个B. 个C. 个D. 个15. 某几何体的三视图如图所示,则此几何体是A. 圆锥B. 圆柱C. 长方体D. 四棱柱二、填空题(共8小题;共40分)16. 一个几何体的主视图,左视图,俯视图都是同一个图形,那么这个几何体形状可能是(填写一个即可).17. 如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.18. 如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为.19. 观察下面的几何体,从上面看到的是,从左面看到的是,从正面看到的是.20. 在某一时刻,测得身高为的小明的影长为,同时测得一建筑物的影长为,那么这个建筑物的高度为.21. 如图所示,摄像机①,②,③,④在不同位置拍摄了四幅画面,则图象是号摄像机所拍,图象是号摄像机所拍,图象是号摄像机所拍,图象是号摄像机所拍.22. 如图四幅图是某校园内一棵小树不同时刻在太阳光下的影子,按照时间的先后顺序排列,是.23. 由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是个.三、解答题(共5小题;共65分)24. 图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图.25. 如图,,是直立在地面上的两根立柱,某一时刻立柱在阳光下的投影为,请你在图中画出此时立柱在阳光下的投影.26. 用小立方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的左视图.27. 由一些大小相同的小正方体搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体的主视图和左视图.28. 分别根据下列条件(如图,虚线表示投射线),画出矩形在投影面上的平行投影.(1)矩形所在平面与投影面平行,点的投影为点,点的投影为点.(2)矩形所在平面与投射线平行,点的投影为点.答案第一部分1. C 【解析】太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.2. D3. A4. A 【解析】几何体的主视图有列,每列小正方形数目分别为,.5. B6. D7. D8. B9. D10. B11. B 【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形.12. C13. A 【解析】设投影三角尺的对应边长为,三角尺与投影三角尺相似,,解得.14. C 【解析】易得三摞碟子数从左往右分别为,,,则这个桌子上共有个碟子.15. B【解析】圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.第二部分16. 正方体或球体17.18. ④①③②19. ③,②,①20.21. ②,③,④,①22. CDAB23.第三部分24. 如图所示:25. 如图所示:即为所求.26. 由主视图可知,它自左而右共有列,第一列个,第二列个,第三列个.由俯视图可知,它自左而右共有列,第一列个,第二列个,第三列个,从空中俯视的个数只要最底层有一个即可.因此,综合两图可知:这个几何体的形状不能确定;并且最多时为第一列有三个二层,第二列有一个二层,第三列有两个三层,共个,其左视图如图1;最少时为第一列与第二列各有一个二层,第三列有一个三层,共个,其左视图不唯一,共有八种情况,如图2.27.28. (1)如图.(2)如图.第11页(共11页)。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(包含答案解析)
一、选择题1.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等6.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.8.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.9.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.10.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)18.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).19.一个几何体的三视图如图所示,则该几何体的体积为________.20.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)三、解答题21.画出下面立体图形的三视图.【答案】详见解析【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,分别画出即可.【详解】解:如图所示:【点睛】本题考查了简单组合体的三视图,几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形,考查了学生的空间想象能力.22.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题的关键.23.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.24.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,请回答以下问题:(1)该几何体至少是用________个小立方块搭成的,最多是用________个小立方块搭成的;(2)请你画出使用小立方块最少时从左面看到的该几何体的形状图,要求画出所有符合要求的形状图.【答案】(1)6,8;(2)见解析【分析】(1)根据主视图可得,俯视图中第一列中至少一处有2层,俯视图中第一列中最多3处有2层,由此即可判断.(2)根据形状图的定义分三种情形画出图形即可.【详解】解:(1)根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的,根据主视图可得,俯视图中第一列中最多3处有2层;所以该几何体最多是用8个小立方块搭成的,故答案为6,8.(2)所有符合要求的形状图如图所示:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a﹣2b、高为b,则这个纸盒的容积为b(a﹣2b)2,故答案为:b(a﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.5.D解析:D【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,BC=()2222642AB AC -=-=2,∴底面圆的周长为:2πr=4πcm .故答案为:4πcm .【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键. 14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr 2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这 解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.18.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形解析:可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.19.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.20.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案 解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形; 故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.三、解答题21.无22.无23.无24.无25.无26.无。
(典型题)北师大版九年级上册数学第五章 投影与视图含答案
北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、下面几何体中,俯视图为三角形的是()A. B. C. D.2、下图中几何体的正视图是()A. B. C. D.3、如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A. B. C. D.4、如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的左视图是()A. B. C. D.5、如下图所示几何体的俯视图是()A. B. C. D.6、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同7、桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A. B. C. D.8、一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. B. C. D.9、一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的()A.①②B.③②C.①④D.③④10、如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A. B. C. D.11、如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A. B. C. D.12、有4个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.13、将长方体截去一部分后的几何体如图所示,它的俯视图是()A. B. C. D.14、如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化15、如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.17、小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是________米.18、某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m的同学的影长为1.35 m,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图所示,他们测得地面部分的影长为3.6 m,建筑物上的影长为1.8 m,则树的高度为________.19、如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是________ .20、电影院的座位排列时,后一排总比前一排高,并且每一横排呈圆弧形,这是为了________ .21、如图,是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出其主视图:________22、如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是________ .(填写序号)23、皮影戏中的皮影是由投影得到的________24、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.25、一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CB=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.28、如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.29、如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)30、如图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.参考答案一、单选题(共15题,共计45分)1、D2、A3、A4、A5、D6、B7、D8、A9、B10、C11、A12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)
第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。
最新新北师大版九年级上学期《视图与投影》练习题
新北师大版九年级上册投影与视图单元测试(二)一、填空题(30分)1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m,小刚比小明矮5cm,此刻小明的影长是________m。
4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m,小明向墙壁走1m到B处发现影子刚好落在A点,则灯泡与地面的距离CD=_______。
5、下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________。
6、(06南平)如图是某个几何体的展开图,这个几何体是.7、如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是8、(05南京)如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m, 则树的高度为9、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时。
10、直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是二、选择题:(30分)11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下() A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长13下图中几何体的主视图是().俯视图左视图主视图224113A B C D第16题俯视图主(正)视图左视图(A) (B) (C) (D)14、对左下方的几何体变换位置或视角,则可以得到的几何体是 ( )第Ⅱ卷(非选择题,共98分)15、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B ) 6桶 (C )9桶 (D )12桶16、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )17.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数( )A 5个B 6个 C 7个 D 8个19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐 20、(06常州)图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A P 区域 B Q 区域 C M 区域 D N 区域 三、解答题(60分)21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么? AB C D N P Q M第13题图2图121422、(12分)画出下列几何体的三视图:23、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。
北师大版九年级数学 上册 第5章 投影与视图 单元测试题解析版
北师大版九年级数学上册第5章投影与视图单元测试题一.选择题(共10小题)1.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED2.如右图所示的几何体,它的左视图是()A.B.C.D.3.在一个明朗的上午,皮皮拿着一块正方形木板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是()A.B.C.D.4.一天下午小红先参加了校运动会女子200m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()A.乙照片是参加200m的B.甲照片是参加200m的C.乙照片是参加400m的D.无法判断甲、乙两张照片5.在下列几何体中,从正面看到为三角形的是()A.B.C.D.6.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,()A.小刚的影子比小红的长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.不能够确定谁的影子长7.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()A.B.C.D.8.如图,是四个视力表中不同的“E”,它们距同一测试点O的距离各不相同,则在O点测得视力相同的“E”是()A.①和②B.①和③C.②和③D.①,②和④9.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5B.6C.7D.810.画如图所示物体的主视图,正确的是()A.B.C.D.二.填空题(共8小题)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为秒.13.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有个.14.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.6m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为m2(结果保留π).15.如图是从一个包装盒的三个方向看到的形状图,则这个包装盒的体积是.16.如图所示,这些图形的正投影图形分别是.17.如图1,一长方体容器,长、宽均为2,高为6,里面盛有水,水面高为4,若沿底面一横进行旋转倾斜,傾斜后的长方体容器的主视图如图2所示,倾斜容器使水恰好流出,则CD=.18.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为.三.解答题(共7小题)21.请你在下面画一个正四棱锥的三视图.20.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是从面看得到的平面图形,图②是从面看得到的平面图形,图③是从面看得到的平面图形.(2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.21.如图,画出下面几何体的主视图、左视图与俯视图.22.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.24.小明开着汽车在平坦的公路上行驶,前方出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这个点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为40°,请问他向前行驶了多少米?(精确到0.1)25.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是.(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图形的宽为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少?它的体积为多少?参考答案与试题解析一.选择题(共10小题)1.解:由图片可知,E视点的盲区应该在△ABD的区域内.故选:C.2.解:图中所示几何体的左视图如图:故选:A.3.解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故选:A.4.解:下午,影子在身体的东边,时间越早影子越短,故乙是参加200m的图片,故选:A.5.解:A、圆柱的主视图是长方形,故本选项不合题意;B、三棱柱的主视图是长方形,故本选项不合题意;C、正方体的主视图是正方形,故本选项不合题意;D、圆锥的主视图是三角形,故本选项符合题意;故选:D.6.解:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选:D.7.解:由图:两根木棒在同一平面内的影子长短几乎相等,分析可得:这是中心投影;且光源在中间一根附近,那么第三根木棒的影子应与其他的两根反向.故选:D.8.解:易得①②在一条直线上,故选:A.9.解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边上层最多有2个,右边下层最多有2个.所以图中的小正方体最多8块,最少有6块.10.解:从正面看得到的图形是A.故选:A.二.填空题(共8小题)11.解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.解:如图,∵BC∥DE,∴△ABC∽△ADE,∴BC:DE=5:25,∵BC=24米,∴DE=120米,∵小强骑车速度10米/秒,∴120÷10=12(秒),故答案为12.13.解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个;所以小立方块的个数可以是6+2=8个,6+2+1=9个,6+2+2=10个.所以最多的有10个,故答案为:10.14.解:构造几何模型如图:依题意知DF=FE=0.6米,FG=1米,AG=3米,由△DAE∽△BAC得=,即=,=(BC)2•π=()2•π=0.81π,则S圆故答案为:0.81π.15.解:综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为20÷2=10cm,高为20cm.因此它的体积应该是:π×10×10×20=2000πcm3.故答案为:2000πcm3.16.解:如图所示,这两个图形的正投影分别是圆和矩形,故答案为:圆和矩形.17.解:如图所示:设DE=x,则AD=6﹣x,根据题意得(6﹣x+6)×2×2=2×2×4,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD===2,故答案为:2.18.解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故答案为:4.三.解答题(共7小题)19.解:如图:20.解:(1)图①是从正面看得到的平面图形,图②是从上面看得到的平面图形,图③是从左面看得到的平面图形.(2)由图可得:,解得,5×3×2=30(cm3),图1中上面的小长方体的体积为30cm3.21.解:如图所示;22.解:设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.9m,墙上的影高CD为1.2m,∴,解得x=1.08(m),∴树的影长为:1.08+2.7=3.78(m),∴,解得h=4.2(m).答:测得的树高为4.2米.23.(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.24.解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∴AM=25,∵∠AEC=40°,∴tan40°==,∴AE≈29.8m,∴ME=AM﹣AE=43.3﹣29.8=13.5m.则他向前行驶了13.5米.25.解:(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:2×(×3×4)+4×6+3×6+5×6=84(cm2),它的体积为:×3×4×6=36(cm3).。
北师大版九年级投影与视图练习
北师大新版九年级上册?第6章投影与视图?2021年单元测试卷一、选择题〔每题3分,共36分〕1.在一个晴朗的上午,小丽拿着一块矩形木板在下做投影实验,矩形木板在地面上形成的投影不可能是( )A .B .C .D .2.以下命题正确的选项是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.从矩形窗子里照射到地面上得到的光区仍是矩形3.一天下午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两照片,那么以下说确的是( )A.乙照片是参加100m的B.甲照片是参加100m的C.乙照片是参加400m的D.无法判断甲、乙两照片4.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进展排列正确的选项是( )A.〔1〕〔2〕〔3〕〔4〕B.〔4〕〔3〕〔1〕〔2〕C.〔4〕〔3〕〔2〕〔1〕D.〔2〕〔3〕〔4〕〔1〕5.在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A .B .C .D .6.在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午 B.中午C.下午 D.无法确定7.以下说确的是( )A.物体在下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不管什么情况,小明的影子一定比小亮的影子长C.物体在照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在照射下,影子的长度和方向都是固定不变的8.如图,桌面上放着1个长方体和1个圆柱体,按如下图的方式摆放在一起,其左视图是( ) A . B .C . D .9.如图,用一个平面去截长方体,那么截面形状为( )A .B .C .D .10.一个几何体是由一些大小一样的小正方体摆放成的,其俯视图与主视图如下图,那么组成这个几何体的小正方体最多有( )A.4 B.5 C.6 D.711.棱长是1cm的小立方体组成如下图的几何体,那么这个几何体的外表积为( )A.36cm2B.33cm2C.30cm2D.27cm212.关于盲区的说确的有( )〔1〕我们把视线看不到的地方称为盲区〔2〕我们上山与下山时视野盲区是一样的〔3〕我们坐车向前行驶,有时会发现一些高大的建筑物会被比拟矮的建筑物挡住〔4〕人们常说“站得高,看得远〞,说明在高处视野盲区要小,视野围大.A.1个B.2个C.3个D.4个二、填空题〔每题3分,共12分〕13.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是____________,外表积是_______________.14.身高一样的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影__________.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在__________光线下形成的〔填“灯光〞或“太阳〞〕.16.墙壁D处有一盏灯〔如图〕,小明站在A处测得他的影长与身高相等,都为1.6 m,小明向墙壁走了1 m到达B处,发现影子刚好落在A点,那么灯泡与地面的距离CD=.三、解答题〔共52分〕17.一个物体的正视图、俯视图如下图,请你画出该物体的左视图并说出该物体形状的名称.18.〔1〕如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;第26题图视图视图〔2〕根据两种视图中尺寸〔单位:cm〕,计算这个组合几何体的外表积.〔π取3.14〕19.如图〔1〕、〔2〕分别是两棵树及其在太或路灯下影子的情形〔1〕哪个图反映了下的情形,哪个图反映了路灯下的情形?〔2〕你是用什么方法判断的?〔3〕请画出图中表示小丽影长的线段.20.如下图为一机器零件的三视图.〔1〕请写出符合这个机器零件形状的几何体的名称.〔2〕假设俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的外表积〔单位:cm2〕. 21.,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在下的投影BC=3m.〔1〕请你在图中画出此时DE在下的投影;〔2〕在测量AB的投影时,同时测量出DE在下的投影长为6m,请你计算DE的长.22.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.23.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一局部在地面上,另一局部在某座建筑物的墙上,测得其长度分别为9.6米和2米〔如图〕,在同一时刻测得1米长的标杆影长为1.2米,求出学校旗杆的高度.24.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度〔准确到0.1米〕.北师大新版九年级上册?第6章投影与视图?2021 年单元测试卷一、选择题〔每题3分,共36分〕1.在一个晴朗的上午,小丽拿着一块矩形木板在下做投影实验,矩形木板在地面上形成的投影不可能是( )A .B .C .D .【考点】平行投影.【分析】可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,所以矩形木板在地面上形成的投影不可能是梯形.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.应选A.【点评】此题考察投影与视图的有关知识,灵活运用平行投影的性质是解题关键.2.以下命题正确的选项是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.从矩形窗子里照射到地面上得到的光区仍是矩形【考点】命题与定理.【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;应选C.【点评】此题考察了三视图,投影,视点的概念.3.一天下午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两照片,那么以下说确的是( )A.乙照片是参加100m的B.甲照片是参加100m的C.乙照片是参加400m的D.无法判断甲、乙两照片【考点】平行投影.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太下的影子的大小在变,方向也在改变,依此进展分析.【解答】解:根据平行投影的规律:从早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长;那么乙照片是参加100m的,甲照片是参加400m的.应选A.【点评】此题考察平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太下的影子的大小在变,方向也在改变,就北半球而言,从早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.4.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进展排列正确的选项是( )A.〔1〕〔2〕〔3〕〔4〕B.〔4〕〔3〕〔1〕〔2〕C.〔4〕〔3〕〔2〕〔1〕D.〔2〕〔3〕〔4〕〔1〕【考点】平行投影.【分析】根据平行投影的规律:早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长可得.【解答】解:根据平行投影的规律知:顺序为〔4〕〔3〕〔1〕〔2〕.应选B.【点评】此题考察平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太下的影子的大小在变,方向也在改变,就北半球而言,从早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.5.在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A .B .C .D .【考点】由三视图判断几何体.【分析】首先根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,再从实线和虚线想象几何体看得见局部和看不见局部的轮廓线,即可得到结果.【解答】解:由主视图和左视图可知该几何体的正面与左侧面都是矩形,所以A错误;再由主视图中矩形的部有两条虚线,可知B错误;根据俯视图,可知该几何体的上面不是梯形,而是一个任意的四边形,所以D错误.应选C.【点评】此题考察了由三视图想象几何体,一般地,由三视图判断几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午 B.中午C.下午 D.无法确定【考点】平行投影.【分析】根据不同时刻物体在太下的影子的大小在变,方向也在改变,就北半球而言,从早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.【解答】解:小颖在向正北方向走路时,发现自己的身影向左偏,即影子在西方;故小颖当时所处的时间是上午.应选A.【点评】此题考察平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太下的影子的大小在变,方向也在改变,就北半球而言,从早晨到黄昏物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.以下说确的是( )A.物体在下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不管什么情况,小明的影子一定比小亮的影子长C.物体在照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在照射下,影子的长度和方向都是固定不变的【考点】平行投影.【分析】根据平行投影的规律作答.【解答】解:A、物体在下的投影不只与物体的高度有关,还与时刻有关,错误;B、小明的个子比小亮高,在不同的时间,小明的影子可能比小亮的影子短,错误;C、不同时刻物体在太下的影子的大小在变,方向也在改变,正确;D、不同时刻物体在太下的影子的大小在变,方向也在改变,错误.应选C.【点评】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太下的影子的大小也在变化.8.如图,桌面上放着1个长方体和1个圆柱体,按如下图的方式摆放在一起,其左视图是( )A .B .C .D .【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从左面看所得到的图形即可.【解答】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.应选C.【点评】此题考察了三视图的知识,左视图是从物体的左面看得到的视图.9.如图,用一个平面去截长方体,那么截面形状为( )A .B .C .D .【考点】截一个几何体.【专题】几何图形问题;操作型.【分析】根据长方体的形状及截面与底面平行判断即可.【解答】解:横截长方体,截面平行于两底,那么截面应该是个长方形.应选B.【点评】此题考察了长方体的截面.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.10.一个几何体是由一些大小一样的小正方体摆放成的,其俯视图与主视图如下图,那么组成这个几何体的小正方体最多有( )A.4 B.5 C.6 D.7【考点】由三视图判断几何体.【专题】压轴题.【分析】根据三视图的知识,主视图是由4个小正方形组成,而俯视图是由3个小正方形组成,故这个几何体的底层最多有3个小正方体,第2层最多有3个小正方体.【解答】解:综合俯视图和主视图,这个几何体的底层最多有2+1=3个小正方体,第二层最多有2+1=3个小正方体,因此组成这个几何体的小正方体最多有3+3=6个,应选C.【点评】此题意在考察学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力方面的考察.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章〞就容易得到答案.11.棱长是1cm的小立方体组成如下图的几何体,那么这个几何体的外表积为( )A.36cm2B.33cm2C.30cm2D.27cm2【考点】几何体的外表积.【专题】应用题;压轴题.【分析】几何体的外表积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.那么这个几何体中正方形的个数是:2×〔6+6+6〕=36个.那么几何体的外表积为36cm2.应选:A.【点评】此题考察的是几何体的外表积,这个几何体的外表积为露在外边的面积和底面之和.12.关于盲区的说确的有( )〔1〕我们把视线看不到的地方称为盲区〔2〕我们上山与下山时视野盲区是一样的〔3〕我们坐车向前行驶,有时会发现一些高大的建筑物会被比拟矮的建筑物挡住〔4〕人们常说“站得高,看得远〞,说明在高处视野盲区要小,视野围大.A.1个B.2个C.3个D.4个【考点】视点、视角和盲区.【分析】根据视点,视角和盲区的定义进展选择.【解答】解:根据视点,视角和盲区的定义,我们可以判断出〔1〕〔3〕〔4〕是正确的,而〔2〕中,要注意的是仰视时越向前视野越小盲区越大,俯视时视线越向前视野越大,盲区越小.应选C.【点评】此题主要考察对视点,视角和盲区的定义的理解.二、填空题〔每题3分,共12分〕13.我们把大型会场、体育看台、电影院建为阶梯形状,是为了减小盲区.【考点】视点、视角和盲区.【分析】根据盲区定义,盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.【解答】解:把大型会场、体育看台、电影院建为阶梯形状,是为了使后面的观众有更大的视野,从而减小盲区.【点评】此题是结合实际问题来考察学生对视点,视角和盲区的理解能力.14.身高一样的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影长.【考点】中心投影.【分析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.【解答】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.【点评】此题综合考察了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短15.如图是两棵小树在同一时刻的影子,请问它们的影子是在灯光光线下形成的〔填“灯光〞或“太阳〞〕.【考点】中心投影.【分析】可由树的顶点和影子的顶点的连线会相交还是平行,从而确定是中心投影还是平行投影,再由“太阳〞和“灯光〞的特点确定.【解答】解:树的顶点和影子的顶点的连线会相交于一点,所以是中心投影,即它们的影子是在灯光光线下形成的.故填:灯光.【点评】此题综合考察了平行投影和中心投影的特点和规律.可运用投影的知识或直接联系生活实际解答.16.如图,是一个几何体的三视图,那么这个几何体是空心的圆柱.【考点】由三视图判断几何体.【分析】两个视图是矩形,一个视图是个圆环,那么符合这样条件的几何体是空心圆柱.【解答】解:如图,该几何体的三视图中两个视图是矩形,一个视图是个圆环,故该几何体为空心圆柱.【点评】此题考察由三视图确定几何体的形状,主要考察学生空间想象能力及对立体图形的认知能力.三、解答题〔共52分〕17.一个物体的正视图、俯视图如下图,请你画出该物体的左视图并说出该物体形状的名称.【考点】作图-三视图.【专题】作图题.【分析】由该物体的正视图、俯视图可得,此物体为圆柱,那么左视图为长方形.【解答】解:左视图如图:该物体形状是:圆柱.【点评】此题学生应该对圆柱的三视图熟练掌握.18.画出下面实物的三视图:【考点】作图-三视图.【专题】作图题.【分析】认真观察实物,可得主视图是长方形上面一小正方形,左视图为正方形上面一小正方形,俯视图为长方形中间一个圆.【解答】解:【点评】此题考察实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都表达出来.19.如下图,屋顶上有一只小猫,院子里有一只小老鼠,假设小猫看见了小老鼠,那么小老鼠就会有危险,试画出小老鼠在墙的左端的平安区.【考点】视点、视角和盲区.【专题】作图题.【分析】此题可根据盲区的定义,作出盲区,只要老鼠在猫的盲区,老鼠就是平安的.【解答】解:如图,红色的局部就是平安区域.【点评】此题主要考察了视点,视角和盲区在实际中的应用.20.如图〔1〕、〔2〕分别是两棵树及其在太或路灯下影子的情形〔1〕哪个图反映了下的情形,哪个图反映了路灯下的情形?〔2〕你是用什么方法判断的?〔3〕请画出图中表示小丽影长的线段.【考点】平行投影;中心投影.【专题】常规题型.【分析】〔1〕和〔2〕:物体在太的照射下形成的影子是平行投影,物体在灯光的照射下形成的影子是中心投影.然后根据平行投影和中心投影的特点及区别,即可判断和说明;〔3〕图1作平行线得到小丽的影长,图2先找到灯泡的位置再画小丽的影长.【解答】解:〔1〕第一幅图是太形成的,第二幅图是路灯灯光形成的;〔2〕太是平行光线,物高与影长成正比;〔3〕所画图形如下所示:【点评】此题考察平行投影和中心投影的知识,解答关键是熟练掌握这两个根底概念.21.某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图〔短木棒的影子是玻璃反光形成的〕,请确定图中路灯灯泡所在的位置.【考点】中心投影.【分析】利用中心投影的图形的性质连接对应点得出灯泡位置即可.【解答】解:如图,点O就是灯泡所在的位置.【点评】此题考察中心投影,掌握中心投影的性质是解决问题的关键.22.,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在下的投影BC=3m.〔1〕请你在图中画出此时DE在下的投影;〔2〕在测量AB的投影时,同时测量出DE在下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】〔1〕根据投影的定义,作出投影即可;〔2〕根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10〔m〕.【解答】解:〔1〕连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.〔2〕∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10〔m〕.说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】此题考察了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.23.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AC交BF延长线于D点,那么BD即为AB的影长,然后根据物长和影长的比值计算即可.【解答】解:延长AC交BF延长线于D点,那么∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2〔米〕,EF=4cos30°=2〔米〕,在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2〔米〕,CE:DE=1:2,∴DE=4〔米〕,∴BD=BF+EF+ED=12+2〔米〕在Rt△ABD中,AB=BD=〔12+2〕=〔6+〕〔米〕.答:树的高度为:〔6+〕〔米〕.【点评】此题考察了解直角三角形的应用以及相似三角形的性质.解决此题的关键是作出辅助线得到AB的影长.24.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一局部在地面上,另一局部在某座建筑物的墙上,测得其长度分别为9.6米和2米〔如图〕,在同一时刻测得1米长的标杆影长为1.2米,求出学校旗杆的高度.【考点】相似三角形的应用.【专题】应用题.【分析】此题是实际应用问题,解题的关键是将实际问题转化为数学问题解答;根据在同一时刻物高与影长成正比例.利用相似三角形的对应边成比例解答即可;【解答】解:如图:过点B作AB∥DE,∴AB=DE=9.6米,AD=BE=2米,CD为旗杆高,∵在同一时刻物高与影长成正比例,∴CA:AB=1:1.2,∴AC=8米,∴CD=AB+AD=8+2=10米,∴学校旗杆的高度为10米.【点评】此题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,表达了转化的思想.25.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度〔准确到0.1米〕.【考点】相似三角形的应用.【专题】应用题.【分析】根据AB⊥BH,CD⊥BH,FG⊥BH,可得:△ABE∽△CDE,那么有=和=,而=,即=,从而求出BD的长,再代入前面任意一个等式中,即可求出AB.【解答】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB=5.95m≈6.0m.答:路灯杆AB的高度约为6.0m.〔注:不取近似数的,与答一起合计扣1分〕【点评】解这道题的关键是将实际问题转化为数学问题,此题只要把实际问题抽象到相似三角形中,利用相似比列出方程即可求出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级上册
投影与视图单元测试(二)
一、填空题(30分)
1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是
2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子
(填“长”或“短”)
3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m,小刚比小明矮5cm,
此刻小明的影长是________m。
4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身
长相等都为1.6m,小明向墙壁走1m到B处发现影子刚好落在
A点,则灯泡与地面的距离CD=_______。
5、下图的几何体由若干个棱长为数1的正方体堆放而成,则这个
几何体的体积为__________。
6、(06南平)如图是某个几何体的展开图,这个几何体是.
7、如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是
8、(05南京)如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA
由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得
BC=3.2m ,CA=0.8m, 则树的高度为
9、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,
发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时。
10、直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)
处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,
盲区(视力达不到的地方)范围是
二、选择题:(30分)
11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )
A. B. C. D.
12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下() A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长
13下图中几何体的主视图是().
俯视图
左视图
主视图
2
2
41
1
3
A B C D
第16题俯视图
主(正)视图
左视图
(A) (B) (C) (D)
14、对左下方的几何体变换位置或视角,则可以得到的几何体是 ( )
第Ⅱ卷(非选择题,共98分)
15、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )
(A )5桶 (B ) 6桶 (C )9桶 (D )12桶
16、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )
17.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )
18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数( )A 5个B 6个 C 7个 D 8个
19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )
A .O
B . 6
C .快
D .乐 20、(06常州)图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A P 区域 B Q 区域 C M 区域 D N 区域 三、解答题(60分)
21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,
该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么?
A
B C D N P Q M
第13题
图2
图1
214
22、(12分)画出下列几何体的三视图:
23、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。
24、(9分)如图,在一间黑屋里用一白炽灯照射一个球,
(1)球在地面上的阴影是什么形状?
(2)当把白炽灯向上移时,阴影的大小会怎样变化?
(3)若白炽灯到球心距离为1米,到地面的距离是 3米,球的半径是0.2
米,求球在地面上阴影的面积是多少?
25、(7分)(06厦门)如图, 水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度
可忽略不计)
小明为了探究这个问题,将此情景画在了草稿纸上(如右图,正视图):
运动过程:木棒顶端从A 点开始沿圆锥的母线下滑,速度为v 1(木棒下滑为匀速)已知木棒与水平地面的夹角为θ,θ随木棒的下滑而不断减小.θ的最大值为30°,若木棒长为23a 问:当木棒顶端重A 滑到B 这个过程中,木棒末端的速度'v 2是多少? 26、(10分)(06安徽)如图是某工件的三视图,求此工件的全面积和体积.
友情提醒:圆锥的正视图是
一个正三角形
A v
B C D
E θ
27、(10分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.
(1)问超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据:32sin °≈10053,32cos °≈125106,
32tan °
32° A
D 太阳光 新
楼
居民楼
C B
参考答案
1、成比例
2、短
3、35
72
4、1564
5、6
6、三棱柱
7、4
8、8 m
9、6 10、0~ 11、D 12、D 13、C 14、B 15、B 16、C 17、C 18、D
19、B
20、B
21、先不会,傍晚会 22、(1)
(2)
23、参考分类(1)按三视图相同与否分类:①⑥ / ②③④⑤ (2)按形状类型划分:锥体、球体、柱体 (3)按组成图形的面的曲或平划分: 24、(1)圆形(2)阴影会逐渐变小(3)S 阴影=π 25、v ‘=(3-1)v
26、S 全=100(1+10) V=1000π 27、(1)11>6,采光受到影响 (2)32。