求极限方法总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限求解总结

1、极限运算法则

设错误!未找到引用源。,错误!未找到引用源。,则

(1)错误!未找到引用源。

(2)错误!未找到引用源。

(3)错误!未找到引用源。

2、函数极限与数列极限的关系

如果极限错误!未找到引用源。存在,错误!未找到引用源。为函数错误!未找到引用源。的定义域内任一收敛于错误!未找到引用源。的数列,且满足:错误!未找到引用源。,那么相应的函数值数列错误!未找到引用源。必收敛,且错误!未找到引用源。

3、定理

(1)有限个无穷小的和也是无穷小;

(2)有界函数与无穷小的乘积是无穷小;

4、推论

(1)常数与无穷小的乘积是无穷小;

(2)有限个无穷小的乘积也是无穷小;

(3)如果错误!未找到引用源。存在,而c为常数,则错误!未找到引用源。(4)如果错误!未找到引用源。存在,而n是正整数,则错误!未找到引用源。

5、复合函数的极限运算法则

设函数错误!未找到引用源。是由函数错误!未找到引用源。与函数错误!未

找到引用源。复合而成的,错误!未找到引用源。在点错误!未找到引用源。的某去心领域内有定义,若错误!未找到引用源。,且存在错误!未找到引用源。,当错误!未找到引用源。时,有错误!未找到引用源。,则错误!未找到引用源。

6、夹逼准则

如果

(1)当错误!未找到引用源。(或错误!未找到引用源。>M)时,错误!未找到引用

源。

(2)错误!未找到引用源。

那么错误!未找到引用源。存在,且等于A

7、两个重要极限

(1)错误!未找到引用源。

(2)错误!未找到引用源。

8、求解极限的方法

(1)提取因式法

例题1、求极限错误!未找到引用源。

解:错误!未找到引用源。

例题2、求极限错误!未找到引用源。

解:错误!未找到引用源。

例题3、求极限错误!未找到引用源。

解:错误!未找到引用源。

(2)变量替换法(将不一般的变化趋势转化为普通的变化趋势)

例题1、错误!未找到引用源。

解:令错误!未找到引用源。

例题2、错误!未找到引用源。

解:令x=y+1

错误!未找到引用源。=错误!未找到引用源。

例题3、错误!未找到引用源。

解:令y=错误!未找到引用源。

错误!未找到引用源。=错误!未找到引用源。

(3)等价无穷小替换法

错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。错误!未找到引用源。

注:若原函数与x互为等价无穷小,则反函数也与x互为等价无穷小例题1、错误!未找到引用源。

解:错误!未找到引用源。

例题2、错误!未找到引用源。

解:错误!未找到引用源。

例题3、错误!未找到引用源。

解:错误!未找到引用源。

例题4、错误!未找到引用源。

解:错误!未找到引用源。

例题5、错误!未找到引用源。

解:错误!未找到引用源。

令y=x-1

原式=错误!未找到引用源。

例题6、错误!未找到引用源。

解:令错误!未找到引用源。

错误!未找到引用源。型求极限

例题1、错误!未找到引用源。

解:解法一(等价无穷小):

解法二(重要极限):

(5)夹逼定理(主要适用于数列)

例题1、错误!未找到引用源。

解:错误!未找到引用源。

所以错误!未找到引用源。

推广:错误!未找到引用源。

例题2、错误!未找到引用源。

解:错误!未找到引用源。

1)错误!未找到引用源。

所以错误!未找到引用源。

2)错误!未找到引用源。

所以错误!未找到引用源。

例题3、错误!未找到引用源。

解:错误!未找到引用源。

所以错误!未找到引用源。

例题4、错误!未找到引用源。

所以错误!未找到引用源。

例题5、错误!未找到引用源。

解:错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

所以错误!未找到引用源。

(6)单调有界定理

例题1、错误!未找到引用源。

解:错误!未找到引用源。

错误!未找到引用源。单调递减错误!未找到引用源。

极限存在,记为A

由(*)错误!未找到引用源。求极限得:A=错误!未找到引用源。A 所以A=0

例题2、错误!未找到引用源。求错误!未找到引用源。

解:错误!未找到引用源。

错误!未找到引用源。单调递增

所以错误!未找到引用源。

错误!未找到引用源。极限存在,记为L

错误!未找到引用源。时错误!未找到引用源。

例题3、错误!未找到引用源。

求极限错误!未找到引用源。

解:错误!未找到引用源。

当错误!未找到引用源。

当错误!未找到引用源。错误!未找到引用源。

所以错误!未找到引用源。极限存在

错误!未找到引用源。时错误!未找到引用源。

注:错误!未找到引用源。单调性有时依赖于错误!未找到引用源。的选取例题4、错误!未找到引用源。求极限错误!未找到引用源。

解:错误!未找到引用源。(整体无单调性)

所以错误!未找到引用源。单调递减,同理,错误!未找到引用源。单调递增有因为错误!未找到引用源。

故错误!未找到引用源。和错误!未找到引用源。均存在,分别记为A,B

即错误!未找到引用源。

解得A=B=错误!未找到引用源。所以错误!未找到引用源。

(7)泰勒公式法

例题1、设f有n阶连续导数错误!未找到引用源。

相关文档
最新文档