菱形的判定-课件

合集下载

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册
成的四边形的什冬天么,时干啥候还希变望成别的菱呢!形?
当这个四边形的对角线互相垂直时变成菱形.
新知探究
猜想:对角线互相垂直的平行四边形是菱形.
下面我们来进行验证:
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
已知:如小图山,在冬在天特▱A别可B爱C,D好中像是,把对济南角放在线一A个小C摇,B篮里D,相交于点O, 它们全安静不动地低声地说:“你们放心吧,这儿准保暖
G
C
和。”真的,济南的人们在冬天是面上含笑的。他们一看
∴∠A=∠B=∠C那=些∠小D山,=心9中0°便觉, 得A有D了=着B落C,,有A了B依=靠C。D他.们由天上
看到山上,便不知不觉地想起:“明天也许就是春天了H吧?
F
∵E,F,G,H分这点样幻别的想温不是暖能A,一B今时,天实夜现B里,C山他,草们C也也D许并就不,绿着A起急来,D了因的吧为中?有”这点就样,是慈这善
这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
四点条幻边想不都能相一时等实现,他们也并不着急,因为有这样慈善
的冬天,干啥还希望别的呢!
两条对角线互相垂 直,并且每一条对

角线平分一组对角
新知探究
探究点1 对角线互相垂直的平行四边形是菱形.
如图,用一长一短两根木条,在它们的中点处固定一
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
也可以反推菱形的性质来得到它的判定呢? 看到山上,便不知不觉地想起:“明天也许就是春天了吧? 这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
我们大家
点幻想不能一时实现,他们也并不着急,因为有这样慈善
一起来尝试的一冬天下,干吧啥还!希望别的呢!
类比导入
图形 性质定理

菱形的判定课件

菱形的判定课件

第15页,共30页。
5、一边长为5cm平行四边形的两条对角 线的长分别为6cm和8cm,则这个平行四 边形为菱形,其面积为 24。㎝²
6、如图在菱形ABCD中,CE⊥AB,CF⊥AD.
则CE =CF,BE D=F。
A
F
D
E
B
C
第16页,共30页。
7、如图, ABCD的两条对角线AC、BD相交
于点O,AB=5,AC=8,DB=6 D
D.四个角相等的四边形是菱形
(2).对角线互相垂直且平分的四边形是( ) C
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
(3).下列条件中,不能判定四边形ABCD为菱形的是( )C
A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DA
C.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD
求证:四边形ABCD是菱形.
A
证明: ∵ 四边形ABCD是平行四边形
O
C
∴OA=OC=4 OB=OD=3
B
又∵AB=5 ∴AB2=AO2+BO2
∴∠AOB=90°
∴AC⊥BD 又∵ 四边形ABCD是平行四边形
∴四边形ABCD是菱形.
第17页,共30页。
8、已知:如图,AD平分∠BAC,DE∥AC 交 AB于E,DF∥AB交AC于F.
具有平行四边形的一切性质性质性质边角对角线四个角都是直角相等互相垂直且平分每一组对角判定判定有一角是直角的平行四边形对角线相等的平行四边形三个角都是直角的四边形四条边都相等菱形的判定?根据菱形的定义可得菱形的第一个判定的方法四边形abcd是平行四边形且abad四边形abcd是菱形数学语言

菱形的判定公开课课件课件

菱形的判定公开课课件课件
第19页,幻灯片共25页
4、如图, 在△ABC中, AB=AC, 点M在边BC上, 过
点M分别作AB、AC的平行线, 与AC、AB分别相交
于点D、E. 当点M位于BC的什么位置时, 四边形
AEMD是菱形?请给予证明.
证明:∵EM∥AC,DM∥AB ∴四边形AEMD是平行四边形
若EM=DM,则□AEMD是菱形
一组邻边相等的平行四边形是菱形
O
证明:平行四边形ABCD中
B
2
E
4
C
AD∥BC
∴∠1=∠2,∠3=∠4
EF垂直平分AC ∴AO=CO,AF=CF,
∴ △AOF≌△COE
∴ AF=CE
又AF∥CE ∴四边形AFCE是平行四边形
∴平行四边形四边形AFCE是菱形
第12页,幻灯片共25页
例1.已知:平行四边形ABCD的对角线AC的垂直
求证:四边形CDEF是菱形
A
12
F
E
O
B
C
D
第23页,幻灯片共25页
小结
我学会了什么?
第24页,幻灯片共25页
第25页,幻灯片共25页
∴ □ ABCD是菱形.
组邻边相等的平行四边形是菱形)
第8页,幻灯片共25页
(一
思考与探索
你能用直尺和圆规作一个菱形吗?请作图 并说明理由。
第9页,幻灯片共25页
归纳
A
B
平行四边形 邻边相等
D
C AD=DC
A 平行四边形
B对角线互相垂直
DA
C
AC⊥BD
四边形 B 四边相等
D
AD=DC=CB=BA
AC
四边形 B对角线互相垂直平分

菱形的判定课件

菱形的判定课件

02
菱形的判定方法
定义法
总结词
根据菱形的定义,如果一个四边形的 四条边都相等,那么这个四边形是菱 形。
详细描述
在平面上,任意一个四边形,如果它 的四条边都相等,那么这个四边形是 菱形。
对角线互相垂直平分的四边形是菱形
总结词
根据菱形的性质,如果一个四边形的对角线互相垂直平分,那么这个四边形是 菱形。
01
02
03
04
菱形的四条边都相等。
菱形的对角线互相垂直平分, 并且每一条对角线平分一组对
角。
菱形是轴对称图形,其对称轴 是两条对角线的交点所在的直
线。
菱形是中心对称图形,其对称 中心是两条对角线的交点。
菱形与平行四边形的关系
01
菱形是特殊的平行四边形,具有 平行四边形的性质。
02
菱形与平行四边形的主要区别在 于菱形的四条边都相等,而平行 四边形的对边相等。
详细描述
在平面上,任意一个四边形,如果它的对角线互相垂直平分,那么这个四边形 是菱形。
四边相等的四边形是菱形
总结词
根据菱形的定义,如果一个四边形的四条边都相等,那么这 个四边形是菱形。
详细描述
在平面上,任意一个四边形,如果它的四条边都相等,那么 这个四边形是菱形。
03
菱形面积的计算方法
基于对角线长的菱形面积计算方法
菱形的判定课件
目 录
• 菱形的定义及性质 • 菱形的判定方法 • 菱形面积的计算方法 • 菱形的应用举例 • 菱形的判定与性质在实际生活中的应用 • 菱形的拓展与提升
01
菱形的定义及性质
菱形的定义
定义
有一组邻边相等的平行四边形叫 做菱形。
菱形的判定方法

1.1.2菱形的判定 课件(共20张PPT)

1.1.2菱形的判定 课件(共20张PPT)

教师讲评
③四边相等的四边形是菱形.
几何语言:如图,∵AB=BC=CD=DA,∴四边形ABCD是菱形.
注意点:①②两种方法都是在平行四边形的基础上外加一个条
件来判定菱形.③是在四边形的基础上加上四条边相等来判定菱
形.
典例精讲
【题型一】菱形的判定简单应用
例1.下列条件中能判断四边形是菱形的是( )
如图所示,绿丝带重叠部分形成的图形是一个漂
亮的菱形.你知道怎样判断它是一个菱形吗?
为了迎接第33届牡丹花会,公园里的园艺师建造了一个如图所示
的平行四边形花坛ABCD,经测量花坛的边长AB=20米,沿着花
坛的两条对角线修建的两条小路AC和BD交于点O,AC=24米,
BD=32米,小亮说这是个菱形花坛。他的说法正确吗?为什么?
列结论一定成立的是( )
A. AD=CD
B.四边形 ABCD面积不变
C. AC=BD
D.四边形 ABCD周长不变
典例精讲 【题型二】利用菱形的性质与判定求长度、角度或面积
例4:如图,在平行四边形ABCD中,AC与BD交于点O,点E是AB边
上的中点,连接OE,OE=2.5,AC=8,BD=6.有下列结论:①△ABD是
弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,如图.
(1)猜一猜,这是什么四边形?
(菱形)
(2)根据画图,你还有其他方法能判定此四边形的形状吗?
小组合作试着进行证明. (四边相等的四边形是菱形)
证明:因为AB=AD,AB=BC,所以AD=BC . 又因为
AB=CD,所以四边形ABCD为平行四边形.




∴OA=OC= AC=3,OD=OB= BD=4.

华师大版19.2.2《菱形的判定》课件(共20张PPT)

华师大版19.2.2《菱形的判定》课件(共20张PPT)
华东师大版 八年级数学下册
19.2 菱形的判定
辉县市城北初级中学 李永霞
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
学习目标
拓展提升
1.如图,将矩形纸片ABCD沿EF折叠,使D与B重合,折痕为 EF,然后展开,连接DF,BE. 求证:四边形EBFD是菱形;
C
∴OA=OC
又∵AC⊥BD;
∴BA=BC ∴ 平行四边形ABCD是菱形
新课学习
菱形的判定3:
对角线互相垂直的平行四边形是菱形.
A
D
A
D
AC⊥BD
B
C
平行四边形ABCD
B
C
菱形ABCD
数学语言∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
新课学习
例4: 如图,平行四边形ABCD的对角线AC、BD相交
于点O,AB=5,AO=4,BO=3.求证: 平行四边形
ABCD是菱形.
D
A
O
C
B
知识巩固
1、判断题
1、掌握菱形的判定定理及证明方法。
2、学会运用菱形的判定解决一些问题; 进一步发展合情推理能力;逐步掌握说 理的基本方法。

菱形的判定公开课ppt课件

菱形的判定公开课ppt课件
菱形的判定
1
菱形的定义: 有一组邻边相等的平行四边形叫做菱形.
菱形的性质:







菱形的两组对边分别平行 菱形的四条边相等
菱形的两组对角分别相等 菱形的邻角互补
菱形的两条对角线互相平分 对角线
菱形的两条对角线互相垂直, 且每一条对角线平分一组对角。 2
汶川地震后,全国 各界组织发起“绿丝带 行动”,号召人民为四 川受灾的人们祈福。人 们将绿丝带剪成小段, 并用别针将折叠好的绿 丝带别在胸前,如图所 示,绿丝带重叠部分形 成的图形是一个漂亮的 菱形。你知道是怎样判 断它是一个菱形的吗?
BDC
∵ AD是△ABC的角平分线 ∴ ∠1=∠2
∴ ∠1=∠3
∴AE=DE
∴ □AEDF是菱形
返回15
1、这节课你学到了些什么知识? 2、你有什么收获? (1)菱形的判定方法有哪些?
有一组邻边相等的平行四边形叫做菱形.(定义) 对角线互相垂直的平行四边形是菱形. (对角线互相垂直平分的四边形是菱形.)
你能证明这 个猜想吗?
猜想: 对角线互相垂直的平行四边形是菱形.
5
猜想:对角线互相垂直的平行四边形是菱形.
已知:在 ABCD中,AC ⊥ BD
A
求证: ABCD是菱形
B
证明: ∵四边形ABCD是
平行四边形
O
D
C
∴OA=OC
又∵ AC ⊥ BD; ∴BA=BC
∵在 ABCD 中,AC ⊥ BD ∴ ABCD 是菱形
连接BC、CD,就得到了一个四边形。
(1)猜一猜,这是什么四边形?
D
猜想四边形是菱形。
依据:该四边形四条边相等,即A

北师大版九年级数学上册 1.1.2菱形的判定 课件(共31张PPT)

北师大版九年级数学上册  1.1.2菱形的判定  课件(共31张PPT)
3.如图,四边形 的对角线 , 相交于点 ,且 , , .四边形 是菱形吗?请说明理由.
解:是菱形. , , , . .
又 , , 四边形 是平行四边形. 四边形 是菱形.
易错点 菱形的判定与平行四边形的判定相互混淆
4.下列说法中,正确的是( )
归纳
四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
有一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四边相等的四边形是菱形.
运用定理进行计算和证明
菱形的判定
定义法
判定定理
课堂小结与作业
菱形的判定
(1)有一组邻边______的平行四边形是菱形;
2.张师傅应客户要求加工4个菱形零件.在交付之前,张师傅需要对4个零件进行检测.根据零件的检测结果,有可能不合格的零件是( )
C
A. B. C. D.
猜想:对角线互相垂直的平行四边形是菱形.
你能证明这一猜想吗?
已知:如图,在□ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证:□ABCD是菱形.
证明: ∵ □ ABCD是平行四边形. ∴OA=OC. 又∵AC⊥BD, ∴BD是线段AC的垂直平分线. ∴BA=BC. ∴ □ ABCD是菱形(菱形的定义).
(第6题图)
6.有两张相同的长方形纸片,它们的长为8,宽为2.若将两张纸片交叉重叠,如图,则重叠部分四边形 的最大周长是____.
17
7.如图, 是 的对角线.
(1) 尺规作图:作线段 的垂直平分线 ,分别交 , , 于点 , , ,连接 , (保留作图痕迹,不写作法).
C
A
B
D
想一想:根据小刚的作法你有什么猜想?你能验证小刚的作理2

菱形的判定说课课件

菱形的判定说课课件

菱形的内角和为360度,每个 内角的大小为180度。
菱形的外角和为360度,每个 外角的大小为180度。
菱形的面积等于其底边长度与 高的乘积的一半。
03
菱形的判定方法
依据边长判定
定义法
如果一个四边形的四条边相等, 则这个四边形是菱形。
反证法
假设四边形不是菱形,则其四条 边不可能相等,这与已知条件矛 盾,所以假设不成立,原命题成 立。
04
判定方法的证明与推导
依据边长判定方法的证明
定义
如果一个四边形两组对边分别相等,则该四边形为菱形。
证明
假设四边形ABCD中,AB=CD且BC=DA。由于在三角形ABC和三角形ADC中,AB=CD,BC=DA,且角B=角D (对顶角相等),根据边角边全等定理,三角形ABC全等于三角形ADC,所以,AC=AC(自反性),角ACB=角 ACD。由于四边形两组对角分别相等,根据四边形性质,四边形ABCD是菱形。
教学目标
掌握菱形的定义和性 质。
能够运用判定定理解 决实际问题。
理解并掌握菱形的判 定定理。
02
菱形的定义和性质
菱形的定义
菱形是一个四边形,其中相对的两边 相等且平行。
菱形可以分为两种类型:普通菱形和 正方形。
菱形是一个轴对称图形,具有两条垂 直的对称轴。
菱形的性质
01
02
03
04
菱形的对角线互相垂直且平分 对方。
在实际问题中的应用
建筑设计
在建筑设计中,可以利用菱形的特性进行装饰和构图,使设计更加美观和独特。
图案设计
在纺织品、印刷品等图案设计中,可以利用菱形作为基本元素,创造出具有艺术 感的图案。
在数学竞赛中的应用

菱形的判定 公开课课件

菱形的判定 公开课课件





菱形的判定方法:
四条边相等
四边形
菱形
平行四边形
必做题:课本P100页练习第2,3题 选做题:课本P102页第6题和P103页第10题
严格性之于数学家,犹如道德之于人. 条理清晰,因果相应,言必有据.
是初学证明者谨记和遵循的原则.
返回
思考: 请你动脑筋
把两张等宽的纸条交叉重叠在一起,你 能判断重叠部分ABCD的形状吗?
2.特点 (1)近代中国交通业逐渐开始近代化的进程,铁路、水运和 航空都获得了一定程度的发展。 (2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式, 一定程度上转变了人们的思想观念;加强了中国与世界各地的 联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
[答案] C
[题组冲关]
1.中国近代史上首次打破列强垄断局面的交通行业是 ( )
A.公路运输
B.铁路运输
C.轮船运输
[串点成面·握全局]
一、近代交通业发展的原因、特Байду номын сангаас及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。

菱形的判定-课件(用)

菱形的判定-课件(用)

例2
已知菱形的底为6cm,高为 4cm,求菱形的面积。

根据公式1,面积 = (6cm × 4cm) ÷ 2 = 24cm² ÷ 2 =
12cm²
04
菱形在几何图形中的应用
在生活中的实际应用
01
02
03
建筑学
菱形图案在建筑设计中常 被用作装饰元素,如在地 毯、墙纸和窗户设计中。
时尚
菱形图案在服装、配饰和 鞋履设计中也经常出现, 增添时尚感。
02
例如,一个正方形就是一个满足 这个条件的菱形。
判定条件二:对角线垂直且互相平分
如果一个四边形的对角线互相垂直并 且互相平分,那么这个四边形是菱形 。
这个判定条件可以用来证明某些四边 形是菱形,例如筝形。
判定条件三:邻边垂直
如果一个四边形的所有邻边都垂直,那么这个四边形是菱形 。
这个判定条件可以用来证明某些四边形是菱形,例如筝形。
05
菱形与其他几何图形的关系
与其他几何图形的相似之处
菱形与矩形的相似性
菱形和矩形都有四条相等的边和四个 直角,因此它们在某些性质上是相似 的。
菱形与正方形的相似性
正方形何图形的不同之处
菱形与矩形的不同
虽然菱形和矩形都有四条相等的边和四个直角,但菱形的对角线互相垂直且平 分,而矩形的对角线不一定互相垂直。
菱形的判定-课件
• 菱形的定义 • 菱形的判定方法 • 菱形面积的计算 • 菱形在几何图形中的应用 • 菱形与其他几何图形的关系
目录
01
菱形的定义
菱形的定义和特性
定义:菱形是一个四边形, 其中相对的两边相等且平行。
特性
01
1. 对角线互相垂直且平分。

菱形的判定学习教材PPT课件

菱形的判定学习教材PPT课件
Leabharlann 3.四条边都相等的四边形是菱形
[例1]如下图,平行四边形ABCD的两条 对角线AC,BD相交于O点, AB= 5 ,AO=2,OB=1. (1)AC,BD有怎样的位置关系? (2)四边形ABCD是菱形吗?为什么?
小结 菱形的定义:一组邻边相等的平行 四边形是菱形. 菱形的性质: 边:四条边都相等,对边分别平行 角:对角相等 对角线:互相垂直、平分,每一条 对角线平分一组对角.
菱形的判别可用下图来表示
作业:
课本习题4.5 1, 2
方法一:将一张长方形的纸横对折,再 竖对折,然后沿图中的虚线剪 下,打开即可。
方法二:两张等宽的纸条交叉重叠在一 起,重叠的部分ABCD就是菱形.
方法三:将一张长方形纸对折,再在折痕
上取任意长为底边,剪一个等腰
三角形,然后打开即是菱形.
能说一说按这三种方法做的理由吗? 菱形的判别方法: 1.一组邻边相等的平行四边形是菱形; 2.对角线互相垂直的平行四边形是菱形;
4.3 菱 形
黄凌
图片中有你熟悉的图形吗?
这种特殊平行四边形特殊在哪里? 我们称它为菱形,你能给菱形下定 义吗?
一组邻边相等的平行四边形叫做菱形.
如图,在菱形ABCD中,AB=AD,对角 线AC,BD相交于点O。 (1)图中有哪些线段是相 等的?哪些角是相等的? (2)图中有哪些等腰三角 形、直角三角形? (3)两条对角线AC,BD有 什么特定的位置关系?
菱形是特殊的平行四边形,它除具 有平行四边形的所有性质外,还有平行 四边形所没有的特殊性质: 1.菱形的四条边都相等. 2.菱形的两条对角线互相垂直平分, 每一条对角线平分一组对角.
菱形是轴对称图形吗?如果是,它有 几条对称轴?对称轴之间有什么位置 关系? 你能画出一个菱形吗?你是怎么知道 画出的图形是菱形?

菱形的判定(示范课)课件

菱形的判定(示范课)课件
菱形的判定(示范课)课件
• 菱形的定义与性质 • 菱形的判定方法 • 菱形判定的应用 • 菱形判定的注意事项 • 菱形判定的练习题
01 菱形的定义与性质
菱形的定义
菱形是一种特殊的平 行四边形,其四条边 长度相等。
在几何学中,菱形是 轴对称图形,具有两 条垂直且平分的对角 线。
菱形可以被定义为两 组相对边平行且等长 的四边形。
题目2:给定一个四边形,其中两条对角线互相垂直且相等,求证这个四边形是菱形 。
提高练习题
总结词
提升解题技巧
题目2
已知一个四边形的对角线互相垂直且 平分,证明该四边形是菱形。
综合练习题
总结词
综合运用知识
题目1
在矩形ABCD中,E、F分别是BC、CD的中点,且AE垂直于 AF垂直于BC。求证:四边形ABCD是菱形。
判定定理二
总结词
对角线垂直且相交于中点的条件可以用来判定菱形。如果一个四边形的对角线 互相垂直且相交于中点,则这个四边形是菱形。
详细描述
在四边形中,如果对角线互相垂直并且相交于中点,则这个四边形一定是菱形 。这是因为对角线的垂直性质和相交于中点的性质可以确保四边形的所有边都 相等。
判定定理三:邻边垂直的四边形是菱形
题目2
在四边形ABCD中,已知AB=AD,BC=DC,AC垂直于BD。求证: 四边形ABCD是菱形。
THANKS 感谢观看

掌握菱形的性质和判定方法对于 解决几何问题具有重要意义。
菱形在实际生活中有着广泛的应 用,如衣物的图案设计、建筑的
结构设计等。
02 菱形的判定方法
判定定理一:四边相等的四边形是菱形
总结词
四边相等是菱形的基本性质,如果一 个四边形的四条边都相等,则这个四 边形一定是菱形。

菱形的判定 课件

菱形的判定 课件

练习2 如图,顺次连接矩形ABCD各边的中点,得到四
边形EFGH.求证:四边形EFGH是菱形.
A
ED
F
H
B GC
思路点拨: 方法一:由中点联想到连接矩形对角线BD,AC, 可得AC=BD.利用三角形中位线等于第三边的一半, 证明EF=FG=GH=EH.根据判定定理,所以四边形 EFGH是菱形. 方法二:通过证明图中四个直角三角形全等,得到
EF=FG=GH=EH.
一组邻边相等的平行四边形是菱形
B
? 菱形的 对角线互相垂直的平行四边形是菱形 判定
四边都相等的四边形是菱形
探索 如图,用一长一短两根木条,在它们的中点处 固定一个小钉,做成一个可转动的十字,四周围上一 根橡皮筋,做成一个四边形.转动木条,这个四边形 什么时候变成菱形?请说明理由.
例 如图, ABCD的两条对角线AC、BD相交于点O,
B
求证:□ABCD是菱形.
O
A
C
D
证明: ∵四边形ABCD是平行四边形.
∴OA=OC. 又∵AC⊥BD, ∴BD是线段AC的垂直平分线. ∴BA=BC.
B
O
A
C

D
∴四边形ABCD是菱形(菱形的定义).
定理2:四边都相等的四边形是菱形. 求证:四边都相等的四边形是菱形.
已知:如图,四边形ABCD中,AB=BC=CD=AD.
AB=5,AO=4,BO=3.
D
求证:四边形ABCD是菱形. A
O
C
B
证明:∵ OA=4,OB=3,AB=5,
∴ AB2=OA2+OB2,
D
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档