算法的概念
简述算法概念
算法概念简述引言算法是计算机科学的核心概念之一,它是指计算机解决问题的一系列有序步骤或规则。
在计算机领域,算法的设计和分析是非常重要的,它直接影响着计算机程序的效率和性能。
本文将从算法的定义、特性和分类等方面来全面探讨算法的概念。
算法的定义算法是指一种为解决特定问题而规定的一系列步骤或操作。
它具有明确的输入和输出,以及能够在有限的时间内完成计算的特点。
算法应该具备确定性、有限性和有效性等基本特性。
确定性指的是算法的每个步骤都有确定的含义和执行次序;有限性指的是算法在有限的步骤内结束;有效性指的是算法在有限的时间和资源内得出结果。
算法的特性确定性算法中的每个步骤都有确定的含义和执行次序,不会出现二义性或不确定性。
可行性算法的每一步操作都是可行的,即可以在有限时间内执行完成。
有限性算法在有限的步骤内结束,不会出现无限循环或死循环的情况。
输入算法接受一定的输入,这些输入可以是零个、一个或多个。
输出算法产生一定的输出,输出与输入之间存在着明确的关系。
算法的分类递归算法递归算法是指一个算法通过调用自身来解决问题的方法。
这种算法通常使用递归函数或子程序来实现。
递归算法通常具有简洁的代码结构,但需要注意递归深度过深可能导致栈溢出的问题。
分治算法分治算法是将问题划分成多个子问题,分别解决这些子问题,然后将子问题的解合并成原问题的解。
这种算法通常通过递归来实现,每次递归都将问题划分成两个或多个规模更小的子问题。
动态规划算法动态规划算法是通过将问题划分成多个子问题,并将子问题的解保存起来,避免了重复计算。
这种算法通常使用一个表格或数组来保存子问题的解,然后利用已经计算出的子问题的解来逐步计算出最终问题的解。
贪心算法贪心算法是一种将问题划分成多个子问题,并选择当前最优解的算法。
这种算法每次都选择当前看起来最优的解,而不考虑该选择是否导致最终的全局最优解。
贪心算法通常具有较快的执行速度,但不能保证得到最优解。
回溯算法回溯算法是通过尝试所有可能的解,并在不满足条件时进行回溯的算法。
算法的概念及表示
算法的概念及表示
算法是指一个明确规定的、用于解决特定问题的有限序列指令。
算法包含了一系列的步骤,这些步骤需要被按照特定顺序执行,来完成一个特定的任务。
算法是计算机程序开发的核心,它能够帮助我们解决复杂的问题,提高程序的效率和准确性。
一、算法的概念和定义
算法是一组可适用于某类问题求解的有限指令序列,它是一个解决问题的精确步骤描述,算法必须具有良好的可读性和易于理解性,同时也要具有较高的效率和可行性。
二、算法的特点
1. 确定性
算法必须以明确、清晰的方式描述每一个操作的具体实现过程,只要输入参数相同,算法就应该产生相同结果。
2. 有限性
算法必须在有限步骤内完成求解,也就是说,算法不能出现无限循环或无限递归的情况。
3. 可行性
算法实现的步骤必须是可以实际执行的。
4. 输入输出明确
算法必须明确输入和输出的格式和含义。
三、算法的表示方法
1. 伪代码表示法
伪代码是一种结构化的、类似于某种程序语言的自然语言描述,可以表示出算法的基本流程和各个步骤的实现方法,但不关注具体的编程语言。
2. 流程图表示法
流程图可以清晰地展现算法的执行过程和各个步骤的关系,方便程序员阅读和理解。
3. 程序语言表示法
在具体的编程语言中编写代码,以实现算法。
四、算法的应用范围
算法广泛应用于计算机科学领域,包括数据处理、人工智能、机器学习、计算机图形学、计算机网络等众多领域。
在实际应用中,算法可以帮助我们提高问题求解的速度和精度,并且为我们带来更多的创新思路和方法。
算法概念的含义
算法概念的含义算法是指一系列解决问题的方法或步骤,它是计算机科学的核心概念之一。
一个好的算法能够高效地解决问题,提高计算机程序的运行效率。
算法不仅被广泛应用在计算机科学中,还可以适用于各种其他领域,如数学、物理、经济学等。
算法的概念基于问题求解的需求。
当我们遇到一个问题时,我们首先需要明确问题的描述,并且明确我们想要的结果。
然后,我们需要找到一种方法或一系列的步骤来达到这个结果。
这种方法或步骤就是算法。
算法的核心目标是提高问题求解的效率。
一个好的算法能够在较短的时间内解决问题,减少计算机资源的消耗。
换句话说,算法的优劣体现在它的效率上。
衡量算法效率的指标有很多,常用的指标包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需的时间。
它通常用大O表示法来表示。
时间复杂度越低,算法的执行速度越快。
例如,一个时间复杂度为O(n)的算法需要执行n 次操作,而一个时间复杂度为O(1)的算法只需要执行一次操作。
空间复杂度是指算法执行所需的计算机内存空间。
它也通常用大O表示法来表示。
空间复杂度越低,算法所需的内存空间越少。
例如,一个空间复杂度为O(n)的算法需要存储n个元素的数据结构,而一个空间复杂度为O(1)的算法只需要存储常量大小的变量。
算法的设计是一门艺术。
在设计算法时,我们需要考虑如何降低时间复杂度和空间复杂度,同时还要保持正确性和可读性。
有时候,我们也需要权衡不同的优化目标,例如在时间和空间之间做出取舍。
算法设计的基本思想包括分治法、动态规划、贪心算法等。
分治法是将一个复杂的问题划分为多个小的、相互独立的子问题,并将子问题的解合并为原问题的解。
动态规划是通过将问题划分为多个子问题,并利用子问题的解逐步推导出原问题的解。
贪心算法是通过每一步选择局部最优解,最终得到全局最优解。
对于算法的分析与评估,还有一个重要的概念是算法的稳定性。
一个稳定的算法是指当输入数据有相同值但不同的顺序时,它们的输出保持相对顺序不变。
算法的概念
算法的概念——知能阐释一、知识精讲1.算法的含义算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
说明:(1)算法一般是机械的,有时要进行大量的重复计算,只要按部就班地去做,总能算出结果。
通常把算法过程称为“数学机械化”,数学机械化的最大优点,是它可以让计算机来完成。
(2)实际上,处理任何问题都需要算法,中国象棋有中国象棋的棋谱,国际象棋有国际象棋的棋谱。
再比如,邮寄物品有其相应的手续,购买飞机票也有一系列的手续等等。
(3)求解某个问题的算法不唯一。
2.算法的特征(1)确定性:算法的每一步必须是确切定义的,且无二意性,算法只有唯一的一条执行路径,对于相同的输入只能得出相同的输出。
(2)有容性:一个算法必须在执行有穷次运算后结束,在所规定的时间和空间内,若不能获得正确结果,其算法也是不能被采用的。
(3)可行性:算法中的每一个步骤都必须能用实现算法的工具——可执行指令精确表达,并在有限步骤内完成,否则这种算法也是不会被采纳的。
(4)算法一定要根据输入的初始数据或给定的初值才能正确执行它的每一步骤。
(5)有输出,算法一定能得到问题的解,有一个或多个结果输出,达到求解问题的目的,没有输出结果的算法是没有意义的。
3.算法的描述(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等。
用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解。
缺点是如果算法中包含判断或转向,并且操作步骤较多时,就不那么直观清晰了。
(2)框图(流程图):所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法,具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等优点。
(3)程序设计语言:算法最终可通过程序的形式编写出来,并在计算机上执行。
程序设计语言可分为低级语言和高级语言,低级语言包括机器语言和汇编语言。
算法基本知识点总结
算法基本知识点总结一、算法的基本概念1. 算法的定义算法是用来解决特定问题的有限步骤的有序集合。
算法是一种计算方法,可以描述为一系列清晰的步骤,用来解决特定问题或执行特定任务。
2. 算法的特性(1)有穷性:算法必须在有限的步骤内结束。
(2)确定性:对于相同输入,算法应该产生相同的输出。
(3)可行性:算法必须可行,即算法中的每一步都可以通过已知的计算机能力来执行。
3. 算法的设计目标(1)正确性:算法应该能够解决给定的问题。
(2)可读性:算法应该易于理解和解释。
(3)高效性:算法应该能在合理的时间内完成任务。
二、算法的复杂度分析1. 时间复杂度算法的时间复杂度表示算法执行所需的时间长度,通常用“大O记法”表示。
时间复杂度反映了算法的运行时间与输入规模之间的关系。
常见的时间复杂度包括:(1)O(1):常数时间复杂度,表示算法的运行时间与输入规模无关。
(2)O(logn):对数时间复杂度,表示算法的运行时间与输入规模的对数成正比。
(3)O(n):线性时间复杂度,表示算法的运行时间与输入规模成正比。
(4)O(nlogn):线性对数时间复杂度,表示算法的运行时间与输入规模和对数成正比。
(5)O(n^2):平方时间复杂度,表示算法的运行时间与输入规模的平方成正比。
(6)O(2^n):指数时间复杂度,表示算法的运行时间与输入规模的指数成正比。
2. 空间复杂度算法的空间复杂度表示算法执行所需的内存空间大小。
常见的空间复杂度包括:(1)O(1):常数空间复杂度,表示算法的内存空间与输入规模无关。
(2)O(n):线性空间复杂度,表示算法的内存空间与输入规模成正比。
三、常见的算法设计思想1. 贪心算法贪心算法是一种选取当前最优解来解决问题的算法。
贪心算法的核心思想是从问题的某一初始解出发,通过一系列的局部最优选择,找到全局最优解。
2. 动态规划动态规划是一种将原问题分解成子问题来求解的方法。
动态规划通常适用于具有重叠子问题和最优子结构性质的问题。
什么是算法
什么是算法?算法是一种用于解决问题或执行特定任务的有序步骤的描述。
它是计算机科学和数学领域中的一个重要概念。
算法提供了一种精确而清晰的方法来描述如何执行计算和处理数据。
它可以被看作是一种计算过程的抽象表示,用于解决各种问题,从简单的数学运算到复杂的数据处理和优化。
算法由一系列的步骤或操作组成,每个步骤都定义了如何执行特定的计算或操作。
这些步骤按照特定的顺序执行,以解决给定的问题或实现特定的目标。
算法可以接受输入,执行一系列操作,并生成输出。
它应该是可行的、确定性的和有限的。
算法的设计和分析是计算机科学的核心内容之一。
好的算法应该具有正确性、效率和可读性。
正确性是指算法能够按照预期的方式解决问题。
效率是指算法在给定的时间和空间限制下能够高效地执行。
可读性是指算法应该易于理解和实现。
算法可以用自然语言、伪代码或特定的编程语言来描述。
自然语言的描述通常用来解释算法的思想和执行过程。
伪代码是一种类似于编程语言的描述语言,它提供了一种中间层次的抽象,介于自然语言和具体编程语言之间。
特定的编程语言可以用来实现和执行算法。
算法的性能可以通过时间复杂度和空间复杂度来评估。
时间复杂度是指算法执行所需的时间量级,通常用大O符号表示。
空间复杂度是指算法执行所需的额外空间的量级。
通过分析算法的复杂度,可以评估其效率,并作出适当的选择和优化。
算法的应用非常广泛,涵盖了各个领域。
在计算机科学中,算法在数据结构、图论、排序、搜索、动态规划、机器学习等方面起着重要作用。
在实际应用中,算法被用于解决诸如路径规划、图像处理、网络优化、自然语言处理、数据分析等各种问题。
算法的发展是一个不断演化的过程。
随着技术的进步和需求的变化,新的算法不断涌现,旧的算法也在不断改进和优化。
算法的研究和创新是计算机科学的重要方向之一,它有助于提高计算效率、解决复杂问题、优化资源利用等。
总而言之,算法是一种用于解决问题或执行特定任务的有序步骤的描述。
它提供了一种精确而清晰的方法来描述计算和处理数据。
简述算法概念
简述算法概念一、算法概念算法是指用于解决问题的一系列步骤,它可以被看作是一种计算模型。
在计算机科学中,算法是指用于解决特定问题的一组有限指令序列。
这些指令描述了一个计算过程,当按照给定的顺序执行时,能够在有限时间内产生输出结果。
二、算法的分类1. 按照求解问题的性质分类(1) 数值型问题:求解数学方程、求解数值积分等。
(2) 组合型问题:如图论、网络流等。
(3) 几何型问题:求解几何图形之间关系等。
2. 按照设计思路分类(1) 贪心算法:每次选择最优策略,希望最终得到全局最优解。
(2) 分治算法:将原问题分成若干个规模较小且结构与原问题相似的子问题,递归地求解这些子问题,再将结果合并成原问题的解。
(3) 动态规划算法:将大规模复杂的问题分割成若干个小规模简单的子问题进行求解,并保存每个子问题的答案,在需要时查找已经保存好的答案来避免重复计算。
3. 按照求解策略分类(1) 穷举算法:列举所有可能的情况,再从中选出最优解。
(2) 迭代算法:通过不断迭代逼近最优解。
(3) 随机化算法:通过随机选择策略来求解问题。
三、算法的评价标准1. 正确性:算法所得结果应该与问题的实际结果一致。
2. 时间复杂度:衡量算法执行所需时间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
3. 空间复杂度:衡量算法执行所需空间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
4. 可读性:算法应该易于理解和修改,使得程序员能够快速地进行开发和维护工作。
四、常见数据结构与算法1. 数组与链表数组是一种线性数据结构,它可以存储相同类型的元素,并且可以通过下标访问。
链表也是一种线性数据结构,它由节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
数组和链表都可以用来实现栈和队列等数据结构。
2. 排序算法排序是计算机科学中最基本的问题之一,它的目的是将一组数据按照某种规则进行排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
算法的概念
gcd(60,24)=gcd(24,60 mod 24)=gcd(24,12) =gcd(12,24 mod 12)=gcd(12,0)=12
下面是该算法的一个更加结构化的描述。
1.1 算法的概念和描述
用于计算 gcd(m,n)的欧几里得算法:
第一步: 如果 n=0,返回 m的值作为结果,同时函数结束;否则,进入第二步。
第二步:m 除以 n,将余数赋给 r。
第三步: 将 n 的值赋给 m,将r 的值赋给 n,返回第一步。
我们也可以使用伪代码来描述这个算法:
算法 Euclid(m,n)
//使用欧几里得算法计算gcd(m,n)
//输入∶两个不全为0的非负整数m,n
//输出∶m,n的最大公约数
while n≠0do
{ r←mmodn
m←n
n←r
} return m
图1.2 欧几里得算法的流程图
上面的伪代码也可以用流程图来加以描述,如图1.2所示。
第一节、水文现象与桥涵水文的研究意义
第一章 算法的概念
↘1 . 1 ↘1 . 2
算法的概念和描述 算法的时间复杂度和空间复杂度
1.1 算法的概念和描述
【1.1பைடு நூலகம்1 算法的概念】
算法是一系列解决问题的清晰指令,也就是对于符合一定规范的输入在有限步骤内求
解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过
程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,
1.什么叫算法简述算法的基本特性.
1.什么叫算法?简述算法的基本特性。
答:算法就是求解问题的方法和步骤。
这里的方法和步骤是一组严格定义了运算顺序的规则;每一个规则都是有效的,且是明确的;按此顺序将在有限次数下终止。
算法的基本特性:输入,输出,确定性,有穷性,有效性。
2.如何评价一个算法?简述空间复杂性和时间复杂性的概念。
答:评价一个算法优劣的五条标准:正确性,可读性,健壮性,高效性,简洁性。
一个好的算法是满足这五条标准要求的算法。
一个算法的时间代价,是指将该算法转化为程序后在计算机上运行的时间耗费,引入大O记号表示的算法的时间耗费T(n)通常称之为算法的时间复杂度.度量一个算法或程序在执行过程中所花费的额外存储开销(即临时存储工作单元)的大小也是用大O方法,度量的结果称之为算法的空间复杂度。
3.试分析下列各程序段的时间复杂性。
(1)i=1; /* 1 次*/k=0; /* 1 次*/n=100; /* 1 次*/ T = 300 =O(1).do{k = k + 10 * i; /* 99次*/i++; /* 99次*/}while(i ! 100); /* 99次*/(3)for(i=1; i<m; i++) /* m+1 次*/for(j=1; j<n; j++) /* m*(n+1) 次*/A[i][j] = i * j; /* m*n 次*/ T = 2mn+2m+1 =O(mn).(7)x=n; /*n>1*/ /* 1 次*/y=0; /* 1 次*/while(x>=(y+1)*(y+1)) /* */ T = 2y = y + 1; /* */4.简述下列概念:数据、数据元素、数据类型、数据结构;答:(1)数据(Data)是信息的载体,是对自然界客观事物的符号表示。
数据是对那些能够有效地输入到计算机中并且能够被计算机程序所加工和处理的符号全体的总称。
(2)数据元素(Data Element)是数据的基本单位。
算法的概念
⑶没有死循环(永无休止的循环)。
4.3.2 结构化流程图
在结构化程序设计中,经常采用结 构化流程图来表示算法。结构化流程图 是在去掉传统流程图中的流程线的基础 上形成的,由美国计算机科学家I.Nasi和 B.Schneiderman 1973 年提出,因此又称 为N-S图。看N-S图就好比是看一 页书,从上到下看下来就全明白了。
通常用RETURN 命令将一个<表达式>的 值返回给调用程序。
②重试命令──RETRY 【格式】RETRY 【功能】返回调用程序,并再次执行调 用程序中上一次被执行的那一行。该命 令常用在错误处理程序中。
③结束命令──CANCEL 【格式】CANCEL 【功能】中止程序的执行,直接返回到 Foxpro命令窗口。 ④退出命令──QUIT 【格式】QUIT
有条不紊地一步一步深入地工作,用较 短的时间设计出结构良好、可读性强、 可靠性较高的程序,并容易验证程序的 正确性,便于维护。
⒉ 逐步求精设计方法
逐步求精设计方法是将一个抽象的 问题分解成若干个相对独立的小问题, 并逐级进行由抽象到具体,由粗到细, 由表及里不断进行精细化的程序设计方 法。每一步求精过程都将问题的算法进 一步细化,直到算法精细化到可以用三 种基本结构实现为止。
【功能】结束程序的执行,关闭所有已打 开的文件,退出Foxpro环境,返回到操 作系统。
以上四条结束命令可以放在一个程 序、过程或用户自定义函数中的任何地 方,并且允许出现多次。Foxpro规定, 如果在一个程序、过程或用户自定义函 数中没有结束部分,则默认为RETURN, 在这种情况下,当执行完最后一条命令 后,将返回到调用处的下一条命令继续 执行。
算法的概念
2
(a 0) 的根.
第一步,计算 b 4ac 第二步,如果Δ<0,则原方程无实数解 ; b , 否则(Δ≥0)时, x1 2a
b . x2 2a 第三步:输出x1, x2或无实数解的信息.
应用举例
×
例4.写出用“二分法”求方程
x 2 0 ( x 0)
2
的近似解的算法.
分析问题
×
二分法
对于区间[a,b ]上连续不断、且 f(a)f(b)<0的函数y=f(x),通过不断地 把函数f(x)的零点所在的区间一分 为二,使区间的两个端点逐步逼近 零点,进而得到零点近似值的方法 叫做二分法.
解决问题
×
2
第一步, 令 f ( x) x 2 .给定精确度d. 第二步, 给定区间[a,b],满足f(a) · f(b)<0. ab 第三步, 取中间点 m . 2 第四步, 若f(a) · f(m) < 0,则含零点的区间为 [a,m]; 否则,含零点的区间为[m, b]. 将新得到的含零点的仍然记为[a,b] . 第五步, 判断[a,b]的长度是否小于d或者 f(m)是否等于0. 若是,则m是方程的近似
2.任意给定一个大于1 的正整数n,设计一个算法 求出n的所有因数. (P5 练习2)
第一步:给定一个大于1 的正整数n.
第二步:依次以2~(n-1)的整数d为除数去 除n,检查余数是否为0.若是,则d是n的因数; 若不是,则d不是n的因数.
第三步:在n的因数中加入1和n.
第四步:得到n的所有因数.
(C)完成一件事情的算法有且只有一种 (D)设计算法要本着简单、方便、可操 作的原则
3.下列关于算法的说法中,正确的是
算法的概念及特点
算法的概念及特点
算法是指解决问题或完成任务的一系列步骤或指令的有限序列。
它用于描述如何在给定输入下,通过一系列定义明确的操作来产生所需的输出。
算法具有以下特点:
1. 明确性:算法必须清楚、无歧义地描述每个步骤,使得对于给定的输入条件,能够得到唯一确定的输出结果。
2. 有限性:算法必须在有限步骤内完成执行,不能无限循环或无限递归。
3. 确定性:算法中的每个步骤必须精确地定义,不允许出现模糊、不确定或随机的操作。
4. 可行性:算法中的每个操作都必须是可行的,即可以通过基本的计算和操作来实现。
5. 通用性:算法可以适用于一类问题而不限于单个特定问题。
6. 效率性:好的算法应该在合理的时间和空间复杂度下完成任务,尽可能地提高执行效率。
算法的概念和特点是计算机科学领域中重要的基础,它们帮助我们设计和分析问
题的解决方法,优化算法的效率,并促进计算机科学的发展和应用。
算法的概念
算法的概念1、算法的概念:算法一词出现于12世纪,指的是阿拉伯数字进行运算的过程,在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题。
2、算法的特点(1)有穷性:一个算法的步骤是有限的,它应在有限步骤操作后停止;(2)确定性:算法中的每一步操作应是确定的,并能有效执行,且得到确定的结果;(3)普遍性:一个好的算法可以用来解决一类问题,而不是解决一两个具体的问题;(4)不唯一性:求解某一类问题的算法不一定是唯一的;(5)可执行性:算法是从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步,才能执行下一步,并且在保证每一步都准确无误的前提下,才能够完成问题;(6)有输入和输出:输入:算法的出发点所给出的原始数据;输出:算法的终点所得出的结果数据3、设计算法的要求和目的要求:(1)写出的算法必须能够解决某一类问题;(2)要使算法尽量简单,步骤尽量少;(3)要保证算法正确,且计算能够执行。
目的:设计具体的数学问题的算法,实际上就是寻求一类问题的算法,它可以通过计算机来完成,设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确描述出来,从而达到让计算机执行的目的。
4、设计具体问题的算法应注意以下问题:a)认真分析问题,提出解决问题的一般数学方法;b)借助有关的原理、参数对计算机加以表述;c)将解决问题的过程划分成若干个步骤;d)用简练的各个步骤表示出来。
e)5、算法的描述:自然语言、框图、程序设计语言、防伪代码等。
例1、写出求1+2+3+4+5+6的一个算法,用自然语言描述。
拓展:1+2+3+4+5+6+…+1000呢?例2、有蓝黑两个墨水瓶,但现在却把蓝墨水装在了黑墨水瓶中,黑墨水装在了蓝墨水瓶中,要求将其互换,请你设计一个算法解决这一问题。
算法的概念及描述
3.算法的三要素
• (1)数据 • (2)运算 • (3)控制转移
练习:用求根公式求②若m<n,则交换m和n的值 • ③以m除以n,相除得到的余数为r。 • ④若r=0,则输出n的值,算法结束;否则执行第五步。 • ⑤令m=n,n=r,返回步骤③继续执行。
在计算机领域:
• 算法指的是用计算机解决问题的步骤,是为 了解决问题而需要让计算机有序执行的、无 歧义的、有限步骤的集合。
• 公鸡:X • 母鸡:Y • 小鸡:Z • ①X+Y+Z=100 • ②5X+3Y+Z/3=100
• 穷举法
百钱买百鸡
2.算法的特征
• ①有穷性。 • ②可行性。 • ③确定性。 • ④0个或多个输入。 • ⑤1个或多个输出。
算法的概念及描述
2.1.1 算法的概念
1.算法的定义
• 广义:
• 算法指的是用来解决问题的一系列步骤。
•辗转相除法
• ①输入正整数m和n • ②若m<n,则交换m和n的值 • ③以m除以n,相除得到的余数为r。 • ④若r=0,则输出n的值,算法结束;否则执行第五步。 • ⑤令m=n,n=r,返回步骤③继续执行。
算法的概念
5.算法的基本结构: 1)顺序结构 2)选择结构 3)重复结构
2012算法与程序设计
算法的概念
顺序结构的流程图: 例1.已知两个数,求它们的和。
2012算法与程序设计
算法的概念
一般的:一个算法由三大部分组成: 第一部分:输入部分(把求解问题的已知值通过键盘输入给计算 机程序) 第二部分:计算部分(根据已经输入的已知值,按照问题求解的 方法进行计算,获得结果值) 第三部分:输出部分(把求得的结果值,显示出来) 强调: 1.流程图中用来表示输入、输出数据的图形,是平行四边形框; 2.流程图中用来表示计算的图形,是矩形框; 3.流程图必须有开始和结束符号。
2012算法与程序设计
算法的概念
2.算法的5个特征: 1)有穷性:有限的步骤,合理的时间。 2)确定性: 3)可行性:可操作性。 4)有0个或多个输入的值: 5)有1个或多个输出的值;
2012算法与程序设计
Hale Waihona Puke 算法的概念3.算法的描述方法: 1)自然语言:有二义性 2)伪代码:代码与自然语言的混合表示 3)流程图:用规范的图形来表示。 4.流程图中最常见的图形符号: (1)处理框(矩形框):(2)输入、输出框(平行四边形);
2012算法与程序设计
算法的概念
1.算法定义: 广义的定义: 是指解决问题的具体方法和步骤。算法是在有限步骤内求解 某一问题所使用的具有精确定义的一系列操作规则。 考题中的叙述: 算法就是为解决某一问题而设计的确定的有限的步骤。 狭义的定义: 用计算机程序解决问题的方法与步骤。
因为,现代信息技术是基于计算机的技术,我们讨论的是 用计算机解决现实世界问题,所以本课程涉及的算法,最终要 用计算机程序来实现。
(3)判断框(菱形框):(4)连接框(圆形框):
高中信息技术算法
高中信息技术算法一、算法的基本概念算法是指解决问题的步骤和方法,是计算机程序设计的基础。
算法的特点包括正确性、可读性、健壮性、高效性等。
二、算法的分类1.按照求解问题的方式分类- 穷举法:逐个尝试所有可能的解,找到符合条件的解。
- 贪心法:每一步都选择当前最优解,最终得到全局最优解。
- 分治法:将问题分成若干个子问题,分别求解,再将结果合并得到原问题的解。
- 动态规划:利用已知信息逐步推导出全局最优解。
2.按照数据结构分类- 数组排序算法:冒泡排序、快速排序、插入排序等。
- 树形结构算法:二叉树遍历、哈夫曼编码等。
- 图形结构算法:最短路径算法、最小生成树算法等。
三、常见高中信息技术算法1.冒泡排序冒泡排序是一种简单直观的排序方法。
它重复地走访过要排序的数列,依次比较相邻两个元素大小,并交换位置,直到没有任何一对数字需要比较为止。
2.快速排序快速排序也是一种常用的排序方法。
它通过选定一个基准数,将数组分成两部分,一部分比基准数小,一部分比基准数大,再递归地对这两部分进行排序。
3.插入排序插入排序是一种简单直观的排序方法。
它将数组分为有序区和无序区,每次从无序区取出一个元素,在有序区中找到合适的位置插入。
4.二分查找二分查找也称折半查找,它是一种在有序数组中查找特定元素的算法。
每次取中间位置的值与待查关键字进行比较,如果中间位置的值比待查关键字大,则在左半部分继续查找;如果中间位置的值比待查关键字小,则在右半部分继续查找。
四、算法实现1.冒泡排序实现代码```void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {swap(arr[j], arr[j + 1]);}}}}```2.快速排序实现代码```void quickSort(int arr[], int left, int right) { if (left >= right) return;int pivot = arr[left];int i = left, j = right;while (i < j) {while (i < j && arr[j] >= pivot) j--; arr[i] = arr[j];while (i < j && arr[i] <= pivot) i++; arr[j] = arr[i];}arr[i] = pivot;quickSort(arr, left, i - 1);quickSort(arr, i + 1, right);}```3.插入排序实现代码```void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int temp = arr[i];int j = i - 1;while (j >= 0 && temp < arr[j]) { arr[j + 1] = arr[j];j--;}arr[j + 1] = temp;}}```4.二分查找实现代码```int binarySearch(int arr[], int n, int target) {int left = 0, right = n - 1;while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] == target) return mid;else if (arr[mid] > target) right = mid - 1; else left = mid + 1;}return -1;}```五、算法的优化算法的优化可以从多个方面入手,比如时间复杂度、空间复杂度、常数因子等。
什么是算法举例说明几种常见的算法
什么是算法举例说明几种常见的算法算法是计算机科学中的一个重要概念,它指的是一系列解决问题或完成特定任务的步骤或规则。
算法的设计和优化对于计算机程序的效率和性能至关重要。
在本文中,我们将介绍算法的定义,并举例说明几种常见的算法。
一、算法的定义算法是解决问题的方法或步骤的描述,其目的是根据输入数据产生正确的输出结果。
算法可以用自然语言、伪代码或编程语言来表示。
一个好的算法应该具备以下特性:1. 有穷性:算法必须在有限步骤内结束。
2. 确定性:算法的每一步都必须明确而无二义性。
3. 输入:算法具有输入,它从输入中获取数据。
4. 输出:算法具有输出,它产生一个针对输入的结果。
5. 可行性:算法的每一步都必须是可行的,能够通过基本的运算和操作来实现。
二、常见的算法举例1. 顺序查找算法:顺序查找算法是一种简单的搜索算法,它从列表的开始逐一比较每个元素,直到找到目标元素或遍历完整个列表。
如果目标元素存在于列表中,顺序查找算法的时间复杂度为O(n),其中n是列表的大小。
2. 二分查找算法:二分查找算法是一种高效的搜索算法,它要求在有序列表中进行查找。
该算法将目标元素与列表中间的元素进行比较,然后根据比较结果确定目标元素在列表的哪一半。
重复这个过程,直到找到目标元素或确定目标元素不存在。
二分查找算法的时间复杂度为O(log n)。
3. 冒泡排序算法:冒泡排序算法是一种简单的排序算法,它通过多次遍历列表,比较相邻的元素并交换位置,逐渐将较大或较小的元素“冒泡”到列表的一端。
冒泡排序算法的时间复杂度为O(n^2),其中n是列表的大小。
4. 快速排序算法:快速排序算法是一种高效的排序算法,它通过选择一个基准元素,将列表分成左右两个子列表,并递归地对子列表进行排序。
快速排序算法的时间复杂度为O(n log n),其中n是列表的大小。
5. 迪杰斯特拉算法:迪杰斯特拉算法是一种用于计算带权有向图的最短路径的算法。
该算法利用贪心策略,从一个起始节点开始,逐步找到到达其他节点的最短路径。
简述算法的概念
简述算法的概念
算法是一系列有序步骤的集合,用于解决特定问题或执行特定任务。
它是一种清晰、明确且逐步定义的计算过程,以产生所需的输出结果。
算法是计算机科学的基本概念之一,它不仅限于计算机领域,也涉及到数学、工程、物理学等多个学科。
以下是关于算法的一些关键概念:
1. 有序步骤:算法是一个由明确定义和有序排列的步骤序列。
每个步骤执行特定的操作,直到最终目标达到。
2. 输入和输出:算法通常接受一些输入,经过计算处理后,生成输出。
输入是算法的起点,输出是算法的终点。
3. 确定性:算法应该是确定性的,即在相同的输入条件下,它总是产生相同的输出。
这使得算法的行为可预测。
4. 有限性:算法必须在有限的步骤内结束。
这不仅有助于确保算法的有效性,也与计算机资源的有限性相一致。
5. 可行性:算法的每个步骤都必须是可行的,即可以在有限时间内执行。
6. 优势:一个好的算法应该在解决问题或执行任务的过程中具有良好的效率。
效率通常通过时间复杂度和空间复杂度来衡量。
算法是计算机科学中设计和分析的核心主题,它们用于解决各种问题,例如搜索、排序、图算法、机器学习等。
研究和选择合适的算法对于解决问题、提高性能和有效利用计算机资源至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法的概念》教学设计
湖北省武汉市第十一中学肖燕
人教A版数学必修3第1章第1节第1课时
一、教材背景分析
1.教材的地位和作用
《算法的概念》是全日制普通高级中学教科书人教A版必修3第一章《算法初步》的第一节内容,《算法初步》是课程标准的新增内容,它是数学及其应用的重要组成部分,是计算科学的重要基础,在信息技术高度发达的现代社会,算法思想应该是公民必备的科学素养之一.而《算法的概念》则是《算法初步》的奠基石,它非常重要,但并不神秘.新教材的编写特别强调了知识的螺旋形上升,所以在前面的学习中,已经让学生积累了大量的算法的实际经验,这个重要的数学概念其实早已存在于学生的意识之中,而且在不同场合都已经不自觉的“实际使用”,只是没有明朗化.此时引入算法概念可以说是水到渠成,教师的责任就是为学生建立概念修通渠道.让学生借助他们已有的大量经验抽象出算法的概念并认识其特点;再依据算法的概念和特点来设计一个具体的算法,进一步深化对概念的认知;最后通过典型解题步骤提炼算法的过程,使算法思想进一步得到升华.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解构造性数学,培养其数学应用意识.本节是起始课,不仅应让学生体会概念,认识到这一概念的重要性,还要为进一步的学习程序框图,算法的基本结构和语句奠定基础.而且算法思想是逻辑数学最重要的体现形式.这一切都决定了本节课的重要地位.
2.学情分析
知识结构:学生在以前的学习和生活中已经认识过大量的算法实例,本节课就是在此基础上使学生进一步理解和提炼算法的概念,体会算法的思想.
心理特征:高二的学生已经具备了分辨是非的能力,高度的语言概括能力,能够从具体问题中去体会和提炼重要数学思想.
3.教学重点与难点
重点:理解算法的概念及其特点,体会算法思想,能用自然语言描述算法.
难点:根据算法实例抽象概括算法的概念和特点;依据概念设计算法.
关键:算法思想的渗透.
二、教学目标
1.通过对学生已经学习过的一些算法实例的再现,让学生体会算法思想,了解算法含义,初步形成算法概念的雏形,进一步培养学生归纳总结、提炼概括的能力.2.通过对具体算法实例的挖掘,引导学生进一步认识算法的特征、完善算法的概念,进一步培养学生理性思维能力.
3.通过算法实例设计的实践过程,让学生进一步完善算法的理解,准确把握算法的基本特征,学会用自然语言描述算法,进一步培养学生逻辑思维能力.
4.通过具体实例渗透算法的基本结构和程序框图,为学生后继学习分散难点,同时通过具体情境和语言的激励,激发学生后继学习的激情.
5.通过典型解题步骤抽象出算法这一过程的设计,进一步渗透算法的思想,从而增强利用算法来解决问题的意识.
三、教法选择和学法指导
教法:问题引导、合作探究.
学法:数学学习实际上是“认知结构”的完善过程,算法的学习就体现这一过程:从经验中提炼概念,再从设计运用中深化对概念的认知,最后从算法的提炼中进一步渗透算法的思想.这都需要教师的层层引导,渐次递进.
四、教学基本流程设计
五、教学过程
(一)轶事开篇,巧妙设境引深思
有一天希尔伯特邀请朋友们来家聚会,眼看客人就要登门,他的夫人凯娣却发现希尔伯特还系着一根旧领带,便催促他说赶紧上二楼换根领带.过了片刻,客人陆续登门,可就是不见希尔伯特下楼来,夫人便悄悄吩咐管家赶紧上楼去请希尔伯特下来.管家来到他的房间,却发现希尔伯特已在床上睡熟了.原来,对于希尔伯特来说,上了二楼,解下领带,下一个程序便是上床入睡.所以,他严格按照既定程序酣然入睡了.
在我们的数学领域中,太多问题的解决都需要按照一定的规则、遵循严格的步骤,事实上在高一的学习中,大家就应该发现了这一现象.
(二)温故知新,拨云见雾初识真
1.“坐标方法”解决几何问题的三部曲:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果“翻译”成几何结论.
2.求圆的方程常用“待定系数法”,那么它的大致步骤是怎样的?
第一步:根据题意,选择标准方程或一般方程;
第二步:根据条件列出关于或的方程组;
第三步:解出或,代入标准方程或一般方程.
3.实际问题使用数学建模的步骤:
4.给点精确度,用二分法求函数零点近似值的步骤如下:
第一步:确定区间,验证;
第二步:求区间的中点;
第三步:计算;
(1)若,则就是函数零点;
(2)若,则令,(此时零点);
(3)若,则令,(此时零点).
第四步:判断是否达到精确度,即若,则得到零点近似值或;否则重复2~4.
通过观察以上算法实例,初步形成概念的雏形:算法是按一定规则解决某一类问题的步骤.
(三)共论经典,曲径通幽玉妆成
选取案例4中的算法做更深入的研究.
问题1:按照此算法,我们是否能够借助计算机来寻求方程的近似值呢?
我们必须确保让计算机执行的程序的每一个步骤都明明白白没有歧义,也就是步骤必须明确
问题2:我们可以把精确度取消吗?
算法的步骤必须是有限的,它可以进行循环结构的运算,但必须有终点.
在数学中,经过这样一补充,我们就得到了完整的算法概念:
算法通常是指按照一定的规则解决某一类问题的明确和有限的步骤.
(四)实例设计,分层推进探玄机
问题:如何设计判断任意大于2的正整数n是否是质数的算法?
1.判断11是否为质数的算法:
第一步:用2除11,得到余数为1,因为余数不为0,所以2不能整除11.
第二步:用3除11,得到余数为2,因为余数不为0,所以3不能整除11.
第三步:用4除11,得到余数为3,因为余数不为0,所以4不能整除11.
第四步:用5除11,得到余数为1,因为余数不为0,所以5不能整除11.
第五步:用6除11,得到余数为5,因为余数不为0,所以6不能整除11.
第六步:用7除11,得到余数为4,因为余数不为0,所以7不能整除11.
第七步:用8除11,得到余数为3,因为余数不为0,所以8不能整除11.
第八步:用9除11,得到余数为2,因为余数不为0,所以9不能整除11.
第九步:用10除11,得到余数为1,因为余数不为0,所以10不能整除11.
所以11是质数.
2.判断1999是否是质数的算法:
第一步:令;
第二步:用除1999,得到余数.
第三步:判断“”是否成立.若是,则1999不是质数;否则,将的值增加1,仍用表示;
第四步,判断“”是否成立.若是,则是质数,结束算法;否则,返回第三步.
3.判断任意大于2的正整数n是否是质数的算法:
第一步:给定大于2的整数n;
第二步:令;
第三步:用除,得到余数.
第四步:判断“”是否成立.若是,则不是质数;否则将的值增加1,仍用表示;
第五步,判断“”是否成立.若是,则是质数,结束算法;否则,返回第三步.回顾刚才研究的整个过程,从11,再到1999,最后到任意大于2的正整数n,对他们的判断方法具有高度的一致性,这其实反映了算法的一个重要特征----普适性.(五)见微知著,算法思想再升华
在平常的学习中,是否可以通过一些典型问题的解法,从具体到抽象,总结出同类型问题共有的解题步骤和程序呢?现在就请大家根据一些典型习题的解题方法来寻求其对应的算法.
(六)华章重奏,雏鹰振翅欲高飞
因为本节课是一章的起始课,它的功能不仅仅是本节知识内容的落实,还需要对后面的学习起到提纲挈领的作用.所以归纳小结不仅对今天所学知识:算法的概念、特点,如何设计算法使用算法思想等作了简要回顾,还对即将学习的内容和作用作了介绍,使学生对后续的学习充满了信心和兴趣.
(七)目标检测,概念应用悟新知
(1)写出求一元二次方程根的一个算法.
(2)任意给定一个对于1的正整数,设计一个算法求出的所有因数.
六、目标检测设计
(一)课堂检测
根据以下典型解题方法寻求此类问题的算法:
1.解二元一次方程组:
解:第一步:,得,(3)
第二步,解(3)得,
第三步:,得,(4)
第四步,解(4)得,
第五步,所以方程组解为
2.画出函数的简图:
解:第一步:先把正弦曲线上所有的点向右平行移动个单位长度,得到
的图象.
第二步:再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到
的图象;
第三步:再把图象上所有点的纵坐标伸长到原来的2倍,而得到函数
的图象.
3.解下列不等式:(1);(2);(3).
解:(1)方程无实根.又的图象开口向上,所以原不等式的解集为R.
(2)方程的根为
∴原不等式的解集为.
(3)方程的根为
∴原不等式的解集为.
4.判断下列函数的奇偶性:
(1);(2);(3).
解:(1)对于函数,其定义域为.因为对于定义域内每一个,都有,所以是偶函数.
(2)对于函数,其定义域为.因为对于定义域内每一个,都有,所以是奇函数.
(3)对于函数,其定义域为. 因为对其定义域不具备对
称性,所以函数非奇非偶.
设计意图:促进学生进一步了解算法的概念及特征,巩固学生已领会的算法思想并促进其有意识的运用.
(二)课后检测:
(1)写出求一元二次方程根的一个算法.
(2)任意给定一个对于1的正整数,设计一个算法求出的所有因数.
设计意图:进一步巩固概念的认知,检测学生是否能用自然语言正确表达算法.。