八年级数学几何证明题技巧含答案

合集下载

初二数学压轴几何证明题(含答案)

初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,理由是:过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC),即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;(2)解:结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,∴∠1=∠2=90°-∠3=∠4,∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中∴△EBC≌△HDC.∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,=,即(1)中的结论仍然成立;(3)解:连接BD,∵AB=,正方形ABCD,∴BD=2,∴cos∠DBE==,∴∠DBE=60°,∴∠ABE=∠DBE-∠ABD=15°,∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析:(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC 上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,∴∠EFG=∠GDH,而∠EGF=∠DGH,GF=GD,∴△GEF≌△GHD,∴EF=DH,而BE=EF,∴DH=BE;(2)连接DB,如图,∵△BEF为等腰直角三角形,∴∠EBF=45°,而四边形ABCD为正方形,∴∠DBC=45°,∴D,E,B三点共线.而∠BEF=90°,∴△FED为直角三角形,而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,∵G为DF的中点,O为BD的中点,M为BF的中点,∴OG∥BF,GM∥OB,∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF=90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.(1)探索EG、CG的数量关系和位置关系并证明;(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.解析:(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG ⊥CG.(3)首先证明:△BEC ≌△FEH ,即可证得:△ECH 为等腰直角三角形,从而得到:EG=CG 且EG ⊥CG .已知,正方形ABCD 中,△BEF为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的数量关系为______;(2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.解:(1)GC=EG ,(1分)理由如下:∵△BEF 为等腰直角三角形, ∴∠DEF=90°,又G 为斜边DF 的中点, ∴EG=DF , ∵ABCD 为正方形, ∴∠BCD=90°,又G 为斜边DF 的中点,∴CG= DF , ∴GC=EG ;(2)成立.如图,延长EG 交CD 于M ,∵∠BEF=∠FEC=∠BCD=90°,∴EF ∥CD ,∴∠EFG=∠MDG ,又∠EGF=∠DGM ,DG=FG ,∴△GEF ≌△GMD ,∴EG=MG ,即G 为EM 的中点.∴CG 为直角△ECM 的斜边上的中线,∴CG=GE= EM ;(3)成立.取BF 的中点H ,连接EH ,GH ,取BD 的中点O ,连接OG ,OC .∵CB=CD ,∠DCB=90°,∴CO= BD1 2 1 21212 12.∵DG=GF,∴GH∥BD,且GH= BD,OG∥BF,且OG= BF,∴CO=GH.为等腰直角三角形.∵△BEF∴EH= BF∴EH=OG.∵四边形OBHG为平行四边形,∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.∴∠GOC=∠EHG.∴△GOC≌△EHG.∴EG=GC.此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)EG=CG,理由为:根据三角形BEF为等腰直角三角形,得到∠DEF为直角,又G为DF中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG为DF的一半,同理在直角三角形DCF中,得到CG也等于DF的一半,利用等量代换得证;(2)成立.理由为:延长EG交CD于M,如图所示,根据“ASA”得到三角形EFG与三角形GDM 全等,由全等三角形的对应边相等得到EG与MG相等,即G为EM中点,根据直角三角形斜边上的中线等于斜边的一半得到EG与CG相等都等于斜边EM的一半,得证;(3)成立.理由为:取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC,如图所示,1212因为直角三角形DCB中,O为斜边BD的中点,根据斜边上的中线等于斜边的一半得到OC等于BD 的一半,由HG为三角形DBF的中位线,根据三角形的中位线平行于第三边且等于第三边的一半,得到GH等于BD一半,OG等于BF的一半,又根据直角三角形斜边上的中线等于斜边的一半得到EH等于BF的一半,根据等量代换得到OG与EH相等,再根据OBHG为平行四边形,根据平行四边形的性质得到对边相等,对角相等,进而得到∠GOC与∠EHG相等,利用“SAS”得到△GOC与△EHG全等,利用全等三角形的对应边相等即可得证.。

八年级数学几何证明题技巧

八年级数学几何证明题技巧

八年级数学几何证明题技巧对于八年级的学生来说,几何证明题是一个全新的挑战。

如何更好地理解和解决这些题目,掌握相应的技巧至关重要。

以下,是我为八年级学生整理的一些几何证明题技巧。

一、理解基本概念首先,你需要理解并掌握几何的基本概念,如线段、角、三角形、四边形等。

这些基本元素及其之间的关系是证明题的基础。

理解这些概念,可以帮助你更好地理解题目的要求,从而找到正确的解题方向。

二、熟悉常用证明方法在几何证明中,有许多常用的证明方法,如直证法、间接证法、辅助线法等。

辅助线法尤其重要,它是解决许多复杂问题的关键。

通过添加辅助线,可以将复杂的图形分解成更易于处理的子图形,从而找到解题的突破口。

三、培养观察力和想象力几何证明需要你具备出色的观察力,能够看到题目中的关键信息,以及想象出题目未直接给出的信息。

通过观察和分析,你可以找到解决问题所需的各种条件,并将其转化为证明语句。

四、学会找规律几何证明题有时会有一定的规律可循。

通过观察和分析不同类型的题目,你可以发现一些常见的模式和技巧。

掌握了这些规律,可以大大提高解题速度和准确性。

五、练习是关键几何证明需要大量的练习来提高你的解题能力。

只有通过不断的练习,你才能更好地掌握各种方法和技巧,提高你的解题速度和自信心。

六、学会自我反思和总结在解题过程中,要学会自我反思和总结。

哪些地方做得好?哪些地方需要改进?如何改进?只有不断地反思和总结,才能不断提高你的解题能力。

七、使用几何工具和软件现代科技为几何证明提供了许多便利。

你可以使用几何工具如直尺、圆规等,也可以使用一些数学软件来帮助你绘制图形和进行计算。

这些工具可以帮助你更好地理解题目和图形,提高解题效率。

八、培养逻辑思维能力在几何证明中,逻辑思维能力至关重要。

你需要按照一定的逻辑顺序来思考和证明问题,从已知条件出发,逐步推导出结论。

通过不断地练习和思考,你可以培养出更加严密的逻辑思维能力。

九、注意细节和规范书写在几何证明中,细节决定成败。

做题技巧数学初中几何证明题

做题技巧数学初中几何证明题

做题技巧数学初中几何证明题推荐文章高考数学答题策略技巧有哪些热度:数学学习方法技巧热度:高考数学概率题解题技巧热度:高考数学答题技巧及注意事项热度:2022高考数学答题技巧热度:初中数学的学习是非常重要的,数学成绩也决定了我们中考成绩的好坏,在数学大大小小的考试中,几何证明题是必考知识点,但是很多同学对于这种题型不知道如何下手,几何题型在将来的高中数学中也是基础内容,所有应该引起大家的重视。

下面给大家分享一些关于做题技巧数学初中几何证明题,希望对大家有所帮助。

一.证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二.证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三.证明两直线平行1.垂直于同一直线的各直线平行。

八年级数学几何题解题技巧

八年级数学几何题解题技巧

一、熟练掌握基本概念解决几何问题时,首先要对几何概念有深入的理解。

对于每一个概念,都要明白它的定义、性质和定理。

例如,在三角形中,要理解三角形的边、角、高的概念,以及三角形的基本性质,如三角形的稳定性、两边之和大于第三边等。

二、演绎推理几何证明题是数学几何题中的一类重要题型,对于这种题目,需要使用演绎推理的方法。

演绎推理是一种严格的逻辑推理方法,它从已知的事实出发,通过逻辑推理得出结论。

在演绎推理中,需要注意使用定理、公理等已知事实,以及推理规则的正确性。

三、辅助线在解决一些较难的几何问题时,通常需要添加辅助线。

辅助线可以帮助我们更好地理解问题的本质,以及找到解决问题的方法。

例如,在证明勾股定理时,可以通过添加辅助线将直角三角形转化为矩形。

四、转化思想转化思想是数学中的一种重要思想方法,它通过将复杂问题转化为简单问题,或者将不规则图形转化为规则图形,从而解决问题。

例如,在求多边形的面积时,可以将多边形转化为三角形或矩形来计算。

五、举一反三在学习数学时,要学会举一反三。

对于一个题目,不仅要会做,还要理解其背后的原理和思路,这样才能在遇到类似问题时游刃有余。

例如,在解决几何问题时,可以通过举一反三的方法,将类似的题目进行归纳和总结,从而更好地掌握解题技巧。

六、细心计算在做数学题时,一定要细心计算。

几何问题通常涉及到大量的计算和证明过程,如果粗心大意,很容易出现错误。

因此,在做几何题时,需要耐心细致地进行计算和证明。

七、系统归纳学习数学需要系统归纳的方法。

可以将所学的知识点进行分类和整理,形成系统的知识结构。

例如,对于几何知识点,可以按照平面几何、立体几何等分类进行整理归纳,方便后续学习和复习。

同时也可以将一些难题或者错题进行归纳整理,以便于及时发现自己薄弱环节并加以改进提高。

总之要想提高八年级数学几何题的解题技巧首先要熟练掌握基本概念并理解每一个概念的性质与定理;其次要学会运用演绎推理方法解决证明题;第三要学会添加辅助线以帮助解决难题;第四要学会转化思想将复杂问题转化为简单问题来解决;第五要学会举一反三总结归纳以掌握解题技巧;第六要细心计算以避免出现错误;最后要将所学的知识点进行系统归纳以便于更好地复习提高学习效率.。

八年级下册数学证明题的技巧

八年级下册数学证明题的技巧

八年级下册数学证明题的技巧八年级下册数学证明题技巧总结在八年级下册数学学习中,遇到证明题是一项非常重要的内容。

掌握证明题的解题技巧,不仅能够提高数学水平,还能培养逻辑思维和推理能力。

本文将详细介绍一些解决八年级下册数学证明题的技巧。

1. 矩形证明法矩形证明法是一种经典的证明思路,通常适用于关于几何形状(如矩形、三角形等)的证明题。

其基本思路是将需要证明的问题转化成一个矩形的性质,再通过对该矩形进行几何推理和计算,最终完成证明。

•确定证明目标•找到合适的矩形•运用几何推理和计算,证明目标得以实现2. 数学归纳法数学归纳法是一种常见的证明方法,通常适用于需要证明某个特定性质对任意正整数是否成立的问题。

其基本思路是通过证明当某个特定性质对某个正整数成立时,它对于下一个正整数也成立,再通过归纳推理证明该性质对所有正整数都成立。

•确定归纳假设•进行归纳基础的证明•进行归纳步骤的证明3. 逻辑推理法逻辑推理法是一种常用的证明方法,通常适用于需要推理判断的问题。

其基本思路是通过利用已知条件和逻辑关系,进行推理判断,得出需要证明的结论。

•确定已知条件•运用逻辑关系进行推理•得出结论,并进行论证4. 反证法反证法是一种常见的证明方法,通常适用于需要判断某个命题是否正确的问题。

其基本思路是通过假设命题不正确,得出与已知事实或已证明事实相矛盾的结论,从而反证命题的正确性。

•假设命题不正确•推理得出与已知事实或已证明事实相矛盾的结论•得出结论与已知事实或已证明事实相矛盾,证明命题的正确性5. 数学定理法当遇到一些已被证明的数学定理时,可以直接运用这些定理来解决相关的证明题。

熟练掌握常见的数学定理,并能够灵活应用,将会在解决证明题时起到事半功倍的效果。

•确定需要运用的数学定理•运用定理进行推理和计算•完成证明过程以上是一些常用的在八年级下册数学学习中解决证明题的技巧总结。

通过熟练掌握这些技巧,相信能够在数学学习中取得好的成绩,并培养自己的逻辑思维和推理能力。

初中数学几何证明试题技巧

初中数学几何证明试题技巧

初中数学几何证明题技巧几何证明题入门难,证明题难做,是很多初中生在学习中的共鸣,这里面有好多要素,有主观的、也有客观的,学习不得法,没有适合的解题思路则是此中的一个重要原由。

掌握证明题的一般思路、商讨证题过程中的数学思想、总结证题的基本规律是求解几何证明题的重点。

在这里联合自己的教课经验,说说自己的一些方法与大家一同分享。

一要审题。

好多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这特别不行取。

我们应当逐一条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入坐,结论从什么地方下手去找寻,也在图中找到地点。

二要记。

这里的记有两层意思。

第一层意思是要标志,在读题的时候每个条件,你要在所给的图形中标志出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要切记,题目给出的条件不单要标志,还要记在脑海中,做到不看题,就能够把题目复述出来。

三要引申。

难度大一点的题目常常把一些条件隐蔽起来,因此我们要会引申,那么这里的引申就需要平常的累积,平常在讲堂上学的基本知识点掌握坚固,平常训练的一些特别图形要熟记,在审题与记的时候要想到由这些条件你还能够获得哪些结论(就像电脑一下,你一点击开始马上弹出对应的菜单),而后在图形旁边标明,固然有些条件在证明时可能用不上,可是这样长久的累积,便于此后难题的学习。

四要剖析综合法。

剖析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,仍是边相等,等等,如证明角相等的方法有( 1.对顶角相等 2.平行线里同位角相等、内错角相等 3.余角、补角定理4.角均分线定义 5.等腰三角形 6.全等三角形的对应角等等方法。

而后联合题意选出此中的一种方法,而后再考虑用这类方法证明还缺乏哪些条件,把题目变换成证明其余的结论,往常缺乏的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一同,很条理的写出证明过程。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明题的技巧
1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;
二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分
解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

?C?90?,AC?BC,AD?DB,AE?CFABC?。

求证:已知:如图例1.1所示,DE=中,DF

CD?A4AB?中点,可考虑连结C分析由,易,是等腰直角三角形可知
AB?DCF??DAE?45?DCF?。

从而不难发现证明:连结CD
AC?BC ??A??B?ACB?90?,AD?DB
?CD?BD?AD,?DCB??B??AAE?CF,?A??DCB,AD?CD ??ADE??CDF?DE?DF
说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的1 / 7
?EFG是等腰直角三角形。

有兴趣的同学不妨一试。

DE,连结BG,证中线。

本题亦可延长ED 到G,使DG=说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:
(1)制造的全等三角形应分别包括求证边或者角;
(2)添辅助线能够直接得到的两个全等三角形
2、证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角
互余,或等腰三角形“三线合一”来证。

∠A?90?,AE?BF,BD?DC。

求证:FD,⊥ED
42. 已知:如图所示,AB=AC 例AEF321CBD图4
证明一:连结AD
AB?AC,BD?DC ?∠1?∠2?90?,∠DAE?∠DAB∠BAC?90?,BD?DC
?BD?AD?∠B?∠DAB?∠DAE?ADE?BDF中,和在?,∠?∠,
?BDBFDAEAEBAD ??ADE??BDF??3??1
??3??2?90??FD?ED说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。

3、证明一线段和的问题
(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。

(截长法) ?ABC?B?60?,∠BAC、∠BCA的角平分线AD、CE相交于63. 例已知:如图所示在中,O。

求证:AC=AE+CD
2 / 7
BEDO142356AFC图6
2?1???AFO???AEO?60B??,知。

由AF分析:在AC上截取=AE。

易知,DCFC?DOC,???3?120??FOC?1?5??6?60?,??60?,?2??604????1?2??3??,得:。

AE
AF=在AC上截取证明:AO,AOBADCAD? ?????SAS?AFO??AEO?
2???4??60?B?又
?0?66??5???0?6??1?0122??3???
?0?2??3?4?6??1??)AASFOC??DOC(??DC?FC?CD?AC?AE即(二)延长一较短线段,使延长后的线段等于另一较长线段,证明该线段等于较长线段。

(补短法)?45EAF??DF
在BC=。

求证:EF中,已知:如图例4. 7所示,正方形ABCD
C。

=DF至此题不易利用正方形这一条件。

不妨延长CBG,使BG 分析:AD?,
90D??ABG???AB证明:延长。

DFBG,使GCB至=ABCD 在正方形中,3 / 7
??ABG??ADF(SAS)3??1??AG?AF,?EAF?45?又??2??3?45??451???2??即∠GAE=∠FAE
EF??GE DFBE??EF?【实战模拟】AC?AD?CE?ABC?C?90?中,⊥CD于D,交BC。

,E,
且有于DED11 1. 已知:如图所示,是AB上一点,1CD?DE求证:2CEABD图11
?ABC?A?2?B,CD是∠C的平分线。

求证:已知:如图 2. 12所示,在BC中,=AC+AD 图1
?ABC的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和133. 已知:如图所示,过CQ。

设M为BC的中点。

求证:MP=MQ
4 / 7
【试题答案】
1.证明:取CD的中点F,连结AF
C14FE3AB
?ADAC ?AF?CD
??AFC??CDE?90??1??4?90?,?1??3?90?又
??4??3?CEAC ??ACF??CED(ASA)
?CF?ED1CDDE??2 2. 分析:本题采用“截长补短”的手法。

“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

5 / 7
EADCB
CA至E,使CE=CB,连结ED 证明:延长CEDCBD??和在中,
CE?CB??ECD?BCD?? ??CDCD??CED???CBD?E??B??
B2??BAC? E?BAC???2E??ADE??BAC?又
AE??ADE,???ADE?AD?ACAEACCEBC????? 3. 证明:CQ于交延长PM R
P
6 / 7
?,?APAP CQBP?BP//CQ
??PBM??RCMBM?CM,?BMP??CMR又
??BPM??CRM RMPM???QM Rt?QPR斜边上的中线是 ?MP?MQ
7 / 7。

相关文档
最新文档