六年级奥数专题-行程问题

合集下载

六年级奥数行程问题

六年级奥数行程问题

行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行 程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况:

(1)相向而行:相遇时间=距离÷速度和

(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差

在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

两辆汽车同时从某地出发,运送一批货物到距离165

千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时?

解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙例题专题简行程问题(一)

车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以 先求乙的速度,然后根据路程求时间。也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)

甲行完全程的时间:165÷30—4860

=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)

答:甲车行完全程用了4.7小时。

1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车 到乙地立即返回。两辆汽车从开出到相遇共用多少小时?

六年级奥数题及答案:行程问题

六年级奥数题及答案:行程问题

六年级奥数题及答案:行程问题

一、填空题(共10小题,每小题3分,满分30分)

1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________千米.

2.(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________公里.

3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________倍.

4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________秒.

5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________小时,乙在甲丙之间的中点?

6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________步.

7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.

8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________分钟,电车追上骑车人.9.(3分)一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有_________公里.

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

六年级奥数专题练习题:行程问题

六年级奥数专题练习题:行程问题

六年级奥数专题练习题:行程问题(一)

1、东西两地长217.5千米,甲车以每小时25千米的速度从东地到西地;1.5小时后,乙车从西地出发到东地,再过3小时两车还相距15千米。乙车每小时行多少千米?

2、甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行6千米,乙车每小时行8千米,两车在离中点32千米处相遇。求A、B两地间的距离是多少千米?

3、甲、乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇.相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米。问:A、B两地相距多少千米?

4、两名运动员在湖的周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时同地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?

5、两名运动员在湖的周围环形跑道上练习长跑。甲每分比乙多跑50米.如果两人同时同地同向出发,则经过45分甲追上乙.如果两人同时同地反向出发,则经过5分可以相遇。求甲乙两人的速度.

6、甲、乙两人以每分60米的速度同时、同地、同向步行出发,走15分后,甲返回原地取东西,而乙继续前进。甲取东西用去5分时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上乙?

7、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流需要8小时,水流速度每小时为2.5千米。求轮船在静水中的速度是多少?

8、某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。已知火车长90米。求火车的速度?

9、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?

完整版)六年级奥数题及答案:行程问题

完整版)六年级奥数题及答案:行程问题

完整版)六年级奥数题及答案:行程问题

六年级奥数题及答案:行程问题

一、填空题(共10小题,每小题3分,满分30分)

1.两车同时从甲乙两地相对开出,甲每小时行48千米,

乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距216千米。

2.XXX从甲地到乙地,去时每小时走6公里,回来时每

小时走9公里,来回共用5小时。XXX来回共走了45公里。

3.一个人步行每小时走5公里,如果骑自行车每1公里比

步行少用8分钟,那么他骑自行车的速度是步行速度的1.5倍。

4.一位少年短跑选手,顺风跑90米用了10秒钟,在同样

的风速下,逆风跑70米,也用了10秒钟。在无风的时候,他跑100米要用11.67秒。

5.A、B两城相距56千米。有甲、乙、丙三人。甲、乙从

A城,丙从B城同时出发,相向而行。甲、乙、丙分别以每

小时6千米、5千米、4千米的速度行进。求出发后经2小时,乙在甲丙之间的中点为20千米。

6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的

一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了24步。

7.兄妹二人在周长30米的圆形水池边玩,从同一地点同

时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们

第十次相遇时,妹妹还需走2.5米才能回到出发点。

8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一

辆102路电车开出了始发站,这辆电车每分钟行500米,行5

分钟到达一站并停车1分钟。那么需要18分钟,电车追上骑

车人。

9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天

小学六年级数学思维训练奥数题—行程问题专练

小学六年级数学思维训练奥数题—行程问题专练

小学六年级数学思维训练奥数题—行程问题专练

1.小天和爸爸同时分别从天安门和正阳门出发(天安门广场北起天安门,南至正阳门),相向而行。小天每分钟走50米,爸爸的速度是小天的120%,相遇后,小天继续向前走9.6分钟到达正阳门。天安门广场南北长多少米?

2.一家人靠窗坐在速度为72千米/时的火车里,一列有30节车厢的货运火车迎面驶来,当货车车头经过窗口时开始计时,直到最后一节车厢驶过窗口共用时18秒。已知货运火车每节车厢长16米,每两节车厢(包括车头)间距1.2米。如果货运火车车头长24头,货车的速度是多少?

3.从火车站坐公交车去泰山风景区,途中与同时从风景区开往火车站的某两出租车相遇,相遇点离火车站5千米。相遇后两车继续以原速前进。到达风景区后,我们发现有东西丢在火车站,又立即乘公交车返回。在途中与返回的那辆出租车第二次相遇,相遇点在离风景区2.5千米处。火车站与风景区之间相距多少千米呢?

4.甲、乙两人沿着同一条路同时从山脚和山顶相向出发,甲上山行完全程要4小时,乙下山行完全程要6小时,两人在距中点150千米处相遇。泰山山顶到山脚路程长多少米?

5.甲船逆水航行600米需要3分钟,返回原地需要2分钟;乙船逆水航行同一段水路,需要4分钟。

(1)水流速度是多少?

(2)乙船静水速度是多少?

(3)乙船返回原地需要多少分钟?

6.火车通过450米的大桥用时32秒,通过2200米的隧道时,火车的速度提高了一倍,所以通过隧道只用了51秒,火车的车长为多少米?

7.一列火车长200米,它以每秒10米的速度穿过一座大桥,从车头上桥到车尾离开大桥共需80秒,这座桥长为()米。

有关行程问题的应用题 六年级奥数题

有关行程问题的应用题 六年级奥数题

有关行程问题的应用题六年级奥数题

有关行程问题的应用题六年级奥数题

旅行问题(一)

例1客车从甲地,货车从乙地同时相对开出5小时后,客车距乙地还有全程的

六分之一,卡车距离佳迪142公里。乘用车的时速比卡车高12公里。a和B之间的距离是多少公里?

练习1ab两地相距21千米,上午8时甲乙分别从ab两地出发相向而行,当甲到达b

地后立即返回,乙到达a地后也立即返回,上午10时他们第2次相遇时,此时甲走的路

程比乙走的路程多9千米,甲每小时走多少千米?

练习2当a在60米赛跑中越过终点线时,他比B领先10米,比C领先20米。如果B 和C继续以原速度冲向终点线,B在到达终点线时将领先C多少米?

例2两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比

B车提前0.8小时到达。当a车到达目的地时,B车距离目的地仍有24公里。a车花

了多长时间完成了全程?

练习3甲乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车

每小时行42千米,它到乙地立即返回,第二辆汽车每小时行28千米。两辆车从开出到相

遇共用多少小时?

练习4A和B相距900公里。a车从a地开到B地需要15个小时,B车从B地开到a

地需要10个小时。两辆车同时从两个地方出发。他们见面时,a车离B地有多少公里?

练习5甲、乙两辆汽车早上8点钟分别从a、b两城同时相向而行。到10点钟时两车

相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。ab两地间的距离是多少千米?

例3 A和B车同时从AB两个车站出发。5小时后,a车到达中点,B车离开中点

六年级奥数题及答案行程问题

六年级奥数题及答案行程问题

六年级奥数题及答案:行程问题

一、填空题(共10小题,每小题3分,满分30分)

1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________千米.

2.(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________公里.

3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________倍.

4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________秒.

5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________小时,乙在甲丙之间的中点?

6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________步.

7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.

8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________分钟,电车追上骑车人.

小学六年级奥数行程问题

小学六年级奥数行程问题

小学六年级奥数行程问题

小学六年级奥数行程问题

第一讲行程问题

走路、行车、一个物体的移动,总是要涉及到三个数量:

距离走了多远,行驶多少千米,移动了多少米等等;

速度在单位时间内(例如1小时内)行走或移动的距离;

时间行走或移动所花时间.

这三个数量之间的关系,可以用下面的公式来表示:

距离=速度×时间

很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在的应用题中,这样的数量关系也是最常见的,例如

总量=每个人的数量×人数.

工作量=工作效率×时间.

因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解类似的问题.

当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.

这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米

一、追及与相遇

有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,

甲走的距离-乙走的距离

=甲的速度×时间-乙的速度×时间

=(甲的速度-乙的速度)×时间.

通常,“追及问题”要考虑速度差.

例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?

六年级奥数行程问题

六年级奥数行程问题

1、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车距离中点36千米,甲乙两地相距千米

2、小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回公用5小时。小明来回共走了公里。

3、一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍。

4、一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下,逆风跑70米,也用了10秒。在无风的时候,他跑100米要用秒。

5、AB两城相距56千米,有甲乙丙三人,甲乙从A城,丙从B城同时出发,相向而行。甲乙丙分别以每小时6千米、5千米、4千米的速度行进。求出发后经过小时,乙在甲丙之间的中点?

6、主人追他的狗,狗跑三步的时间主任跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑了出了步。

7、兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点。

8、骑车人以每分钟300米的速度,从102路电车始发站出

发,沿102路电车线前进,骑车人离出发地2100时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人。

9、一个自行车选手在相距950公里的甲乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点据甲地有 公里

六年级奥数练习题行程问题

六年级奥数练习题行程问题

六年级奥数练习题:行程问题

1、东西两地长217.5千米,甲车以每小时25千米的速度从东地到西地;1.5小时后,乙车从西地出发到东地,再过3小时两车还相距15千米。乙车每小时行多少千米?

2、甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行6千米,乙车每小时行8千米,两车在离中点32千米处相遇。求A、B两地间的距离是多少千米?

3、甲、乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇。相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米。问:A、B两地相距多少千米?

4、两名运动员在湖的周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时同地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?

5、两名运动员在湖的周围环形跑道上练习长跑。甲每分比乙多跑50米。如果两人同时同地同向出发,则经过45分甲追上乙。如果两人同时同地反向出发,则经过5分可以相遇。求甲乙两人的速度。

6、甲、乙两人以每分60米的速度同时、同地、同向步行出发,走15分后,甲返回原地取东西,而乙继续前进。甲取东西用去5分时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上乙?

7、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流需要8小时,水流速度每小时为2.5千米。求轮船在静水中的速度是多少?

8、某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。已知火车长90米。求火车的速度?

9、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒。这列火车的速度和车身长各是多少?

小学六年级奥数题行程问题

小学六年级奥数题行程问题

小学六年级奥数题行程问题

小学六年级奥数题行程问题精选

1、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原出发地点,需要多少小时?

2、一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?

3、已知从河中A地到海口60千米,如船顺流而下,4小时到达海口,已知水速为每小时6千米。船返回已航行4小时后,因海水涨潮,由海向河的水速为每小时3千米,问此船回到原地还需再航行几小时?

4、一条船从A地顺流而下,每小时35千米到达B地后,又逆流而上回到A地。逆流比顺流多用4小时,已知水速是每小时5千米,则A、B两地相距多少千米?

5、一架飞机所带油料最多可以用9小时,飞机去时顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,问这架飞机最多可以飞出多少千米就需要往回飞?

6、一摩托车顶风行40千米用了2小时,风速为每小时2千米,则这辆摩托车顺风行驶时每小时行多少千米?

7、一条河水的`宽、窄水域流速分别为每小时5千米和每小时8千米,当有一条小船顺水在这条河中的宽水域用2小时航行了50千米进入窄水域后,则再用2小时小船可航行多少千米?

8、小梅划一条小船向上游划去,将草帽放在了船尾,草帽被风吹进了河中,当他发现并调过船头时,草帽已与船相距1千米,若船是以每小时5千米的速度行驶,水流速度每小时2千米,那么,他追上草帽需要几小时?

小学六年级奥数专项-行程问题

小学六年级奥数专项-行程问题

模块一发车问题

【例1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出

租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?

【例2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的

速度是多少?电车之间的时间间隔是多少?

【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分

钟发车一辆?

【巩固】某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.

【例3】一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间

间隔保持不变,那么间隔几分钟发一辆公共汽车?

【巩固】从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上沿着同一方向步行。甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来

的一辆电车。那么电车总站每隔多少分钟开出一辆电车?

小学六年级奥数行程问题

小学六年级奥数行程问题

1、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?

2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?

3、小爱和小清同时从A、B两城相向而行,在离A城35千米处相遇,到达对方城市后立即以原速沿原路返回,又在离A城15千米处相遇,两城相距多少千米?

4、A、B、C三辆车同时从甲出发到乙地去,A、B两车速度分别为每小时50km 和38km,有一辆迎面开来的卡车分别在他们出发后4小时、5小时、6小时先后与A、B、C三车相遇。求C车的速度。

5、甲乙两地相距258千米。一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的2倍。相遇时,汽车比拖拉机多行多少千米?

6、甲乙两车分别从A、B两站同时出发,相向而行,第一次相遇时在距A

站28千米处,相遇后两车继续前进,各自到达B、A两站后,立即沿原路返回,第二次相遇距A站60千米处。A、B两站间的路程是多少千米?

7、小张与小王早上8时分别从甲、乙两地同时相向出发,到10时两人相距112.5千米;继续行进到下午1时,两车相距还是112.5千米。问两地相距多少千米?

8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?

有关行程问题的应用题六年级奥数题

有关行程问题的应用题六年级奥数题

行程问题(一)

例1 客车从甲地,货车从乙地同时相对开出5小时后,客车距乙地还有全程的六分之一,货车距甲地还有142千米。客车比货车每小时多行12千米,甲、乙两地间的路程是多少千米?两地间的路程是多少千米?

练习1 AB 两地相距21千米,上午8时甲乙分别从AB 两地出发相向而行,当甲到达B 地后立即返回,地后立即返回,乙到达乙到达A 地后也立即返回,地后也立即返回,上午上午10时他们第2次相遇时,此时甲走的路程比乙走的路程多9千米,甲每小时走多少千米?千米,甲每小时走多少千米?

练习2当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。如果乙和丙按原来的速度继续冲向终点,当乙到达终点的时候,将比丙领先多少米?米?

例2 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车距离目的地还有24千米,甲车行完全程用了多少时间?行完全程用了多少时间?

练习3 甲乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,千米,它到乙地立即返回,它到乙地立即返回,它到乙地立即返回,第二辆汽车每小时行第二辆汽车每小时行28千米。千米。两两辆车从开出到相遇共用多少小时?辆车从开出到相遇共用多少小时?

练习4 4 A

A 、

B 两地相距900千米,甲车从A 地开到B 地需要15小时,乙车从B 地到A 地需要10小时。两车同时从两地开出,相遇时,甲车距B 地还有多少千米?米?

练习5 甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。到10点钟时两车相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。AB 两地间的距离是多少千米?两地间的距离是多少千米?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数专题-行程问题

行程问题(一)

专题简析:

行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;

(3)追及问题。

行 程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况:

(1)相向而行:相遇时间=距离÷速度和

(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差

在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

例题1:

两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时?

解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以 先求乙的速度,然后根据路程求时间。也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)

甲行完全程的时间:165÷30—4860

=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)

答:甲车行完全程用了4.7小时。

练习1:

1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车 到乙地立即返回。两辆汽车从开出到相遇共用多少小时?

2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。两车同时从两地开出,相遇时甲车距B 地还有多少千米?

3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。到10点钟时两车相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。A 、B 两地间的距离是多少千米?

例题2:

两辆汽车同时从东、西两站相向开出。第一次在离东站60千米的地方相遇。之后,两车继续以原来的速度前进。各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。两站相距多少千米?

从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。找到这个关系,东、西两这站之间的距离也就可以求出来了。所以(60×3+30)÷1.5=140(千米)

答:东、西两站相距140千米。

练习2:

1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。各自到站后都立即返回,又在距中点南侧15千米处相遇。两站相距多少千米?

2、两列火车同时从甲、乙两站相向而行。第一次相遇在离甲站40千米的地方。两车仍以原速继续前进。各自到站后立即返回,又在离乙站20千米的地方相遇。两站相距多少千米?

3、甲、乙两辆汽车同时从A、B两地相对开出。第一次相遇时离A站有90千米。然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。第二次相遇时在离A地的距离占A、B两站间全程的65%。A、B两站间的路程是多少千米?

例题3:

A、B两地相距960米。甲、乙两人分别从A、B两地同时出发。若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。甲从A地走到B地要用多少分钟?

甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是960÷6=160(米);甲、乙两人从同时同向出发到甲追上乙需用去80分钟,甲追乙的路程是960米,每分钟甲追乙的路程(速度差)是960÷80=12(米)。根据甲、乙速

度和与差,可知甲每分钟行(160+12)÷1=86(米)。甲从A地到B地要用960÷86=117

43

(分钟),列算式为

960÷[(960÷6+960÷80)÷2]=117

43

(分钟)

答:甲从A地走到B地要用117

43

分钟。

练习3:

1、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若先跟乡行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。已知A、B两地相距1800米。甲、乙每分钟各行多少米?

2、父子二人在一400米长的环行跑道上散步。他俩同时从同一地点出发。若想8背而行,267 分钟相遇;若同向而行,2623

分钟父亲可以追上儿子。问:在跑道上走一圈,父子各需多少分钟?

3、两条公路呈十字交叉。甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。同时出发10分钟后,二人离使字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。求甲、乙二人的速度。

例题4:

上午8时8分,小明骑自行车从家里出发。8分钟后每爸爸骑摩托车去追他。在离家4千米的地方追上了他,然后爸爸立即回家。到家后他又立即回头去追小明。再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?

由题意可知:爸爸第一

次追上小明后,立即回家,到家后又回头去追小名,再追上小明时走了12千米。可见小明的速度是爸爸的速度的13

。那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。列式为

爸爸的速度是小明的几倍:(4+8)÷4=3(倍)

爸爸走4千米所需的时间:8÷(3—1)=4(分钟)

爸爸的速度:4÷4=1(千米/分)

爸爸所用的时间:(4+4+8)÷1=16(分钟)

16+16=32(分钟)

答:这时是8时32分。

练习4:

1、A 、B 两地相距21千米,上午8时甲、乙分别从A 、B 两地出发,相向而行。甲到达B 地后立即返回,乙到达A 地后立即返回。上午10时他们第二次相遇。此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?甲每小时走多少千米?

2、张师傅上班坐车,回家步行,路上一共要用80分钟。如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?

3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?

例题5:

甲、乙、丙三人,每分钟分别行68米、70.5米、72米。现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。东、西两镇相距多少器秒年

相关文档
最新文档