折叠问题解题技巧,初中数学折叠问题解题思路讲解与典型例题及答案解析
折叠问题解题技巧
折叠问题解题技巧
折叠问题解答技巧是一种将难以解决的问题分解为小步骤从而得出有效结果的策略。
折叠法可以帮助你更快更好地解决问题,节省花费的时间。
一般来说,折叠问题解题技巧分为以下五个步骤:
1. 了解问题:确保明确理解问题,不要将自己的想法强加于问题。
2. 画出折叠图:通过画出折叠图能够对问题有更加清晰的认知和把握。
3. 填充折叠图:根据问题具体内容填充折叠图,以帮助梳理问题,让解题思路更加清晰。
4. 找出规律:从填充后的折叠图中通过观测找出问题解题的规律。
5. 对比总结:通过对比不同的折叠图找出优化方案等有助于解题的思路。
总之,折叠问题解题技巧是一种将复杂的问题分解成更小的问题,利用图形来理解、解决问题的有效方法。
此种方法有助于梳理思路并把握重点,从而更快、更好地解决复杂问题。
中考数学复习:专题7-2 中考折叠问题的归类解析
专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
完整版初中数学专题折叠问题
专题八折叠问题学习要点与方法点拨:出题位置:选择、填空压轴题或压轴题倒数第二题折叠问题中,常出现的知识时轴对称。
折叠对象有三角形、矩形、正方形、梯形等;-----判断线段之间关系等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、轴对称性质折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。
基本图形:中,将△ABF沿FBE,可得何结论?BE折叠至△在矩形ABCD2)垂直。
结论:(1)全等;()基本图形练习:(1A上,折痕为AD,展开纸片;再次折叠,使得沿过点如图,将三角形纸片ABCA的直线折叠,使得AC落在AB 是等腰三角形,对吗?则△和D点重合,折痕为EF,展开纸片后得到△AEF,AEF)折叠中角的考法与做法:(2的直线);再沿过点E1FAABCD 将矩形纸片沿过点B的直线折叠,使得落在BC边上的点处,折痕为BE(图的大小。
再展开纸片,求图(,3)中角a)(图',折痕为边上的点落在折叠,使点DBEDEG21专题精讲〗讲8第〖九年级.)折叠中边的考法与做法:(3D落在AB边中点E处,如图,将边长为 6cm的正方形ABCD折叠,使点 EBG的周长是多少?交于点G,则△落在折痕为FH,点CQ处,EQ与BC★解题步骤:第一步:将已知条件标在图上第二步:设未知数,将未知数标在图上;第三步:列方程,多数情况可通过勾股定理解决。
模块精讲1.例点处.落在的一条边AD=8,将矩形ABCD折叠,使得顶点BCD边上的P 扬州)已知矩形(2014?ABCDO,连结.、OAAP、OP1()如图1,已知折痕与边BC交于点PDA;△①求证:OCP∽△的长;:4,求边ABOCP②若△与△PDA的面积比为1 边的中点,求∠OAB的度数;中的点(2)若图1P恰好是CD不重P、AMMOP,(3)如图2,擦去折痕AO、线段,连结BP.动点在线段AP上(点与点在移动MN交PBM、N.试问当点⊥,作于点FMEBP于点E,连结的延长线上,且在线段合),动点NABBN=PM EF过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段的长度.2专题精讲〗讲8第〖九年级.2.例在矩F沿AE折叠后得到△AFE,且点2013?(苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADEk的代数式表示)..若=,则=用含于点形ABCD内部.将AF延长交边BCG三CA、B、BC=12cm,点E、F、G分别从,(例3、2013?苏州)如图,点O为矩形ABCD的对称中心,AB=10cm的运动G的运动速度为3cm/s,点E点同时出发,沿矩形的边按逆时针方向匀速运动,点的运动速度为1cm/s,点F关于直线重合)时,三个点随之停止运动.在运动过程中,△EBF(即点F到达点CF与点C速度为1.5cm/s,当点s).、FG运动的时间为t(单位:EF的对称图形是△EB′F.设点E、为正方形;s时,四边形EBFB′(1)当t=为顶点的三角形相似,求t的值;FF为顶点的三角形与以点,C,GB2()若以点E、、的值;若不存在,请说明理由.OB′与点重合?若存在,求出tt(3)是否存在实数,使得点3专题精讲〗讲8第〖九年级.CD分别与AB,上的点如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CDE 重合,折痕FG例4、 O.交于点交于点G,F,AE与FG F四点围成的四边形是菱形;(1)如图1,求证:A,G,E,的中点;,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC(2)如图2 (3)如图2,在(2)的条件下,求折痕FG的长.F对称,点E与点EE⊥AD,点,点F分别在射线AD,射线BC上.若点与点B关于ACABAD 例5、已知∥BC,G关于BD对称,AC与BD相交于点,则()22BC=5CF . B .A1+tan∠ADB=6 AGB= D.4cos∠∠.∠CAEB+22°=DEF4专题精讲〗讲8第〖九年级.课堂练习、1,展开后再折叠一次,2CD重合,折痕为EF.如图对折,使2、(2014连云港)如图1,将正方形纸片ABCDAB与.ANE=_________EM交AB于N,则tan∠B使点C 与点E重合,折痕为GH,点的对应点为点M,4 图图3处,折痕B,折叠该纸片,使点A落在点,∠3、(2014?徐州)如图3,在等腰三角形纸片ABC 中,AB=ACA=50°._________°为DE,则∠CBE=、处,若A沿△ABCDE折叠,使点A落在边BC上的点F,4、(2014?扬州)如图4△ABC的中位线DE=5cm,把2 ABC,则△的面积为_________cm.F两点间的距离是8cm上的一动点,,BC=m,P为线段BC,,在梯形5、(2013?扬州)如图1ABCD中,AB∥CD,∠B=90°AB=2,CD=1 ,CE=y.CD,过P作PE⊥PA交所在直线于E.设BP=xPAB且和、C不重合,连接x的函数关系式;(1)求y与EBC上运动时,点总在线段CD上,求m的取值范围;P(2)若点在线段长.BPPEG沿m=4)如图2,若,将△PECPE翻折至△位置,∠BAG=90°,求3(5专题精讲〗讲8第〖九年级.课后巩固习题重合,展开后折痕D△ABC折叠,使点A与点平分∠1、(2014?淮安)如图,在三角形纸片ABC 中,ADBAC,将是菱形.、DF.求证:四边形AEDF、分别交AB、AC于点EF,连接DEBC出发沿从点B,且AB=10,BC=6,CD=2.点E中,2、(2013?宿迁)如图,在梯形ABCDAB ∥DC,∠B=90°AD分别交△GEF,直线FG、EGEF交边方向运动,过点E作EF∥ADAB于点F.将△BEF沿所在的直线折叠得到ABCD的重叠部分的面积为y.GEF过点,当EGD时,点E即停止运动.设BE=x,△与梯形、于点MN 是等腰三角形;△AMF1()证明x的值;)当2EG过点D时(如图(3)),求(的函数,并求y表示成xy的最大值.)将(36专题精讲〗讲8第〖九年级.C'DG,E,F,分别是落在C'处,BC交AD于点C,AB=6,BC=8,3、如图,在矩形ABCD中把△BCD沿着对角线BD折叠,使点. 重合,点D'恰好与点AD'于点H,把△FDE沿着EF折叠,使点D落在处EFBD和上的点,线段交ADC'DG ≌△)求证:三角形ABG(1 ∠ABG的值;(2)求tan )求EF的长。
折叠问题的解题方法
折叠问题的解题方法折叠问题是一种常见的数学问题,通常涉及到将一个二维图形折叠成一个三维形状。
解决这类问题需要一定的空间想象力和几何知识。
解决折叠问题的基本步骤如下:1. 理解问题:首先,你需要理解问题的具体要求,明确你要折叠的对象是什么,以及折叠的方式。
2. 分析图形:仔细观察你要折叠的二维图形,找出它的对称轴、对称中心、角度和边的长度等关键信息。
3. 预测结果:根据二维图形的信息,尝试预测折叠后的三维形状会是什么样。
这需要你具备一定的空间想象力。
4. 建立数学模型:如果预测结果涉及到具体的数值,你可能需要建立一个数学模型来描述这个过程。
这可能涉及到几何、代数等知识。
5. 求解问题:根据建立的数学模型,求解出问题的答案。
这可能涉及到计算、推理等步骤。
6. 验证答案:最后,你需要验证你的答案是否正确。
这可以通过重新检查你的计算过程或与标准答案进行对比来完成。
下面是一个具体的例子:题目:一个正方形的纸片,对折两次后展开,得到的图形是( )。
A.三角形B.菱形C.矩形D.平行四边形解题步骤:1. 理解问题:我们需要确定对折两次后展开得到的图形是什么。
2. 分析图形:正方形有四条等长的边和四个直角。
对折一次后,我们会得到一个矩形;再对折一次,我们会得到一个更小的矩形。
3. 预测结果:当纸片展开时,折痕会形成一条线,将纸片分成两个相同的部分。
因此,展开后的图形会有四条相等的边和四个直角。
4. 建立数学模型:由于对折两次后展开的图形有四条相等的边和四个直角,它是一个菱形。
5. 求解问题:答案是 B.菱形。
6. 验证答案:我们可以再次检查我们的推理过程,确保答案正确。
中考数学折叠问题
A B CE F A’ D (B ) A E D C F C ' B 中考折叠问题1、折叠问题是中考的一个考察重点,经常作为填空题的拉分题出现,有时候也出现在压轴题。
2、折叠对象有三角形、矩形、正方形、梯形等;3、考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;4、解题时,灵活运用轴对称性质和背景图形性质。
5、轴对称性质——①折线是对称轴,折线两边图形全等②对应点连线垂直对称轴③对应边平行或交点在对称轴上。
6、技巧:边读题,边将隐藏条件全部挖掘出来(如线段长、角度大小、或者写出两个量之间的等量关系)。
一般折叠问题都是求值问题,解题思想就是设未知数(可直接设、可间接设),然后利用勾股定理、相似或者条件给出的等量关系列出方程求解即可。
AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE= .例2.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若BF =4,FC =2,则∠DEF的度数是_ .例3.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点处,折痕为EF ,若,那么∠ABE 的度数为 ____________C '︒='∠125C EFABCDE例4. 如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.43B.35C.34D.45例5.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为( )A.15°B.30°C. 45°D.60°例6、如图,M为矩形纸片ABCD的边AD的中点,将纸片沿BM、CM折叠,使点A落在A1处,点D落在D1处.若∠A1MD1=40°,则∠BMC的度数为.二、折叠问题求线段长度例1、如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC 沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A、B、2 C、3 D、4例2.如图所示,已知在三角形纸片ABC中,BC=3,6AB ,∠BCA=90°在AC 上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )A.6B.3C. 23D. 3例3、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为.B CFE例4.如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3B.4C.5D.6例5、如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是()A、B、C、D、例6.将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF 的长等于cm.例7.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()(A)(B)(C )(D)6例8、如图,在△ABC中,∠C=90°,点D在AC上,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm.例9、如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.例10.将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如图所示).若∠C=90°,BC=8cm,则折痕DE的长度是cm.例11、如图,有一矩形纸片ABCD,AB=8,AD=6.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF 的长为()A、6B、4C、2D、1322323例12.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=cm.三、折叠问题求面积,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.四、折叠问题判断图形例1.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。
自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)
自学资料一、图形的翻折、轴对称【知识探索】1.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点.【说明】(1)两个图形关于一条直线成轴对称,这两个图形对应线段的长度和对应角的大小相等,它们的形状相同,大小不变;(2)在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.2.把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.【错题精练】第1页共26页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训例1.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则下列判断:①当AP=BP 时,AB′∥CP ;②当AP=BP 时,∠B′PC=2∠B′AC③当CP ⊥AB 时,AP=175;④B′A 长度的最小值是1.其中正确的判断是______ (填入正确结论的序号)【解答】解:①∵在△ABC 中,∠ACB=90°,AP=BP ,∴AP=BP=CP ,∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P ,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P ,∴∠AB′P=∠B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP ;故①正确;②∵AP=BP ,∴PA=PB′=PC=PB ,∴点A ,B′,C ,B 在以P 为圆心,PA 长为半径的圆上,∵由折叠的性质可得:BC=B′C , ∴BC ̂=B′C ̂,∴∠B′PC=2∠B′AC ;故②正确;③当CP ⊥AB 时,∠APC=∠ACB ,∵∠PAC=∠CAB ,∴△ACP ∽△ABC ,∴APAC =ACAB ,∵在Rt △ABC 中,由勾股定理可知:AC=√AB 2−BC 2=√52−32=4,∴AP=AC 2AB =165;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∵AB'≥AC-CB'∴AB′的长度有最小值.AB′有最小值=AC-B′C=4-3=1.故④正确.故答案为:①②④.【答案】①②④例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=45°;(4)BP=BH.其中正确的命题是______.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故(1)正确;(2))△PHD的周长不变为定值8.第3页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,在△ABP 和△QBP 中,{∠APB =∠BPH∠A =∠BQP BP =BP∴△ABP ≌△QBP (AAS ).∴AP=QP ,AB=BQ .又∵AB=BC ,∴BC=BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.故(2)正确;(3)解:∵△ABP ≌△QBP (AAS )、△BCH ≌△BQH .∴∠QBH=∠HBC ,∠ABP=∠PBQ ,∴∠PBH=∠PBQ+∠QBH=12∠ABC=45°.故(3)正确;(4)解:∵∠PBH=45°固定不变,∴当点P 在AD 上移动时,∠BPH 的度数不断发生变化,∴∠BPH 的度数与∠BHP 不一定相等,故BP 与BH 不一定相等.故答案为:(1)(2)(3).【答案】(1)(2)(3)例3.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A′点,D 点的对称点为D′点,若∠FPG =90°,△A′EP 的面积为4,△D′PH 的面积为1,则矩形ABCD 的面积等于【答案】例4.如图,在菱形紙片ABCD中,AB=2.将纸片折叠,使点B落在AD边上的点B′处(不与A,D重合),点C落在C′处,线段B′C′与直线CD交于点G,折痕为EF,则下列说法①若∠A=90,B′为AD中点时,AE=34②若∠A=60°,B′为AD中点时,点E恰好是AB的中点③若∠A=60°,C′F⊥CD时,CFFD =√3−12其中正确的是()第5页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第6页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵∠A=90°,四边形ABCD 是菱形,∴四边形ABCD 是正方形,∴AB=AD ,∵B′为AD 中点时,∴AB'=1,设AE=x ,则B'E=BE=2-x ,在Rt △AB'E 中,由勾股定理得:12+x 2=(2-x )2,解得:x=34,①正确; ②连接BD 、BE',如图:∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴∠ABD=60°,∵B′为AD 中点,∴∠AB'B=90°,∠ABB'=30°∵BE=B'E ,∴∠BB'E=∠ABB'=30°,∴∠AB'E=60°,∴△AB'E 是等边三角形,∴AE=B'E=BE ,∴点E 是AB 的中点,②正确;③设CF=x ,由折叠的性质得:C'F=CF=x ,∠C'=∠C=∠A=60°,∵C′F ⊥CD ,∴∠C'GF=30°,∴C'G=2C'F=2x ,GF=√3C'F=√3x ,∴DG=CD-GF-CF=2-√3x-x ,∵∠D=180°-∠A=120°,∠DGB'=∠C'GF=30°,∴∠DB'G=30°,∴DB'=DG ,设BD 交B'C'于H ,则B'H=GH=12B'G=12(2-2x )=1-x ,∴DG=2(1−x )√3,∴2(1−x )√3=2-√3x-x , 解得:x=4-2√3,∴CF=4-2√3,FD=2-(4-2√3)=2√3-2,∴CF FD =√3−12,③正确; 故选:D .【答案】D例5.如图,以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,若AD=4,BD=8,则CB的长为__________【解答】第7页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】例6.如图,矩形ABCD中,BC=3,且BC>AB,E为AB边上任意一点(不与A,B重合),设BE=t,将△BCE沿CE对折,得到△FCE,延长EF交CD的延长线于点G,则tan∠CGE= (用含t的代数式表示).【解答】解:如图连接BF交EC于O,作EM⊥CD于M,∵∠EMC=∠EBC=∠BCM=90°,∴四边形EBCM是矩形,∴CM=EB=t,EM=BC=3,在RT△EBC中,∵EB=t,BC=3,∴EC=√t2+32=√t2+9,∵EB=EF,CB=CF,∴EC垂直平分BF,∵12•EC•BO=12•EB•BC,∴BO=3t√t2+9,BF=2BO=6t√t2+9∵∠AEF+∠BEF=180°,∠BEF+∠BCF=180°,∴∠AEF=∠BCF,∵AB∥CD,∴∠BEC=∠ECG=∠CEF,∠AEF=∠G=∠BCF ∴GE=GC,∴∠GCE=∠GEC=∠CFB=∠CBF,∴△CBF∽△GCE,∴GCBC =ECBF,第8页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴GC=t 2+92t,GM=GC-CM=9−t22t,∴tan∠CGE=EMGM =6t9−t2.故答案为6t9−t2.【答案】6t9−t2例7.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为______;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长______(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为______;(2)如图4,若∠ABC的大小为2α,则六边形AEFCHG的周长可表示为______.【解答】解:①如图1,当重合点在菱形的对称中心O处时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6;②如图2,当重合点在对角线BD上移动时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6.故六边形AEFCHG的周长不变.(1)如图3,若∠ABC=120°,由题意可知EF+GH=AC,则六边形AEFCHG的周长为2×2+2×sin60°×2=4+2√3;(2)如图4,若∠ABC的大小为2α,由题意可知EF+GH=AC,则六边形AEFCHG的周长可表示为2×2+2×sinα×2=4+4sinα.故答案为:①6;②不变.(1)4+2√3;(2)4+4sinα.第9页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】6不变4+2√34+4sinα例8.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【解答】(1)解:∵AB∥DF,∴ABCF =BECE,∵BE=2CE,AB=3,∴3CF =2CECE,∴CF=32;(2)解:①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3−x.又∵CF=1.5,∴AM=MF=92−x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92−x)2,∴x=54,∴DM=54,AM=134,第10页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴sin∠DAB1=DMAM =513;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴ADCE =DFFC,∴DF=FC=32,设DN=x,则AN=NF=x+32.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154sin∠DAB1=DNAN=35;(3)解:若点E在线段BC上,y=9x2x+2,定义域为x>0;若点E在边BC的延长线上,y=9x−92x,定义域为x>1.【答案】(1)32;(2)①513,②35;(3)略.【举一反三】1.如图,已知△ABC中,AB=8,BC=7,AC=6,E是AB的中点,F是AC边上一个,综上所述,EF的长为72或143.72或1432.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE=______,EF=______.【解答】解:如图过点E作EH⊥AD于H,EN⊥AB于N,过点A作AM⊥CD于M∵ABCD是菱形,∴AB∥CD,AD=AB=CD=AB=4∴∠ADM=∠BAD=∠HDE=60°∵E是CD中点∴DE=2在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°∴DH=1,HE=√3∵折叠∴AG=GE,AF=EF在Rt△HGE中,GE2=GH2+HE 2∴GE2=(4-GE+1)2+3∴GE=2.8在Rt△AMD中,AD=4,AM⊥DM,∠ADM=60°∴MD=2,AM=2√3∵AB∥CD,AM∥EN∴AMEN是平行四边形且AM⊥CD∴AMEN是矩形∴AN=ME=2+2=4,(即N与B重合)AM=EN=2√3在Rt△FBE中,EF2=EN2+FB 2EF2=(4-EF)2+12EF=3.5【答案】2.83.53.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√34.小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次折叠后, M 点正好在 ∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.【答案】√2:1 .5.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是()A. CG=1B. 矩形ABCD的面积为6+4√3C. ∠ACB=30°D. AF=2√3【解答】解:如图,设⊙O 与BC 的切点为M ,连接MO 并延长MO 交AD 于点N ,∵将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,∴OG=DG ,∵OG ⊥DG ,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC ,在△OMG 和△GCD 中,{∠OMG =∠DCG =90°∠MOG =∠DGC OG =DG,∴△OMG ≌△GCD ,∴OM=GC=1,CD=GM=BC-BM-GC=BC-2.故A 正确,∵AB=CD ,∴BC-AB=2.设AB=a ,BC=b ,AC=c ,⊙O 的半径为r ,⊙O 是Rt △ABC 的内切圆可得r=12(a+b-c ),∴c=a+b-2.在Rt △ABC 中,由勾股定理可得a 2+b 2=(a+b-2)2,整理得2ab-4a-4b+4=0,又∵BC-AB=2即b=2+a ,代入可得2a (2+a )-4a-4(2+a )+4=0,解得a 1=1+√3,a 2=1-√3(舍去),∴a=1+√3,b=3+√3,∴S 矩形ABCD =AB•BC=6+4√3,故B 正确,∴tan ∠ACB=AB BC =√33,∴∠ACB=30°,故C 正确,再设DF=x ,在Rt △ONF 中,FN=3+√3-1-x ,OF=x ,ON=1+√3-1=√3,由勾股定理可得(2+√3-x )2+(√3)2=x 2,解得x=4-√3,∴AF=AD-DF=2√3-1,故D 错误,故选:D .【答案】D6.如图,在⊙O 中,将AB̂沿弦AB 翻折交半径AO 的延长线于点D ,延长BD 交⊙O 于点C ,AC 切ADB ̂所在的圆于点A ,则tan ∠C 的值是( )A. √3B. 43C. 2+√3D. 1+√2【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,ADB̂所在圆的圆心在直线AH上,∵AC切ADB̂所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=√2a,∴tan∠ACB=tan∠CHB=BCBH =a+√2aa=1+√2,故选:D.【答案】D7.半径为2的圆弧形纸片按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是______.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在Rt△AOC中,∵OA=2,OC=1,∴cos∠AOC=OCOA =12,AC=√OA2−OC2=√3∴∠AOC=60°,AB=2AC=2√3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=120π×22360-12×2√3×1=4π3-√3,S阴影=S半圆-2S弓形ABM=1 2π×22-2(4π3-√3)=2√3−23π.故答案为:2√3−23π.【答案】2√3−23π8.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.1.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则BC= .【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2,解得:x=1(负数舍去),故BC=2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故BC=1,综上所述:BC=2或1.故答案为:2或1.【答案】2或1̂沿BD翻折,点C的对称点C′恰好落在AB 2.如图,已知半圆的内接四边形ABCD,AB是直径,DCB上.若AC′=4,C′B=5,则BD的长是()A. 4√3B. 3√7C. 7D. 8【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3√7,故选:B.【答案】B3.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC=910.其中正确的是()A. ①③B. ②③C. ①④D. ②④【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=13×3=1,CE=3-1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3-x)2+22,解得,x=32,∴CG=3-32=3 2,∴BG=CG=32,即点G是BC中点,故①正确;∵tan∠AGB=ABBG =332=2,∴∠AGB≠60°,∴∠CGF≠180°-60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;由(1)知Rt △ABG ≌Rt △AFG ,∴∠AGB=∠AGF=12∠BGF ,根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF ,∴∠GCF=∠GFC=∠AGB ,∵AD ∥BC ,∴∠AGB=∠GAD ,∴与∠AGB 相等的角有4个,故③错误;△CGE 的面积=12CG•CE=12×32×2=32, ∵EF :FG=1:32=2:3,∴S △FGC =32+3×32=910,故④正确; 综上所述,正确的结论有①④.故选:C .【答案】C4.如图,在矩形ABCD 中,AB=2,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP=x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是______.【解答】解:如图;①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=2,则PC=√21;∴BP 的最小值为5-√21;②当E 、B 重合时,BP 的值最大;由折叠的性质可得AB=BP=2,即BP的最大值为2.所以x的取值范围是5-√21≤x≤2.故答案为:5-√21≤x≤2.【答案】5-√21≤x≤25.如图,现有边长为5的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF连结BP,BH.当AP=2时,PH=______.【解答】解:设AE=x,则BE=5-x.由翻折的性质可知:BE=PE=x,∠APG=∠ABC=90°.∴∠APE+∠DPH=90°.∵∠AEP+∠APE=90°,∴∠AEP=∠DPH.又∵∠A=∠D=90°,∴△APE∽△DHP.在Rt△APE中,PE2=AE2+AP2,即(5-x)2=x2+22,解得x=2.1.则PE=5-2.1=2.9.∵△APE∽△DHP,∴EPPH =AEPD,即2.9PH=2.13,解得:PH=297.故答案为:297.【答案】2976.如图,矩形纸片ABCD中,AD=15cm,AB=10cm,点P、Q分别为AB、CD的中点,E、G分别为BC、PQ上的点,将这张纸片沿AE折叠,使点B与点G重合,则△AGE的外接圆的面积为______.【解答】解:由翻折的性质得,AG=AB,∠GAE=∠BAE,∵点P、Q分别为AB、CD的中点,∴AP=12AB,∴AP=12AG,∴∠AGP=30°,∴∠PAG=90°-∠AGP=90°-30°=60°,∴∠BAE=12∠PAG=12×60°=30°,在Rt△ABE中,AE=AB÷cos30°=10÷√32=20√33cm,∴△AGE的外接圆的面积=π(AE2)2=π(12×20√33)2=1003πcm2.故答案为:1003πcm2.【答案】1003πcm27.如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为______.【解答】解:∵△ADE沿AE折叠,使点D落在点D′处,∴DE=D′E,AD=AD′=10,当∠DD′C=90°时,如图1,∵DE=D′E,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠3=90°,∴∠3=∠4,∴ED′=EC,CD=4;∴DE=EC=12当∠DCD′=90°时,则点D′落在BC上,如图2,设DE=x,则ED′=x,CE=8-x,∵AD′=AD=10,∴在Rt△ABD′中,BD′=√102−82=6,∴CD′=4,在Rt△CED′中,(8-x)2+42=x2,解得x=5,即DE的长为5,综上所述,当△DD′C是直角三角形时,DE的长为4或5.故答案为4或5.【答案】4或5。
初中数学--折叠问题
折叠问题知识梳理折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x ,然后根据轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解一、矩形中的折叠【例1】将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.【巩固训练】1.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .2.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.3.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )例题解析G A'CA B D二、纸片中的折叠【例2】如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()【巩固训练】1.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为()2.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是()3.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()图c图b图aCDG FEACGDFEAFDB CA EB B三、三角形中的折叠【例3】如图,把Rt△ABC(∠C=90°),使A,B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则CE:AE=【巩固训练】1.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).2.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.3.观察与发现:将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?请说明理由. 实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.(2)将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.四、圆中的折叠【例4】如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形的BC边沿EC折叠,点B落在圆上的F点,求BE的长【巩固训练】1.如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为( )2.如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=5,DB=7,则BC 的长是多少?解题步骤归纳:1、标已知,标问题(边长的问题一般有什么方法解决?),明确目标在哪个直角三角形中,设适当的未知数x ;2、利用折叠,找全等。
数学折叠问题解题思路
数学折叠问题解题思路折纸问题是数学中一个非常有趣的分支,它不仅能够让我们深入理解数学的几何概念,还能够启发我们思考和解决实际问题。
其中,数学折叠问题因其直观、有趣和实用而备受瞩目。
在本文中,我们将深入探讨数学折叠问题的解题思路以及如何通过数学折叠问题更好地理解抽象概念。
一、什么是数学折叠问题?数学折叠问题(origami),顾名思义,是指利用折纸来模拟和解决数学问题的一种方法。
在这些问题中,我们通常会用一张平面纸或一条带子,通过折叠或切割等方法,构造出具有一定几何形状或特性的结构。
同时,这些结构也可以被视为数学中的几何图形,具有一系列性质和关系。
举例来说,我们可以通过折纸的方法构造出各种不同形状的三角形、正方形、五边形等几何图形。
我们也可以利用折纸的方法来解决一些有趣的几何问题,例如黄金分割、对称性和模等等。
同时,在实际应用中,数学折叠问题也常常可以帮助我们解决各种实际问题,例如包装设计、建筑结构和无人机机翼设计等等。
二、解决数学折叠问题的思路要解决数学折叠问题,我们需要把它们抽象化,转化为数学模型。
然后,我们可以利用数学方法来分析和求解这些模型。
解决数学折叠问题的具体步骤如下:1. 构造模型在解决数学折叠问题之前,我们首先需要构造一个几何模型。
这个模型应该直观易懂,能够较好地反映出实际问题的本质。
同时,为了避免出现误解和模糊,我们需要确保模型的各个细节都被准确地描述出来。
2. 定义问题一旦我们有了几何模型,我们就需要明确问题,即要求解的目标。
不同的问题会有不同的定义方式,通常需要我们用数学符号和语言进行精确描述。
3. 分析问题在定义问题之后,我们需要通过分析模型和问题,来找到一些潜在的解决方法和路径。
这个过程中,我们需要运用数学知识和技巧,例如计算几何、向量和三角几何等等。
同时,我们也需要注意处理问题中可能出现的特殊情况和边界条件。
4. 求解问题一旦我们找到了解决问题的方法和路径,我们就可以开始具体的求解过程。
(完整版)几何图形折叠问题
HistudyjiftS7^i viPTUk帮助预子個建持续迸步的孚刃力几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用•解题 的关键利用轴对称的性质找到折叠前后不变量与变量, 运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中•如果题目中有直角,则通常 将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段 长度•矩形中的两次或多次折叠通常出现“一线三直角”的模型 (如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相 关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆 .2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等. 【基础篇】 一、选择题:1. . (2018?四川凉州? 3分)如图将矩形 ABCD&对角线BD 折叠,使C 落在C'处,BC'交AD 于点E ,则下到结 论不一定成立的是()AD=BCB .Z EBD=/ EDB C.A ABE^A CBD D sin / ABE*A.IHistudyjlftS7^l viPTUk帮助预子個建持续iS步的孚刃力2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB已知OA=6取OA的中点C,过点C作CD L OA交理于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD, DF, FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为(___________ .A. 36 n -108 B . 108-32 n C. 2 n D.nABC AB=AC / BAC=90,点E为AB中点.沿过点E的直线折5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4胚且/ AFG=60 , GE=2BG则折痕EF的长为()A. 1B.说C. 2D.加如图,矩形纸片ABCD中, AB=4, BC=6将厶ABC沿AC折叠,使点B落在点E处,CE交AD 叠,使点B与点A重合,折痕现交于点F.已知E一,则BC的长是(3. (2017浙江衢州)于点F,则DF的长等于()4. (2018 •山东青岛• 3分)如图,三角形纸片B. 3.2C. 3HiSMldy」畅字刃VIPT住叱帮朗预子陶建持续进步的孚刃门二、填空题:6. (2018 •辽宁省盘锦市)如图,已知Rt△ ABC中,/ B=90°, / A=60°, AC=2三+4,点M N分别在线段AC.ABD恰好落在线段BC上,当△ DCM为直角三角形时,折痕MN勺长为.ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C2=75°, EF= + 1,则BC的长-3分)如图,将矩形ABCD沿 EF折叠,使点B落在AD边上的点G处,点C落在点H处,BG 则/ AGB=三、解答与计算题:9. (2018 •广东• 7分)如图,矩形ABCD中, AB> AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,上,将厶ANM沿直线Mr折叠,使点A的对应点8. (2018 •湖南省常德7. (2018 •山东威海• 8分)如图,将矩形已知/ DGH=30,连接(1)求证:△ ADE^A CEDAE交CD于点F,连接DEHistudyjlftS7^]l viPTUk|帮助预子陶建持续进步的孚刃力|10—( 2018?山东枣庄? 10分)如图,将矩形— D 交AF 于点G,连接DG(1) 求证:四边形EFDG 是菱形;(2) 探究线段EG GF AF 之间的数量关系,并说明理由; (3) 若 AG=6 EG=2E ,求 BE 的长.【能力篇】一、选择题: 11.( 2018 •辽宁省阜新市)如图,将等腰直角三角形ABC (/ B=90°)沿EF 折叠,使点A 落在BC 边的中点A处,BC=8,那么线段AE 的长度为()12.( 2018 •四川省攀枝花・3分)如图,在矩形 ABCD 中, E 是AB 边的中点,沿 EC 对折矩形ABCD 使B 点落 在点P 处,折痕为EC 连结AP 并延长AP 交CD 于 F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论: ① 四边形AECF 为平行四边形; ② / PBA=Z APQ③ 厶FPC 为等腰三角形; ④ 厶 APB^A EPC 其中正确结论的个数为()A . 1 B. 2 C. 3D. 4C. 6D. 7D GECEB .A .亠13. (2018 •湖北省武汉• 3分)如图,在O O 中,点C 在优弧-I.上,将弧「■沿BC 折叠后刚好经过 AB 的中点 D.若O O 的半径为 匚AB=4,则BC 的长是(、填空ABCD 中,点E 是CD 的中点,将△ BCE 沿BE 折叠后得到△ BEF14. (2018 •辽宁省葫芦岛市 ) 如图,在矩形15. ( 2018 •四川宜宾• 3分)如图,在矩形 ABCD 中, AB=3 CB=2,点E 为线段AB 上的动点,将△ CBE 沿 CE ①当E 为线段AB 中点时,AF// CE; ②当E 为线段AB 中点时,AF=9 ;5④当 A F 、C 三点共线时,△ CEF ^A AEF.DG 1且点F 在矩形ABCD 勺内部,将 BF 延长交AD 于点G.若 =' ,则折叠,使点B 落在矩形内点F 处,下列结论正确的是 (写出所有正确结论的序③当A F 、C 三点共线时,AE='HiSMiaa快乐字刃I VIPT 性叱帮朗滋子陶建持续进步的孚刃门GvPEDU !BCEDCA'B三、解答与计算题:16. (2018 •湖北省宜昌• 11分)在矩形 ABCD 中, AB=12 P 是边AB 上一点,把△ PBC 沿直线PC 折叠,顶点B 的对应点是点 G,过点B 作BEL CG 垂足为E 且在AD 上, BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:△ AEB^A DEC (2)如图2,①求证:BP=BF③当BP=9时,求 BE?EF 的值.②当 AD=25 且 AE v DE 时,求 cos / PCB 的值; 17. (2018 •广东• 7分)如图,矩形ABCC 中,AB> AD,把矩形沿对角线 AC 所在直线折叠,使点B 落在点E 处, AE 交CD 于点F ,连接DE (1)求证:△ ADE^A CED (2)求证:△ DEF 是等腰三角形.HiSMc!®快S 字刃丄VIP 亍性比 帮朗预子陶建持续进步的孚刃门■ BC *HiStUCU快乐字刃VIPT性比帮助预子问建持续迸步的字刃力18. (2018?江苏盐城?10分)如图,在以线段二5■为直径的上取一点,连接、就•将_二弓匚沿.止翻折后得到□.(1 )试说明点在上;(2)在线段.:「的延长线上取一点,使上厂—」一丄.求证:三壬为①门的切线;(3)在(2)的条件下,分别延长线段、匚吕相交于点,若m厂=J,二匸=-,求线段的长•【探究篇】19. (2018年江苏省泰州市?12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:/ HPC=90 ;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法•(不需说明理由)(1)根据以上操作和发现,求的值;设四边形BEFC 的面积为S ,求S 与x 之间的函数表达式,并求出 S 的最小值.(2) 随着点M 在边AD 上位置的变化,△ PDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3) 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A D 重合),点C 落在点N 处,MN W CD 交3 .....HistudyjlftS7^l VIPTlik帮助预子陶建持续iS步的孚刃力几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用•解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中•如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度•矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3分)如图将矩形ABCD&对角线BD折叠,使C落在C'处,BC'交AD于点E,则下到结论不一定成立的是()A. AD=BCB.Z EBD=/ EDBC.A ABE^A CBD D sin / ABE*ED【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC, AD=BC二AD=BC,所以正确.B、 / CBD2 EDB / CBD=/ EBD EBD2 EDB正确.AED、T sin / ABE』,BE•••Z EBD=/ EDB••• BE=DEHistudyjlftS7^l VIPTlik帮助预子陶建持续iS步的孚刃力• sin / ABE^.ED故选:C.HistudyjlftS7^ll viPTUk|帮助预子詞11持续进步的字刃力|【点评】本题主要用排除法,证明 A , B , D 都正确,所以不正确的就是—C,排除法也是数学中一种常用的解题方 法. 2.(2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB 已知OA=6取OA 的中点C,过点C 作CDL OA 交丽于点D,点F 是廳上一点.若将扇形BOD 沿 OD 翻折,点B 恰好与点F 重合, 用剪刀沿着线段 BD, DF , FA 依次剪下,则剪下的纸片(形状同阴影图形)面积之和为( __________ . A . 36 n -108 B . 108-32 n C . 2 n D.n【考点】MO 扇形面积的计算;P9:剪纸问题.1【分析】先求出/ ODC M BOD=30,作DEL OB 可得DE= OD=3先根据S 弓形BD =S 扇形BOD - & BOD 求得弓形的面积,2再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,••• CD L OA•••/ DCO M AOB=90 ,•••/ ODC M BOD=30 ,则剪下的纸片面积之和为 12X ( 3 n- 9) =36 n- 108, 故答案为: 36 n- 108 .故选 A 3.(2017浙江衢州)如图,矩形纸片 ABCD 中, AB=4, BC=6将厶ABC 沿 AC 折叠,使点B 落在点E 处,CE 交AD于点F ,则DF 的长等于()…S 弓形B[=S 扇形X 6X 3=3n- 9,•/ OA =OD =OB =6OC |OA作DE L OB 于点E ,则 DE= OD=3c Mg 心BOD _d BOD=His【udy 』?i 乐字刃]vi 卩卞性比帮朗预子陶建持续迸步的孚刃门【考点】PB 翻折变换(折叠问题);LB :矩形的性质.【分析】根据折叠的性质得到 AE=AB / E=Z B=90°,易证Rt △ AEF ^ Rt △ CDF ,即可得到结论 设FA=x ,则FC=x , FD=6- x ,在Rt △ CDF 中利用勾股定理得到关于 x 的方程x 2=42+( 6-x )【解答】解:•••矩形 ABCD 沿对角线AC 对折,使△ ABC 落在厶ACE 的位置, ••• AE=AB / E=Z B=90°,又•••四边形ABCD 为矩形, • AB=CD • AE=DC 而/ AFE=Z DFC•••在△ AEF 与厶CDF 中,ZAFE-ZCFD•••△ AEF ^A CDF ( AAS ,• EF=DF ;•••四边形ABCD 为矩形, • AD=BC=6 CD=AB=4 •/ Rt △ AEF ^ Rt △ CDF • FC=FA设 FA=x ,贝U FC=x , FD=6- x , 13 在 Rt △ CDF 中,CF=C D+DF ,即 x 2=42+ (6 - x ) 2,解得 x= , 则 FD=6- x=. 故选:B.HiStUdyjl?iS7^l VIPTUk帮朗预子陶建持续进步的孚刃门D.5, 7EF=DF ;易得FC=FA,解方程求出x .B- AC4. (2018 •山东青岛• 3分)如图,三角形纸片ABC AB=AC / BAC=90,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,贝U BC的长是()2A. .B. 3、2C. 3D. 3 3【分析】由折叠的性质可知/ B=Z EAF=45,所以可求出/ AFB=90,再直角三角形的性质可知EF丄AB,所以AB=AC!的长可求,再利用勾股定理即可求出BC的长.【解答】解:•••沿过点E的直线折叠,使点B与点A重合,•••/ B=Z EAF=45 ,•••/ AFB=90° ,•••点E为AB中点,1 3•EF= —AB, EF= ,2 2•AB=AC=3•••/ BAC=90 ,•BC=3.2 ,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出/ AFB=9C°是解题的关键.5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4胚且/ AFG=60 , GE=2BG则折痕EF的长为()HiStUdyjl?iS7^l VIPTUk帮朗预子陶建持续is步的孚刃门【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF HE=CE GH=DC/ DFE=/ GFE结合/ AFG=60即可得出/ GFE=60,进而可得出△ GEF为等边三角形,在Rt△ GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC DC= EC,再由GE=2BG吉合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC卩可求出结论.【解答】解:由折叠的性质可知,DF=GF HE=CE GH=DC Z DFE=Z GFE•••/ GFE+Z DFE=180 -Z AFG=120 ,•••/ GFE=60 .•/ AF// GE Z AFG=60 ,•Z FGE=/ AFG=60 ,•△ GEF为等边三角形,•EF=GE•••/ FGE=60,/ FGE+Z HGE=90 ,•Z HGE=30 .在Rt△ GHE中, Z HGE=30 ,•GE=2HE=C,•GH= =*$HE= CE•/ GE=2BG•BC=BG+GE+EC=4EC•••矩形ABCD勺面积为 4 ,•4EC?^EC=4 ,•EC=1, EF=GE=2故选C.二、填空题:6. (2018 •辽宁省盘锦市)如图,已知Rt△ ABC中,Z B=90°, Z A=60°, AC=2 :;+4,点M N分别在线段AC.AB上,将△ ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△ DCM为直角三角形时,折痕MN勺长为 .帮朗滋子陶建持续迸步的孚刃门①如图,当/ CDM=90时,△ CDM是直角三角形,•••在Rt△ ABC中,/ B=90°, / A=60° AC=^+4, /-Z C=30°, AB^ AC五+-,由折叠可得:Z MDN Z A=60°1_ 1_Z BDN=30,•/ BN空DN爰AN •/丄術+卸BN= AB= :,■2硬+4•• AN=2BN="Z DNB=60 , /Z ANM Z DNM=60,/•/ AMN=60 , •師+4•• AN=MN=";【解答】解:分两种情况:②如图,当/ CMD=90时,△ CDM是直角三角形,帮助预子问il持续迸步的孚刃力I □ ~I] ■由题可得:/ CDM=60 , / A=Z MDN=60 , /-Z BDN=60 , / BND=30 BD空DN= AN, BN庐BD\1AB巫+2 ,1_/• AN=2, BN^3,过N 作NH L AM于H,贝UZ ANH=30 , /• AH空AN=1, HN昉,由折叠可得:Z AMN Z DMN=45 ,/•△ MNH是等腰直角三角形,/• HM=HN= :,/ MN= ■.故答案为:'或;7. (2018 •山东威海• 8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知Z 仁67.5 ° ,Z 2=75°, EF= + 1,求BC的长.【分析】由题意知Z 3=180 ° - 2 Z 1=45°、Z 4=180°- 2Z 2=30 °、BE=KE KF=FC 作KM L BC,设KM=x 知EM=x MF= x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:Z 3=180 °- 2 Z 1=45°,Z 4=180°- 2Z 2=30 °, BE=KE KF=FC设KM=x 贝U EM=x MF^J x,x+ V3x^3+1,解得:x=1,••• EK=J办KF=2,.BC=BE+EF+FC=EK+EF+KF=3++J:,• BC的长为【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8. (2018 •湖南省常德・3分)如图,将矩形ABC[沿EF折叠,使点B落在AD边上的点G处,点C落在点H处, 已知Z DGH=30,连接BG 则Z AGB= 75如图,过点K作KM L BC于点M帮朗预子陶建持续进步的孚刃门/ EBC-Z EBG即:/ GBC M BGH由平行线的性质可知/ AGB=Z GBC从而易证/ AGB2 BGH据此可得答案.【解答】解:由折叠的性质可知:GE=BE / EGH M ABC=90 ,•••/ EBG=Z EGB•••/ EGH-Z EGB玄EBC-Z EBG 即:/ GBC=/ BGH又••• AD// BC•Z AGB=Z GBC•Z AGB=Z BGHvZ DGH=30 ,•Z AGH=150 ,•Z AGB二Z AGH=75 ,2故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9. (2018 •广东• 7分)如图,矩形ABCD中, AB> AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:△ ADE^A CED(2)求证:△ DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC AB=CD结合折叠的性质可得出AD=CE AE=CD进而即可证出△ ADE◎ △ CED( SSS ;(2)根据全等三角形的性质可得出Z DEF=Z EDF利用等边对等角可得出EF=DF由此即可证出△ DEF是等腰三角形.HiSMlda快乐字刃I VI PT住叱帮朗预子陶建持续进步的孚刃门【解答】证明:(1):四边形ABCD是矩形,••• AD=BC AB=CD由折叠的性质可得:BC=CE AB=AE•AD=CE AE=CDC AD=CE在厶人。
初二数学培优专题(5)——折叠问题(答案详解)
折叠问题(一)正方形内的十字架结构结论1:在正方形ABCD中,E、F、G、H分别为AB、CD、BC、AD边上的点,若EF⊥GH,则GH=EF【例1】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在CD的中点E处,折痕为FG,点F 在AD边,求折痕FG的长;【变式2】如图,将边长为的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN.(1)求线段CN的长;(2)求以线段MN为边长的正方形的面积;(3)求线段AM的长度.(二)折痕垂直于对称点的连线结论:折痕上的点到对应点距离相等【例2】如图,在矩形ABCD 中,AB=4,AD=3,将矩形折叠使得点D 与BC 上的点E 重合,折痕分别交AB 、CD 于点G 、F ,若BE=1,求AG 的长.【变式1】如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 对应点为A',且,则AM 的长是______________.【变式2】(2016年山东威海中考题)如图,在矩形ABCD 中,4AB = ,6BC = ,点E 为BC 的中点,将ABE ∆沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A.95 B.125 C.165 D.185(三) 折叠中动点轨迹与最值【例3】(2015四川自贡)如图,在矩形ABCD 中,4AB = ,6AD = ,E 是AB 边的中点,F 是线段BC 上的动点,将EBF ∆沿EF 所在直线折叠得到'EB F ∆,连接'B D ,则'B D 的最小值是( )。
A. 2B. 6C. 2-D.4【变式】(2014成都)如图,在边长为2的菱形ABCD 中,60A ∠=︒ ,M 是AD 边的中点,N 是AB 边上的一动点,将AMN ∆ 沿MN 所在直线翻折得到'A MN ∆,连接'A C ,则'A C 长度的最小值是_____ 。
折叠问题解题技巧
折叠问题解题技巧折叠问题是一种常见的数学问题,经常出现于各种考试中,如中考、高考、数学竞赛等。
因为折叠问题具有一定的难度,所以总是困扰着很多考生,也被誉为是数学界的“恶梦”。
其实,在理解和把握了折叠问题的解题技巧之后,我们可以更好地解决这类问题,从而更有效地答题。
首先,我们要明确折叠问题有哪些特点?一般来说,折叠问题都有一定的复杂性和细节性,要求考生用逻辑的思路、准确的数学计算,来解决问题。
因此,在解题之前,必须对问题有一定的理解。
其次,解题时,要把握好步骤。
折叠问题解题时,可以按照以下步骤进行:首先读清题意,明确问题的要求;其次,正确地分析问题,理清思路;再次,按步骤逐行做细节,具体解决问题;最后,总结结果,算出最终答案。
此外,解题时,还要注意把握数学规律。
折叠问题涉及到大量的数学计算,所以解题时,要特别注意把握细节,以免出错。
同时,也要把握数学规律,及时抓住有利机会,避开不利因素,有效地解决问题。
此外,在折叠问题解答中,还可以使用组合法、分类法、排除法等,以便更好地解决问题。
例如,在解决“有一个四边形,它的每条边都可以折叠,且折叠后还能组成一个矩形,求它的边长”这类问题时,可以先求出折叠前四边形的边长,然后使用组合法枚举所有可能的边长组合,从而找到正确的答案。
最后,练习是最重要的环节。
只有不断的练习,才能更早地掌握折叠问题的解题技巧,并应用到实际的答题中。
在练习中,除了要注重做题的准确性外,还要做到速度的快慢适度。
适当的增加练习,能有助于加强记忆、培养思维,从而更好地解决折叠问题。
总之,折叠问题解题技巧包括明确题意、把握步骤、注意把握数学规律、使用组合法、分类法、排除法、多练习等。
只有把握了这些技巧,才能更有效地解决折叠问题,提高解题效率,取得好的考试成绩。
中考常见折叠问题的解题策略
中考常见折叠问题的解题策略作者:蔡丽娟
来源:《新高考·新世纪智能·升学考试》2019年第03期
折叠是几何变换的一种,近年来在中考中出现的频率越来越高,主要考査折叠的基础规律和运用数学思想方法解决问题的能力.这类问题由于一因多果、思维多变,导致学生对折叠的实质理解不够透彻而失分.本文通过对在初中数学中经常涉及到的几种折疊的典型问题的剖析,以期帮助大家从中抽绎出基本图形的基本规律,找到解决这类问题的常规方法.
【点评】圆的折叠往往得到弧相等,进而可以转化为对应的圆周角或圆心角相等,以及弦相等,从而可以构造出等腰三角形、直角三角形等一些特殊图形,再运用它们的性质即可解
决问题.
翻折问题题型多种多样,所以无法一一例举,但只要抓住翻折前后图形是全等的,对应边、对应角相等,结合勾股定理、等腰三角形性质、相似三角形性质,运用方程思想、函数思想、分类讨论思想等基本数学思想,就可以解决同类型的题目,达到举一反三、事半功倍的效果.。
折叠问题的处理技巧八道例题
折叠问题解答技巧八道例题例1. 如图,矩形ABCD 中,AB =2,BC =23,以AC 为轴翻折半平面,使二平面角B —AC —D 为120°,求:(1)翻折后,D 到平面ABC 的距离;(2)BD 和AC 所成的角.解析:研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解 分别过B 、D 作AC 的垂线,垂足是E 、F ,过F 作FB ′∥BE ,过B 作BB ′∥AC ,交点B ′,则四边形EFB ′B 是矩形.∵AC ⊥DF ,AC ⊥B ′F ,∴AC ⊥平面B ′FD ,即∠DF ′B 就是二面角B —AC —D 的平面角,亦即∠DFB ′=120°.过D 作DO ⊥B ′F ,垂足为O.∵DO ⊂平面DFB ′,AC ⊥平面DFB ′.∴DO ⊥AF ,DO ⊥平面ABC. 在Rt ΔADC 中,CD =2,AD =23,∴DF =3,OD =DF ·sin60°=23.(2)在ΔDFB ′中,DB ′=︒⋅'⋅⋅-'+120cos 22F B DF F B DF =3.又由(1)可知,AC ∥BB ′,AC ⊥平面DFB ′⊥平面DFB ′.∴BB ′⊥平面DFB ′,∴ΔDB B ′是直角三角形,又BB ′=EF =2.∴tan ∠DBB ′=23.∵AC ∥BB ′,∴AC 与BD 所成的角就是∠DBB ′,即为arctan 23.例2. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22ANAM+=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =︒⋅-+120cos 222AN AM ANAM=21312)3(122⨯⨯⨯++=34+∵34+<10∴min MN =34+.如图,ABCDEF 为正六边形,将此正六边形沿对角线AD 折叠.(1)求证:AD ⊥EC ,且与二面角F —AD —C 的大小无关; (2)FC 与FE 所成的角为30°时,求二面角F —AD —C 的余弦值. 解析:(1)正六边形ABCDEF ,在折叠前有AD ⊥EC ,设AD 与EC 交于M ,折叠后即有AD ⊥ME ,AD ⊥MC.则AD ⊥平面EMC ,无论∠EMC 的大小如何,总有AD ⊥EC.(2)利用余弦定理,有cos ∠EMC =97例3(2005·湖南)如图7-1,已知A B C D 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴1OO 折成直二面角.(Ⅰ)证明:1ACBO ⊥;(Ⅱ)求二面角1O AC O --的大小.ABOCO 1D解法1(I )证明: 由题设知1O A O O ⊥,1OB OO ⊥.所以A O B ∠是所折成的直二面角的平面角,即O A O B⊥. 故可以O 为原点,1,,O A O B O O 所在直线分别为x 轴、y轴、z 轴建立空间直角坐标系,如图7-2,则相关各点的坐标是(3,0,0)A,(0,3,0)B,C ,1(0,O .从而(3,3)AC =-,1(0,BO =-,130AC BO ⋅=-+=.所以1AC BO ⊥.解法2(I )证明: 由题设知1O A O O ⊥,1OB OO ⊥,所以A O B ∠是所折成的直二面角的平面角,即O A O B ⊥. 从而A O ⊥平面1O B C O ,O C 是A C在面1O B C O 内的射影.因为11tan O B O O B OO ∠==,111tan 3O C O O C O O ∠==,所以13O O B π∠=,16O O Cπ∠=,从而1OC BO ⊥,由三垂线定理得1ACBO ⊥.(II )解 由(I )1OCBO ⊥,1AC BO ⊥,知1BO ⊥平面O A C .设1O C O B E = ,过点E作EFAC⊥于F ,连结1O F (如图7-3),则E F是1O F 在平面A O C 内的射影,由三垂线定理得1O F AC⊥.所以1O FE ∠是二面角1O AC O --的平面角.由题设知113,1OA OO O C ===,所以ABC DFE GA'1O A==,AC ==,从而1332111=⋅=ACCO A O F O ,又11sin62O E O O π==,所以111sin 4O E O FE O F∠==, 即二面角1O ACO --的大小是arcsin 4.一、折叠与展开中的垂直问题例4.如图在ΔABC 中, AD ⊥BC , ED=2AE ,过E 作FG ∥BC , 且将ΔAFG 沿FG 折起, 使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解: ∵FG ∥BC ,AD ⊥BC ∴A 'E ⊥FG ∴A 'E ⊥BC 设A 'E=a ,则ED=2a 由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a 2 ∴ED 2=A 'D 2+A 'E 2 ∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例5如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.EDBAE D CB A解析:过D作DF⊥AB交AB于F,连结EF,计算DF、EF的长,又DE为已知,三边长满足勾股定理,∴∠DFE=090;三、折叠与展开中的距离与体积问题例6.如图,矩形ABCD中,AB=2,BC=23,以AC为轴翻折半平面,使二平面角B—AC—D为120°,求:翻折后,D到平面ABC的距离;解析:研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解:分别过B、D作AC的垂线,垂足是E、F,过F作FB′∥BE,过B作BB′∥AC,交点B′,则四边形EFB′B是矩形.∵AC⊥DF,AC⊥B′F,∴AC⊥平面B′FD,即∠DF′B就是二面角B—AC—D的平面角,∠DFB′=120°.过D作DO⊥B′F,垂足为O.∵DO 平面DFB′,AC⊥平面DFB′.∴DO⊥AF,DO⊥平面ABC.3. 在RtΔADC中,CD=2,AD=23,∴DF=3,OD=DF·sin60°=2例7. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点, N 为BC 的中点,在棱柱表面上从点M 到点N 的最短距离是多少?解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22ANAM+=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =︒⋅-+120cos 222AN AM ANAM=21312)3(122⨯⨯⨯++=34+∵34+<10∴min MN =34+.二、折叠与展开中的空间角问题例8. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起, 使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BD-—C 的余弦值。
中考数学几何折叠问题的答题技巧
中考数学几何折叠问题的答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.
折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与
另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.
根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等; 对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.
1、利用点的对称
例1.(2006 年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸
片折叠,使顶点A 与边CD 上的点E 重合.
(1)如果折痕FG 分别与AD、AB 交于F、G(如图①),AF=
,求DE 的长;
(2)如果折痕FG 分别与CD、AB 交于F、G(如图②),△AED 的
外接圆与直线BC 相切,求折痕FG 的长.。
中考数学几何折叠问题答题技巧
中考数学几何折叠问题答题技巧中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2019年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED 的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ONBC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED 的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的ABM、MBN和NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NGBC,则直角三角形中NG=BN,从而可得ABM=MBN=NBC=300.) 若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以ABM=MBN=NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2019年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB 折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
数学折叠问题初一
数学折叠问题初一摘要:一、数学折叠问题的基本概念二、数学折叠问题的应用场景三、解决数学折叠问题的方法与技巧四、数学折叠问题在初一数学教学中的重要性五、结论与建议正文:数学折叠问题,作为一种有趣的数学问题,一直以来都在各类教材和考试中占据一席之地。
它不仅能够锻炼学生的思维能力,还能培养学生的空间想象能力。
本文将从以下几个方面对数学折叠问题进行分析:一、数学折叠问题的基本概念数学折叠问题指的是在平面几何中,将一个平面图形通过折叠变换成为另一个平面图形的问题。
这些问题通常涉及到几何图形的折叠、展开以及图形的性质。
在解决这类问题时,我们需要充分利用图形的对称性、相似性等性质。
二、数学折叠问题的应用场景数学折叠问题在实际生活中有许多应用,如折纸艺术、建筑领域的空间设计、物理中的晶体结构等。
在教育领域,数学折叠问题更是成为培养学生空间想象能力的有力工具。
三、解决数学折叠问题的方法与技巧要解决数学折叠问题,首先需要熟练掌握几何图形的性质,如对称性、相似性、角度和边长关系等。
此外,还需要具备较强的逻辑思维能力,能通过对图形折叠与展开的观察,找出图形的内在联系。
在解决实际问题时,可以运用如下技巧:1.画图辅助:通过画出折叠前后的图形,直观地展示问题的变化过程。
2.逐步分析:将复杂问题分解为若干个简单问题,逐步解决。
3.寻找规律:观察图形折叠过程中的规律,如角度和边长的变化等。
4.灵活运用公式:熟练掌握几何图形的公式,如面积公式、周长公式等。
四、数学折叠问题在初一数学教学中的重要性数学折叠问题在初一数学教学中具有重要意义。
首先,它有助于学生巩固和拓展几何知识。
其次,通过解决数学折叠问题,学生的空间想象能力得到锻炼,为以后学习立体几何打下基础。
最后,数学折叠问题的解决过程培养了学生的逻辑思维能力和创新能力。
五、结论与建议总之,数学折叠问题具有很高的教育价值。
为了提高学生在初一阶段的数学素养,教师应关注数学折叠问题在教学中的导入,引导学生积极参与,培养他们的空间想象能力和逻辑思维能力。
中考数学几何折叠问题答题技巧
中考数学几何折叠问题答题技巧中考数学几何折叠问题答题技巧中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的ABM、MBN和NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NGBC,则直角三角形中NG=BN,从而可得ABM=MBN=NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以ABM=MBN=NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2019年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF 为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处.当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到AFE=A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。