(易错题精选)初中数学投影与视图难题汇编附答案

合集下载

(易错题精选)初中数学投影与视图单元汇编附答案(1)

(易错题精选)初中数学投影与视图单元汇编附答案(1)

(易错题精选)初中数学投影与视图单元汇编附答案(1)一、选择题1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.3.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.4.下面是一个几何体的俯视图,那么这个几何体是( )A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.5.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.6.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.7.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.8.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.9.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.10.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.11.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.12.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.18.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图19.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.20.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.。

(易错题精选)初中数学投影与视图经典测试题及答案

(易错题精选)初中数学投影与视图经典测试题及答案

(易错题精选)初中数学投影与视图经典测试题及答案一、选择题1.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.4.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.5.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.6.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.7.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况综上,共有26210++=种情况故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.8.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为( )A .πB .3πC .33πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是( ) A .B .C .D .【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.13.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.14.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.15.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.16.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.17.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图。

(易错题精选)初中数学投影与视图难题汇编及答案解析(1)

(易错题精选)初中数学投影与视图难题汇编及答案解析(1)

(易错题精选)初中数学投影与视图难题汇编及答案解析(1)一、选择题1.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.2.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.5.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.6.一个几何体的三视图如图所示,则这个几何体的表面积是()A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D .【考点】简单组合体的三视图.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC.33D.31)π【答案】C【解析】【分析】3得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.32=,设圆锥的底面圆半径为r ,高为h,∴r=1,h=3 ∴底面圆面积:2=S r ππ=底, ∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.如图所示,该几何体的俯视图是( )A .B .C .D .【答案】C【解析】【分析】 根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C ,故选:C .【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( )A .B .C .D .【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!13.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.14.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.15.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.17.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.18.下面的几何体中,主视图为圆的是()A.B.C.D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.19.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.20.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.。

(易错题精选)初中数学投影与视图难题汇编附答案解析

(易错题精选)初中数学投影与视图难题汇编附答案解析

(易错题精选)初中数学投影与视图难题汇编附答案解析一、选择题1.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.2.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.4.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.7.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.8.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键. 9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.13.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.14.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.17.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( )A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是( )A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.19.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.20.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.。

初中数学投影与视图易错题汇编及解析

初中数学投影与视图易错题汇编及解析

初中数学投影与视图易错题汇编及解析一、选择题1.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.4.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.5.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.6.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.7.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A .πB .3πC .33πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o, 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A .B .C .D .【答案】A【解析】【分析】 根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.如图是某几何体的三视图,则该几何体的全面积等于( )A .112B .136C .124D .84【答案】B【解析】 试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.13.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.14.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大【答案】A【解析】【分析】可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.【详解】假设小正方形的边长是1,主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;因此,主视图的面积最大.故答案为A.【点睛】本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.15.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.16.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.17.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.18.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.20.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.。

(易错题精选)初中数学投影与视图难题汇编含答案解析(1)

(易错题精选)初中数学投影与视图难题汇编含答案解析(1)

(易错题精选)初中数学投影与视图难题汇编含答案解析(1)一、选择题1.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.4.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.5.下面是一个几何体的俯视图,那么这个几何体是( )A .B .C .D .【答案】B【解析】【分析】 根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B 中的图形是和题目中的俯视图看到的一样,故选:B .【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.8.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.9.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.14.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.16.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.20.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.。

(易错题精选)初中数学投影与视图知识点总复习附答案

(易错题精选)初中数学投影与视图知识点总复习附答案

(易错题精选)初中数学投影与视图知识点总复习附答案一、选择题1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A .πB .3πC .3πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )A .B .C .D .【答案】A【解析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C .【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.6.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.8.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.3D.8【答案】B【解析】【分析】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本12.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.13.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.14.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.15.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:22-=,543⨯=,326全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.16.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.17.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。

新初中数学投影与视图易错题汇编附解析

新初中数学投影与视图易错题汇编附解析

新初中数学投影与视图易错题汇编附解析一、选择题1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )A .B .C .D .【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形. 详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B .点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.4.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π,圆柱的侧面积=2π•1•4=8π,圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.5.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.6.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A .从前面看到的形状图的面积为5B .从左面看到的形状图的面积为3C .从上面看到的形状图的面积为3D .三种视图的面积都是4【答案】B【解析】 A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C 错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.10.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.11.下面的几何体中,主视图为圆的是()A.B.C.D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图13.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.14.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.17.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【解析】【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.19.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.20.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.。

(易错题精选)初中数学投影与视图图文解析

(易错题精选)初中数学投影与视图图文解析

(易错题精选)初中数学投影与视图图文解析一、选择题1.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.2.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.3D.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.33C.32D.62【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.5.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.15.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是( )A .B .C .D .【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.19.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.20.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.。

新初中数学投影与视图易错题汇编及答案解析

新初中数学投影与视图易错题汇编及答案解析

新初中数学投影与视图易错题汇编及答案解析一、选择题1.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.2.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A .【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.4.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.5.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.7.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键. 8.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.14.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.15.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.16.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B .17.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.18.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.19.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.20.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.。

(易错题精选)初中数学投影与视图难题汇编附解析

(易错题精选)初中数学投影与视图难题汇编附解析

(易错题精选)初中数学投影与视图难题汇编附解析一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.4.如图所示,该几何体的主视图是( )A .B .C .D .【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.5.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.6.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.7.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A .B .C .D .【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A 、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B 、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C 、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D 、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形. 故选C .【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.15.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.16.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.。

(易错题精选)初中数学投影与视图易错题汇编附答案(1)

(易错题精选)初中数学投影与视图易错题汇编附答案(1)

(易错题精选)初中数学投影与视图易错题汇编附答案(1)一、选择题1.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.2.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.3.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.4.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.5.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!7.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.8.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.9.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.10.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.13.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大【答案】A【解析】【分析】可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.【详解】假设小正方形的边长是1,主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;因此,主视图的面积最大.故答案为A.【点睛】本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.14.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。

(易错题精选)初中数学投影与视图易错题汇编及答案(1)

(易错题精选)初中数学投影与视图易错题汇编及答案(1)

(易错题精选)初中数学投影与视图易错题汇编及答案(1)一、选择题1.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.7.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.8.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.9.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.10.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【答案】C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.11.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.12.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.13.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.14.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.15.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.16.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.20.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。

(易错题精选)初中数学投影与视图难题汇编附解析(1)

(易错题精选)初中数学投影与视图难题汇编附解析(1)

(易错题精选)初中数学投影与视图难题汇编附解析(1)一、选择题1.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.90πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=2251213+=(cm)所以这个圆锥的侧面积=12513652ππ⨯⨯=g(cm2),故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC 3D.31)π【答案】C 【解析】【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积. 【详解】 解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32=, 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=3333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是某几何体的三视图,该几何体是( )A .三棱柱B .三棱锥C .长方体D .正方体【答案】A【解析】【分析】 根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B 、C 、D 错误, 根据几何体的三视图,三棱柱符合要求,故选A .【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.5.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.7.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键. 8.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【答案】C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.9.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.10.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.13.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.14.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.15.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.16.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.17.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.18.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.20.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.。

(易错题精选)初中数学投影与视图难题汇编含答案解析

(易错题精选)初中数学投影与视图难题汇编含答案解析

(易错题精选)初中数学投影与视图难题汇编含答案解析一、选择题1.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.90πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=2251213+=(cm)所以这个圆锥的侧面积=12513652ππ⨯⨯=g(cm2),故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.2.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.3.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.5.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .【答案】B【解析】 试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.6.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.7.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.8.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.43πD.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.14.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.15.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.17.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.18.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm2【答案】B【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m,圆柱的高为2m,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图19.下面的几何体中,主视图为圆的是( )A .B .C .D . 【答案】C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D 、的主视图是三角形,故D 不符合题意;故选C .考点:简单几何体的三视图.20.如图所示,该几何体的俯视图是( )A .B .C .D .【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C ,故选:C .【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.。

初中数学投影与视图易错题汇编含答案

初中数学投影与视图易错题汇编含答案

初中数学投影与视图易错题汇编含答案一、选择题1.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.2.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A.48 B.57 C.66 D.48236【答案】C【解析】先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示: 由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.3.如图所示,该几何体的主视图是( )A .B .C .D .【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.4.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.5.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.本题考查由三视图判断几何体.6.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.7.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b 为2,则a 、c 、d 、e 、f 、g 均可有一个为2,其余为1,共有6种情况若c 为2,则d 、g 可有一个为2,其余均为1,共有两种情况综上,共有26210++=种情况故选:C .【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.8.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )A .B .C .D .【答案】C【解析】 试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C9.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S=12LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π,圆柱的侧面积=2π•1•4=8π,圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.10.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.13.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.14.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.15.如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从几何体的正面看所得到的图形即可.【详解】解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.16.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大【答案】A【解析】【分析】可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.【详解】假设小正方形的边长是1,主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;因此,主视图的面积最大.故答案为A.【点睛】本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.17.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.18.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.19.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.20.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.。

(易错题精选)初中数学投影与视图分类汇编及解析

(易错题精选)初中数学投影与视图分类汇编及解析

(易错题精选)初中数学投影与视图分类汇编及解析一、选择题1.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.2.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.33C.32D.62【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.下面四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.6.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.8.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.3D.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.下面的几何体中,主视图为圆的是()A.B.C.D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.14.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.17.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++= 故该几何体的全面积等于136.故选B.18.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.19.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.20.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.。

(易错题精选)初中数学投影与视图易错题汇编含答案(1)

(易错题精选)初中数学投影与视图易错题汇编含答案(1)

(易错题精选)初中数学投影与视图易错题汇编含答案(1)一、选择题1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.3.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.4.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.6.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.7.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.8.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.43πD.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.【答案】C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C11.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.12.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.90πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,2251213+=(cm)所以这个圆锥的侧面积=12513652ππ⨯⨯=g(cm2),故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.14.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.16.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是( )A .B .C .D .【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.19.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.20.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.。

(易错题精选)初中数学投影与视图易错题汇编

(易错题精选)初中数学投影与视图易错题汇编

(易错题精选)初中数学投影与视图易错题汇编一、选择题1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【答案】C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.2.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.4.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.6.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要( )个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉( )个小正方体A .10:2B .9:2C .10:1D .9:1【答案】C【解析】【分析】 由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C .【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.7.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.8.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个【答案】B【解析】【分析】 根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B .【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.9.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.11.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(易错题精选)初中数学投影与视图难题汇编附答案一、选择题1.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A .B .C .D .【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C .【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.2.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S=12LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π,圆柱的侧面积=2π•1•4=8π,圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.3.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.4.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.5.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.7.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.8.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图13.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.14.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.15.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.17.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.18.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.19.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B. C.D.【答案】B【解析】【分析】根据三视图的意义进行分析,要注意观察方向是从左边看.【详解】解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.故选B.【点睛】考核知识点:简单组合体的三视图.20.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.。

相关文档
最新文档