相交线与平行线新课讲义第3课时-平行线的判定(教师版)
平行线的性质ppt课件
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
平行线的判定(试讲案例)
平行线的判定(试讲案例)一、教学内容本节课的教学内容选自人教版初中数学八年级上册第四章“平行线的判定”部分。
具体包括:1. 了解平行线的概念,掌握平行线的性质;2. 学习判定两条直线平行的方法;3. 能够运用平行线的性质和判定方法解决实际问题。
二、教学目标1. 学生能够理解平行线的概念,掌握平行线的性质;2. 学生能够掌握判定两条直线平行的方法,并能够运用到实际问题中;3. 学生能够通过小组合作、探究学习,提高自己的合作能力和解决问题的能力。
三、教学难点与重点1. 教学难点:理解并掌握平行线的判定方法,能够灵活运用到实际问题中;2. 教学重点:平行线的性质和判定方法的运用。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:每人一本教材、一份课堂练习册、一支笔、一把尺子。
五、教学过程1. 实践情景引入:让学生观察教室里的直线和线段,引导学生发现并描述出平行线的现象;2. 概念讲解:通过示例和讲解,让学生理解平行线的概念,掌握平行线的性质;4. 例题讲解:讲解几个判定平行线的例题,让学生通过随堂练习巩固所学知识;5. 课堂练习:让学生独立完成课堂练习册上的练习题,教师进行个别辅导;6. 板书设计:将判定平行线的方法和性质进行板书,方便学生理解和记忆;7. 作业设计:布置一道运用平行线性质和判定方法的课后作业题,要求学生独立完成并提交;8. 课后反思及拓展延伸:让学生在课后反思本节课的学习内容,对所学知识进行拓展延伸。
六、板书设计板书设计如下:平行线的性质:1. 同一平面内,不相交的两条直线叫做平行线;2. 平行线之间的距离相等;3. 平行线上的对应角相等。
平行线的判定方法:1. 同一平面内,两条直线都与第三条直线平行,则这两条直线平行;2. 同一平面内,一条直线与另外两条直线都相交,且交角相等,则这两条直线平行;3. 同一平面内,一条直线与另外两条直线都垂直,则这两条直线平行。
七、作业设计作业题目:1. 判断题:(1) 如果两条直线在同一平面内不相交,那么它们一定是平行线。
平行线的判定和性质讲义
在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。
.(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。
平行线的性质:(1)两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行, 同旁内角互补。
【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
平行线的判定说课PPT课件
第11页/共29页
试观察有什么共同点?
你怎么判定它 们是平行线呢?
第12页/共29页
教学流程
教学活动二
实探 践索 操新 作知
由学生是否会画平行线导入, 用小学学过的方法过点P画直 线AB的平行线CD,学生动手画 并展示。让学生思考三角尺起 什么作用(教师点拨)?
第13页/共29页
教学流程
1、你会用三角板画平行线吗?
本节课从以下几个方面进行教学评价: 1)可以反映学生数学学习的成就和进步 2)诊断学生在学习中存在的困难,及时调整和改善
教学过程 3)全面了解学生学习数学的历程,帮助学生认识自
己在解题思维和习惯上的长处和不足 4)使学生形成对数学积极的态度、情感和价值观,
从而帮助学生认识自我,树立信心
第27页/共29页
12 34
B
D
(第4题图)
B
A
C
D
(第5题图)
教学流程
总结
1.已知一条直线和直线外的一个店,如何用三角板画出直线的平行线? 2.两条直线平行的证明方法有哪些?
,两直线平行。 ,两直线平行。 ,两直线平行。
作业
必做题:P16 1、2 P17 4
选做题:P17 6、8
第26页/共29页
六、教学评价分析
说课流程
教重 材点 内难 容点 分分 析析
教教教 教 学法学 学 目学过 评 标法程 价 分分分 分 析析析 析
第1页/共29页
内容分析
一、教材的地位和作用
本节的主要内容是让学生在充分感性认识的基础上体 会平行线的三种判定方法,它是空间与图形领域的基础 知识,是《相交线与平行线》的重点,学习它会为后面 的学习平行线性质、三角形、四边形等知识打下坚实的 “基石”。让学生加深“角与平行线”的认识,建立空 间观念,发展思维,提高运用数学的能力。因此这节内 容在七~九年级这一学段的数学知识中具有很重要的地位。
初一(七年级)下册数学相交线与平行线的知识点上课讲义
七下数学“相交线与平行线”的知识点开学已经有几天了,新的第一章知识掌握的怎么样了呢?这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
平行线的判定(试讲案例)
平行线的判定(试讲案例)平行线的判定(试讲案例)在数学几何学中,平行线的判定是一个重要的概念。
在本文中,我们将以一个试讲案例的形式,通过实际问题来说明如何判定平行线。
案例描述:假设有一条导轨AB和一条横跨导轨的杆CD。
我们需要判断杆CD 是否平行于导轨AB。
解决方法:为了判定杆CD是否平行于导轨AB,我们可以使用平行线的判定定理。
根据定理的要求,我们需要找出两组线段,分别与杆CD和导轨AB相交,并且满足特定的条件。
步骤一:绘制辅助线首先,我们可以在导轨AB上任选一点E,并通过点E划一条与杆CD平行的直线EF。
这样,我们就得到了三条线段:EF与CD平行,EF与AB相交于E。
步骤二:观察线段关系接下来,我们需要观察线段的关系。
通过观察可以发现,线段EF 与线段AB中的一条是平行线,而另一条是横穿这两条平行线的斜线。
根据平行线的性质,我们知道平行线与一条横穿它们的斜线之间的对应角是相等的。
步骤三:角度比较在本案例中,我们可以测量角度CEF和角度AED,并比较它们的大小。
如果这两个角度相等或非常接近,那么我们可以得出结论:杆CD与导轨AB是平行的。
讲解要点:1. 平行线的判定定理指出,如果两条直线被一条横穿它们的斜线所切割,而对应角相等或非常接近,那么这两条直线是平行的。
2. 在本案例中,我们通过构造辅助线EF使得EF与CD平行,并与AB相交于点E。
3. 观察角度CEF和角度AED的大小关系,如果它们相等或非常接近,那么可以得出结论:CD与AB是平行的。
实际应用:平行线的判定在实际生活中有着广泛的应用。
例如,建筑工程中,为了保证建筑物的结构稳定,设计师常需要利用平行线的特性进行设计。
另外,交通规划、制图等领域也都需要使用平行线的判定定理来确定方向或距离。
总结:通过上述试讲案例,我们了解了判定平行线的方法。
通过观察角度关系,我们可以判定两条直线是否平行。
这个方法不仅在数学几何学中有着应用,也在日常生活和各个领域都有着广泛的实际用途。
平行线的判定(教案)
版本科目年级课时教学设计课题 平行线的判定单元 5.22 学科数学年级七年级学习目标1.掌握同位角相等两直线平行的判定方法;2.掌握内错角相等从直线平行的判定方法;3.掌握同旁内错互补两直线平行的判定方法;4.掌握在同一平面内,垂直于同一条直线的两条直线平行的判定方法;5.认识推理的书写格式;重点掌握平行线判定的四种方法;难点推理过程的书写;教学过程教学环节教师活动学生活动设计意图导入新课一、复习提问1、什么叫平行线?2、说出平行线的一个基本事实。
二、引出新课1、判定两条直线平行,能根据平行线的定义吗?为什么?2、回顾画平行线的方法?你能从中得到什么启发直接作答回顾思考复习新知引出新课讲授新课一、同位角相等,两直线平行1、感知:只要保持同位角相等,就可以保证画出的直线与已知直线平行。
2、平行线的判定方法1:同位角相等,两直线平行;回顾直接回答体验归纳符号表述:∵∠1=∠2(已知),∴AB⫽CD(同位角相等,两直线平行)3、要证明下面各组的线段平行,可以证明哪些角相等?二、内错角相等,两直线平行1、如图,已知∠1=∠2;求证:AB⫽CD. 读并思考直接回答表述应用证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).∴AB⫽CD(同位角相等,两直线平行)2、平行线的判定方法二:内错角相等,两直线平行;∵∠1=∠2(已知)∴AB⫽CD(内错角相等,两直线平行)。
3、要证明下面各组的线段平行,可以证明哪些角相等?思考直接回答读并思考直接回答认证归纳应用三、同旁内角互补,两直线平行1、如图,已知∠1+∠2=180︒;求证:AB⫽CD.证明:∵∠1+∠2=180︒(已知),∠2+∠3=180︒(平面定义),∴∠3=∠1(同角的补角相等).∴AB⫽CD(内错角相等,两直线平行)2.平行线判定方法之三:同旁内角互补,两直线平行。
思考直接回答论证归纳符号表述:∵∠1+∠2=180︒(已知)∴AB⫽CD(同旁内角互补,两直线平行)。
七年级下册第二章 相交线与平行线讲义
七年级下册第二章相交线与平行线知识点一:对顶角与邻补角一、对顶角1、定义:2、性质:二、邻补角1、定义:2、性质:特别说明:在图形中若出来了上述的两种现象,可以直接当条件来用.典例1:(1)如图,已知直线AB、CD、EF相交于点O,∠1:∠2:∠3=6:1:2,求∠DOE的度数.(2)如图,∠2+∠3=153o,且∠3=2∠2,求∠1和∠4的度数.变式训练:1、按下面的方法折纸,然后回答问题:(1)∠2= o.2、已知直线AB、CD、EF相交于点O,OG是∠AOC的平分线,若∠EOB=2∠COE,∠GOE=70,求∠DOF的度数.知识点二:垂线及其性质应用1、在同一平面内,过一点有且只有一条直线与已知直线垂直;2、两条直线垂直是位置关系,两条直线的夹角为90o,是数量关系,它们之间可以互相转化;3、垂线段最短.典例2:1、已知直线AB⊥CD,垂足为O,OE在∠BOD内部,∠COE=125°,OF⊥OE于点O,求∠AOF的度数.2、下列说法正确的个数是()①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线.A.2 B.3 C.4 D.5变式训练:1、如图所示,已知直线AB、CD交于点O,OE⊥AB于点O,且∠1比∠2大20 o,则∠AOC=______.第1题图第2题图第3题图2、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为()A.65°B.55°C.45°D.35°3、如图,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DAC C.∠ACF是α的余角D.α与∠ACF互补4、下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5、如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30o,求∠BOE及∠AOG的度数.4、如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70 o,求∠DOG的度数.知识点三:三线八角八个角依照其相对位置有不同的名称(如右图) 三线八角同位角:∠1和∠5、∠2和∠6、∠3和∠7、∠4和∠8相对位置相同,称为"同位角".同位角的形状似字母F.内错角:∠2和∠8、∠3和∠5相互交错,且均在内部,称为"内错角".内错角的形状似字母Z.同旁内角:∠2和∠5、∠3和∠8在截线同旁,且均在内部,称为"同旁内角".同旁内角的形状似字母U或门框形.典例3:看图填空:(1)如图①,同位角有对,内错角有对,同旁内角有对;(2)如图②,同位角有对,内错角有对,同旁内角有对;(3)如图③,同位角有对,内错角有对,同旁内角有对;(4)如图④,同位角有对,内错角有对,同旁内角有对.变式训练:1、如图,∠1与∠4是______角,∠1与∠3是______角,∠3与∠5是______角,∠3与∠4是______角.第1题图第2题图2、如图,按各组角的位置判断错误的是()A. ∠1与∠A是同旁内角B. ∠3与∠4是内错角C. ∠5与∠6是同旁内角D. ∠2与∠5是同位角知识点四:平行线的性质与判定1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a//b2、平行公理:经过直线外一点,有且只有.3、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行.即“”.4、两条直线的位置关系:在同一平面内,两条直线的位置关系只有两种:(1);(2).5、两条直线的判定方法(1)定义法:(2)平行公理的推论:(3)同位角,两直线;(4)内错角,两直线;(5)同旁内角,两直线;6、平行线的性质:(1)两直线,同位角,;(2)两直线,内错角;(3)两直线,同旁内角;典例4:1、如图,下列条件中,能判断直线a∥b的是()A.∠3=∠2 B.∠1=∠3 C.∠4+∠5=180°D.∠2=∠42、下列各图中,已知∠1=∠2.则能判断AB∥CD的是()A.B.C.D.变式训练:1、如图所示,下列推理中正确的数目有()①因为∠1=∠4,所以BC∥AD.②因为∠2=∠3,所以AB∥CD.③因为∠BCD+∠ADC=180°,所以AD∥BC.④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个B.2个C.3个D.4个2、如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).第2题图第3题图第4题图3、如图所示,AD∥BC,点O在AD上,BO,CO分别平分∠ABC,∠DCB,若∠A+∠D=m°,则∠BOC=.4、如图所示,已知a∥b,∠1=72°,∠2=40°,则∠3=.5、如图,DH∥EG∥BC,且EF∥DC,则图中与∠1相等的角(不包括∠1)的个数()A.2 B.4 C.5 D.6第5题图第6题图第7题图第8题图6、如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A. 26°B. 36°C. 46°D. 56°7、如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于______.8、如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .9、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°第10题图10、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是度.11、如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.证明:因为∠ADE=∠B( ),所以DE∥BC( ).所以∠1=∠3( ).因为∠1=∠2(已知),如图,已知∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵∠1+∠4=180°(),∠1+∠2=180°()∴EF∥AB()∴∠3=∠ADE()又∵∠B=∠3(已知)∴∠ADE=∠B()∴∥()∴∠AED=∠C()14、如图,已知∠ADE=∠B,∠EDC=∠FGB,GF⊥AB.试说明CD⊥AB.∴DE∥BC∴∠EDC=∠DCB∵∠EDC=∠FGB(已知)∴∠DCB=∠FGB()∴∥()∴∠CDB=∠GFB()∵GF⊥AB( )∴∠=90°()∴∠CDB=90°∴CD⊥AB.15、如图,已知AD⊥BC,EG⊥BC,D、G分别是垂足,∠GEC=∠3.求证:AD平分∠BAC.16、如图,GC交AB于点M,GH分别交AB、EF于点N、H两点,HD平分∠GHF,∠1+∠C=180°,∠2=∠3=60°,求证:CD∥EF.17、如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.知识点五:光的反射与平行线典例、如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′典例图第1题图第2题图变式训练:1、如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O′B 平行于α,则角θ等于度.2、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n 与光线m平行,且∠1=50°,则∠2=,∠3=.(2)在(1)中,若∠1=55°,则∠3=.(3)由(1)、(2),试猜想:当两平面镜a、b的夹角∠3=时,可以使任何射到平面镜a上的光线m(m一定能够被反射到平面镜b上)经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.请用本学期学过的数学知识证明你的结论的正确性.知识点六:拐点问题1、如图所示,直线a∥b,直线c和直线a、b分别交于C、D两点,点A、B分别是直线a、b上的点,点M是直线CD上的一点,连接AM,BM,(1)若点M在C、D之间,且∠1=25°,∠3=35°,求∠2的度数;(2)如果点M在直线CD上运动,问∠1、∠2、∠3之间有怎样的数量关系?请写出来,不必说明理由.变式训练:1、如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.2、如图,已知AB∥CD,请完成下列填空:①在图(1)中,∠1+∠2=;②在图(2)中,∠1+∠2+∠3=;③在图(3)中,∠1+∠2+∠3+∠4=;④在图(4)中,∠1、∠2、∠3、∠4、∠5有什么关系呢?也请直接写出来.3、已知,AB∥CD,分别探讨四个图形中∠APC,∠PAB,∠PCD的关系.(1)请说明图1、图2中三个角的关系,并任选一个加以证明.(2)猜想图3、图4中三个角的关系,不必说明理由.(提示:注意适当添加辅助线吆!)4、已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要求证明)(2)当P运动到如图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由?(3)当P运动到如图3的位置时,上述结论还成立吗?(不要求说明理由)。
人教版《平行线的判定》优秀课件
已知条件:直线b与直线c 都垂直于直线a. 要说明的结论:直线b与 直线c平行吗?
已知:直线b与直线c都垂直于直线a.
说明:直线b与直线c平行吗? (1)由∠CBE=∠A可以判定哪两条直线平行?
简单说成:同旁内角互补,两直线平行.
简单说成:同旁内角互补,两直线平行.
答:直线b与直线c平行. 根据同位角相等,两直线平行.
人教版七年级数学下
5.2.2 平行线的判定
复习引入
如何判断两条直线是否平行? (1) 根据定义. (2) 根据平行公理的推论.
你还记得如何用直尺和三角尺画平行线吗?
C A
D B
C
D
A
B
判定方法1 两条直线被第三条直线所截, 如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行
如图,∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC. 判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
答你:还直 能线用(b其与他1直方)线法c说平由明行理. 由∠吗?CBE=∠A可以判定哪两条直线平行?
如图, BE是AB的延长线.
A
B
E
典例示范
如图, BE是AB的延长线. (2)由∠CBE=∠C可以判定哪两条直线平行?
根据是什么?
答: AE∥CD .根据内错角相等,两直线平行.
D
C
A
B
Eቤተ መጻሕፍቲ ባይዱ
判定方法2 内错角相等,两直线平行.
如图, BE是AB的延长线. ∵ b⊥a,∴ ∠1= 90°.
根据同旁内角互补,两直线平行.
例1 如图,你能说出木工用图中的角尺画平行线的道理吗?
人教版数学七年级下册5.3.1平行线的判定(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。
平行线的判定课件
同位角相等法
通过证明两条直线的同位 角相等来证明它们平行。
平行线定理的证明
1 2
两条直线平行,同位角相等
根据平行线的定义,证明两条平行线之间的同位 角相等。
两条直线平行,内错角相等
根据平行线的定义,证明两条平行线之间的内错 角相等。
3
两条直线平行,同旁内角互补
04 平行线的应用
平行线在几何中的应用
平行线的定义与性质
了解平行线的定义、性质以及判定方法,包括平行线的传递性、 内错角相等、同位角相等、同旁内角互补等。
三角形中的平行线
了解三角形中平行线的应用,如角平分线定理、平行线分线段成比 例定理等。
四边形中的平行线
掌握四边形中的平行线判定方法,如平行四边形、梯形的判定等。
交通运输
了解交通运输中平行线的 应用,如铁路轨道的设计 、高速公路的修建等。
05 总结与回顾
总结平行线的判定方法
平行线的定义:在同一平面 内,不相交的两条直线称为
平行线。
平行线的性质:如果两条直 线都与第三条直线平行,那 么这两条直线也互相平行。
平行线的判定方法
1. 同位角相等,两直线平行 ;
2. 内错角相等,两直线平行 ;
3. 同旁内角互补,两直线平 行。
回顾平行线的性质与证明
平行线的性质
描述了平行线的一些基本性质,如等角性质、平行线之间的 距离相等等。
平行的证明
提供了几种证明两条直线平行的方法,如利用同位角、内错 角或同旁内角等。
深化对平行线及其应用的理解
平行线在几何学中的重要 性
描述了平行线在几何学中的重要地位,如在 证明定理、求解几何问题等方面的应用。
教案平行线的性质与判定
经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生对几何图形的认识和空间想象力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线在实际问题中的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及其在实际问题中的应用。
2. 教学难点:平行线的判定方法,以及如何在实际问题中灵活运用平行线的性质。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 利用几何画板软件,直观展示平行线的性质和判定过程。
3. 结合实际例子,让学生学会用平行线的性质和判定方法解决问题。
4. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学步骤1. 导入新课:通过复习相关知识点,引入平行线的概念。
2. 探究平行线的性质:引导学生利用几何画板软件,自主探究平行线的性质。
3. 讲解平行线的判定方法:引导学生通过观察、分析、归纳,掌握平行线的判定方法。
4. 应用练习:结合实际例子,让学生运用平行线的性质和判定方法解决问题。
5. 课堂小结:回顾本节课所学内容,总结平行线的性质和判定方法。
6. 作业布置:布置相关练习题,巩固所学知识。
7. 课后反思:对本节课的教学进行总结,查找不足,改进教学方法。
六、教学拓展1. 引导学生思考:平行线在现实生活中有哪些应用?2. 举例说明:平行线在建筑设计、道路规划、印刷排版等方面的应用。
3. 引导学生探讨:如何利用平行线的性质解决实际问题?七、课堂互动1. 提问环节:请学生回答平行线的性质和判定方法。
2. 小组讨论:让学生分组讨论如何运用平行线的性质解决实际问题。
3. 分享环节:每组选一名代表分享讨论成果。
八、课后作业1. 完成练习册相关习题。
2. 结合生活实际,寻找平行线的应用实例,下节课分享。
平行线的判定教案
5.2.2平行线的判定环节教学问题设计教学活动设计自主探究合作交流活动1”画出“三线八角”’的图形,并指出其中有哪些角?他们有何数量关系?活动2(1)利用直尺和三角板,作直线a的平行线直线b,画出所靠的直线c。
(2)思考在作图过程中哪两个角始终相等?由此你能得出什么结论?活动3如图:直线a、直线b被直线c所截,已知∠3=∠5,求证:a∥b进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。
课题 5.2.2平行线的判定授课类型新授课课时1课时教学目标1.回顾“三线八角”的基础上动手操作,通过“用三角尺和直尺画平行线”的活动,发现并得出“同位角相等,两直线平行”的基本事实,体会一般到特殊的过程。
2.利用“同位角相等,两直线平行”这一基本事实进一步推理论证得出“内错角相等,两直线平行”的判定方法,发展学生的逻辑推理能力,逐步掌握规范的推理论证和书写格式,并在教师引导下体会转化思想。
3.能利用平行线的两种判定方法进行简单的推理。
重点掌握平行线的两种判定方法难点探究平行线的两种判定方法(2)通过以上问题的解决,你能得出什么结论?成果 展示同学们,本节课你学到了哪些知识和方法? 你还有什么疑惑吗?教师引导,学生小结. 教师在学生总结后,进行补充,帮助学生形成知识网络.学以 致用基础巩固:1.根据下列图像填空:(1)如果∠1=∠B ,那么 ∥ , 依据是 (2)如果∠3=∠D ,那么 ∥ , 依据是(3)如果要使BE ∥DF ,必须 , 依据是2.已知直线a 、b 被直线c 所截,且∠1+∠2=180° , 试判断直线a 、b 的位置关系,并说明理由.3.如图,点B 在DC 上,BE 平分∠ABD ,∠DBE=∠A ,求证:BE ∥AC提高学生应用数学知识分析问题和解决问题的能力。
4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC= 50°试说明:AB∥CD.提升演练:5.如图,已知∠1=∠2,∠3=∠4,那么直线a与c平行吗?为什么?6.如图,AB⊥EF于B, CD⊥EF于D,∠1=∠2.(1)求证: ABII CD,(2)你还能得出判定平行线的方法吗?(3)试问BM与DN是否平行?为什么?作业设计教材练习1-2(第一课时)教师布置作业,学生按要求课外完成.课后反思。
《平行线的判定》名师教案
5.2.2 直线平行的条件(张义)一、教学目标1.核心素养: 通过学习平行线,培养学生抽象数学问题的能力、逻辑推理能力和几何语言表达能力.2.学习目标(1)掌握直线平行的判定方法(2)经历探究直线平行的判定方法的过程,感受转化的数学思想方法(3)运用直线平行的判定方法解决问题,会简单的几何语言表达。
3.学习重点探索直线平行的判定方法4.学习难点转化的数学思想方法二、教学设计(一)课前设计1.预习任务任务1预习教材P 13-P 17,掌握两直线平行的条件,初步了解推理论证的方法。
2.预习自测1.平行线三个判定的几何语言,如图:判定1:∵∠3=∠2(已知)∴a∥b()判定2:∵∠1=∠2(已知)∴a∥b()判定3:∵∠4+∠2=180o (已知)∴a∥b() 【解析】:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行。
2.如图,点E 在CD 上,点F 在BA 上,G 是AD 延长线上一点.(1)若∠A=∠1,则可判断_______∥_______,因为________.a(2)若∠1=∠_________,则可判断AG ∥BC,因为_________.(3)若∠2+∠________=180°,则可判断CD ∥AB,因为____________. G F E21D CB A【解析】:AB//CD ,同位角相等,两直线平行;C ,内错角相等,两直线平行;BFE ,同旁内角相等,两直线平行。
(二)课堂设计1.知识回顾1、两条直线被第三条直线所截,同位角、内错角、同旁内角的概念2、平行线的定义3、平行公理及其推论2.问题探究问题探究一 平面内两直线平行的判定方法重点、难点知识★▲●活动一 请经过直线a 外一点P 画直线a 的平行线。
你是怎么画的?在画图过程中用直尺和三角板时,三角板起了什么样的作用?学生演示画图过程并分析出在画平行线的过程中,三角板是为画∠PHF 与∠BGF 相等。
《平行线的判定》教案
《平行线的判定》教案一、教学目标知识与技能:1. 让学生掌握平行线的定义和性质;2. 能够运用平行线的判定方法判断两条直线是否平行。
过程与方法:1. 通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力;2. 学会运用同位角、内错角、同旁内角等方法判定平行线。
情感态度与价值观:1. 激发学生对数学学科的兴趣;2. 培养学生的团队合作精神,提高学生的解决问题的能力。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等;(2)平行线上的内错角相等;(3)平行线上的同位角相等;(4)平行线之间的距离相等。
3. 平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。
三、教学重点与难点重点:平行线的定义和性质,平行线的判定方法。
难点:平行线的判定方法的灵活运用。
四、教学准备1. 教学课件;2. 直线模型;3. 量角器;4. 直尺。
五、教学过程1. 导入:通过展示直线模型,引导学生回顾直线的性质,为新课的学习做好铺垫。
3. 平行线的性质:引导学生通过量角器测量直线上的角,发现平行线的性质。
5. 巩固练习:设计一些判断题,让学生运用所学知识判断直线是否平行。
7. 布置作业:设计一些有关平行线的练习题,巩固所学知识。
六、教学策略1. 采用问题驱动的教学方法,引导学生主动探索平行线的性质和判定方法;2. 通过小组合作、讨论交流的形式,培养学生的团队合作精神;3. 利用多媒体课件,直观展示直线和平行线的性质,提高学生的空间想象能力。
七、教学评价1. 课堂提问:检查学生对平行线定义、性质和判定方法的理解程度;2. 课后作业:评估学生对平行线知识的掌握情况;3. 小组讨论:评价学生在团队合作中的表现,以及解决问题的能力。
1. 邀请数学家或相关领域专家,进行专题讲座,加深学生对平行线知识的理解;2. 组织学生进行数学竞赛,激发学生学习数学的兴趣;3. 开展数学实践活动,如制作直线和平行线的模型,提高学生的动手能力。
北师大版八年级上册数学7.3《平行线的判定》说课稿
北师大版八年级上册数学7.3《平行线的判定》说课稿一. 教材分析北师大版八年级上册数学7.3《平行线的判定》这一节的内容,是在学生已经掌握了直线、射线、线段的基本概念,以及垂线的性质和判定基础上进行讲解的。
本节课的主要内容是让学生掌握平行线的判定方法,通过判定两个直线是否平行,从而进一步理解和掌握平行线的性质。
教材通过大量的生活中的实例,引导学生探究并发现平行线的判定方法,培养学生的观察能力、思考能力和动手能力。
二. 学情分析学生在学习这一节内容时,已经具备了一定的数学基础,对直线、射线、线段等基本概念有一定的了解,同时,他们也已经学习了垂线的性质和判定,这些都为本节课的学习打下了基础。
然而,学生对于平行线的判定方法可能还没有直观的认识,因此,在教学过程中,我将会以学生已知的知识为基础,引导学生通过观察、思考、动手等方式,去发现和理解平行线的判定方法。
三. 说教学目标1.知识与技能目标:让学生掌握平行线的判定方法,能够运用判定方法判断两条直线是否平行。
2.过程与方法目标:通过观察、思考、动手等方式,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点教学重点:平行线的判定方法。
教学难点:如何引导学生发现和理解平行线的判定方法。
五. 说教学方法与手段在这一节课中,我将采用讲授法、引导发现法、动手操作法等教学方法。
同时,我还会运用多媒体课件、实物模型等教学手段,帮助学生更好地理解和掌握平行线的判定方法。
六. 说教学过程1.导入:通过展示一些生活中的实例,让学生观察并思考,这些实例中的直线是否平行。
从而引出本节课的主题——平行线的判定。
2.探究:引导学生分组讨论,让他们通过观察、思考、动手操作等方式,去发现和总结平行线的判定方法。
3.讲解:在学生探究的基础上,我对平行线的判定方法进行讲解,让学生理解并掌握判定方法。
平行线的判定及性质课件
05
总结与展望
总结
01
02
03
04
05
直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。
初中数学湘教版七下课件《平行线的判定》课件
文字叙述
符号语言
图形
同位角 相等 ∵∠1=∠2 (已知) c
两直线平行 内错角 相等
∴a∥b ∵∠3=∠2 (已知)
3
1 4
a
两直线平行 ∴a∥b
2
同旁内角 互补,∵∠2+∠4=180°
b
两直线平行 ∴a∥b
平行线的判定示意图 判定
同位角相等 内错角相等 同旁内角互补
两直线平行 位置关系
数量关系
A
B
所以∠2=∠3.
31
所以 AB∥CD
C
D
F
(同位角相等,两直线平行). 图 4-29
例2 如图4-30,直线 a ,b 被直线c,d 所截, ∠1=∠2,说明为什么∠4=∠5.
解 因为∠1=∠2 (已知) ∠2=∠3(对顶角相等)
所以∠1=∠3(等量代换) 所以a∥b(同位角相等, 两直线 平行) 因此∠4=∠5(两直线平行,同 位角相等)
D
∠2 +∠3=180°(邻补角互补), A
∠1 =∠3(同角的补角相等).
B
AB∥CD(同位角相等,两直线平行).
F
平行线的判定方法3
两条直线被第三条直线所截 ,如 果同旁内角互补, 那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
几何 语言
E
∠1+∠2=180°, C
AB∥CD.
A
D
2 1
(1)平面内两条直线的位置关系有几种?
相交与平行
(2)怎样过已知直线外一点画已知直线的 平行线?
过已知直线外一点画它的平行线
.
一、帖(线)
二、靠(尺)
●
三、移(点) 四、画(线)
平行线及其判定教案板书
平行线及其判定教案板书教案板书内容:【教学目标】了解平行线的定义掌握平行线的判定方法能够应用平行线的性质解决相关问题【教学重点】平行线的判定方法【教学难点】如何灵活运用平行线的判定方法解决问题【教学准备】黑板、彩色粉笔、教学课件【教学过程】一、导入(5分钟)教师引导学生回顾上节课所学内容,并出示一些领域中使用平行线的实际例子,如建筑、道路等,激发学生对平行线的兴趣。
二、新课讲解(15分钟)1. 平行线的定义教师在黑板上书写平行线的定义:如果两条直线在同一个平面内,且不相交,我们称这两条直线是平行线。
并强调平行线的性质:平行线上的任意两条线段之间的距离是相等的。
2. 平行线的判定方法(1)垂直线判定法教师解释垂直线判定法的原理,并在黑板上画出垂直线判定法的示意图。
要点突出:如果两条直线的斜率乘积为-1,则这两条直线互相垂直。
(2)同位角相等定理教师解释同位角相等定理的原理,并在黑板上画出同位角相等定理的示意图。
要点突出:如果两条直线被一条横截线所切割,同位角对应相等,则这两条直线互相平行。
(3)平行线判定法教师解释平行线判定法的原理,并在黑板上画出平行线判定法的示意图。
要点突出:如果两条直线被一组平行线所切割,对应角相等,则这两条直线互相平行。
三、示例演练(20分钟)教师给出一些具体的问题,引导学生根据所学的平行线判定方法解决问题。
示例题1:已知直线l和直线m,如何判断它们是否平行?学生尝试使用不同的判定方法,解答问题。
示例题2:已知直线n与直线l平行,直线l与直线m相交于点A,如何判断直线n与直线m的关系?学生根据同位角相等定理,得出结论。
四、拓展应用(15分钟)教师出示更复杂一些的问题,引导学生利用已学知识解决问题。
问题1:在直角梯形ABCD中,已知AD与BC平行,∠B=90°,∠ACD=45°,求证:∠BAD=45°。
问题2:在平行四边形ABCD中,已知AD与BC平行,证明:∠CAB = ∠CDA。
人教版七年级数学下册相交线与平行线《平行线的性质(第3课时)》示范教学课件
数学中的命题常可以写成“如果……那么……”的形式.这时“如果”后接的部分是题设,“那么”后接的部分是结论.
新知
如果_________,那么____________.
把命题“对顶角相等”改写成“如果……那么……”的形式.
对顶角
相等
语句不通顺
问题
如果两个角是对顶角,那么这两个角相等.
命题
题设
结论
(1)画线段 AB=2 cm ;(2)分数一定是有理数;(3)两个锐角互余.
解:(3)是命题,改写为:如果两个角是锐角,那么这两个角互余,是假命题.
一般情况下,命题是能判断真假的陈述性语句,祈使句、疑问句等都不是命题.
命题
真命题与假命题的概念
命题的概念
命题的构成
新知
例1 将下列命题改写成“如果……那么……”的形式,并判断它们是真命题还是假命题.
(1)内错角相等;(2)等边三角形的三个角都是 60°.
解:(1)改写为:如果两个角是内错角,那么这两个角相等.是假命题;(2)改写为:如果一个三角形是等边三角形,那么这个三角形的三个角都是 60°.是真命题.
判断一个命题是否是真命题,首先找出此命题的题设和结论,然后看题设成立时结论是否一定成立,如果结论一定成立,此命题就是真命题,否则,就是假命题.
平行线的性质(第3课时)
人教版七年级数学下册
已知|a|=|b|,判断下面哪个说法正确.
a=b. a=-b.a=b 或 a=-b.
√
×
×
请同学们读出下列语句,你能发现什么?
(1)如果两个角都是直角,那么这两个角相等;(2)对顶角相等;(3)同位角相等,两直线平行;(4)两直线平行,同旁内角互补.
判断一个命题是否是真命题,首先应当怎么做?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线新课讲义第3课时平行线的判定一、情境创设:生活中的平行线二、导入新课1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.注意:①在同一平面内;②不相交;③直线。
2.平行线的表示方法:3.探究平行线间的距离——试着做做如图:直线a//b,A、B为直线a上的任意两点,(1)请用三角尺分别画出点A和点B到直线b的垂线段AM、BN,观察并度量AM和BN,看看它们的长度有什么关系。
(2)在直线a上另取一点C,画出点C到直线b的垂线段,它的长度与AM、BN的长度相等吗?AM=BN=CD ……结论:两条平行线间的距离处处相等。
4.平行线的画法:(1)放(2)靠(3)推(4)画5.平行线的判定平行线的判定方法1:(公理)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行练习1:1、如图,如果∠1 =∠C ,那么直线 ∥ 。
理由是 。
2、如图,如果∠2 =∠C ,那么直线 ∥ 。
理由是 。
3、如果∠1 =∠C , ∠1=∠2.你能说明AC∥BD吗?练习2:找一找:如果∠1 =∠2 , 能判定哪两条直线平行? ________ 如果∠3 =∠4 , 能判定哪两条直线平行?___________练习3:如图,直线CD和直线EF被直线AB所截,如果∠1= ∠3,那么CD与EF平行。
请写出推理过程。
练习4:如图,竖在地面上的两根旗杆,它们平行吗?请说明理由。
练习5:如图,直线AB,CD被直线EF所截,如果∠1= 105°,∠2= 75°,那么就可以通过推理得到AB ∥CD.请你写出推理过程。
合作探究(一)如图,已知∠1=∠2,a与b平行吗?为什么?结论:判定方法2:内错角相等,两直线平行。
平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行练习:(1)∵∠1=∠2(已知)∴_____∥______()(2)∵∠3=∠4(已知)∴_____∥______()合作探究(二)如图,已知∠1+∠2=180º,a 与b 平行吗?为什么?结论: 判定方法3:同旁内角互补,两直线平行。
平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行练习:如图,量得∠1=80 o , ∠2=100 o , 可以判定AB ∥CD吗?为什么?三、经典例题例1、看图填空(1) ∵∠1=∠E (已知) ∴ ____∥____ ( )(2) ∵∠2=∠D (已知) ∴ ____∥____ ( )(3) ∵∠ B =∠ 3 (已知) ∴ ____∥____ ( )(4) ∵∠ A =∠ 2 (已知) ∴ ____∥____ ( )例2 已知:如图已知∠1=∠2,∠1=∠C ,求证:AC ∥FD.例3 已知:如图,∠DAB被AC平分,且∠1=∠3,求证:AB∥CD.练习:如图,直线a,b,c被直线d所截,量得∠1=∠2=∠3.(1)从∠1=∠2可以得出哪两条直线平行?根据是什么?(2)从∠1=∠3可以得出哪两条直线平行?根据是什么?(3)直线a,b,c互相平行吗?根据是什么?四、本节知识总结1.平行线:在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理:经过直线外一点,有且只有一条直线平行于已知直线.平行公理的推论:如果两条直线都与____________ ,那么这两条直线也________ .即三条直线a,b,c,若a∥b,b∥c,则______.3.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果_______,那么__________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果_________,那么_________.这个判定方法3可简述为:____________,____________.判定两条直线是否平行的方法有:1.同位角相等, 两直线平行.2.内错角相等, 两直线平行.3.同旁内角互补, 两直线平行.4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.6.平行线的定义.四、课堂练习:1.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)3.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.4.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB ∥CD .(___________,___________)6.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)7.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )8.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c ∥______.(________,________)②由①、②,因为a ∥______,c ∥______,∴a ______c .(________,________)课后作业1.下列说法正确的是( )A.同位角相等B.同旁内角互补C.若︒=∠+∠+∠180321,则3,2,1∠∠∠互补D.对顶角相等2.同一平面内有三条直线c b a ,,,若c b b a ⊥⊥,,则a 与c ( )A.平行B.垂直C.相交D.重合3.一个人从A 点出发向北偏东︒60方向走了4m 到B 点,两从B 点向南偏西︒15的方向走了3m 到C 点,那么ABC ∠等于( )A.︒45B.︒75C.︒105D.︒1354.如图2-11,直线AB.CD 相交于O 点,∠AOD 与∠BOD 叫做______角;∠AOD 与∠BOC 叫______角;若∠AOD=2∠BOD ,则∠BOD=______度,∠AOC=______度.5.如图2-14,直线AD.BC 被CE 所截,∠C 的同位角是______,同旁内角是______;∠1与∠2是_____.____被____所截得的_____角;AB.CD 被AD 所截,∠A 的内错角是______,∠A 和∠ADC 是______角;AB.CD 被BD 所截,_______和______是内错角.6.如图2-15,∵AO ⊥OC ,OB ⊥OD ∴∠1______∠2( )7.已知:如右图,FE ⊥AB ,CD ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。
8.已知:如图2-17,COD 是直线,且∠1=∠3,说明A.O.B 三点在一条直线的理由可以写成:∵COD 是一条直线( )∴∠1+∠2=______( )∵∠1=∠3( )∴ ∠______+∠3=______∴A,O,B 在一条直线上.。