推荐七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时去括号解方程课件新版湘教版
数学人教版七年级上册3.3解一元一次方程(二) ----去括号.3解一元一次方程(二) ---去-括号
x - 4) + 2x = 7-( x - 1)
1 3
• 训练提高 :
3x-2[3(x-1)-2(x+2)]=3(18-x)
本节课学习了什么?
• 本节课学习了用去括号的方法解一元一次方 程。 • 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
3.3 解一元一次方程(二)
—— 去括号(第一课时
)
解方程:6x-7=4x-1 1、一元一次方程的解法我们学了 哪几步? 移项 合并同类项
系数化为1Leabharlann 2、移项,合并同类项,系数化为1, 要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的 系数相加作为所得项的系数,字母 部分不变。 ③系数化为1,也就是说方程两边同 时除以未知数前面的系数。
2(X+3)=2.5(X-3)
注:方程中有带括号的式子时,去括
号是常用的化简步骤。 例2. 解方程:3x - 7(x-1) = 3 - 2(x+3)
例3. 解方程:3(5x-1)- 2(3x+2)=6(x-1)+2
试一试:解下列方程
1、 4x + 3(2X-3) = 12- (x+4) 2、6(
× 顺航时间=逆航速 也就是:顺航速度___ 度___ ×逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时? × 逆航时间 顺航速度___ × 顺航时间=逆航速度___
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是______ (X+3) 千米/ (X-3) 千米/ 小时,船在逆水中的速度是_______ 小时.
七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】
3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5 B.3x﹣2x﹣6=5 C.3x﹣2x+3=5 D.3x﹣2x+6=52.把方程去分母,下列变形正确的是()A.2x﹣x+1=1 B.2x﹣(x+1)=1 C.2x﹣x+1=6 D.2x﹣(x+1)=63.下列方程变形中,正确的是()A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为()A.x=1 B.x=﹣1 C.x=﹣12 D.x=125.解方程时,把分母化为整数,得()A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为()A.x=﹣2 B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣4二、填空题11.当x=时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为.13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a 的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母
时乘以10,得:5(3x+1)-2=(3x-2)-2(2x+3)。相传有个人因为不讲究说话的艺术(yìshù),结果引起误会,把好 事办坏了
Image
12/10/2021
第十四页,共十四页。
例
题
2、去分母(fēnmǔ)的依据是等式性质二 , 去分母时不能漏乘 没有分母的项;
小
3、去分母与去括号这两步分开写,
结 不要(bùyào)跳步,防止忘记变号。
2021/12/10
第七页,共十四页。
对应 训练 (duìyìng)
解 方 程 3xx132x1
2
3
12/10/2021
第八页,共十四页。
拍大腿,连连说:“这,这,我说的不是他们!”最后剩下的3人 一听,心想:“那定是说我们了!”于是,一个个也抬腿告 辞了。学生思考并用方程解决。
12/10/2021
第十二页,共十四页。
2021/12/10
第十三页,共十四页。
内容(nèiróng)总结
3.3.2 解一元一次方程(二) ——去分母。分析:你认为本题用算术方法解方便,还是用方程方法解方便。3、去分母与去括号
32 7
你能解出这道方程吗?把你的解法与其他同学交流(jiāoliú) 一下,看谁的解法好。
总结(zǒngjié):像上面这样的方程中有些系数是分数,如果 能化去分母,把系数化为整数,则可以使解方程中的计 算更方便些。
12/10/2021
第五页,共十四页。
典例解析(jiě xī)
例 题 2 : 解 方 程 3 x 1 2 3 x 2 2 x 3
七年级数学 第三章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母(1)
12/8/2021
第二十页,共二十三页。
课后思考
(sīkǎo)
3x-2[3(x-1)-2(x+2)]=3(18-x)
12/8/2021
第二十一页,共二十三页。
课后思考
(sīkǎo)
某水利工地派 48 人去挖土和运土,如果每 人每天平均挖土5方或运土3方,那么(nà me) 应怎样安排人员,正好能使挖出的土及时 运走?
千米/时,求船在静水中的速度。顺流行驶(xíngshǐ)的路程=逆流行驶(xíngshǐ)的路程。顺 流行驶(xíngshǐ)的路程=逆流行驶(xíngshǐ)的路程。例 一艘船从甲码头到乙码头顺流行驶 (xíngshǐ),用了2小时。例:解方程:。课后思考
Image
12/8/2021
第二十三页,共二十三页。
第十四页,共二十三页。
关闭
答à答案n)(案dá
课堂练习
1
2
3
4
5
4.当 x=
时,式子 2(x-1)-3 的值等于-9.
关闭
由题意得 2(x-1)-3=-9,去括号,得 2x-2-3=-9,移项,得 2x=-9+2+3, 合并同类项,得 2x=-4,方程两边同除以 2,得 x=-2.
12/8/2021
第十七页,共二十三页。
课堂小结
去括号 法 (kuòhào) 则: ①括号(kuòhào)前为+,去括号后,括号
内各项不变号; ②括号前为-,去括号后,括号内 各项要变号;
③括号前有系数,要先用乘法分配 律,再去括号,注意不要漏乘。
12/8/2021
第十八页,共二十三页。
1.括号外的因数是正数 ,去括号后各项的符号与原括号内相应
数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)
通渭县七年级数学下册导学案通渭县七年级数学下册导学案通渭县七年级数学下册导学案组长查阅教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到D CA BD CABDCA B∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习(1)如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.CE DC A B P3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
人教版 七年级上册 数学 3.3解一元一次方程(二) 去括号与去分母 教案
一、学习目标:1.理解去括号的理论依据,掌握去括号的方法;2.理解去分母的理论依据,掌握去分母的方法;3.会解较复杂的一元一次方程;4.会列一元一次方程解决实际问题.二、重点、难点:重点:掌握含括号、分母的一元一次方程的解法,熟悉解方程的一般步骤.难点:去分母时的注意事项和一元一次方程的应用.三、考点分析:一元一次方程在中考中是必考内容,常与其他知识相结合.如果单独出题,一般考查较复杂的带分母、括号的一元一次方程的解法,或以应用题的形式出现,通常以选择题和填空题的形式进行考查.【知识点】1.去括号解方程的去括号和有理数运算中的去括号相似,主要依据的是乘法分配律.应注意,在去括号时,括号前边是负因数,去掉括号后所得各项的符号与原括号内相应各项的符号相反.2.去分母一个方程中如果含有分母,可以利用等式的性质2,在方程两边都乘所有分母的最小公倍数,将分母去掉.应注意:①分子如果是一个多项式,去掉分母后,要添上括号,防止出现符号错误;②整数项不要漏乘分母的最小公倍数.例题知识点一:一元一次方程的解法例1.解方程:(1)5x-(1-x)=-13;(2)2(y-6)=3-(4y+8).思路分析:题意分析:本题考查用去括号法则和移项法则解方程.解题思路:这两道题的解法是一样的,先去掉括号,再移项、合并同类项,最后把系数化为1,得到方程的解.解答过程:(1)去括号,得5x-1+x=-13移项,得5x+x=-13+1合并同类项,得6x =-12系数化为1,得x =-2.(2)去括号,得2y -12=3-4y -8移项,得2y +4y =3-8+12合并同类项,得6y =7系数化为1,得y =76. 解题后的思考:在求出方程的解之后,应自觉检查解的正误.把所求的解分别代入已知方程的左右两边,看左右两边是否相等.养成验根的习惯是非常必要的,可以帮助我们发现错误、避免错误.例2. 解方程:(1)7x -14=58;(2)16m -3=9m -23;(3)y -15-y -12=310. 思路分析:题意分析:本题中每个小题都含有分母,第(2)题去分母时应注意不要漏乘整数项.解题思路:解这三个方程都可以通过先去分母,然后去括号、移项、合并同类项、未知数系数化为1这五步完成.解答过程:(1)方程两边都乘8,得7x -14×8=58×8 去分母,整理得2(7x -1)=5去括号,得14x -2=5移项,得14x =5+2合并同类项,得14x =7系数化为1,得x =12. (2)方程两边都乘6,得16m ×6-3×6=9m -23×6 去分母,整理得m -18=2(9m -2)去括号,得m -18=18m -4移项,得m -18m =-4+18合并同类项,得-17m =14系数化为1,得m =-1417. (3)方程两边都乘10,得2(y -1)-5(y -1)=3去括号,得2y -2-5y +5=3合并同类项,得-3y +3=3移项,得-3y =3-3合并同类项,得-3y =0系数化为1,得y =0.解题后的思考:①解含有分母的方程去掉分母后,分子上的多项式要用括号括起来;②一般情况下,解一元一次方程主要有五个步骤,但并不是一定要经过这五个步骤.。
湘教版七年级数学上册作业课件 第3章 一元一次方程 第2课时 去括号解一元一次方程
第3章 一元一次方程
3.3 一元一次方程的解法
第2课时 去括号解一元一次方程
1.(3 分)解方程 2(x-1)-(x-3)=1 时,去括号正确的是( D ) A.2x-1-x-3=1 B.2x-1-x+3=1 C.2x-2-x-3=1 D.2x-2-x+3=1
2.(3 分)(大连中考)方程 3x+2(1-x)=4 的解是( C )
解:由题意,得 2-13 (m-1)=2×1,解得 m=1, 所以 1×(x-3)-2=1×(2x-5),解得 x=0
16.(8分)已知关于x的方程2(x+1)-m=-2(m-2)的解比方程5(x+1)-1 =4(x-1)+1的解大2,求m的值.
解:由方程5(x+1)-1=4(x-1)+1,得x=-7.又因为关于x的方程2(x+ 1)-m=-2(m-2)的解比x=-7大2,则x=-5,所以2(-5+1)-m=- 2(m-2),解得m=12,故m的值为12
二、填空题(每小题4分,共12分) 11.在有理数范围内定义运算“&”:a&b=a+2b, 则满足x&(x-6)=0的有理数x是___4_. 12.若式子6-3(9-y)与4(y-4)的值相等,则y=_-__5_. 13.当m=__1_6_时, 方程5x+4=4x-3和方程2(x+1)-m=-2(m-2)的解相同.
8.下列方程去括号正确的是( C ) A.x-(4-2x)=7(x-2),得 x-4-2x=7x-14
B.-5(x+1)=12 (x+2),得-5x+5=12 x+2 C.2(1-x)=(1+2x)-3x,得 2-2x=1+2x-3x D.2-[x-5(x+4)]=2,得 2-x-5x+4=2
9.当x=4时,代数式10-5(x+m)与(m+4)x的值互为相反数,则m等于(D ) A.-2 B.2 C.4 D.6 10.若方程6(x-2)=5x的解是方程2(x-3)=3(1-a)的解的2倍,则a的值为(D) A.2 B.1 C.0 D.-1
七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时用去分母解方程课件新版湘教版
知识点 解含分母的一元一次方程
1. 把方程 3x+2x-3 1=-x+2 1去分母,正确的是 (C)
A.3x+2(2x-1)=-3(x+1) B.18x+2(2x-1)=-3x+1 C.18x+2(2x-1)=-3(x+1) D.3x-2×2x-1=-3x+1
2. 下列方程去分母后,所得结果错误的有( B )
规律 .
,
第
10
个方程
【解析】根据题意得第 n 个方程为nx+n+x 1=2n+1,
解为 x=n(n+1),所以第 10 个方程为1x0+1x1=21,其解
为 x=10×11=110.
2. 某同学在解方程2x-3 1=x+3 a-2 去分母时,方程 右边的-2 没有乘 3,其他步骤正确,这时求得的方程的 解为 x=2,试求 a 的值,并求出原方程的正确的解.
解:设甲、乙两地的路程为 x km, 列方程为x5-x7=20, 解得 x=350. 答:略.
1. 有一系列方程:第 1 个方程是 x+2x=3,解为 x
=2;第 2 个方程是2x+3x=5,解为 x=6;第 3 个方程是3x
+ 是
4x1x=0+71,x1=解2为1 ,x其=解12为;
…根据 x=110
法.请用这种方法解方程: 5(2x+3)-34(x-2)=2(x-2)-12(2x+3).
解:移项、合并同类项得121(2x+3)=141(x-2), 约分、去分母得 2(2x+3)=x-2, 去括号,得 4x+6=x-2, 移项、合并同类项,得 3x=-8, 两边都除以 3,得 x=-83.
10. 从甲地到乙地,公共汽车原需行驶 7 h,开通高 速公路后,车速平均每小时增加了 20 km,只需 5 h 即可 到达,求甲、乙两地的路程.
七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案
3。
3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。
课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。
②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。
(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。
难点:确定实际问题中的相等关系,设未知数列出一元一次方程。
二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。
(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。
体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。
a.2x—(x+10)=5x+2(x—1)b。
3x-7(x-1)=3-2(x+3)解:a.x=—43b。
x=52.自学:学生可结合自学指导进行自学。
3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。
人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计
人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。
桐梓县实验中学七年级数学上册第3章一元一次方程3.3一元一次方程的解法3.3.2一元一次方程的解法2
一元一次方程的解法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列解方程去分母正确的是( )A.由-1=,得2x-1=3-3xB.由-=-1,得2(x-2)-3x-2=-4C.由=--y,得3y+3=2y-3y+1-6yD.由-1=,得12y-1=5y+20B.的分子作为一个整体去分母后没有加上括号,错误;C.正确;D.不含分母的项漏乘各分母的最小公倍数15,错误.2.解方程=7,下列变形较简便的是( )A.方程两边都乘20,得4(5x-120)=140B.方程两边都除以,得x-30=C.去括号,得x-24=7D.方程整理,得·=7【解析】选C.解方程时,并不一定按照解一元一次方程的步骤去解,根据方程特点选择合适的步骤去解,此题中因为与互为倒数,相乘为1,所以可以直接去括号更为简单.【变式训练】解方程-2=x怎样变形较简单?【解析】去中括号,得x+1+3-=x.3.我们来定义一种新运算:=ad-bc.例如,=2×5-3×4=-2;再如=3x-2,按照这种定义,对于=,x的值是( )A.-B.-C.D.【解析】选A.根据运算的规则:=可化简为:2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.二、填空题(每小题4分,共12分)4.如果a2与-a2是同类项,则m= .【解析】由同类项的定义可知,(2m+1)=(m+3),解这个方程得:m=2.答案:25.当a= 时,1-与互为相反数.【解析】根据题意得1-+=0,去分母,得6-3(a-1)+2(2a-3)=0,解得a=-3.答案:-3【变式训练】当m= 时,代数式和m-3的值相等.【解析】根据题意得=m-3,去分母,得3(2m-3)=5×2m-3×15,解得m=9.答案:96.有一系列方程:第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;……根据规律,第10个方程是,其解为.【解析】观察给出的方程,第10个方程是+=21,其解为x=10×11=110.答案:+=21 x=110三、解答题(共26分)7.(8分)解方程:(1)(2013·梧州中考)x+2·=8+x.(2)-=1.【解析】(1)原方程变形为x+x+2=8+x,去分母,得x+5x+4=16+2x,移项,合并同类项,得4x=12,方程两边都除以4,得x=3.【一题多解】原方程变形为x+x+2=8+x,移项,合并同类项,得2x=6,方程两边都除以2,得x=3.(2)原方程变形为-=1,去分母,得5(30x-100)-2(40x-80)=10,去括号,得150x-500-80x+160=10,移项,合并同类项,得70x=350,方程两边都除以70,得x=5.【易错提醒】1.在利用分数的基本性质把分母中的小数化为整数时,方程的右边不变.2.去分母时等号右边的1不能漏乘.3.去分母时分子作为一个整体,必须加括号.8.(8分)在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,我们可以将(x+1),(x-1)各看成一个整体进行移项、合并,得到(x+1)=(x-1),再约分、去分母得3(x+1)=2(x-1),进而求解得x=-5,这种方法叫整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).【解析】移项、合并同类项得(2x+3)=(x-2),约分、去分母,得2(2x+3)=x-2,去括号,得4x+6=x-2,移项、合并同类项,得3x=-8,两边都除以3,得x=-.【培优训练】9.(10分)规定新运算符号的运算过程为,a b=a- b.解方程2(2x)=1x.【解析】因为2x=-x,所以2(2x)=-,又1x=-x,因此原方程可化为:-=-x,去括号,得:-+x=-x,移项,得x+x=-+,合并同类项,得x=-,方程两边都除以,得x=-.第2课时物质配比和配套问题【知识与技能】1.会用列表、画线段图等手段帮助分析理解实际问题.会用二元一次方程组解决实际问题.2.通过将实际问题中的数量关系转化为二元一次方程组,体会数学化的过程,提高分析和解决问题的能力.培养学生的探索精神和合作意识.【过程与方法】经历二元一次方程组解决实际问题的过程,知道列二元一次方程组解决实际问题的具体方法.【情感态度】针对问题的探究,鼓励学生大胆尝试,通过交流、合作、讨论,享受学习的乐趣和成功感,培养学生大胆发言的习惯,敢于面对挑战.【教学重点】重点是会用列方程组解决物质配比和配套问题.【教学难点】难点是在实际问题中找等量关系、列方程组.一、情境导入,初步认识【情境】实物投影,并呈现问题:某村18位农民筹集5万元资金,承包了一些低产田地.根据市场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦.种这两种作物每公顷所需的人数和需投入的资金如下表:在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的人都有工作,且资金正好够用?【教学说明】通过列二元一次方程组解决实际问题,总结出列方程组解应用题的方法.情境中可根据题意列表如下:设蔬菜的种植面积为x hm2,荞麦的种植面积为y hm2.根据题意,得54181.5 5.x yx y+=⎧⎨+=⎩,解方程组,得22.xy=⎧⎨=⎩,承包田地的面积为x+y=4(hm2)人员安排为5x=5×2=10(人),4y=4×2=8(人).答:这18位农民应承包4hm2的田地,种植蔬菜和荞麦各2hm2,并安排10人种蔬菜,8人种荞麦,这样能使所有的人都有工作,且资金正好够用.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.三、运用新知,深化理解1.将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的5 7、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨?2.某车间有28名工人,生产特种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套?3.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润利润可达4 500元;经精加工后销售,每吨利润涨致7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或销售完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜全部在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对列二元一次方程组解应用题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.解:(1)设分配给甲、乙两船的任务数分别是x吨、y吨,根据题意可得:答:分配给甲、乙两船的任务数分别是210吨、280吨.2.解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得2×12x=18(28-x)解得x=12,生产螺母的人数为28-x=16答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母正好配套.3.解:按方案一加工获利为:4 500×140=630 000(元).按方案二加工获利为:7 500×(6×15)+1 000×(140-6×15)=675 000+50000=725 000(元).按方案三加工获利为:设将x吨蔬菜进行精加工,y吨蔬菜进行粗加工.7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案三获利最多.答:选择方案三获利最多.四、师生互动,课堂小结通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第110、111页“练习”和教材第112页“习题3.4”中选取.2.完成同步练习册中本课时的练习.这节课充分利用学生身边的实际问题,尽可能增加教学过程的趣味性、实践性,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究.在列方程组的建模过程中,强化了方程的模型思想,培养了学生列方程组解决实际问题的意识和能力,在实际问题的解决中,进一步提高学生解方程组的能力.同时,利用列表、画线段图等手段能帮助学生提高分析问题和解决问题的能力.有理数的加减法一、单选题1.若 |a |= 3, |b|=1 ,且a > b ,那么a -b 的值是()A.4 B.2 C.-4 D.4或2【答案】D【解析】根据绝对值的性质可得a=±3,b=±1,再根据a>b,可得①a=3,b=1②a=3,b=﹣1,然后计算出a-b即可.【详解】∵|a|=3,|b|=1,∴a=±3,b=±1.∵a>b,∴有两种情况:①a=3,b=1,则:a-b=2;②a=3,b=﹣1,则a-b=4.故选D.【点睛】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.2.某地一天的最高气温是12℃,最低气温是-2℃,则该地这天的温差是( )A.B.C.D.【答案】C【解析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到答案.【详解】12-(-2)=14(℃).故选:C.【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.3.在2、﹣4、0、﹣3四个数中,最大的数比最小的数大A.﹣6 B.﹣2 C. D.【答案】D【解析】用最大的数2减去最小的数-4,再根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:2-(-4),=2+4,=6.故选:D.【点睛】本题考查了有理数的减法,有理数的大小比较,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.4.下列各式中正确的是()A.+5﹣(﹣6)=11 B.﹣7﹣|﹣7|=0C.﹣5+(+3)=2 D.(﹣2)+(﹣5)=7【答案】A【解析】根据有理数的加减法运算法则,绝对值的性质对各选项分析判断利用排除法求解.【详解】A. +5﹣(﹣6)=5+6=11,所以本选项在正确;B. ﹣7﹣|﹣7|=-7-7=-14,所以本选项错误;C. ﹣5+(+3)=-5+3=-2,所以本选项错误;D. (﹣2)+(﹣5)=-2-5=-7,所以本选项错误.故选A.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解题的关键.5.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】B【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.6.(2017·山东初三中考真题)计算-(-1)+|-1|,其结果为( )A.-2 B.2 C.0 D.-1【答案】B【解析】试题分析:由题可得:原式=1+1=2,故选:B.7.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为( )A .﹣1B .0C .1D .3【答案】C【解析】 【详解】分析:先计算出中间数列上三个数的和,再根据每行、每列、每条对角线上的三个数之和相等,得a+5+0=3,3+1+b=3,c ﹣3+4=3,求得a 、b 、c 的值,即可得a ﹣b+c 的值.详解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=3,3+1+b=3,c ﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a ﹣b+c=﹣2+1+2=1,故选C .点睛:本题考查了有理数的加减运算,根据题意正确列出算式是解题的关键.8.将 6-(+3)+(-2) 改写成省略括号的和的形式是( )A .6-3-2B .-6-3-2C .6-3+2D .6+3-2 【答案】A【解析】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2.故选A .【点睛】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.9.已知:|a |=2,|b |=5,那么|a +b |的值等于( )A .7B .3C .7或3D .±7或±3【答案】C 【解析】由绝对值的定义与2a =,5b =,得出2a =±,5b =±,从而求得a b +的值.【详解】已知|a |=2,|b |=5,则a =±2,b =±5;当a=2,b=5时,|a+b|=7;当a=2时,b=﹣5时,|a+b|=3;当a=﹣2时,b=5时,|a+b|=3.当a=﹣2时,b=﹣5时,|a+b|=7.综上可知|a+b|的值等于7或3.故选:C.10.下列说法中,正确的有()①两个有理数的和一定大于加数;②被减数一定大于减数;③0是最小的有理数;④一个数的倒数一定小于它本身A.0个B.1个C.2个D.3个【答案】A【解析】根据有理数的加法、减法法则,倒数的定义,以及有理数大小的比较法则即可解答.【详解】解:①两个有理数的和一定大于加数;错误,例如0+3=3;②被减数一定大于减数;错误,例如2-3=-1;③0是最小的有理数;错误,例如-2是有理数,-2;④一个数的倒数一定小于它本身;错误,例如:1的倒数是1等于它本身;故选:A.【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是解题的关键。
人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的
是
(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
2023-2024学年湘教版数学七年级上册 3.3 一元一次方程的解法
解:设船在静水中的平均速度为 x km/h,则顺流速度 为 (x+3) km/h,逆流速度为 (x-3) km/h. 根据顺流速度×顺流时间 = 逆流速度×逆流时间 列出方程,得 2(x + 3) = 2.5(x-3). 去括号,得 2x + 6 = 2.5x-7.5. 移项及合并同类项,得 -0.5x = -13.5.
根据题意,得 17 ( x+24)=3( x-24).
(4) 5 x 4 11 x 8 . 3 33 3
解: (1) x = -2. (3) x = -4.
(2) t = 20. (4) x = 2.
6. 小明和小刚每天早晨坚持跑步,小刚每秒跑 4 米,小明每秒跑 6 米. 若小明站在百米起点处, 小刚站在他前面 10 米处,两人同时同向起跑, 几秒后小明追上小刚?
2
合并同类项,得 系数化为1,得
5 x 15, 2
x 6,
所以
3x = 18.
答:阅 A18 题原有教师 6 人,阅 B28 题原有教师 18 人.
练一练
下面是两种移动电话计费方式:
方式一
方式二
月租费 50 元/月 10 元/月
本地通话费 0.30 元/分 0.5 元/分
问:一个月内,通话时间是多少分钟时,两种 移动电话计费方式的费用一样?
变式训练 1. 若关于 x 的方程 (m-6)x=m-4 的解为 x=2,
则 m=__8__. 2. 当 x=2 时,代数式 (m-2)x 与 m + x 的值相等,
则 m=__6__.
去括号解方程的应用 例4 一艘船从甲码头到乙码头顺流行驶,用了 2 h; 从乙码头返回甲码头逆流行驶,用了 2.5 h.已知水 流的速度是 3 km/h,求船在静水中的速度?
3.3 一元一次方程的解法课时2七年级上册数学湘教版
x−
2 3
的值相
等的未知数x的值.
即要解方程
x−310=
1 4
x−
2 3
新知探究 知识点
解一元一次方程
例3
当x用什么数代入时,多项式的
x−10
3
的值与多
项式
1 4
x−
2 3
的值相等?
解:由题意可知,要解方程:x−310=
1 4
x−
2 3
.
去分母,得
4(x-10)=3x-8 ,
去括号,得
4x-40=3x-8 ,
移项、合并同类项,得
x=32 .
故当x用32代入时,多项式的x−310的值与多项式14 x− 23的值相等.
新知探究 知识点
解一元一次方程
结合上述例题,总结解一元一次方程的基本步骤.
解一元一次方程的基本步骤:
一元一次方程
ax=b(a,b是常数,a≠0)
x=ba
①去分母
⑤化系数为1
②去括号
③移项
④合并同类项
去括号,得
15x-5+2x-4=10x.
移项,得
15x+2x-10x=4+5.
合并同类项,得 两边都除以7,得
7x=9. x =97 .
随堂练习
2.当x用什么数代入时,多项式2(2x5−3) +2 【课本P109 练习 第2题】
的值与多项式3x-1的值相等?
解:由题意可知,要解方程:
2(2x−3)
去括号,得
15x-5+2x-4=10x ,
移项,得
15x+2x-10x=5+4 ,
合并同类项,得
7x=9,
最新人教版七年级上册数学同步教学课件3.3 解一元一次方程(二)第2课时
4
62
3.若式子 (x-1)与 (x+2)的值相等,则x的值是( B )
A.6
B.7
C.8
D.-1
4.若代数式5-4x与 2x 1 的值互为相反数,则x的值是( A )
2
A.3
B.2
C.1
D.2
2
3
5.解下列方程:
(1) 2x 1 2x 1 1 ;
3
6
解析:去分母,得
2(2x﹣1)=2x+1﹣6. 去括号,得
4x-2=2x+1-6. 移项,得
4x﹣2x=2+1﹣6. 合并同类项,得
2x=-3.
系数化为1,得
x=-1.5 .
(2) 3 x 3 3x 1 x .
5
2
解析:去分母,得
30﹣2(x﹣3)=5(3x﹣1)﹣10x.
去括号,得
30﹣2x+6=15x﹣5﹣10x .
移项,得
﹣2x﹣15x+10x=﹣5﹣6﹣30.
三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增? 诗的意思:
1 x 1 x 364. 34 解得 x=624.
答:寺内有624个僧人.
3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用
了364只碗,请问寺内有多少僧人?
本节主要内容
解一元一次方程的一般步骤: 1.去分母:乘所有分母的最小公倍数. 2.去括号:先去小括号,再去中括号,最后去大括号. 3.移项:把含有未知数的项移到一边,不含未知数的项移到另一边. 4.合并同类项:把含未知数的项相加,把不含未知数的项相加. 5.方程的两边都除以未知数的系数.
合并同类项,得 3x = 12.
最新人教版《 解一元一次方程(二)——去括号与去分母(第2课时)》七年级数学教学设计教案
第三章一元一次方程3.3 解一元一次方程(二)——去括号与去分母第2课时一、教学目标【知识与技能】1.掌握含有分母的一元一次方程的解法;2. 进一步掌握利用一元一次方程解决实际问题【过程与方法】经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力.【情感态度与价值观】1.归纳解一元一次方程的步骤,体会转化的思想方法。
2. 让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】掌握含有以常数为分母的一元一次方程的解法.【教学难点】加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.五、课前准备教师:课件、三角尺、等式的性质等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课下面是一道著名的求未知数的问题. (出示课件2-4)一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.教师问1:思考题中涉及到哪些数量关系和相等关系?学生回答:它的三分之二+它的一半+它的七分之一+它的全部=33教师问2:引进什么样的未知数,能根据这样的相等关系列出方程呢?学生回答:设这个数为x. 根据题意,得23x+12x+17x+x=33.教师问3:这个方程与前面学过的一元一次方程有什么不同?学生回答:这个方程含有分母.教师:怎样解这个方程呢?这节课我们就来学习怎样解答这类方程。
(二)探索新知1.师生互动,探究含有分母的一元一次方程的解法解方程:3x+12−2=3x−210−2x+35(出示课件6)教师问4:若使方程的系数变成整系数方程,方程两边应该同乘什么数?学生讨论后回答:两边同乘以分母的最小公倍数.教师问5:去分母时要注意什么问题?学生回答:分子是多项式的要加括号,等式里的整数不要漏乘.教师问6:哪位同学试着解答一下?学生小组讨论后,师生共同解答如下:(出示课件7)教师问7:下列方程的解法对不对?如果不对,你能找出错在哪里吗?(出示课件8)解方程:2x−13−x+22=1解:去分母,得 4x -1-3x + 6 = 1 ①移项,合并同类项,得 x=4 ②学生回答:总结点拨:解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
秋七年级数学上册 第3章 一元一次方程 3.3 一元一次方程的解法 第2课时 利用去括号解一元一次方
3.3 一元一次方程的解法第2课时利用去括号解一元一次方程教学目标(1)了解“去括号”是解方程的重要步骤。
(2)准确而熟练地运用去括号法则解带有括号的一元一次方程。
(3)学会利用列一元一次方程去解决有关数学问题、教学重点重点:了解“去括号”是解方程的重要步骤。
难点:括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项。
学习过程:一、课前预习,完成填空【活动一】温故而知新1.去括号法则是:()2.化简下列各式:(1)a (b+c)= (2) 7(x-1)=(3) -2(x+3)= (4) -(x-1.5)=3.前面学过的解一元一次方程的一班步骤();4. 解方程8x-19=6x-9【活动二】自主探究新知问题:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?◆你会用方程解决这个问题吗?分析:等量关系:列方程:思考:试一试本题还有其他列方程的方法吗?分析等量关系:小结:目前我们解含有括号的一元一次方程的一般步骤是:()——()——()——()例1:解方程(1)5(x+2)=2(5x-1) (2) 2(x-1)-(x+2)=3(4-x)去括号,得: 去括号,得:移项,得移项,得合并同类项,得合并同类项,得系数化为1,得系数化为1,得例2. 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时。
已知水流的速度是3千米/时,求船在静水中的平均速度。
分析:顺流速度 =()逆流速度=()等量关系:二、检查预习1、课前小组长检查预习完成情况2、教师检查,予以点评三、自学检查,学生交流预习情况1、学生回答活动一。
2、学生说活动二列方程思路,解方程步骤【活动三】随堂练习(自我检测)1、解方程:(1)5(x+2)=2(5x-1)(2)4x+3=2(x-1)+1(3)(x+1)-2(x-1)=1-3x (4)2(x-1)-(x+2)=3(4-x)2、.已知 A= 3x+2 , B=4+2x ①当x取何值时, A=2B;②当x取何值时, 3A=1-2B3 、列方程求解:(1)当x取何值时,代数式4x-5与3x-6的值互为相反数?(2)一架飞机在两城之间飞行,风速为24千米/时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.解方程 2(x-3)-3(x-4)=5 时,下列去括号正确的是( D )
A.2x-3-3x+4=5
B.2x-6-3x-4=5
C.2x-6-3x-12=5
D.2x-6-3x+12=5
9.若方程 3x+(2a+1)=x-(3a+2)的解是 0,则 a 的值等于( D )
1
3
A.5
B.5
C.-15
D.-35
利用去括号解一元一次方程
1.对于方程 2(2x-1)-(x-3)=1,去括号正确的是( D )
A.4x-1-x-3=1
B.4x-1-x+3=1
C.4x-2-x-3=1
D.4x-2-x+3=1
2.下列解方程变形错误的是( C )
A.若 2(x-1)=3,则 2x-2=3
B.若12(x+1)=x,则21x+21=x
(2)x=15; (4)x=154.
15.当 x 为何值时,代数式 2x-3 的值是代数式 6-5x 的值的 4 倍少 5? 解:根据题意得 2x-3=4(6-5x)-5,解得 x=1. 16.若 A=4-3x,B=5+4x,且 2A=20+3B.求 x 的值. 解:因为 2A=20+3B,所以:2(4-3x)=20+3(5+4x).解得:x=-32.
2018年秋
七年级 数学 上册•X
第3章 一元一次方程
3.3 一元一次方程的解法 第2课时 去括号解方程
用去括号解一元一次方程
解方程时,去括号的依据是 分配律 .如 2(5x+2)=3(6x-1),去括号后得: 10x+4=18x-3 .
自我诊断 1. 解方程-2(x-1)-4(x-2)=1,去括号结果正确的是( D )
C.若-(x-3)=2x-3,则-x-3=2x-3
D.若-3(x+1)=2x,则-3x-3=2x
3.方程 2(x+3)=3(x-1)的根为( D )
A.x=1
B.x=3
C.x=0
D.x=9
4. (临沂中考)若 2(x+3)与 3(1-x)的值互为相反数,则 x 的值为( C )
A.-8
B.8
C.9
D.-9
5.解方程 2(x-2)-4(4-x)=5,去括号得 2x-4-16+4x=5 ,移项并合
并得 6x=25 ,系数化为 1 得 x=265
.
6.当 x= 10 时,式子 3(x-2)和 4(x-3)-4 的值相等.
7.解下列方程: (1)2x-4(x+3)=-5x+3; (2)5(2x+1)-3(22x+11)=4(6x+3). 解:(1)去括号,得 2x-4x-12=-5x+3,移项,得 2x-4x+5x=3+12, 合并同类项,得 3x=15,两边都除以 3,得 x=5; (2)去括号,得 10x+5-66x-33=24x+12,移项,得 10x-66x-24x=12 -5+33,合并同类项,得-80x=40,两边都除以-80,得 x=-0.5.
13.将
4
个数
a、b、c、d
排成二行、二列,两边各加一条竖直线记成a c来自b, d定义a c
db=ad-bc.上述记号就叫做二阶行列式,若23xx--12
3 -2=4,
4 则 x= 13 .
14.解下列方程: (1)3(x-2)=x-(7-8x); (2)4(x-2)=3(1+3x)-12; (3)21(2x-1)-3(23x+12)=2x; (4)x-2[x-3(x-1)]=8. 解:(1)x=61; (3)x=-34;
17.某林场计划购买甲、乙两种树苗 800 株,甲种树苗每株 24 元,乙种树 苗每株 30 元.若购买这两种树苗共用去 21000 元,则甲、乙两种树苗各购 买了多少株?
解:设甲种树苗购买了 x 株,则乙种树苗购买了(800-x)株,列方程得 24x +30(800-x)=21000,解得 x=500,所以 800-x=300,所以甲种树苗购 买了 500 株,乙种树苗购买了 300 株.
A.-2x+2-4x-8=1
B.-2x+1-4x+2=1
C.-2x-2-4x-8=1
D.-2x+2-4x+8=1
易错点 去括号时,忘记变号和漏乘出错.
自我诊断 2. 解方程:3(x-4)-2(5-2x)=-16. 解:去括号:3x-12-10+4x=-16,移项:3x+4x=-16+12+10,合并 得:7x=6,系数化为 1:x=67.
10.已知关于 x 的方程 mx+2=2(m-x)的解满足|x|-1=0,则 m 的值为( D )
A.4
B.0
C.-4 或 0
D.4 或 0
11.方程 2(2x+1)=3(x+2)-(x+6),去括号得 4x+2=3x+6-x-6 ,
解得 x= -1 .
5
12.设 P=2y-2,Q=2y+3,若 3P-Q=1,那么 y 的值是 2 .