做好几何证明题口诀

合集下载

八年级数学证明题顺口溜

八年级数学证明题顺口溜

证明题,像破案,结论就是嫌疑犯。

已知条件是线索,关键找到突破点。

证明过程要规范,因为条件要写全。

所以必须有依据,定理性质写后边。

角度问题并不难,内角之和永不变。

外角性质不能忘,余角补角很常见。

证明三角形全等,
边边角角边角边。

斜边直角边定理,
五个定理记心间。

角平分线也简单,
性质判定正相反。

关键是要有垂直,
没有就做辅助线。

对称轴是中垂线,
饮马修路找最短。

等腰等边有特性,
三线重合等角边。

30度角很特殊,
对边是斜边一半。

没有30找60,
互相转化不犯难。

45度加直角,
这个图形别小看,
底边中线很厉害,
一大两小像照片。

线段关系题常见,
一般要做辅助线。

截长补短找相等,
倍长中线做转换。

证不下去看已知,
所有条件找一遍。

有的不止用一次,
隐含条件记心间。

记住这些还不够,
演算检查不偷懒。

如果你能全做到,
证明满分必实现。

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。

2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。

3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。

4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。

5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。

6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。

7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。

在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。

2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。

3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。

4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。

综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。

初中几何学习记忆口诀

初中几何学习记忆口诀

初中几何学习记忆口诀常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线加一倍。

梯形里面作高线,平移一腰试试看。

等积式子比例换,寻找相似很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,弦高公式是关键。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

要想作个外接圆,各边作出中垂线。

还要作个内切圆,内角平分线梦园。

如果遇到相交圆,不要忘作公共弦。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

初中数学知识点几何部分总结大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2 b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2 b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中几何证明口诀

初中几何证明口诀

初中几何证明口诀在初中几何中,证明是学习的重要内容之一、通过证明,可以巩固和提高自己对几何知识的理解和应用能力。

以下是一些常用的初中几何证明口诀:1.三角形的内角和定理:三角形内角和为180度。

可以通过绘制平行线、共线线段等方法证明。

2.外角定理:三角形的外角等于其余两个内角的和。

可以通过绘制平行线等方法证明。

3.垂直角定理:垂直角相等。

可以通过绘制平行线、共线线段等方法证明。

4.同位角定理:同位角相等。

可以通过平行线等方法证明。

5.三角形的相似性定理:相似三角形的对应角相等,对应边成比例。

可以通过AA、SSS、SAS等方法证明。

6.圆周角定理:圆周角是圆心角的两倍。

可以通过绘制弧、使用同位角等方法证明。

7.弦切角定理:弦切角等于其对应的弧的一半。

可以通过绘制切线、弧等方法证明。

8.正方形的特性:正方形的四条边相等,四个角为直角。

可以通过对角线等方法证明。

9.等腰三角形的特性:等腰三角形的两边相等,两个底角相等。

可以通过绘制高线等方法证明。

10.平行四边形的特性:平行四边形的对边相互平行,对角线相互平分。

可以通过角平分线等方法证明。

11.三角形的中线定理:三角形的三个中线交于一点,且这点距离三个顶点的距离是各边长的一半。

可以通过线段等方法证明。

12.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

可以通过平行四边形等方法证明。

13.外切圆定理:三角形的外接圆的圆心是三个顶点的垂直平分线的交点。

可以通过角平分线、圆心角等方法证明。

14.圆的切线定理:切线与半径垂直。

可以通过绘制切线、使用垂直角等方法证明。

15.纵横切割定理:两条平行线被一条截线切割,那么两个内角和为180度。

可以通过平行线等方法证明。

这些口诀可以帮助初中生记住一些重要的初中几何证明定理,并引导他们学习如何使用特定的几何性质进行证明。

同时,更重要的是理解定理的证明过程,培养逻辑思维能力和几何推理能力。

OK立体几何口诀

OK立体几何口诀

立体几何口诀
上传: 彭文明更新时间:2015-1-5 15:50:23
学好立几并不难,空间想象是关键。

点线面体是一家,共筑立几百花园。

点在线面用属于,线在面内用包含。

四个公理是基础,推证演算巧周旋。

空间之中两条线,平行相交和异面。

线线平行同方向,等角定理进空间。

判定线和面平行,面中找条平行线。

已知线与面平行,过线作面找交线。

要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

判定线和面垂直,线垂面中两交线。

两线垂直同一面,相互平行共伸展。

两面垂直同一线,一面平行另一面。

要让面与面垂直,面过另面一垂线。

面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

引进向量新工具,计算证明开新篇。

空间建系求坐标,向量运算更简便。

知识创新无止境,学问思辨勇攀登。

多面体和旋转体,上述内容的延续。

扮演载体新角色,位置关系全在里。

算面积来求体积,基本公式是依据。

规则形体用公式,非规形体靠化归。

展开分割好办法,化难为易新天地。

几何证明题解题技巧总结

几何证明题解题技巧总结

几何证明题解题技巧总结在学习几何学的过程中,我们经常会遇到一些证明题,这些题目要求我们根据已知条件给出严谨的证明过程,以达到解题的目的。

因为几何证明题是一种特殊的数学题型,所以我们需要掌握一定的解题技巧。

本文将为大家总结几何证明题解题技巧,帮助大家更好地应对这类题目。

1. 画好图形在解几何证明题之前,首先要画好所给图形。

一个清晰的图形能够让我们更好地理解问题,并且能够帮助我们找到一些有用的线段、角度或者形状关系。

因此,我们需要使用规范的画图工具,如尺子和圆规,画出图形的各个元素,确保图形的形状和比例正确。

2. 利用已知条件在解题过程中,我们需要充分利用已知条件。

已知条件提供了问题的一些限制和前提,通过分析已知条件,我们可以找到一些可能解题的线索。

在应用已知条件时,可以使用等式、比例关系、相似三角形等数学工具进行推理,从而运用数学知识解决问题。

3. 推理演绎几何证明题的解题过程需要运用推理演绎,即从已知条件中推导出结论。

在推理的过程中,我们可以使用数学定理、性质和公式,以及已有的几何知识。

通过逻辑推理,我们可以逐步得出结论,最终完成证明过程。

4. 注意特殊情况在解几何证明题时,我们要特别注意问题中可能存在的特殊情况。

有时,针对特殊情况的分析和推理能够为我们提供更直接的证明思路。

因此,在解题过程中,我们需要根据问题的具体条件,考虑特殊情况,并给出相应的证明过程。

5. 使用反证法反证法是一种重要的解题方法,特别适用于几何证明题。

当用其他方法无法得出结论时,我们可以尝试使用反证法。

反证法的基本思路是,假设所要证明的结论不成立,然后通过推理推导出与已知条件矛盾的结论,从而证明原命题的正确性。

6. 多做几何证明题对于几何证明题来说,熟能生巧。

通过多做一些几何证明题,我们可以积累经验,熟悉各种解题思路和技巧。

同时,多做题目还能够帮助我们提高证明的逻辑性和严谨性,为解决更复杂的几何问题打下坚实的基础。

综上所述,几何证明题解题技巧的掌握是解决这类题目的关键。

初中数学几何证明试题技巧

初中数学几何证明试题技巧

初中数学几何证明题技巧几何证明题入门难,证明题难做,是很多初中生在学习中的共鸣,这里面有好多要素,有主观的、也有客观的,学习不得法,没有适合的解题思路则是此中的一个重要原由。

掌握证明题的一般思路、商讨证题过程中的数学思想、总结证题的基本规律是求解几何证明题的重点。

在这里联合自己的教课经验,说说自己的一些方法与大家一同分享。

一要审题。

好多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这特别不行取。

我们应当逐一条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入坐,结论从什么地方下手去找寻,也在图中找到地点。

二要记。

这里的记有两层意思。

第一层意思是要标志,在读题的时候每个条件,你要在所给的图形中标志出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要切记,题目给出的条件不单要标志,还要记在脑海中,做到不看题,就能够把题目复述出来。

三要引申。

难度大一点的题目常常把一些条件隐蔽起来,因此我们要会引申,那么这里的引申就需要平常的累积,平常在讲堂上学的基本知识点掌握坚固,平常训练的一些特别图形要熟记,在审题与记的时候要想到由这些条件你还能够获得哪些结论(就像电脑一下,你一点击开始马上弹出对应的菜单),而后在图形旁边标明,固然有些条件在证明时可能用不上,可是这样长久的累积,便于此后难题的学习。

四要剖析综合法。

剖析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,仍是边相等,等等,如证明角相等的方法有( 1.对顶角相等 2.平行线里同位角相等、内错角相等 3.余角、补角定理4.角均分线定义 5.等腰三角形 6.全等三角形的对应角等等方法。

而后联合题意选出此中的一种方法,而后再考虑用这类方法证明还缺乏哪些条件,把题目变换成证明其余的结论,往常缺乏的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一同,很条理的写出证明过程。

几何证明题解题口诀

几何证明题解题口诀

几何证明题解题口诀
(作者:河南省唐河县刘军义)
几何做题很容易,证明过程写详细。

数学原理巧运用,前后贯通有条理!
题目信息不放过,必与结果有联系。

学科符号用恰当,统一规范又适宜:
因为所以单点对,大小符号尖相抵;
图形符号缩字同,角线名称字母替。

证理恰切书规范,美观整洁又得体!
解释:
1、题目信息:指题目中给的证明条件。

2、结果:指要证明的内容。

3、因为所以单点对:指“∵”和“∴”竖写时情况。

4、尖相抵:指“>”和“<”横写时的情况。

5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占
一个汉字的位置。

——作于2014年8月17日。

初中几何口诀大全

初中几何口诀大全

初中几何口诀大全初中几何口诀大全:1. 角的种类口诀:锐角钝角直角,加起来是180。

解析:锐角小于90度,钝角大于90度,直角等于90度。

锐角加钝角等于180度。

2. 三角形边长关系口诀:对边比底,中线比高,角平分线,比中线。

解析:三角形中,对边比底边长,中线比底边长的一半,角平分线分割对边比中线长。

3. 直角三角形三边关系口诀:勾股两边立,直角对边开。

解析:直角三角形中,勾股定理:直角边的平方等于两直角边平方和,即a²+ b² = c²。

4. 正多边形内角和口诀:正多边角内角和,等于(n-2)×180度。

解析:正多边形的内角和等于:(n-2)×180度,其中n为边的个数。

5. 圆的性质口诀:半径、直径、弦,关系记三半。

解析:圆的半径是直径的一半,弦是半径的两倍,直径是弦的两倍。

6. 三角形角平分线性质口诀:角平分线,平分角,边分比,比分角。

解析:三角形的角平分线将角平分为相等的两部分,边分比为两边的比例相等,比分角为角平分线角的比例相等。

7. 平行线性质口诀:平行线,对角等,内角和,180度。

解析:平行线对角相等,内角和等于180度,平行线的性质是几何学中的基础知识。

8. 三角形角度和口诀:三角角度和,等于180度。

解析:三角形的内角和等于180度,这是三角形的基本性质,任何三角形的内角和都等于180度。

以上就是初中几何口诀的大全,希望这些口诀能帮助你更好地记忆和理解几何知识,提高学习效率,顺利掌握初中几何的知识。

如果有任何疑问,欢迎继续咨询,我会尽力解答。

初中数学几何证明的口诀

初中数学几何证明的口诀

初中数学几何证明的口诀初中数学几何证明的口诀在学习、工作乃至生活中,大家总免不了要接触或使用证明吧,证明是用以证明自己身份、经历或某事真实性的一种凭证。

想拟证明却不知道该请教谁?以下是小编收集整理的初中数学几何证明的口诀,希望对大家有所帮助。

初中数学几何证明的口诀三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

拓展延续:初中数学几何证明题做题技巧证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

初中几何口诀大全

初中几何口诀大全

初中几何口诀大全初中几何口诀如下:1.过两点有且只有一条直线。

2.两点之间线段最短。

3.同角或等角的补角相等。

4.同角或等角的余角相等。

5.过一点有且只有一条直线和已知直线垂直。

6.直线外一点与直线上各点连接的所有线段中,垂线段最短。

7.平行公理经过直线外一点,有且只有一条直线与这条直线平行。

8.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

9.完全平方公式:首平方、尾平方、首尾两倍放中央、首尾括号带平方、尾项符号随中央。

10.因式分解:单项式除以单项式所得结果是多项式,多项式除以单项式所得结果是单项式。

11.单项式运算:加法、减法、乘法、除法混合运算时,先算乘除,后算加减。

12.一元一次不等式解题的一般步骤是:去分母、去括号、移项、时候要变号、同类项合并好,再把系数来除掉。

13.一元一次不等式组的解集:大大取较大,小小取较小;小大、大小取中间,大小、小大无处找。

14.数学归纳法:归纳递推时,首项正确是关键,假设必须两步全,归纳结论要全面。

15.完全平方公式:首平方、尾平方、首尾两倍放中央、首尾括号带平方、尾项符号随中央。

16.单项式运算:加法、减法、乘法、除法混合运算时,先算乘除,后算加减。

17.因式分解:多项式除以单项式所得结果是多项式,单项式除以单项式所得结果是单项式。

18.平面几何的基本概念:点、线、面、体;两点确定一条直线,两条平行线之间可以确定一个平面;两点之间线段最短;线段的中点到两端点的距离相等;垂线段最短;过一点可以画无数条直线和无数条垂线;线段的中点和线段的两个端点在同一直线上;三点确定一个平面;过一点可以画无数条直线和无数条垂线;过两点有且只有一条直线和一条垂线;过两点有且只有一条直线;过直线外一点有且只有一条直线和已知直线垂直;四个角中有一个直角时,其余三个角都是锐角。

19.立体几何的基本概念:点、线、面、体;一个物体占据一个位置,两个物体占据相对的位置;物体的各部分都是直的,并且各部分之间没有空隙;当一个物体占据一个位置时,其余物体不能同时占据这个位置;在一个平面内过一点可以画一条直线,过两点可以画两条直线;在空间中,过一点可以画一个平面,过两点可以画一个平面;两个平面平行时,它们没有公共点。

初中几何解题技巧口诀

初中几何解题技巧口诀

初中几何解题技巧口诀
1、解决几何形运动问题,求空间位置要定位;
2、解决几何形空间问题,先求几何体的表面;
3、面积求解分三角形,体积积分球体中;
4、求几何体的表面积,可用三角形求和;
5、求几何体的体积,积分球体中心可计;
6、求向量的积分,将其分成三角形;
7、求多边形的面积,可以用叉积的方式;
8、求投影的几何性质,可以用叉积的方式;
9、求变换矩阵公式,向量积求导可以;
10、求三角形内接圆,便是内切圆即可求;
11、椭圆曲线跟踪求,可以用相似三角形;
12、构图交汇线求解,求投影即为求解;
13、求圆锥的奥林匹斯,可以用螺旋线的概念。

高中解析几何秒杀公式数学秒杀秘诀大全

高中解析几何秒杀公式数学秒杀秘诀大全

高中解析几何秒杀公式数学秒杀秘诀大全步骤一:(一化)口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化。

步骤二:点与直线、曲线从属关系的代数化(二代)口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;1、点代入这两个点共同所在的直线把这两个点共同所在直线用点斜式方程(如y=kx+d)表示出来,将这两个点的坐标分别代入这条直线的方程;2、将这条直线的方程代入这条曲线的方程,获得一个一元二次方程;3、把这个一元二次方程的根用韦达定理来表示(这里表示出来的实际上就是这两个点的坐标之间的相互关系式);4、把这个一元二次方程的二次项系数不等于零的条件列出来;5、把这个一元二次方程的判别式?>0列出来。

《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴。

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

《三角函数》三角函数是函数,象限符号坐标注。

初中数学几何证明题的答题技巧

初中数学几何证明题的答题技巧

初中数学几何证明题的答题技巧一要审题。

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。

我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。

这里的记有两层意思。

第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。

分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。

)结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。

很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:(1)正向思维。

几何的顺口溜

几何的顺口溜

特殊点坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

象限角的平分线象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

平行某轴的直线平行轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行Y轴,点的横坐标仍照旧。

对称点坐标对称点坐标要记牢,相反数位置莫混淆, X轴对称y相反, Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

平行线、相交线顺口溜互余两角和为直互补两角和为平余角补角要记清同角等角余补等两线交出对顶角对顶两角同大小三线交,成八角同位角,F状内错角,Z模样同旁内角和U像同位内错分别等必会产生两线平U互补,两线平两线平出三特征同旁内角和周分作线段,画射线射线上面截线段作一角,画射线先在原角画弧线弧线交出两个点重复作法到射线连两点,成线段以此长度画弧线交于前弧于一点过两点,作射线作出射线成角边用尺规,要规范作图痕迹要显现平行四边形的判定要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。

对角线,是个宝,互相平分“跑不了”对角相等也有用,“两组对角”才能成。

梯形问题的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

添加辅助线歌辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

巧记三角函数定义正对鱼磷(余邻)直刀切。

一正二正弦,三切四余弦正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

有关圆的证明添辅助线圆的证明多变换,常常要加辅助线。

证弦相等多留意,作出两条弦心距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档