初中数学投影1试题及答案

合集下载

(常考题)人教版初中数学九年级数学下册第四单元《投影与视图》测试题(答案解析)(1)

(常考题)人教版初中数学九年级数学下册第四单元《投影与视图》测试题(答案解析)(1)

一、选择题1.下面几何体的左视图是( )A.B.C.D.2.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个3.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.4.如图所示立体图形,从上面看到的图形是()A.B.C.D.5.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)6.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.67.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④9.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.10.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.11.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.712.如图所示的立体图形的主视图是()A.B.C.D.二、填空题13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.15.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.16.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.17.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.18.如图为一个长方体,则该几何体主视图的面积为______cm2.19.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.20.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题21.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)22.如图是由6个边长为1同样大小的小正方体搭成的几何体;(1)请你在网格中分别画出它的从左面看和从上面看的图形;(2)请求出这个几何体的表面积是多少.23.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.24.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加个小正方体.25.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图:(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体所有可能的左视图.26.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.2.C解析:C【分析】根主视图和左视图可知,考虑俯视图的情况,得到每个位置最多可摆小正方体的个数,相加即可.【详解】由主视图和左视图可知,俯视图可为3×3正方形,每个位置上最多可摆正方体的个数如图所示:因此,最多可由14个正方体搭建而成,故选:C.【点睛】此题考查了几何体三视图的应用问题,根据三视图求几何体的小正方体最多或最少个数,解题的关键是根据三视图得出几何体结构特征.3.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.5.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.7.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.8.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意.故选D【点睛】本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键.9.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.10.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.11.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B.12.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A.点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题13.8【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】由俯视图可知:底层最少有5个小立方体由主视图可知:第二层最少有2个小立方体第三层最少有1个小正方体∴搭成这个几何体的小正方体的个数最少解析:8【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.75【解析】试题解析:7.5【解析】试题当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC AB=,EC EF∵AE=5m,∴43=,10EF解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.15.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.16.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.17.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知解析:12【分析】结合主视图和俯视图分别求出a,b的值,随之即可解答.【详解】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,所以a+b=12.【点睛】本题考查组合体的三视图,熟悉掌握根据图像获取信息是解题关键.18.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则解析:18+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC中,作AD⊥BC于D,则BD=1BC=1 2,在t ABDR△中,∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.20.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题21.(1)主,俯;(2)207.36cm 2【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.22.(1)见解析;(2)这个几何体的表面积是24.【分析】(1)根据三视图的画法解答;(2)从左面、右面看各有4个面,从上面、下面看各有5个面,从前面、后面看各有3个面,由此计算表面积.【详解】(1)(2)从左面、右面看各有4个面,从上面、下面看各有5个面,从前面、后面看各有3个面,每个小正方形的面积为1,+++++⨯=,∴(445533)124答:这个几何体的表面积是24.【点睛】此题考查几何体的三视图的画法,求几何体表面积,正确掌握几何体的三视图是解题的关键.23.(1)14个;(2)见解析;(3)33cm2【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.24.(1)见解析;(2)38;(3)4.【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1) 该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3) 要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.25.(1)详见解析;(2)详见解析.【分析】(1)左视图有两列,小正方形的个数分别是3,1;俯视图有两排,上面-排有4个小正方形,下面一排有2个小正方形;(2) 根据题意可得此正方体应该添加在前排第2个小正方体上,进而可得左视图.【详解】(1)如图所示;(2)添加后可得如图所示的几何体:左视图分别是:【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.26.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.。

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

第二十九章投影与视图29.1投影第1课时投影知能演练提升能力提升1.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()2.如图,树是小明昨天画的一幅画的一部分,则小明创作这幅画的时间大约在()A.早上8点B.中午12点C.下午4点D.不能确定3.如图,晚上小明在灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短,再变长D.先变长,再变短4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,则下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确结论的序号是.5.小军晚上到新世纪广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的一盏路灯一定位于两人.”6.两棵树及其影子的情形如图所示.(1)哪个图反映了在阳光下的情形?哪个图反映了在路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.①②7.如图,小明家楼边立了一根长为4 m的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上(如图),小明测出它落在地面上的影子长为2 m,落在墙壁上的影子长为1 m.此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问:小明应把竹竿移到什么位置?(要求竹竿移动距离尽可能小)8.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?创新应用9.如图,在一面与地面垂直的围墙的同一侧有一根高10 m的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF=2 m,落在地面上的影子BF=10 m;而电线杆落在围墙上的影子GH=3 m,落在地面上的影子DH=5 m.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.A太阳光线是平行的,同一地点同一时刻树与影长的比应是一样的,影子的方向也应相同.2.C3.C路灯的光线可以看成是从一个点发出的,所产生的投影为中心投影.过灯所在的位置点及小明头顶作射线与地面相交,交点到小明脚跟的距离就是影长.如图,根据画出的每个位置的影长容易发现:小明从A到B的影子变化可分为两个阶段:A→M影子越来越短,M→B影子越来越长,因此从A→B影子先变短,再变长,故选C.4.①③④当木杆绕点A按逆时针方向旋转时,如图所示,当AB与光线BC垂直时,m最大,则m>AC,故①成立,②不成立;最小值为AB与底面重合时,即n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.5.之间6.解(1)题图①反映了在阳光下的情形,题图②反映了在路灯下的情形.(2)题图①中的光线是平行的,题图②中的光线相交于一点.(3)如图,AB,EF分别是表示小丽在阳光下和路灯下影长的线段.①②7.解设影子刚好不落在墙上时的影长为x m,则4-12=4x,x=83,所以小明应把竹竿移到离墙83m的位置.8.解能,如图.9.解(1)平行.(2)过点E作EM⊥AB于点M,过点G作GN⊥CD于点N,则MB=EF=2 m,ND=GH=3 m,ME=BF=10 m,NG=DH=5 m,所以AM=AB-MB=10-2=8(m),由平行投影可知,AMME =CNNG,即810=CD-35,解得CD=7 m,即电线杆的高度为7 m.第2课时正投影知能演练提升能力提升1.有一个热水瓶如图所示,平行光线从正前方照射得到它的正投影是()2.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影3.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影试验,矩形木板在地面上形成的投影不可能是()4.在太阳光下,转动一个正方体,观察正方体在地面上投下的影子,那么这个影子最多可能是()A.四边形B.五边形C.六边形D.七边形5.正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或一条线段C.矩形D.菱形6.在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子,将光源改为灯光将如何?7.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,求圆柱的体积和表面积.创新应用8.如图,已知一纸板的形状为正方形ABCD,AD,BC与投影面平行,AB,CD与投影面不平行.(1)画出它的正投影A1B1C1D1;(2)若其边长为10 cm,∠ABB1=45°(点B1与点B是对应点),求正投影A1B1C1D1的面积.能力提升1.A2.D3.A4.C最多可能是如图所示的六边形ABCDEF.5.B6.解(1)(2)可作为太阳光照射下的影子;(1)(2)(3)可作为灯光照射下的影子.7.解因为圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,所以圆柱的底面半径为2,高为4.所以圆柱的体积是π×22×4=16π,圆柱的表面积是2×π×22+4π×4=24π.创新应用8.解(1)正投影A1B1C1D1如图所示.(2)如图,过点A作AH⊥BB1于点H.∵∠ABB1=45°,∴△ABH是等腰直角三角形,∴AH=√2AB=5√2 cm,2∴A1B1=AH=5√2 cm.∵A1D1=AD=10 cm,∴矩形A1B1C1D1的面积=A1B1·A1D1=5√2×10=50√2(cm2).即正投影A1B1C1D1的面积是50√2 cm2.。

(完整)初中数学三视图专题试题及答案1,推荐文档

(完整)初中数学三视图专题试题及答案1,推荐文档

面右图由 7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是


A
B
C
D
4、下面是空心圆柱在指定方向上的视图,正确的是…( )
(A)
(B)
(C)
(D)
5、画出下面实物的三视图:
参考答案: 课前小测:
72
1、短 2、
35
第二十九章 投影与视图 29.2 三视图
64
3、 4、矩形,圆 5、空心圆柱
A.O B. 6 C.快 D.乐 三、综合训练:
1.小明从正面观察下图所示的两个物体,看到的是( )
正面
A
B
C
D
ห้องสมุดไป่ตู้
2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用
的小立方块的个数是( )
A5个 B6个
C7个
D8个
主主主主主主
主主主
主主主
3、如果用□表示 1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下
第二十九章 投影与视图
29.2 三视图 一、课前小测: 1、身高相同的甲、乙两人分别距同一路灯 2 米、3 米,路灯亮时,甲的影子比乙的影子
(填“长”或“短”) 2、小刚和小明在太阳光下行走,小刚身高 1.75 米,他的影长为 2.0m,小刚比小明矮
5cm,此刻小明的影长是________m. 3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都
15
二、基础训练: 1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)
圆锥;(5)俯视图,正视图,左视图;(6)12. 2、A;3、C 4、B 5、B 三、综合训练: 1、C 2、D 3、B;4、A;5、题图:

人教版初中数学九年级数学下册第四单元《投影与视图》测试(有答案解析)(1)

人教版初中数学九年级数学下册第四单元《投影与视图》测试(有答案解析)(1)

一、选择题1.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.2.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.154.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个5.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.6.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形9.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 10.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④11.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个12.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.14.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.15.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.16.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)17.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.18.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.19.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.20.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.三、解答题21.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.22.如图,将一个大立方体挖去一个小立方体,请画出它的三种视图.23.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,a b的值为___________.若这样的几何体最少要个a小正方体,最多要b个小正方体,则24.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.25.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形(1)判断该几何体形状;(2)求该几何体的侧面展开图的面积(结果保留π)26.如图是由几个小立方体所搭几何体的俯视图,小正方体的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的图形.(在所提供的方格内涂上相应的阴影即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.2.A解析:A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,故选:A.【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.3.B解析:B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.4.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.5.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.7.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.8.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选A.【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.9.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意.故选D【点睛】本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键.11.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题13.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.14.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.15.【解析】【分析】易得此几何体为圆柱底面直径为2cm 高为圆柱侧面积底面周长高代入相应数值求解即可【详解】解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积故答案为【点睛】 解析:26πcm【解析】【分析】易得此几何体为圆柱,底面直径为2cm ,高为3cm.圆柱侧面积=底面周长⨯高,代入相应数值求解即可.【详解】解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱, 故侧面积2π236πcm =⨯⨯=.故答案为26πcm .【点睛】此题主要考查了由三视图判断几何体及几何体的展开图的知识;本题的易错点是得到相应几何体的底面直径和高.16.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.17.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).18.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66【点睛】此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.20.8【分析】如图∠CPD=90°QC=4mQD=9m利用等角的余角相等得到∠QPC=∠D则可判断Rt△PCQ∽Rt△DPQ然后利用相似比可计算出PQ【详解】解:如图∠CPD=90°QC=4mQD=16解析:8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.三、解答题21.32【分析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.【详解】解:根据该几何体的三视图知道其是一个六棱柱,设正六边形的中心为O,连接OA、OB,作OD⊥AB于D,由图可知其高为12cm,底面半径为5cm,∴侧面积为6×5×12=360cm2,∵∠AOB=360°÷6=60°,∴△AOB是等边三角形,∴AB=5cm,OD=sin60°×OA=53cm,∴密封纸盒2个底面的面积为:153⨯⨯⨯⨯= cm2,26575322∴其全面积为:(753+360)cm2.【点睛】本题考查了由三视图判断几何体,等边三角形的判定与性质,正六边形的性质,以及解直角三角形的知识,解题的关键是正确的判定几何体.22.见解析【分析】直接利用三视图的观察角度分别得出视图即可.【详解】如图所示:.【点睛】此题考查几何体的三视图的画法,能会看几何体根据几何体得到各面的形状是解题的关键,注意不可见的棱线需要画成虚线.23.(1) 10; (2) 主视图、左视图和俯视图见解析; (3) 22.【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.25.(1)圆锥;(2)10π.【分析】(1)由三视图可知,该几何体是圆锥;(2)根据圆锥的侧面积公式计算即可.【详解】解:(1)由三视图可知,该几何体是圆锥;(2)侧面展开图的面积=π×2×5=10π.【点睛】本题考查三视图,圆锥等知识,解题的关键是掌握圆锥的侧面积公式.26.见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,3,1;从左面看有4列,每列小正方形数目分别为3,1,3,1.据此可画出图形.【详解】解:【点睛】本题考查几何体的三视图画法.由几何体的从上面看得到的图形及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.从左面看的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.。

(常考题)人教版初中数学九年级数学下册第四单元《投影与视图》检测卷(答案解析)(1)

(常考题)人教版初中数学九年级数学下册第四单元《投影与视图》检测卷(答案解析)(1)

一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.123.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c24.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.285.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A .B .C .D .6.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A .6B .5C .4D .37.下列说法错误的是( )A .高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B .对角线互相垂直的四边形是菱形C .方程x 2=x 的根是x 1=0,x 2=1D .对角线相等的平行四边形是矩形8.如图所示立体图形,从上面看到的图形是( )A .B .C .D . 9.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m10.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 11.如图,路灯距地面 8m ,身高 1.6m 的小明从点 A 处沿 AO 所在的直线行走 14m 到点 B 时,人影长度 ()A .变长 3.5mB .变长 2.5mC .变短 3.5mD .变短 2.5m 12.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是( )A .0个B .1个C .4个D .3个二、填空题13.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.14.如图,用棱长为1cm 的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm 2.15.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.16.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.17.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.18.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.19.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.20.写出两个三视图形状都一样的几何体:__________、__________.三、解答题21.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.22.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)23.(1)根据如图(1)所示的主视图、左视图、俯视图,这个几何体的名称是 .(2)画出如图(2)所示几何体的主视图、左视图、俯视图.24.树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?25.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.26.如图是由几个边长为1个单位的正方体搭成的几何体.(1)请画出这个几何体的三视图;(2)这个几何体的体积为______个立方单位;(3)若保持上述正方体搭成的几何体的俯视图不变,各位置的正方体个数可以改变(正方体的总数目不变),则搭成的几何体的表面积最大为_____个平方单位.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.2.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.D解析:D【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.4.D解析:D【分析】从6个方向数正方形的个数,再加上层中间的两个表面,从而得到几何体的表面积.【详解】它的表面积=5+5+5+5+3+3+2=28.故选:D.【点睛】本题考查了几何体的表面积:几何体的表面积=侧面积+底面积(上、下底的面积和).5.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.6.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.7.B解析:B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x2=x的根是x1=0,x2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m . 故选A . 10.A解析:A【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2.故选A .【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.11.C解析:C【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【详解】解:设小明在A 处时影长为x ,AO 长为a ,在B 处时影长为y .∵AC ∥OP ,BD ∥OP ,∴△ACM ∽△OPM ,△BDN ∽△OPN ,∴ACMA OP MO ,BD BN OP ON ,则1.68xx a,1.6148yy a∴x=14a,y=14a-3.5,∴x−y=3.5,故变短了3.5米.故选:C.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出相似三角形,再利用相似三角形的对应边成比例求解是解答此题的关键.12.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.二、填空题13.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.14.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=1解析:34【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+5+2=13个小正方体;故最多需要13个小正方体,最少需要9个小正方体.最少的小正方体搭成几何体的表面积是(6+6+5)×2=34.故答案为34;【点睛】本题考查由三视图判断几何体,做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.15.14【解析】试题解析:14【解析】试题根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.16.9【解析】试题解析:9【解析】试题∵由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6个正方体,主视图和左视图可得第2层最多有1+1=2个正方体,最上一层最多有1个正方体,∴组成该几何体的正方体最多有6+2+1=9个.所以本题的正确答案应为9个.17.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.18.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.19.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.20.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相解析:球;正方体.【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.三、解答题21.(1)①见解析;②见解析;③见解析;(2)见解析【分析】(1)①根据线段的定义画图即可;②根据网格特点和平行线的定义画图即可;③根据网格特点和垂线的定义画图即可;(2)主视图有3列,左侧一列有3层,中间一列有2层,右侧一列有1层;【详解】(1)①如图所示;②如图所示;③如图所示;(2)如图所示,【点睛】本题考查了线段、平行线、垂线的画法,以及三视图的画法,熟练掌握三视图的画法是解答本题的关键.22.(1)主,俯;(2)207.36cm2【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.23.(1)球(体);(2)见解析【分析】(1)根据三视图都是圆,可得几何体为球体;(2)分别画出从正面、左面、上面看所得到的图形即可.【详解】解:(1)球体的三视图都是圆,则这个几何体为球体;故答案为:球;(2)如图所示:【点睛】此题主要考查了作图——三视图,关键是掌握从正面、左面、上面看所得到的图形,注意所看到的棱都要表示到图中.24.树AB高14 3m【分析】根据树和标杆平行列出比例式代入相关数据即可求解.【详解】解:∵AB与CD平行,∴AB:BE=CD:DE,∴AB:7=2:3,解得AB=14 3故树AB高143m.【点睛】考核知识点:平行投影.理解平行投影性质是关键.25.见解析【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.26.(1)见解析;(2)7;(3)30【分析】(1)从正面看得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可;(2)找到小正方体的数目之和即为体积之和;(3)将中间1列上面的正方体改为第3列上面即可求解.【详解】(1)如图所示:(2)4+2+1=7(立方单位).故答案为:7;(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成的几何体的表面积最大为28+2=30个平方单位(包括底面积).故答案为:30.【点睛】此题考查了作图-三视图,用到的知识点为:计算几何体的面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.。

(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(含答案解析)(3)

(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(含答案解析)(3)

一、选择题1.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加()个.A.3 B.4 C.5 D.62.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.3.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.84.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.126.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.324cm12cm D.3 6cm B.38cm C.38.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A .122cmB .142cmC .162cmD .182cm 10.若几何体的三视图如图所示,则该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱 11.如图是一个由多个相同小正方体堆积而成的几何体从上面看到的形状图,图中所示数字为该位置小正方体的个数,则这个几何体从正面看到的形状图是( )A .B .C .D . 12.下列哪种影子不是中心投影( )A .皮影戏中的影子B .晚上在房间内墙上的手影C .舞厅中霓红灯形成的影子D .太阳光下林荫道上的树影二、填空题13.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x +y =_____.14.如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,数学兴趣小组的同学进行了如下测量.某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为3米,落在地面上的影子BF 的长为8米,而电线杆落在围墙上的影子GH 的长度为3.5米,落在地面上的影子DH 的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是______米.15.一个几何体的三视图如图所示,则这个几何体是_____.16.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.17.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).18.根据几何体的主视图和俯视图,搭成该几何体的小正方体最多___________个.19.一个长方体的主视图和左视图如图所示(单位:cm),则这个长方体的体积是_____cm3.20.如图,是一个实心圆柱体的三视图(单位:cm),根据图中数据计算这个圆柱体的体积是__________cm3.三、解答题21.如图,在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学在测量树的高度时,发现树的影子有一部分(0.2 米)落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是 4.62米.”小强说:“要是没有台阶遮挡的话,树的影子长度肯定比 4.62米要长.”(1)你认为谁的说法对?并说明理由;(2)请根据小玲和小强的测量数据计算树的高度.【答案】(1)小强的说法对,理由见解析;(2)8米.【分析】(1)画出解题示意图,利用同一时刻,物高与影长成正比,计算判断即可;(2)利用同一时刻,物高与影长成正比,计算判断即可;【详解】解:(1)小强的说法对;根据题意画出图形,如图所示,根据题意,得10.6DE EH =, ∵DE=0.3米,∴0.30.60.18EH =⨯=(米). ∵GD ∥FH ,FG ∥DH ,∴四边形DGFH 是平行四边形,∴0.2FH DG ==米.∵AE=4.42米,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8(米),即要是没有台阶遮挡的话,树的影子长度是4.8米,∴小强的说法对;(2)由(1)可知:AF=4.8米. ∵10.6AB AF =, ∴8AB =米.答:树的高度为8米.【点睛】本题考查了太阳光下的平行投影问题,准确理解影长的意义,灵活运用同一时刻,物高与影长成正比是解题的关键.22.如图,AB和DE是直立在地面上的两根立柱.AB=6m,某时刻AB在阳光下的投影为BC.(1)请在图中画出此时DE在阳光下的投影;(2)如果测得BC=4m,DE在阳光下的投影长为6m,请计算DE的长.【答案】(1)答案见解析;(2)9m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】(1)如图所示,DE在阳光下的投影为EF;(2)∵AB∥DE,AC∥DF,∴△ABC∽△DEF,∴AB BCDE EF=,即646 DE=,∴DE=9.答:DE的长为9m.【点睛】此题主要考查了应用设计与作图,正确掌握平行投影的性质是解题关键.23.如图是由四个大小相同的小正方体搭成的一个立体图形,画出从正面,从上面,从左面三个方向看到的立体图形的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是两层:下层3个正方形,上层1个靠中间;从左面看到的图形是2层:下层2个正方形,上层1个靠左边;从上面看到的图形是两行:后面一行3个正方形,前面一行1个正方形靠左边,据此即可画图【详解】解:如图【点睛】此题考查了从不同方向观察几何体,锻炼了学生的空间想象力和抽象思维能力.24.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数.(1)请在方格纸中分别画出从正面、从左面看到的这个几何体的形状图;(2)若每个小立方体的边长为1cm,根据从三个方向看到的形状图,直接写出这个几何体的表面积为______2cm.【答案】(1)见解析;(2)24【分析】(1)由已知条件可知,从正面看有2列,每列小正方数形数目分别为2,3,从左面看有2列,每列小正方形数目分别为3,1.据此可画出图形.(2)首先确定该几何体的六个面上裸露的正方形的个数,然后确定面积即可.【详解】解:(1)如图所示.(2)该几何体的表面积为2×(3+4+5)=24;故答案为:24.【点睛】本题考查从不同方向看几何体,重点考查学生的空间想象能力,要弄清楚每个方向有几列,每列有多少个正方体.25.某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN 方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.【答案】(1)见解析;(2)4m【分析】(1)作射线MA和GC交于O,过O作OH⊥MN,垂足为H;(2)证明△CDG∽△OHG和△ABM∽△OHM,列比例式,可得OH的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD ∥OH ,∴△CDG ∽△OHG , ∴CD DG OH GH =, ∵AB=CD=1.5, ∴1.5 1.21.2OH DH=+①, ∵AB ∥OH ,∴△ABM ∽△OHM , AB BM OH MH=, ∴1.536OH DH=+②, 由①②得:OH=4,则OH 的长为4m .【点睛】 本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.26.由7个相同的小立方块搭成的几何体如图所示.(1)请画出从正面、左面和上面看到的这个几何体的形状图;(2)若每个小立方块的棱长为1,请计算它的表面积.【答案】(1)见解析;(2)28【分析】(1)主视图从左往右3列正方形的个数依次为2,1,2;左视图从左往右2列正方形的个数依次为2,1;俯视图从左往右3列正方形的个数依次为2,2,1,依此画出图形即可; (2)查出从前后,上下,左右可以看到的面,然后再加上中间空两边的两个正方形的2个面,进行计算即可求解.【详解】(1)如下图(2)2(535)2S =⨯+++表2132=⨯+28=【点睛】考查画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形,(2)中要注意中加空处的两边的两个正方形的两个面也是表面积的一部分,容易漏掉而导致出错.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】为保持这个几何体的从左面看和从正面看到的形状图不变,可在最底层第二列第三行加1个,第三列第二行加2个,第三列第三行加1个,即可得最多可以再添加4个小正方体.【详解】解:保持从上面看到的图形和从左面看到的图形不变,最多可以再添加4个小正方体; 故选:B .【点睛】本题主要考查了由三视图判断几何体,根据主视图和左视图解答是解题的关键. 2.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C ,故选:C .【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.3.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.4.D解析:D【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.8.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.9.B解析:B【分析】利用三视图的观察角度不同得出行数与列数,结合主视图以及表面积的求解方法即可求得答案.【详解】由视图可得第一层有2个小正方体,第二层有1个小正方体,一共有3个,表面积为:2×(2+2+3)=14cm2,故选B.【点睛】本题考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.10.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,∴几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.11.C解析:C【解析】根据俯视图可判断主视图有3列,根据数字可判断每列最多的小正方体的个数,即可得答案.【详解】由俯视图中的数字可得:主视图有3列,从左到右的最大数字分别是:3,3,2.故选C.【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方体数目为俯视图中该列小正方体数字中的最大数字.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.【点睛】解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.4或5【分析】俯视图中的每个数字是该位置小立方体的个数结合主视图2列中的个数分析其中的数字从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列最高叠有2解析:4或5【分析】俯视图中的每个数字是该位置小立方体的个数,结合主视图2列中的个数,分析其中的数字,从而求解.【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列最高叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高叠3个正方体,故y=3,则x+y=4或x+y=5,故答案为:4或5.本题考查了根据三视图判断几何体的构成及对几何体三种视图的空间想象能力.注意找到该几何体的主视图中每列小正方体最多的个数.14.11【解析】【分析】过点E 作于M 过点G 作于利用矩形的性质和平行投影的知识可以得到比例式:即由此求得CD 即电线杆的高度即可【详解】过点E 作于M 过点G 作于N 则所以由平行投影可知即 解得即电线杆的高度为1 解析:11【解析】【分析】过点E 作EM AB ⊥于M ,过点G 作GN CD ⊥于.N 利用矩形的性质和平行投影的知识可以得到比例式:AM CN ME NG =,即83105CD -=,由此求得CD 即电线杆的高度即可. 【详解】过点E 作EM AB ⊥于M ,过点G 作GN CD ⊥于N .则33MB EF ==, 3.5ND GH ==,10ME BF ==,6NG DH ==.所以13310AM =-=,由平行投影可知,AM CN ME NG =, 即 10 3.586CD -=, 解得11CD =,即电线杆的高度为11米.故答案为11.【点睛】本题考查了相似三角形的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.16.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5【详解】首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.17.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形解析:可能根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.18.7【分析】根据几何体的三视图可进行求解【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个)故答案为7【点睛】本题主要考查几何体的三视图熟练掌握几何体的三视图是解题的关键解析:7【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为7.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.19.24【分析】由所给的视图判断出长方体的长宽高根据体积公式计算即可【详解】由主视图可知这个长方体的长和高分别为3和4由左视图可知这个长方体的宽和高分别为2和4因此这个长方体的长宽高分别为324因此这个解析:24【分析】由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为3×2×4=24cm3.故答案为:24.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.20.【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的体积【详解】解:先由三视图确定该几何体是圆柱体底面半径是2÷2=1(cm)高是5cm所以该几何体的体积为π×12×5=5π(cm3)故答案为:【点解析:5π【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的体积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1(cm),高是5cm.所以该几何体的体积为π×12×5=5π(cm3).故答案为:5π.【点睛】本题考查了由三视图确定几何体和求圆柱体的体积,关键是根据三视图确定该几何体是圆柱体.三、解答题21.无22.无23.无24.无25.无26.无。

初中数学 习题1:投影

初中数学 习题1:投影

《投影》习题1、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定2、在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午B.中午C.下午D.无法确定3、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时4、对同一建筑物,相同时刻在太阳光下的影子冬天比夏天( )A.短B.长C.看具体时间D.无法比较5、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④B.④①③②C.④②③①D.④③②①6、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( )9A.变长B.变短C.先变长后变短D.先变短后变长7、平地上立着三根等高的木杆,其俯视图如图所示(图(1)(2)分别表示两个不同时刻的情况),图中画出了其中一根木杆在太阳光下的影子,请你在图中画出另外两根木杆在同意时刻的影子.(1) (2)8、与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图所示),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?9、如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的应高为2米,求旗杆的高度.。

最新初中数学投影与视图经典测试题及答案(3)

最新初中数学投影与视图经典测试题及答案(3)

最新初中数学投影与视图经典测试题及答案(3)一、选择题1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.4.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A.48 B.57 C.66 D.48236【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.5.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.6.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.7.小亮领来n 盒粉笔,整齐地摆在讲桌上,其三视图如图,则n 的值是( )A .7B .8C .9D .10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【答案】C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.11.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B. C.D.【答案】B【解析】【分析】根据三视图的意义进行分析,要注意观察方向是从左边看.【详解】解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.故选B.【点睛】考核知识点:简单组合体的三视图.12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.13.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.考查了简单组合体的三视图,从上边看得到的图形是俯视图.14.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断. 15.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】 如图所示的几何体,从左面看到的形状图是。

(必考题)初中数学九年级数学上册第五单元《投影与视图》检测题(包含答案解析)(1)

(必考题)初中数学九年级数学上册第五单元《投影与视图》检测题(包含答案解析)(1)

一、选择题1.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加( )个.A .3B .4C .5D .62.一个三棱柱的三视图如图所示,其中俯视图为等边三角形,则其表面积为( )A .1223+B .183+C .1823+D .1243+ 3.“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有26cm 高,小开拿了一些A 正方体木块和B 正方体木块过来帮忙,已知A 正方体木块高2cm ,B 正方体木块高bcm ,且A 、B 两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有40cm 高,则所有满足要求的整数b 的值的和为( ) A .12 B .15 C .16 D .174.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D . 5.如图是由四个相同的小正方体组成的立体图形,它的主视图为( ).A.B.C.D.6.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A.B.C.D.7.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.324cm12cm D.3 6cm B.38cm C.38.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是()A.6 B.7 C.8 D.99.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.10.一个物体如图所示,它的俯视图是()A.B.C.D.11.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影二、填空题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为_____.14.如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,数学兴趣小组的同学进行了如下测.某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的量影子BF的长为8米,而电线杆落在围墙上的影子GH的长度为3.5米,落在地面上的影子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是______米.15.一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为,则a的值为__________.16.如图,太阳光线与地面成60 的角,照在地面的一只排球上,排球在地面的投影长是143cm,则排球的直径是___________cm;17.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.cm.18.如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为219.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的最小值与最大值的和为______.20.直角三角形的两条边的长分别是3cm 和4cm ,以直角边所在的直线为轴,将三角形旋转一周,所得几何体的俯视图的面积是__________.三、解答题21.如图是一个正三棱柱及俯视图:(1)请分别画出它的主视图、左视图;(2)若4AC =,6AA '=,则左视图的面积为_____________.【答案】(1)见解析;(2)123【分析】(1)观察图形,根据主视图和左视图的定义即可画出图形,注意看不见的线用虚线; (2)过点B 作BD ⊥AC 于点D ,左视图的面积等于BD 乘棱柱的高,利用勾股定理求得BD 即可.【详解】(1)作图如下:(2)如图,∵是正三棱柱,∴△ABC 为等边三角形,AB =AC =4,过点B 作BD ⊥AC 于点D ,∵4AC =,∴2AD =,4AB AC ==, ∴2223BD AB AD =-=,则左视图的面积为236123⨯=.【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在将侧视图的宽看成底边的边长.22.已知一个几何体的三视图如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.(结果精确到1cm 2)【答案】6021cm 2【分析】根据主视图和侧视图为一个长方形,而俯视图都为一个等腰直角三角形形,故这个几何体为一个直三棱柱.表面积=2个直角边为底长方形的面积+2个等腰直角三角形的面积+1个斜边为底的大长方形面积.【详解】解:∵有2个视图为长方形,∴该几何体为柱体,∵第3个视图为直角三角形,∴该柱体为直三棱柱,∵直角三角形斜边长为:2230+30=302cm ,∴表面积为123030+25030+503022⨯⨯⨯⨯⨯⨯≈6021cm 2.【点睛】本题主要考查了由三视图确定几何体和求直三棱柱的表面积,掌握由平面的三视图到空间立体图图形的想象是解题关键23.如图所示是一个几何体的主视图和左视图,其俯视图是一个等边三角形,求该几何体的体积和表面积.【答案】体积是33. 【分析】根据主视图和左视图为一个长方形,而俯视图都为一个等边三角形,故这个几何体为一个正三棱柱.表面积=3长方形的面积+2个等边三角形的面积,体积=底面积×高.【详解】解:∵一个几何体的主视图和左视图是长方形,∴该几何体为柱体, ∵俯视图为等边三角形,∴该柱体为正三棱柱,∵由主视图宽12,高20,∴正三菱柱的底面边长为12,棱柱的高为20,∵底面等边三角形面积为:2312=3634, ∴该几何体的体积为:36320=7203⨯⨯⨯.∴表面积为:2363+12320=723+720【点睛】本题主要考查了由三视图确定几何体和求正三棱柱的表面积与体积,掌握由平面的三视图到空间立体图图形的想象是解题关键.24.根据要求画图,并回答问题:如图1是一些小方块所搭几何体的俯视图,俯视图的每个小正方形中的数字表示该位置的小方块的个数,(1)请在图2的网格中画出这个几何体的主视图和左视图;(2)在不改变俯视图、主视图、左视图的情况下,最多能添加个小方块.【答案】(1)画图见解析;(2)3【分析】(1)根据俯视图的每个小正方形中的数字表示该位置的小方块的个数,画出主视图、左视图即可;(2)观察左视图、主视图以及俯视图即可判断.【详解】解:(1)这个几何体的主视图和左视图如图所示:;(2)在不改变俯视图、主视图、左视图的情况下,如图:最多能添加3个小方块.故答案为3.【点睛】本题考查三视图,具备空间想象能力是解题的关键.25.作图题:从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.【答案】见解析.【分析】直接利用画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等,进而得出答案.【详解】【点睛】此题主要考查了作三视图,正确把握观察角度进而得出三视图的形状是解题关键.26.某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN 方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.【答案】(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD ∥OH ,∴△CDG ∽△OHG , ∴CD DG OH GH=, ∵AB=CD=1.5, ∴1.5 1.21.2OH DH=+①, ∵AB ∥OH ,∴△ABM ∽△OHM , AB BM OH MH=, ∴1.536OH DH=+②, 由①②得:OH=4,则OH 的长为4m .【点睛】 本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】为保持这个几何体的从左面看和从正面看到的形状图不变,可在最底层第二列第三行加1个,第三列第二行加2个,第三列第三行加1个,即可得最多可以再添加4个小正方体.【详解】解:保持从上面看到的图形和从左面看到的图形不变,最多可以再添加4个小正方体;故选:B.【点睛】本题主要考查了由三视图判断几何体,根据主视图和左视图解答是解题的关键.2.C解析:C【分析】由题意可知,图形为三棱柱,求三棱柱的表面积,即为5个面的面积之和.【详解】解:如图:作EF⊥MN,垂足F.因为底面是正三角形, EF⊥MN所以,S△EMN123=3 2=⨯因为侧面是矩形所以,S矩形ABCD236=⨯=S三棱柱的表面积=5个面的面积之和,=3S矩形ABCD+2S△EMN1323+2232=⨯⨯⨯⨯3.故选C.【点睛】本题考查了通过三视图求表面积,解题的关键是学生的空间想象能力,能通过三视图将原图复原.3.D解析:D【分析】根据题意可知用A、B正方体磊高了14cm,由于数量相同,假设用了k个A正方体和k个B正方体,则可列式(2+b)k=14,然后经过讨论得出结论即可.【详解】解:城堡原来高26cm,现在高40cm,所以,城堡增加了:40-26=14cm则用A、B正方体磊高了14cm,而A正方体木块高2cm,B正方体木块高bcm,设用了k个A正方体和k个B正方体,则有(2+b)k=14①当k=1时,b=14-2=12cm②当k=2时,b=14252-=cm仅有2种符合题意,∴12+5=17故选:D.【点睛】本题考查了立体图形,解题的关键根据立体图形正确得出A、B立方体木块之间的关系.4.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.6.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.7.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.8.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.9.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.10.D解析:D【解析】【分析】从图形的上方观察即可求解.【详解】俯视图从图形上方观察即可得到,故选D.【点睛】本题考查几何体的三视图;熟练掌握组合体图形的观察方法是解题的关键.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.【点睛】解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.48【分析】观察该几何体的三视图发现该几何体为正六棱柱然后根据提供的尺寸求得其侧面积即可【详解】由三视图知该几何体是底面边长为2高为4的正六棱柱∴其侧面积之和为2×4×6=48故答案为48【点睛】本解析:48【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【详解】由三视图知该几何体是底面边长为2、高为4的正六棱柱,∴其侧面积之和为2×4×6=48.故答案为48.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.14.11【解析】【分析】过点E作于M过点G作于利用矩形的性质和平行投影的知识可以得到比例式:即由此求得CD即电线杆的高度即可【详解】过点E作于M过点G作于N则所以由平行投影可知即解得即电线杆的高度为1解析:11【解析】【分析】过点E 作EM AB ⊥于M ,过点G 作GN CD ⊥于.N 利用矩形的性质和平行投影的知识可以得到比例式:AM CN ME NG =,即83105CD -=,由此求得CD 即电线杆的高度即可. 【详解】过点E 作EM AB ⊥于M ,过点G 作GN CD ⊥于N .则33MB EF ==, 3.5ND GH ==,10ME BF ==,6NG DH ==.所以13310AM =-=,由平行投影可知,AM CN ME NG =, 即 10 3.586CD -=, 解得11CD =,即电线杆的高度为11米.故答案为11.【点睛】本题考查了相似三角形的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.【解析】试题分析:本题考查三视图的有关知识解题关键是理解左视图中的a 就是俯视图等边三角形的高学会用方程的思想解决问题属于中考常考题型根据左视图中的a 就是俯视图等边三角形的高由此根据侧面积列出方程即可 233【解析】 试题分析:本题考查三视图的有关知识,解题关键是理解左视图中的a 就是俯视图等边三角形的高,学会用方程的思想解决问题,属于中考常考题型.根据左视图中的a 就是俯视图等边三角形的高,由此根据侧面积列出方程即可解决.由题意:23333 解得233故答案为233. 考点:由三视图判断几何体.16.21【解析】试题分析:由题意可知所以即排球的直径是21cm 考点:投影;锐角三角函数解析:21【解析】试题分析:由题意,可知143DE =,所以3sin 6014321DC DE cm ︒=⋅=⨯=,即排球的直径是21cm.考点:投影;锐角三角函数17.①;595【解析】试题解析:①;5.95.【解析】试题小明从路灯下A 处,向前走了5米到达D 处,行走过程中,他的影子将会越来越长; ∵CD ∥AB ,∴△ECD ∽△EBA ,∴CD DE BA AE =,即1.7225AB =+, ∴AB=5.95(m ).考点:中心投影. 18.36【分析】正六角螺母侧面为6个相同的长方形求出每个长方形的面积即可得出它的侧面积【详解】2×3=6cm26×6=36cm2故答案为:36【点睛】本题主要考查正六棱柱的三视图将三视图上边的长度转化为解析:36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm 2,6×6=36cm 2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.19.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.20.7或9或16【分析】分当3和4分别为直角边时和当4为斜边3为直角边时两种情况讨论即可【详解】当3和4分别为直角边时①当绕边长为3的边旋转俯视图为半径为4的圆∴俯视图的面积为:42=16;②当绕边长为解析:7π或9π或16π【分析】分当3和4分别为直角边时和当4为斜边,3为直角边时,两种情况讨论即可.【详解】当3和4分别为直角边时,①当绕边长为3的边旋转,俯视图为半径为4的圆,∴俯视图的面积为:42π=16π;②当绕边长为4的边旋转,俯视图为半径为3的圆,∴俯视图的面积为:32π=9π;当4为斜边,3为直角边时,,绕边长为3的边旋转时,∴)2π=7π;故答案为:7π或9π或16π.【点睛】本题考查了圆的面积,勾股定理,三视图,旋转的性质,掌握分类讨论的思想是解题关键.三、解答题21.无22.无23.无24.无25.无26.无。

初中数学北师大版九年级上学期_第五章_51_投影

初中数学北师大版九年级上学期_第五章_51_投影

初中数学北师大版九年级上学期第五章 5.1 投影一、单选题(共6题;共12分)1. 长方形的正投影不可能是()A.正方形B.长方形C.线段D.梯形2. 一个等边三角形在太阳光的照射下,在地面上的投影不可能是()A. B. C. D.3. 如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顾序排列正确的是()A.①②③④B.④③②①C.④③①②D.②③④①4. 如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长5. 两个人的影子在两个相反的方向,这说明( )A.他们站在阳光下B.他们站在路灯下C.他们站在路灯的两侧D.他们站在月光下6. 如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.二、填空题(共5题;共5分)如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为________.小明的身高为1.6米,他在阳光下的影长为0.8米,同一时刻,测得校园的旗杆的影长为4.5米,则该旗杆的高为________米.甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是________如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而________(填“变大”、“变小”或“不变”).小明的身高是米,他的影长是米,同一时刻古塔的影长是米,则古塔的高是________米.三、解答题(共1题;共5分)如图,花丛中有一路灯AB.在灯光下,小明在点D处的影长DE=3m,沿BD方向行走到达点G,DG=5m,这时小明的影长GH=5m.如果小明的身高为1.7m,求路灯AB的高度.(精确到0.1m)参考答案与试题解析初中数学北师大版九年级上学期第五章 5.1 投影一、单选题(共6题;共12分)1.【答案】D【考点】平行投影【解析】根据平行投影的特点:在同一时刻,平行物体的投影乃旧平行,即可得出答案.【解答】解:在同一时刻,平行物体的投影乃旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是梯形,故选:D.2.【答案】A【考点】中心投影【解析】根据等边三角形木框的摆放方向得出投影图形,即可得出答案.【解答】无论等边三角形如何摆放,不可能是一当,故A符合题意,当等边三角形木框与阳光平行时,投影是线段,故B不符合题意,当等边三角形木框与阳光垂直时,投影是等边三角形,故C不符合题意;当等边三角形木框与阳光有一定角度时,投影是三角形,故D不符合题意;故选:A.3.【答案】C【考点】平行投影【解析】根据太阳的方向判断影子的方向即可,太阳与影子的方向相反.【解答】解:太阳从东方升起,正午在南方,傍晚自西方落下:影子的朝向升起时朝西,上午时朝西北,正午朝北,下午朝东北,傍晚朝东故答案为:④③①②4.【答案】B【考点】中心投影【解析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【解答】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.5.【答案】C【考点】平行投影中心投影【解析】本题考查中心投影的特点.【解答】解:根据两个人的影子在两个相反的方向,则一定是中心投影;且两人同在光源两侧.故选C.6.【答案】D【考点】平行投影【解析】本题考查正投影的定义及正投影形状的确定.在平行投影中,投影线垂直于投影面产生的投影叫做正投影.【解答】根据题意:水杯的杯口与投影面平行,即与光线垂直,则它的正投影图应是D.故答案为:D.二、填空题(共5题;共5分)【答案】12m【考点】相似三角形的应用【解析】此题中,竹竿、旗杆以及经过竹竿和旗杆顶部的太阳光线正好构成了一组相似三角形,利用相似三角形的对应边成比例即可求得旗杆的长.【解答】如图,AD=8m,AB=30m,DE=3.2m;由于DE // BC,则△ADE∽△ABC,得:AD AB =DEBC,即830=3.2BC,解得:BC=12m,故旗杆的高度为12m.【答案】9【考点】平行投影【解析】设旗杆为xm,根据在同一时刻物高与影长的比相等得到x1.6=4.50.8,然后利用比例性质求出x即可.【解答】设旗杆为xm,根据题意得:x 1.6=45 0.8解得:x=9所以旗杆为9米.故答案为:9.【答案】相等【考点】平行投影【解析】根据平行投影特点:在同一时刻,不同物体的物高和影长成比例,即可得出答案.【解答】解:根据在同一时刻,不同物体的物高和影长成比例;故同一时刻他们的身高与其影长成比例,即同一时刻他们的身高与影长的比相等.故答案为:相等.【答案】变小【考点】中心投影【解析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.【答案】【考点】平行投影【解析】根据同一时刻,同一地点,同一平面,不同物体的长度与影长成比例即可建立方程,求解即可.【解答】解:设古塔的高为X米.由题意得:x18=1.62,解得:x=14.4.故答案为:14.4.三、解答题(共1题;共5分)【答案】解:由题意,得AB⊥BH,CD⊥BH,FG⊥BH,∴CD//AB.∴ΔCDE∽ΔABE.∴CDAB =DEBD+DE.①同理,ΔFGH∽ΔABH,∴FGAB =HGHG+GD+DB.②又∵CD=FG=1.7,∴由①,②可得DEBD+DE =HGHG+GD+BD,即3BD+3=55+5+BD,解得BD=7.5.将BD=7.5代入①,得AB=5.95≈6.0.故路灯AB的高度约为6.0m.【考点】中心投影【解析】根据|AB⊥BH,CD⊥BH,FG⊥BH,可得:△ABE−△CDE,则有CDAB =DEBD+DE和FG AB =HGHG+GD+DB,而CD=FG,即可得DEBD+DE=HGHG+GD+DB,从而求出BD的长,再代入前面任意一个等式中,即可求出AB.【解答】此题暂无解答。

人教版初中数学九年级数学下册第四单元《投影与视图》测试题(有答案解析)(1)

人教版初中数学九年级数学下册第四单元《投影与视图》测试题(有答案解析)(1)

一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.下面四个几何体中,俯视图为四边形的是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个5.如图,该几何体的俯视图是()A.B.C.D.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm28.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1010.如图所示几何体的左视图是()A.B.C.D.11.如图所示的几何体的俯视图为( )A.B.C.D.12.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.14.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.15.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.16.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.AB CD,17.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//=,点P到CD的距离为2.7m,则AB与CD间的距离是CD m=, 4.51.5AB m________m.18.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.19.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.20.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题21.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.22.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.23.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.24.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).25.如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.26.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【解析】A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.3.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.4.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.5.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键. 7.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.8.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形. 故选A .【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.9.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.10.B解析:B【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.11.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题13.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.14.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角解析:2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm cm,三棱柱的高为3cm,∴其左视图为长方形,长为3cm,∴面积为:cm2),故答案为:2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.15.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.16.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为,俯视图为正方形,∴长方体的底面边长为=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.17.【分析】由AB∥CD得:△PAB∽△PCD由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB∥CD∴△PAB∽△PCD假设CD到AB距离为x则:即x=18∴AB与CD间的距离是18m;故解析:1.8【分析】由AB∥CD得:△PAB∽△PCD,由相似三角形对应高之比等于对应边之比,列出方程求解.【详解】∵AB∥CD,∴△PAB ∽△PCD ,假设CD 到AB 距离为x , 则:2.72.7AB x CD -= 即1.5 2.74.5 2.7x -=, x=1.8,∴AB 与CD 间的距离是1.8m ;故答案是:1.8.【点睛】 考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题). 18.bdca 【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca 考点:简单几 解析:bdca .【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b ,d ,c ,a .考点:简单几何体的三视图.19.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.20.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题21.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯=⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 22.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位);(2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.24.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.25.见解析.【分析】根据三视图的定义画出图形即可.该几何体的三视图如图所示:【点睛】此题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.26.见解析【分析】根据三视图的定义,画出图形即可.【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.。

2021学年初中数学《投影》同步练习(一)含答案及解析

2021学年初中数学《投影》同步练习(一)含答案及解析

2021学年初中数学《投影》同步练习(一)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____米.2、如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).3、小明同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为米。

4、某一时刻,身高为165cm的小丽影长是55cm,此时,小玲在同一地点测得旗杆的影长为5m,则该旗杆的高度为m。

5、如图,小丽和小华在院子内捉迷藏游戏,院内有3堵墙,现在小丽站在O点,小华如果不想被小丽看见,则不应该站在的区域是.6、高4米的旗杆在水平地面的影长为10米,此时测得附近一棵小树的影长为22.5米,则这棵树的高度为_______________。

7、在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为_________________米。

8、如图所示是一球吊地空中,当发光的手电筒由远及近时,•落在竖直木板上的影子会逐渐_________.二、选择题(共10题)1、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为()A、3.2米B、4.8米C、5.2米D、5.6米2、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④ B.④①③② C.④②③① D.④③②①3、如图所示,在房子外的屋檐E处安有一台监视器,房子前有一块落地的广告牌,那么监视器的盲区在( )A.△ACE B.△BFD C.四边形BCED D.△ABD4、某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()5、电影院呈阶梯或下坡形状的主要原因是( )A.为了美观B.盲区不变C.增大盲区D.减小盲区6、下列四幅图形中, 表示两棵小树在同一时刻阳光下的影子的图形可能是( )7、如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在路上的影子( )A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短8、下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系( )9、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间先后顺序正确的是()A.a→b→c→d B.d→b→c→aC.c→d→a→b D.a→c→b→d10、中午12点,身高为165cm的小明的影长为55cm,同学小红此时的影长为60cm,那么小红的身高为( )A.180cm B.175cm C.170cm D.160cm三、计算题(共2题)1、电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM = 1. 6 m,DN = 0. 6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子。

人教版九年级数学下册投影同步练习题

人教版九年级数学下册投影同步练习题

第二十九章投影与视图29.1投影一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列光线所形成的投影是平行投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【答案】A【解析】四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律【答案】B【解析】在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选B.3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为A.上午8时B.上午9时C.上午10时D.上午12时【答案】A【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选A.学科=网4.小红和小花在路灯下的影子一样长,则她们的身高关系是A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【答案】D【解析】小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断她们身高关系.故选D.5.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度A.变长3.5m B.变长2.5mC.变短3.5m D.变短2.5m【答案】C6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】如图,由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.二、填空题:请将答案填在题中横线上.7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是__________.(填写“平行投影”或“中心投影”)【答案】中心投影【解析】因为在同一时刻,两根长度不等的木杆置于阳光之下,当它们都垂直于地面或都倒在地上或平行插在地面时,木杆长的它的影子就长;当它们垂直竖立在地面上时,它们的影长相等,此时只能是中心投影.故答案为:中心投影.8.如图所示,此时树的影子是在__________(填“太阳光”或“灯光”)下的影子.【答案】太阳光【解析】此时的影子是在太阳光下的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光.9.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__________(用“=、>或<”连起来)【答案】S1=S<S2【解析】∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.10.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为__________.【答案】3 4【解析】∵DC∥AO,∴△ECD∽△EAO,∴DEOE=DCAO,∴3DEDE=15,解得DE=34,即CD在x轴上的影子长为:34;故答案为:34.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.【解析】如图所示,点O即为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.12.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试题(答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试题(答案解析)

一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.4.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几-=()何体的小正方体最少有a个,最多有b个,b aA.3 B.4 C.5 D.65.如图所示几何体的俯视图是()A.B.C.D.6.如图所示,该几何体的俯视图为()A.B.C.D.7.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为()A.B.C.D.8.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变9.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.10.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.11.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.55二、填空题13.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.14.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是_____.15.几个相同的正方形叠合在一起,该组合的正视图(即从正面看到的图形)和俯视图(即从上面看到的图形)如下所示,那么组合体中的正方体的个数至少为__________,最多__________个.16.写出图中圆锥的主视图名称________.17.用一些大小相同的小正方体搭成一个几何体,使得从正面和上面看到的这个几何体的形状如图所示,那么,组成这个几何体的小正方体的块数至少为____________.18.一个几何体的三视图如图所示,则这个几何体是_____.19.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.20.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是_____.三、解答题21.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm ,长为7cm ,左视图的宽为3cm ,俯视图为直角三角形,其中斜边长为5cm ,求这个几何体中所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)所有棱长的和为45cm ;表面积为296cm ;体积为342cm【分析】(1)根据三视图可以判断该几何体是三棱柱;(2)根据三视图和直三棱柱各棱长的关系求出各棱长,再根据表面积和体积公式计算即可.【详解】解:(1)根据三视图,这个几何体是三棱柱 ;(2)由题意,棱长的和:()4232527345cm ⨯+⨯+⨯+⨯= ,表面积:()()24322345796cm⨯÷⨯+++⨯=, 体积:()3432742cm ⨯÷⨯=,答:所有棱长的和为45cm ;表面积为296cm ;体积为342cm .【点睛】本题考查由三视图判断几何体、求棱柱的表面积和体积,熟记常见几何体的三视图,掌握三视图与几何体的各棱长关系是解答的关键.22.如图,是由10个同样大小的小正方体搭成的物体.(1)请在网格中分别画出从正面、上面观察该几何体得到的平面图形并涂上阴影....;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面和上面观察得到的平面图形不变,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)3【分析】(1)根据三视图的画法画出从正面看、从上面看所得到的图形;(2)在俯视图的各个位置上摆放的最多数量即可.【详解】解:(1)从正面、上面观察该几何体所得到的图形如图所示:(2)根据主视图和俯视图的关系,可得最多可以添加3个,故答案为:3.【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.23.如图,这是一个小正方体所搭建的几何体的俯视图,正方形中的数字表示在该位置小正方体的个数,请你画出从正面看和从侧面看的图形.【答案】见详解【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.如图1,这是一个由27个同样大小的立方体组成的三阶魔方,体积为27.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)如图2,把图1中的正方形ABCD 放到数轴上,使得点A 与−1重合,那么点D 在数轴上表示的数为 .【答案】(1)3;(2)面积为:553)15-【分析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A 表示的数减去边长即可得解.【详解】解:(1)设魔方的棱长为x ,则327x =,解得:3x =;(2)棱长为3,∴每个小立方体的边长都是1,∴正方形ABCD 22125+2(5)5ABCD S ∴==正方形;(3)正方形ABCD 的边长为5,点A 与1-重合,∴点D 在数轴上表示的数为:15--,故答案为:15--.【点睛】本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长.25.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.【答案】答案见解析【分析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.【详解】【点睛】本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.26.在平整的地面上,有一个由若干个相同的小立方块搭成的几何体,如图所示. (1)请依次画出从正面、左面、上面看这个几何体得到的图形;(2)现在还有一些相同的小立方块,如果要保持从上面和左面看到的图形不变,那么最多可以添加几个这样的小立方块?【答案】(1)答案见解析;(2)3.【分析】(1)根据题中的几何图形以及从正面看的方向即可解答;(2)保持从上面看和从左面看所得图形不变,可往第二列的小正方体上各放一个小正方体,第3列的小正方体上放1个小正方体.【详解】解:(1)如图所示(2)保持从上面看和从左面看所得图形不变,可往第二列的小正方体上各放一个小正方体,第3列的小正方体上放1个小正方体,∴最多可以添加3个这样的小立方块.【点睛】本题考查作图−三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【详解】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.【点睛】考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.4.C解析:C【分析】由主视图、俯视图可知,俯视图最多可能为2×3的长方形,再在俯视图上各个位置,摆放小立方体,即可得到a和b的值.【详解】由主视图、左视图可知,俯视图最多可能为2×3的长方形,在相应位置摆放小立方体,直至最少,如图所示:a=,∴5在相应位置摆放小立方体,直至最多,如图所示:b=,∴10b a-=-=.∴1055故选:C.【点睛】本题考查了简单几何体的三视图的意义和画法,主视图反映的是几何体长与高的关系、左视图反映宽与高的关系,画三视图时还要注意“长对正、宽相等、高平齐”.5.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.6.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.7.A解析:A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.8.A解析:A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.9.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.10.A解析:A【分析】利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【详解】A、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高;主视图的长方形的宽为三棱柱的底面三角形的边长,所以A选项正确;B、左视图和主视图都是相同的正方形,所以B选项错误;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选A.【点睛】本题考查了简单几何体的三视图:画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.会画常见的几何体的三视图.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.A解析:A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.二、填空题13.【分析】根据该立体图形的三视图可判断该立体图形为圆柱且底面直径为8高为8根据圆柱的体积公式即可得答案【详解】∵该立体图形的三视图为两个正方形和一个圆∴该立体图形为圆柱且底面直径为8高为8∴这个立体图解析:128π【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为π×42×8=128π,故答案为:128π【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.14.6cm2【分析】先根据从左面从正面看到的形状图的相关数据可得从上面看到的形状图是长为3宽为2的长方形再根据长方形的面积公式计算即可【详解】根据从左面从正面看到的形状图的相关数据可得:从上面看到的形状解析:6cm2【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【详解】根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm2;故答案为6cm2.【点睛】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.15.10【分析】由所给视图可得此几何体有3列3行2层分别找到第二层的最多个数和最少个数加上第一层的正方体的个数即为所求答案【详解】第一层有1+2+3=6个正方体第二层最少有2个正方体所以这个几何体最少有解析:10【分析】由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数和最少个数,加上第一层的正方体的个数即为所求答案.【详解】第一层有1+2+3=6个正方体,第二层最少有2个正方体,所以这个几何体最少有8个正方第一层有1+2+3=6个正方体,第二层最多有4个正方体,所以这个几何体最多有10个正方体组成.故答案为8,10.【点睛】本题考查了三视图,解题的关键是根据三视图判断几何体的个数.16.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.17.8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状从主视图可以看出每一层小正方体的层数和个数从而算出总的个数解:∵俯视图有5个正方形∴最底层有5个正方体由主视图可得第2层最少有2个正方解析:8【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,故答案为8.考点:由三视图判断几何体.18.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.19.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.20.23【分析】由主视图和左视图可得:这个几何体有3层3列3行最底层有1+2+3=6个正方体第二层最多有5个最少有2个第三层最多有3个最少有1个求出最大值与最小值再求和即可【详解】解:综合主视图和俯视图解析:23【分析】由主视图和左视图可得:这个几何体有3层,3列,3行,最底层有1+2+3=6个正方体,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,求出最大值与最小值,再求和即可.【详解】解:综合主视图和俯视图,底面有3+2+1=6个,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,最多有:6+5+3=14,最小有:6+2+1=9,那么n的最大和最小值的和是14+9=23.故答案为:23.【点睛】本题考查由几个相同的小正方形搭成的几何体个数问题,视图的形状决定几何体行与列和层,正视图决定层数与列数,左视图决定行数与层数,而俯视图决定行数与列数,图形的形状除了决定行、列、层外,还有位置.三、解答题21.无22.无23.无24.无25.无26.无。

(必考题)初中数学九年级数学上册第五单元《投影与视图》检测卷(答案解析)(1)

(必考题)初中数学九年级数学上册第五单元《投影与视图》检测卷(答案解析)(1)

一、选择题1.如图所示几何体的左视图正确的是()A.B.C.D.2.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.3.如图所示,左侧的几何体是由若干个大小相同的小正方休组成的,该几何体的主视图(从正:面看)是( )A.B.C.D.4.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.85.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为()A.6 B.10 C.4 D.6或106.由n个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n的最小值为()A.10 B.11 C.12 D.137.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m的最小值是()A.6 B.5 C.4 D.38.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.9.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.10.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.11.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变12.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.二、填空题13.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.14.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是_____.(说出一种形状即可)15.如图,电灯P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到AB的距离是__________m.16.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).17.如图所示,AOC ∠和BOD ∠都是直角,若35DOC ∠=︒,则AOB ∠的补角的度数为__________.FJ1. 如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的图形的面积为12,则这个长方体的体积等于__________.FJ2. 若一个角的余角的度数为25︒,则它的补角的度数为__________.18.如图是由若干个棱长为1的小正方体堆砌而成的几何体,那么这个几何体露在外面的面积是_____.19.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22⨯的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.20.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是_____.三、解答题21.如图是由10个同样大小的小正方体搭成的几何体.(1)请分别画出它的主视图和俯视图;(2)这个几何体的表面积是________.【答案】(1)见解析;(2)38.【分析】(1)观察可以发现:主视图有3列,每列小正方形数目分别为3,I,2;俯视图有3列,每列小正方形数目分别为3,2,1;(2)分别从各个方向确定可以看到的正方形面数,相加后乘1个面的面积即可.【详解】解:(1)如图所示:(2)(1×1)×(6+6+7+7+6+6)=1×38=38该几何体的表面积是38.故答案为38.【点睛】本题主要考查了几何体的三视图画法以及几何体的表面积,根据立体图形可知主视图、左视图、俯视图确定出有几列且每一列上的有几个正方形成为解答本题的关键.22.如图是由几个相同的小立方块所搭成的几何体,请画出这个几何体的三种视图.【答案】图见解析.【分析】根据俯视图、主视图、左视图的定义即可得.【详解】这个几何体的三种视图如下所示:【点睛】本题考查了几何体的三视图,熟练掌握三视图的画法是解题关键.23.如图是一些棱长为1cm的小立方块组成的几何体.请你画出从正面看,从左面看,从上面看到的这个几何体的形状图.【答案】见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.24.图中几何体由7个边长为1cm的正方体搭成,分别画如图几何体的主视图、左视图、俯视图.并算出此几何体的表面积【答案】图见解析,228cm .【分析】根据主视图、左视图、俯视图的定义画出图形即可;有顺序的计算前后面、左右面、上下面的表面积之和即可得.【详解】由主视图、左视图、俯视图的定义画出图形如下所示:由题意得:小正方体的每个面的面积为()2111cm ⨯=,则其表面积为()262142142128cm ⨯⨯+⨯⨯+⨯⨯=. 【点睛】本题考查了三视图、几何体的表面积,熟练掌握三视图的概念是解题关键.25.如图,三棱柱的上下底面均为周长为12cm 的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm 的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?【答案】(1)长方形;(2)46【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ).【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.26.如图1,这是一个由27个同样大小的立方体组成的三阶魔方,体积为27.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)如图2,把图1中的正方形ABCD 放到数轴上,使得点A 与−1重合,那么点D 在数轴上表示的数为 .【答案】(1)3;(2)面积为:553)15-【分析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A 表示的数减去边长即可得解.【详解】解:(1)设魔方的棱长为x ,则327x =,解得:3x =;(2)棱长为3,∴每个小立方体的边长都是1,∴正方形ABCD 的边长为:22125+=,2(5)5ABCD S ∴==正方形;(3)正方形ABCD 的边长为5,点A 与1-重合,∴点D 在数轴上表示的数为:15--,故答案为:15--.【点睛】本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看所得到的图形是:故选:A .【点睛】本题考查了简单几何体的三视图,关键是掌握左视图所看的位置.2.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C ,故选:C .【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.3.D解析:D【分析】根据简单组合体的三视图的意义可得答案,从正面看到的图形是底层有3个,上层的右侧有1个正方形.【详解】解:从这个组合体的正面看到的是两行,从正面看到的图形是底层有3个,上层的右侧有1个正方形,故D符合题意.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.5.D解析:D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【点睛】考核知识点:三视图.理解圆柱体三视图特点是关键.6.C解析:C【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.C解析:C【分析】根据主视图和俯视图可先确定该几何体右侧只有一个正方体,再判断左侧可能的结果数即得答案.【详解】解:由主视图可知该几何体共两列,且左侧一列高两层,右侧一列高一层;由俯视图可知该几何体左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:C.【点睛】本题主要考查了几何体的三视图和空间观念,熟练掌握几何体的三视图、把平面图形和立体图形有机结合是解答的关键.8.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.9.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.10.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.11.A解析:A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.12.A解析:A【分析】利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【详解】A、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高;主视图的长方形的宽为三棱柱的底面三角形的边长,所以A选项正确;B、左视图和主视图都是相同的正方形,所以B选项错误;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选A.【点睛】本题考查了简单几何体的三视图:画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.会画常见的几何体的三视图.二、填空题13.【分析】根据三视图可得出该几何体为圆锥圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开是一个扇形)用字母表示就是S=πr²+πrl (其中l=母线是圆锥的顶点到圆锥的底面圆周之间的距离解析:16π【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl (其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴²42616S r rl πππππ=+=+⨯⨯=故答案为:16π.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.14.矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形故答案为:矩形或正方形或平行四边形解析:矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形.故答案为:矩形或正方形或平行四边形.15.1【解析】试题分析:根据AB ∥CD 易得△PAB ∽△PCD 根据相似三角形对应高之比等于对应边之比列出方程求解即可考点:1相似三角形的应用2中心投影解析:1【解析】试题分析:根据AB ∥CD ,易得,△PAB ∽△PCD ,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.考点:1.相似三角形的应用.2.中心投影.16.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形 解析:可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.17.35°24115°【分析】根据角的数量关系求得∠AOD 的度数然后求解∠AOB 的度数然后根据补角的概念进行计算即可;FJ1由主视图的面积=长×高长方体的体积=主视图的面积×宽得出结论;FJ2根据一个角解析:35° 24 115°【分析】根据角的数量关系求得∠AOD 的度数,然后求解∠AOB 的度数,然后根据补角的概念进行计算即可;FJ1.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论;FJ2.根据一个角的补角比这个角的余角大90°得出补角为90°+25°,求出即可.【详解】解:由题意可得:AOC ∠=BOD ∠=90°,35DOC ∠=︒∴903555AOD AOC COD ∠=∠-∠=-=∴=5590145AOB AOD BOD ∠∠+∠=+=∴AOB ∠的补角的度数为180°-145°=35°FJ1.依题意,得长方体的体积=12×2=24.FJ2.∵一个角的余角的度数是25°,∴这个角的补角的度数是90°+25°=115°,故答案为:35°;24;115°.【点睛】本题考查了角的数量关系计算,立体图形的视图与其体积的关系,补角和余角,能知道一个角的补角比这个角的余角大90°是解此题的关键.18.23【分析】根据简单组合体的三视图的面积得出该几何体的露在外面的面积【详解】解:(5+3)×2+5+2=23故答案为:23【点睛】此题主要考查几何体的三视图正确理解三视图的概念是解题关键解析:23【分析】根据简单组合体的三视图的面积,得出该几何体的露在外面的面积.【详解】解:(5+3)×2+5+2=23,故答案为:23.【点睛】此题主要考查几何体的三视图,正确理解三视图的概念是解题关键.19.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据 解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示, 所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.20.185πcm2【分析】由三视图得圆锥的地面直径为10cm 圆锥的高为12cm 在轴截面中根据勾股定理求出圆锥母线长进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm 高为12cm 求出圆柱侧面积;相加解析:185π cm 2【分析】由三视图得圆锥的地面直径为10cm ,圆锥的高为12cm ,在轴截面中根据勾股定理求出圆锥母线长,进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm ,高为12cm ,求出圆柱侧面积;相加即可求出几何体侧面积.【详解】解:由三视图可知,圆锥的底面直径为10cm ,高为12cm ,圆柱地面直径为10cm ,高为12cm .则OA=5cm ,在Rt △POA 中,13PA cm == ,圆的周长为10πcm , ∴几何体的侧面积为110131012=65120=1852πππππ⨯⨯+⨯+ cm 2.故答案为:185π cm2【点睛】本题考查了三视图,圆锥的侧面积,圆柱的侧面积等知识点,解题的关键是根据三视图确定圆锥,圆锥的相关数据,牢记圆锥,圆锥的侧面积公式.三、解答题21.无22.无23.无24.无25.无26.无。

(必考题)初中九年级数学下册第二十九章《投影与视图》经典练习(含答案解析)

(必考题)初中九年级数学下册第二十九章《投影与视图》经典练习(含答案解析)

一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示的几何体的俯视图是( )A .B .C .D . 3.如图所示的几何体的主视图是( )A .B .C .D . 4.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?( )A .12个B .13个C .14个D .15个5.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A.4个B.5个C.6个D.7个6.如图,该几何体的俯视图是()A.B.C.D.7.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时8.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.如图所示的几何体的左视图是()A.B.C.D.12.如图所示几何体的左视图是()A.B.C.D.13.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.14.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.15.如图所示的立体图形的主视图是()A.B.C.D.二、填空题16.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.19.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.20.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.21.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.22.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.23.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.24.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.25.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,45EF cm EG cm12,18∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.28.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.29.阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.①它是正面体,有个顶点,条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,该正多面体的体积为 cm3;(2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要个小正方体,他所搭几何体的表面积最小是;(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称:.30.画出下面图形的三视图.(请把线条加粗加黑!)。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(答案解析)

一、选择题1.如图所示,左侧的几何体是由若干个大小相同的小正方休组成的,该几何体的主视图(从正:面看)是( )A.B.C.D.2.如图所示的几何体的主视图是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A .B .C .D .5.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+6.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .13个B .16个C .19个D .22个7.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为( )A.B.C.D.8.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”9.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形10.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是()A.6 B.7 C.8 D.911.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.14.如图,一个 5 ⨯ 5 ⨯ 5 的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则凿掉部分的体积为_____.15.长方体从正面看和从上面看所得到的图形如图所示,则这个长方体的体积是________.16.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.17.如图是一个正六棱柱的主视图和左视图,则图中a的值为____.18.如图,是一个实心圆柱体的三视图(单位:cm ),根据图中数据计算这个圆柱体的体积是__________cm 3.19.一透明的敞口正方体容器装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α,(CBE α∠=,如图1所示),此时液面刚好过棱CD ,并与棱'BB 交于点Q ,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,当正方体平放(正方形ABCD 在桌面上)时,液体的深度是__________dm .20.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔的正方体的表面积(含孔内各面)是__________.三、解答题21.如图,甲是由5个棱长为1cm 的小正方体搭成的几何体. (1)请在下面方格纸中分别画出甲的主视图和左视图;(2)该几何体甲的表面积为cm².(3)若用n个同样的正方体搭几何体乙,使其主视图、左视图与甲完全相同,则n的最大值为.【答案】(1)画图见解析;(2)22(3)7【分析】(1)根据主视图和左视图的定义画出图形即可.(2)利用三视图数出六个方向的小正方形的个数,总个数乘一个小正方形的面积即可求解.(3)根据主视图可知这个几何体有2层3列,从左视图看有2层2列,底层最多有6个小正方体,顶层最多有1个,两层的个数相加即可.【详解】(1)如图所示:(2)∵从主视看有4个小正方形,从对面看也有4个,从左视图看有3个小正方形,从对面看也有3个,从俯视图看4个小正方形,从对面看也有4个,∴几何体的表面共有22个小正方形,每个小正方形面积为1cm²,∴该几何体甲的表面积为22cm².(3)∵根据主视图可知这个几何体有2层3列,从左视图看有2层2列,∴结合主视图与左视图,底层最多有6个小正方体,顶层最多有1个,∴乙几何体最多由7个小正方体搭成,n .∴7【点睛】本题考查三视图,从不同方向看几何体,求小立方块堆砌图形的表面积,并由三视图还原几何体,易错点是由三视图确定立方体的最多块数.22.如图是由8个相同的小立方体组成的一个几何体,请分别画出这个几何体从左面、从上面看到的形状图.【答案】见解析.【分析】左视图有3列,每列小正方形数目分别为2,3,1;俯视图有3列,每列小正方形数目分别为2,1,2.【详解】如图所示:【点睛】本题考查几何体的三视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.23.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.【答案】(1)5,22;(2)答案见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为1,1,2;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为2,1,1.【详解】(1)几何体的体积:1×1×1×5=5(立方单位),表面积:(4+3+4)×2=22(平方单位);故答案为:5,22;(2)如图所示:.【点睛】本题主要考查了画几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.24.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.【答案】见解析【分析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.【详解】由图可得几何体的三视图如下:主视图左视图俯视图【点睛】本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.25.一个小朋友用五块正方体积木摆成了一件作品[如图].请你只移动一块积木,使这件作品从正面看是图一,左面是图二,你有几种移动方法,从上面看移动后的作品,请你把看到的平面图形画出来(画出所有情况).【答案】见解析【分析】从上面看移动后的作品,有3列,从左往右正方形的个数依次为2,1,1;一种情况上面1个小正方形;另一种情况下面1个小正方形;然后即可画出图形.【详解】解:从上面看如图所示:【点睛】本题考查了立体图形的三视图,掌握主视图,左视图,俯视图的概念是解答本题的关键.26.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上.(1)画出太阳光线CE和AB的影子BF;(2)若AB=10米,CD=6米,CD到PQ的距离DQ的长为8米,求此时木杆AB的影子BF 的长.【答案】(1)如图所示,见解析;(2)木杆AB的影长BF是403米.【分析】(1)连结CQ,即为太阳光线CE,过A点作CE的平行线与BQ交于点F,即可得到AB的影子BF;(2)根据在同一时刻的太阳光线下,物体高度与影子长度对应成比例可列出关系式,代入数值计算即可求得BF的长.【详解】解:(1)如图所示,CE 和BF 即为所求;(2)设木杆AB 的影长BF 为x 米, 由题意,得:CD DQ AB BF =,即6810x=, 解得:403x =. 答:木杆AB 的影子BF 的长为403米. 【点睛】本题考查了相似三角形的应用,理解题意并熟练运用相似三角形的性质是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据简单组合体的三视图的意义可得答案,从正面看到的图形是底层有3个,上层的右侧有1个正方形. 【详解】解:从这个组合体的正面看到的是两行,从正面看到的图形是底层有3个,上层的右侧有1个正方形,故D 符合题意. 故选:D . 【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】利用组合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B.【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.5.A解析:A【分析】首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯, 该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.6.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.7.A解析:A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A .【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.8.C解析:C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.9.D解析:D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.10.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键. 14.49【分析】分别计算前后上下左右方向凿掉的体积然后求和即可【详解】前后方向凿掉部分的体积为5525上下方向又凿掉了522214左右方向又凿掉了5210凿掉部分的总体积为2514解析:49【分析】分别计算前后、上下、左右方向凿掉的体积,然后求和即可.【详解】前后方向凿掉部分的体积为 5 ⨯ 5 = 25 ,上下方向又凿掉了 5 ⨯ 2 + 2 ⨯ 2 = 14 ,左右方向又凿掉了5 ⨯ 2 = 10 ,∴凿掉部分的总体积为 25 + 14 + 10 = 49【点睛】本题考查不规则图形的几何体的体积,关键是找到凿掉小正方形的个数.15.36【解析】由图可知这个长方体的长为4宽为3高为3∴长方体的体积V=4×3×3=36故答案为36解析:36【解析】由图可知,这个长方体的长为4,宽为3,高为3,∴长方体的体积V=4×3×3=36,故答案为36.16.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.17.【解析】由正六棱柱的主视图和左视图可得到正六棱柱的最长的对角线长是4则边长为2做AD⊥BC在△ABC中AB=AC=2∠BAC=120°∴在直角△ABD中∠ABD=30°AD=1∴BD=3【解析】由正六棱柱的主视图和左视图,可得到正六棱柱的最长的对角线长是4,则边长为2,做AD⊥BC,在△ABC中,AB=AC=2,∠BAC=120°,∴在直角△ABD中,∠ABD=30°,AD=1,∴223-=AB AD18.【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的体积【详解】解:先由三视图确定该几何体是圆柱体底面半径是2÷2=1(cm)高是5cm所以该几何体的体积为π×12×5=5π(cm3)故答案为:【点解析:5π【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的体积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1(cm),高是5cm.所以该几何体的体积为π×12×5=5π(cm3).故答案为:5π.【点睛】本题考查了由三视图确定几何体和求圆柱体的体积,关键是根据三视图确定该几何体是圆柱体.19.5【分析】根据水面与水面平行可以得到CQ与BE平行利用勾股定理即可得到BQ的长液体正好是一个以△BCQ为底面的直棱柱据此即可求出液体的体积即可得到液体的深度【详解】解:∵由图知:CQ∥BEBQ=4C解析:5【分析】根据水面与水面平行可以得到CQ与BE平行,利用勾股定理即可得到BQ的长,液体正好是一个以△BCQ为底面的直棱柱,据此即可求出液体的体积,即可得到液体的深度.【详解】解:∵由图知:CQ∥BE,BQ=4,CQ=5,根据勾股定理得:22543BQ=-=(dm),液体的体积为:1344=242⨯⨯⨯(dm3),液体深度为:24÷(4×4)=1.5(dm),故答案为:1.5【点睛】本题主要考查的是四边形的体积计算以及三视图的认识,正确的理解棱柱的体积计算是解题的关键.20.222【分析】先明确题目的含义:正方体共有6个直通小孔有6个交汇处计算即可解:正方体无【详解】解:正方体无论从哪一个面看都有两个直通的边长为1的正方形孔正方体共有6个直通小孔有6个交汇处表面积等于正解析:222【分析】先明确题目的含义:正方体共有6个直通小孔,有6个交汇处,计算即可解:正方体无【详解】解:正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,正方体共有6个直通小孔,有6个交汇处,表面积等于正方体的表面积减去12个表面上的小正方形面积加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积则6251264566222S 全,故答案为:222.【点睛】主要考查空间想象能力及分析问题能力对空间想象力有较高要求,同时会利用容斥原理的思想分析、解决交并问题.三、解答题21.无22.无23.无24.无25.无26.无。

(易错题精选)初中数学投影与视图易错题汇编附解析

(易错题精选)初中数学投影与视图易错题汇编附解析

(易错题精选)初中数学投影与视图易错题汇编附解析一、选择题1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .()822π+B .11πC .()922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.4.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是( )A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.6.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B. C.D.【答案】B【解析】【分析】根据三视图的意义进行分析,要注意观察方向是从左边看.【详解】解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.故选B.【点睛】考核知识点:简单组合体的三视图.12.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.17.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.18.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.。

初中数学投影与视图难题汇编附解析

初中数学投影与视图难题汇编附解析

初中数学投影与视图难题汇编附解析一、选择题1.从不同方向观察如图所示的几何体,不可能看到的是( )A .B .C .D .【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D 是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A 是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C 是该物体的俯视图;没有出现的是选项B .故选B .2.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π,圆柱的侧面积=2π•1•4=8π,圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.3.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D .【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.4.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.5.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A .7B .8C .9D .10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.7.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.8.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC 3D.31)π【答案】C【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积. 【详解】 解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形. ∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底, ∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是( ) A .B .C .D .【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A 、主视图,俯视图为,故此选项错误;B 、主视图为,俯视图为,故此选项正确;C 、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.13.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.14.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.15.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.16.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .【答案】B【解析】【分析】 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B .【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.20.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图。

水平投影练习题

水平投影练习题

水平投影练习题在学习几何学的过程中,我们常常会遇到水平投影这一概念。

水平投影是指将三维物体在水平面上的投影。

为了加深对水平投影的理解,本文将介绍一些水平投影练习题,以帮助读者更好地掌握相关知识。

练习题一假设有一个正方体,边长为5厘米。

将该正方体用水平投影的方式投影到水平面上,请问投影后的图形是一个什么形状?其面积是多少?解析:根据正方体的性质,不论从哪个方向进行水平投影,投影后的图形总是一个正方形。

因此,本题中投影后的图形也是一个正方形。

由于正方体的边长为5厘米,投影后的正方形的边长等于正方体边长,即为5厘米。

所以,投影后的图形为一个边长为5厘米的正方形,面积为5 × 5 = 25平方厘米。

练习题二有一座高塔,塔顶的高度为20米,底部的边长为10米。

请问当我们站在塔底处,向上观察塔尖时,塔尖在我们的水平投影中的位置如何?解析:在我们站在塔底处观察塔尖时,塔顶的水平投影将出现在我们所在的水平面上。

由于塔底的边长为10米,塔顶的高度为20米,所以我们可以通过相似三角形的原理求出塔尖在水平投影中的位置。

设塔尖的水平投影位置为x米,则有:20 / x = 10 / 10解得 x = 10因此,塔尖在我们的水平投影中的位置距离我们的位置10米。

练习题三现在有一个倾斜的长方体,长方体的长、宽、高分别为8米、6米、4米。

将该长方体用水平投影的方式投影到水平面上,请问投影后的图形是一个什么形状?其面积是多少?解析:根据倾斜长方体的性质,进行水平投影后,投影图形的形状由长方体的三个面决定。

本题中,投影图形的三个边长分别由长方体的长、宽、高决定。

长方体的长、宽、高分别为8米、6米、4米,因此投影后的图形的边长分别为8米、6米、4米。

所以,投影后的图形为一个长方形,其边长分别为8米、6米,面积为8 × 6 = 48平方米。

通过以上三个练习题,我们可以更好地理解水平投影的概念。

无论是正方体、高塔还是倾斜长方体,通过水平投影,我们可以得到投影图形的形状和面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.1 投影(一)
一、教学目标:
1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;
2、了解平行投影和中心投影的区别;
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

二、教学重、难点
教学重点:理解平行投影和中心投影的特征;
教学难点:在投影面上画出平面图形的平行投影或中心投影。

三、教学过程:
(一)创设情境
你看过皮影戏吗? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。

皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。

(有条件的)放映电影《小兵张嘎》部分片段---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏。

(二)你知道吗
(有条件的)出示投影:
北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.
问题:那什么是投影呢?
出示投影让学生感受在日常生活中的一些投影现象。

一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.
有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.
由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.
(三)问题探究(在课前布置,以数学学习小组为单位)
探究平行投影和中心投影和性质和区别
1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。

2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?
3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。

如图4-14,当线段AB与投影面平行时,AB的中心投影A′B′把线段AB放大了,且AB∥A′B′,△OAB~OA′B′.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A′B′C′也把△ABC 放大了,从△ABC到△A′B′C′是我们熟悉的位似变换。

4、请观察平行投影和中心投影,它们有什么相同点与不同点?
平行投影与中心投影的区别与联系
(四)应用新知:
(1)地面上直立一根标杆AB 如图,杆长为2cm 。

①当阳光垂直照射地面时,标杆在地面上的投影是什么图形? ②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;
(2)一个正方形纸板ABCD 和投影面平行(如图),投射线和投影面垂直,点C 在投影面的对应点为C′,请画出正方形纸板的投影示意图。

(3)两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。

解:分别连结标杆的顶端与投影上的对应点. 很明显,图(1)的投射线互相平行,是平行投影. 图(2)的投射线相交于一点,是中心投影。

四、学习反思:
我们这节课学习了什么知识?
五、作业:
画出一个四边形的不同平行投影图和中心投影图
29.1投影(二)
一、教学目标:
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影;
3、培养动手实践能力,发展空间想象能力。

二、教学重、难点
教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影。

教学难点:归纳正投影的性质,正确画出简单平面图形的正投影。

三、教学过程:
(一)复习引入新课
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?
解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).
指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。

(二)合作学习,探究新知
1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面,
(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).
三种情形下铁丝的正投影各是什么形状
通过观察,我们可以发现;
(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB = A1B1
(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB > A2B2
(3)当线段AB垂直于投影面P时,它的正投影是一个点A3
2、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:
(1)纸板平行于投影面;
(2)纸板倾斜于投影面;
(3)纸板垂直于投影面
结论:(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小一样;
(2)当纸板P倾斜于投影面Q时. P的正投影与P的形状、大小发生变化;
(3)当纸板P垂直于投影面Q时. P的正投影成为一条线段.
当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.
3、例画出如图摆放的正方体在投影面P上的正投影.
(1)正方体的一个面ABCD平行于投影面P图(1);
(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).
分析口述画图要领
解答按课本板书
4、练习
P92 练习和习题29.1 第1、2、5题
5、谈谈收获
三、课后作业
P92 第3、4题。

相关文档
最新文档