「精品」九年级数学竞赛辅导系列讲座九圆练习无答案

合集下载

初中数学奥林匹克中的几何问题:第7章九点圆定理及应用附答案

初中数学奥林匹克中的几何问题:第7章九点圆定理及应用附答案

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.BVO RF P E NMHQL图7-1A证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知L M P Q 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个 圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知O L V H P V △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径.又90LDP ∠=︒,90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有C H C B CD C F =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上. 注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上.事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12H P H A =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心.连AO ,则A O P V ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则O N A G ⊥,由此知AON AGL ∠=∠.又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆. 例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分.证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆,由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. (2001年全国高中联赛题)AN证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅,从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()B D B D D C B F B F FA ⋅+=+,亦即2222B F B D B D D C A F F B O F O D -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥. (2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-51证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和 CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌.显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1N BA'∠=∠. 同理,NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠. 于是,12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠.由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠.同理,902C DA C CA ''∠=∠=︒-∠. 于是,18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP '' 的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C A(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形. (2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=,2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点. (IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥,由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有 1231TT T S =. 同理, 1232TT T S =. 故有 3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >.【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上.2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R .(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点. 2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.第七章九点圆定理及应用习题A1.设P O P '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,PH'的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切.同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤ ,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O的I 的对称点.其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A 平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥.同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC ,△ABD ,△BCD ,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫ ⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫ ⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。

九年级数学竞赛讲座圆的基本性质附答案

九年级数学竞赛讲座圆的基本性质附答案

【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A .2 B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M . (1)求∠COA 和∠FDM 的度数; (2)求证:△FDM ∽△COM ;(3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.⌒ ⌒⌒⌒注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3. (1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积. 思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ) A.12cm B.10cm C. 8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .3166.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数. 9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F . (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系⌒⌒是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根. (1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒ ⌒参考答案。

九年级数学竞赛讲座辅助圆附答案

九年级数学竞赛讲座辅助圆附答案

【例题求解】【例1】如图,直线AB和AC与⊙O分别相切于B、C,P为圆上一点,P到AB、AC的距离分别为4cm、6cm,那么P到BC的距离为.(全国初中数学联赛题)思路点拨连DF,EF,寻找PD、PE、PF之间的关系,证明△PDF∽△PFE,而发现P、D、B、F与P、E、C、F分别共圆,突破角是解题的关键.注:圆具有丰富的性质:(1)圆的对称性;(2)等圆或同圆中不同名称量的转化;(3)与圆相关的角;(4)圆中比例线段.适当发现并添出辅助圆,就为圆的丰富性质的运用创造了条件,由于图形的复杂性,有时在图中并不需画出圆,可谓“图中无圆,心中有圆”.【例2】如图,若PA=PB,∠APB=2∠ACB,AC与PB交于点P,且PB=4,PD=3,则AD·DC等于( ) A.6 B.7 C.12 D.16(“TI”杯全国初中数学竞赛题)思路点拨作出以P点为圆心、PA长为半径的圆,为相交弦定理的应用创设了条件.注:到一个定点等距离的几个点在同一个圆上,这是利用圆的定义添辅助圆的最基本方法.【例3】 如图,在△ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ ,求证:△ABC 的外心O 与A ,P ,Q 四点共圆.思路点拨 先作出△ABC 的外心O ,连PO 、OQ ,将问题转化为证明角相等.【例4】 如图,P 是⊙O 外一点,PA 切⊙O 于A ,PBC 是⊙O 的割线,AD ⊥PO 于D .求证:CDPCPD PB.思路点拨 因所证比例线段不是对应边,故不能通过判定△PBD 与△PCD 相似证明.PA 2=PD ·PO=PB ·PC ,B 、C 、O 、D 共圆,这样连OB ,就得多对相似三角形,以此达到证明的目的.注:四点共圆既是一类问题,又是平面几何中一个重要的证明方法,它和证明三角形全等和相似三角形有着同等重要的地位,这是因为,某四点共圆,不但与这四点相联系的条件集中或转移,而且可直接运.用圆的性质为解题服务.【例5】如图,在△ABC 中,高BE 、CF 相交于H ,且∠BHC=135°,G 为△ABC 内的一点,且GB=GC ,∠BGC =3∠A ,连结HG ,求证:HG 平分∠BHF .思路点拨 经计算可得∠A=45°,△ABE ,△BFH 皆为等腰直角三角形,只需证∠GHB=∠GHF=22.5°. 由∠BGC=3∠A=135°=∠GHC ,得B 、G 、H 、C 四点共圆,运用圆中角转化灵活的特点证明.注:许多直线形问题借助辅助圆,常能降低问题的难度,使问题获得简解、巧解或新解.学力训练1.如图,正方形ABCD 的中心为O ,面积为1989cm 2,P 为正方形内一点,且∠OPB=45°,PA :PB=5:14,则PB 的长为 .(北京市竞赛题)2.如图,在△ABC 中,AB=AC=2,BC 边上有100个不同的点P l 、P 2,…P 100,记C P BP AP m i i i i ⋅+=2(i=1,2,…100),则10021m m m +++ = .3.设△ABC 三边上的高分别为AD 、BE 、CF ,且其垂心H 不与任一顶点重合,则由点A 、B 、C 、D 、E 、F 、H 中某四点可以确定的圆共有( ) A .3个 B .4个 C .5个 D .6个(2000年太原市竞赛题)4.如图,已知OA=OB=OC ,且∠AOB=k ∠BOC ,则∠ACB 是∠BAC 的( ) A .k 21倍 B .是k 倍 C .k 2 D .k15.如图,在等腰梯形ABCD 中,AB ∥CD ,AB=998,CD=1001,AD=1999,点P 在线段AD 上,满足条件的∠BPC=90°的点P 的个数为( )A .0B .1C .2 1D .不小于3的整数(全国初中数学联赛题)6.如图,AD 、BE 是锐角三角形的两条高,S △ABC = 18,S △DEC =2,则COSC 等于( ) A .3 B .31 C . 32D .437.如图;已知H 是△ABC 三条高的交点,连结DF ,DE ,EF ,求证:H 是△DEF 的内心. 8.如图,已知△ABC 中,AH 是高,AT 是角平分线,且TD ⊥AB ,TE ⊥AC . 求证:(1)∠AHD=∠AHE ;(2)CECHBD BH =(陕西省竞赛题)9.如图,已知在凸四边形ABCDE 中,∠BAE=3α,BC=CD=DE ,且∠BCD=∠CDE=α2180- .求证:∠BAC=∠CAD=∠DAK ,(全国初中数学联赛题)10.如图,P 是⊙O 外一点,PA 和PB 是⊙O 的切线,A ,B 为切点,P O 与AB 交于点M ,过M 任作⊙O 的弦CD .求证:∠CPO=∠DPO .11.如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB ,交⊙O A 、B 两点,与ST 交于点C .求证:)11(211PBPA PC += (国家理科实验班招生试题)参考答案。

【九年级】九年级数学竞赛直线与圆专题辅导讲座

【九年级】九年级数学竞赛直线与圆专题辅导讲座

【九年级】九年级数学竞赛直线与圆专题辅导讲座m注:点与圆的位置关系和线与圆的位置关系的确定有一种常用的精确判断方法,即定量方法(距离与半径的比较)。

我们称之为“按数成形”,毕达哥拉斯定理的逆定理也有这个特点【例题求解】【例1】如图所示,AB是半圆o的直径,CB切出⊙ o在B中,CD切割⊙ D中的o和E中交叉点BA的延长线。

如果EA=1,ED=2,则BC的长度为思路点拨从c点看,可用切线长定理,从e点看,可用切割线定理,而连od,则od⊥ec,又有相似三角形,先求出⊙o的半径.注:圆心与切点的连接是常用的辅助线。

利用切线的性质可以构造直角三角形,这在圆的证明和计算中被广泛使用【例2】如图,ab、ac与⊙o相切于b、c,∠a=50°,点p是圆上异于b、c的一个动点,则∠bpc的度数是()a、65°b.115°c.60°和115°d.130°和50°(山西省中考题)想法和建议【例3】如图,以等腰△a bc的一腰ab为直径的⊙o交bc于d,过d作de⊥ac于e,可得结论:de是⊙o的切线.Q:(1)如果点O移动到AB上的点B,则以O为中心,ob为半径的圆在D和de处的交点BC的条件⊥ AC保持不变,上述结论是否仍然有效?请解释原因;(2)如果ab=ac=5cm,sina=,那么圆心o在ab的什么位置时,⊙o与ac相切?(2001年黑龙江省中考题)[例4]如图所示,在RT中△ ABC,AC=5,BC=12,∠ ACB=90°,P是AB侧的移动点(与点a和b不重合),Q是BC侧的移动点(与点b和C不重合)(1)当pq∥ac,且q为bc的中点时,求线段pc的长;(2)当PQ与AC不平行时,can△ CPQ是直角三角形吗?如果可能,计算线段CQ长度的值范围;如果不可能,请解释原因思路点拨对于(2),易发现只有点p能作为直角顶点,建立一个研究的模型――以cq为直径的圆与线段ab的交点就是符合要求的点p,从直线与圆相切特殊位置入手,以此确定cq的取值范围.注:判断直线的切线为圆是平面几何中的常见问题。

2019-2020学年北京初中数学竞赛 九年级 圆的专题

2019-2020学年北京初中数学竞赛 九年级 圆的专题

2019-2020 北京初中数学竞赛 九年级 圆的专题(含答案)1. 求证:若半径为R 的圆内接四边形对角线垂直,则以对角线交点到四边射影为顶点的四边形有内切圆,且此圆半径不大于2R.解析 如图,已知圆内接四边形ABCD ,AC BD ⊥,垂足为P ,P 在AB 、BC 、CD 、DA 上的射影分别为E 、F 、G 、H ,则由几组四点共圆易知sin sin sin 2AC BDEH FG AP BAD CP BCD AC BAD R⋅+=∠+⋅∠=∠∠=,同理EF HG +也是此值,因此四边形EFGH 有内切圆.CFGPH DBEA由于FEP CBD CAD HEP ∠=∠=∠=∠,故EP 平分FEH ∠,同理HP 、GP 、FP 平分另外3个角,P 为四边形EFGH 的内心.于是内切圆半径sin sin sin 2ADr PF PFG PF ACD PF PC ACB R=⋅∠=⋅∠=⋅=⋅∠⋅2224222AD PC AB AD PC PA R RR R R R ⋅⋅⋅==≤=.取到等号仅当P 为圆心时.2. 如图(a),已知O e 的直径为AB ,1O e 过点O ,且与O e 内切于点B .C 为O e 上的点,OC 与1O e 交于点D ,且满足OD CD >,点E 在线段OD 上,使得D 为线段CE 的中点,连结BE 并延长,与1O e 交于点F ,求证:BOC △∽1DO F △.(b)(a)O 1AOBM E CD F O 1OB E CD F解析 如图(b),连结BD ,因为OB 为1O e 的直径,所以90ODB ∠=︒,结合DC DE =,可得BDE △≌BDC △.设BC 与1O e 交于点M ,连结OM ,则90OMB ∠=︒,于是OM 平分COB ∠,从而有 122222BOC DOM DBM DBC DBE DBF DO F ∠=∠=∠=∠=∠=∠=∠.又因为BOC ∠,1DO F ∠分别是等腰BOC △,1DO F △的顶角,所以BOC △∽1DO F △.3. I 是ABC △的内心,线段AI 延长交ABC △的外接圆于D ,若3AB =,4AC =,且IBC DBC S S =△△,求BC .解析 如图,设BC 与AD 交于E ,则IE ED x ==,2BD CD ID x ===,又设AE y =,由于在等腰三角形BCD 中,有熟知的结论22BD DE BE CE AE ED -=⋅=⋅,此即23x yx =,3y x =,故2AB AC AI BC IE +==,72BC =.lE DCBA4. 在平面上给定等腰三角形ABC ,其中AB AC =,试在平面上找到所有符合要求的点M ,使ABM △、ACM △都是等腰三角形.解析 要使ABM △为等腰三角形,M 必定在AB 的垂直平分线上,或在以A 、B 为圆心、AB 为半径的圆上.ACM △亦然.这样得到3个圆A e 、B e 、C e .M 6M 5M 4M3M 2M 1B'C'CB A在A e 上除了B 、C 及其对径点B '、C ',其余的点都符合要求.此外,还有6个点,即AB 中垂线与Ce 的两个交点1M 、2M ,AC 的中垂线与B e 的两个交点3M 、4M ,B e 与C e 的另一个交点6M (不是A ),两条中垂线的交点5M (即ABC △之外心),如图.何时1M 在直线AB 上或A 、C 、2M 共线,此时A ∠是三边长分别为1:2:2的等腰三角形的底角,此时1M 、2M 、3M 、4M 均不符合要求;又120A ∠=︒时,六点变一点,且在A e 上,120A ∠>︒时,只有5M 与6M 两点.评注 读者可考虑ABC △为不等边三角形时的情形.5. 已知:ABC △中,AB AC =,AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证:RPB DAC ∠=∠.解析 如图,易知RP RC RB ==,R 为PBC △外心,2180BRP C BAC ∠=∠=︒-∠,故A 、B 、R 、P 共圆,于是RPB BAD DAC ∠=∠=∠.P QRCDBA6. D 、E 、F 分别在ABC △的边BC 、CA 、AB 上,则AEF △、BFD △、CDE △的外接圆共点. 解析 如图,设AEF △、BFD △的外接圆除F 之外,还交于P ,连结PD 、PE 、PF ,则PEC AFP BDP ∠=∠=∠,故E 、P 、D 、C 共圆,证毕.题12.2.2CDBPEFA7. 平面上有一条光线穿过该平面上的一圆,打在一条直径上并发生反射,最后穿出圆去,求证:这条光线与圆的两个交点、与直径的接触点以及圆心,该四点共圆.解析 如图,设这条光线为APB ,EOF 是题设中的直径,延长AP 至O e 于C ,则BPF APE CPF ∠=∠=∠,B 与C 关于EF 对称.于是BPO △≌CPO △.这样一来,便有OBP OCP OAP ∠=∠=∠,于是A 、O 、P 、B 四点共圆.题12.2.3POCFB EA评注 本题亦可利用圆心角证.8. 已知P 为ABC △外接圆的»BC上一点,则P 在直线AB 、BC 、CA 的射影L 、M 、N 共线. 解析 如图,连结LM 、MN ,BP ,CP ,则由L 、M 、P 、B 共圆,M 、P 、N 、C 共圆及A 、B 、P 、C 共圆,得9090180LMP NMP LMB PCN LPB ABP ∠+∠=∠+︒+∠=∠+∠+︒=︒,故L 、M 、N 共线.P NM L CBA评注 此线称为西摩松线.反之,若三垂足共线,则P 在ABC △外接圆上.9. 四边形ABCD 对角线交于O ,AO CO BO DO ⋅=⋅,O 在AB 、BC 、CD 、DA 上的垂足分别是E 、F 、G 、H ,求证:EF GH EH FG +=+. 解析 如图,易知A 、B 、C 、D 共圆.CGFODBHEA由A 、E 、O 、H 共圆,得sin EH AO A =(A ∠即BAD ∠,余同),同理sin FG CO C == sin(180)sin CO A CO A ︒-=⋅,故sin EH FG AC A +=,同理sin EF GH BD B +=.而sin sin AC BDB A=,于是上述结论成立. 评注 读者不妨研究由EF GH EH FG +=+能否得出A 、B 、C 、D 共圆. 10. 已知凸四边形ABCD ,2BAC BDC ∠=∠,2CAD CBD ∠=∠,求证: AB AC AD ==.解析 如图,1180()1802BCD CBD CDB BAD ∠=︒-∠+∠=︒-∠,故180BCD BAD ∠+∠>︒,作BCD △外接圆,A 在圆内、延长CA 至圆于P .连结PB 、PD ,则P 、B 、C 、D 四点共圆. DCBAP于是12APD CBD CAD ∠=∠=∠,故APD ADP ∠=∠,PA AD =,同理PA AB =.A 为PBD △外心,也即BCD △之外心,于是AB AC AD ==.11. 设圆内接ABC △的垂心为H ,P 为圆周上任一点,求证:PH 被P 关于该三角形的西摩松线平分.解析 如图,不妨设P 在»BC上.P 在直线AB 、BC 上的射影分别是M 、N ,MN 即为西摩松线.AL 是高,延长后交圆于D ,PN 延长后交圆于Q ,连结PD 、QA 、CD 、BP .则HCB BAD DCB ∠=∠=∠,得HL LD =. ①CEDP LNH R M BAQ又易知M 、N 、P 、B 共圆,因此ENP ABP AQP ∠=∠=∠,故MN AQ ∥.又作HR AQ ∥,于是由四边形AQPD 为等腰梯形,知四边形HRPD 也是等腰梯形,于是由①知BC 垂直平分HD ,从而BC 垂直平分RP .由PN NR =及MNE RH ∥,知MN 必将PH 平分.12. 已知MON 为O e 直径,S 在ON 上,弦ASB MN ⊥,P 在¼BM上,PS 延长后交圆于Q ,PN 交AB 于R ,求证:QS RN <.解析 如图,连结MP 、MR ,知M 、S 、R 、P 共圆,于是RN SN QSMR SP MS==,于是1RN MR QS MS =>.NB13. 已知锐角三角形ABC 中,AB AC >,AD BC ⊥于D ,G 、F 分别在AB 、AC 上,GC 、BF 、AD交于H ,若G 、B 、C 、F 共圆,则H 为ABC △之垂心.解析 如图,易知BD CD >,今在BD 上找一点E ,使ED CD =,连结AE 、HE ,则E 与C 关于AD 对称.于是由对称及G 、B 、C 、F 共圆,得ABH ACH AEH ∠=∠=∠,于是A 、B 、E 、H 共圆,故BAD HEC HCE ∠=∠=∠,于是90AGH HDC ∠=∠=︒,H 为垂心.HCDEBF GA14. 已知ABC △与ACD △均为正三角形,过D 任作一直线,分别交BA 、BC 延长线于E 、F ,CE 与AF 交于G ,求证:GB 平分AGC ∠.FCBGDAE解析 设AB BC AC a ===,AE x =,CF y =,由AD BF ∥,CD BE ∥,则x y x a y a+=++ 1ED DF EF EF +=,去分母整理得2xy a =.此即AE ACAC CF=,又120EAC ACF ∠=︒=∠,故EAC △∽ACF △,60AGE GAC ACG GAC AFC ∠=∠+∠=∠+∠=︒,故A 、B 、C 、G 共圆,60AGB ACB BAC ∠=∠=︒=∠= CGB ∠.15. 设圆内接四边形ABCD ,AB 、DC 延长交于E ,AD 、BC 延长交于F ,EF 中点为G ,AG 与圆又交于K ,求证:C 、E 、F 、K 四点共圆.解析 如图,延长AG 一倍至J ,作平行四边形AEJF .连结CK ,则CEJ ADE AKC ∠=∠=∠,于是E 、C 、K 、J 共圆,或K 在CEJ △的外接圆上.FG EKCDB又180180EJF EAF BCD ECF ∠=∠=︒-∠=︒-∠,故E 、C 、F 、J 共圆,或F 亦在CEJ △的外接圆上.于是C 、E 、J 、F 、K 五点共圆,结论成立.16. AD 、BE 是锐角三角形ABC 的高,D 、E 是垂足,D 在AB 、AC 上的射影分别是M 、N ,E 在BC 、AB 上的射影分别是P 、Q ,求证:QN PM =.解析 如图,连结ED 、PN ,则易知NPC DEC ABC ∠=∠=∠,故NP AB ∥.P D CNE B MQ A欲证四边形MPNQ 为等腰梯形,只需证MN PQ =即可. 由于A 、M 、D 、N 共圆,AD 为直径,故sin 2ABCS AD BC MN AD A R R⋅=⋅==△,R 为ABC △外接圆半径,同理PQ 也是此值,因此结论成立.17. 过两定点A 、B 的圆与定圆交于P 、Q ,求证:AP AQBP BQ⋅⋅为定值.解析 如图,延长(或不延长)AP 、BQ ,可与定圆再分别交于M 、N 两点,则由四点共圆知180BAP PQN M ∠=∠=︒-∠,故AB MN ∥.NQB MP A于是四边形ABNM 为梯形,sin sin AM A BN B =(A ∠即BAP ∠,余类似);又由定圆性质知AP AM ⋅为定值,BQ BN ⋅亦为定值,故AP AM BQ BN ⋅⋅为定值,此即sin sin AP B BQ A ⋅⋅为定值.但由正弦定理,sin sin B AQA BP=,于是AP AQ BP BQ⋅⋅为定值.18. 直角三角形ABC 中,E 、F 分别是直角边AB 、AC 上的任意点,自A 向BC 、CE 、EF 、FB 引垂线,垂足分别是M 、N 、P 、Q .证明:M 、N 、P 、Q 四点共圆. 解析 因A 、E 、N 、P 共圆,故CNP EAP AFP ∠=∠=∠,因A 、N 、M 、C 共圆,故CNM CAM ∠=∠,又A 、B 、M 、Q 共圆,故MQB MAB ∠=∠,由A 、P 、Q 、F 共圆,得PQB FAP ∠=∠.所以()()()()MNP MQP CNM CNP MQB PQB CAM AFP MAB FAP ∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=()()9090180CAM MAB AFP FAP ∠+∠+∠+∠=︒+︒=︒.故M 、N 、P 、Q 共圆.PQ NCMBFEA19. ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,F 在DA 的延长线上,连结BF ,G 在BA 的延长线上,使得DG BF ∥,H 在GF 的延长线上,CH GF ⊥.证明:B 、E 、F 、H 四点共圆.解析 如图,连结BH 、EF 、CG .因为BAF △∽GAD △,所以FA DAAB AG=, DEA BH FG又因为ABE △∽ACD △,所以 AB ACEA DA =, 从而得 FA ACEA AG=. 因为FAE CAG ∠=∠,所以FAE △∽CAG △,于是FEA CGA ∠=∠.由题设知,90CBG CHG ∠=∠=︒,所以B 、C 、G 、H 四点共圆,得BHC BGC ∠=∠.于是 90BHF BEF BHC BEF ∠+∠=∠+︒+∠ 90BGC BEF =∠+︒+∠ 90FEA BEF =∠+︒+∠ 180=︒,所以,B 、E 、F 、H 四点共圆.20. 四边形ABCD 内接于圆,P 是AB 的中点,PE AD ⊥,PF BC ⊥,PG CD ⊥,E ,F ,G 为垂足,M 是线段PG 和EF 的交点,求证:ME MF =.解析 如图,作1AF BC ⊥,1BE AD ⊥(1E 、1F 为垂足),则1112PE AB PF ==.设PG 与11E F 交于K ,因A 、B 、1F 、1E 共圆,所以11180CF E A C ∠=∠=︒-∠,因此11E F CD ∥,11PK E F ⊥,K 是11E F 的中点(因11PE F △为等腰三角形),故PEKF 为平行四边形(因P 、E 、K 、F 为四边形11ABF E 各边中点),因此ME MF =.F 1E 1F M E KC GD评注 本题亦可用面积法快速解决.21. ABC △中,AD 、AE 分别是高和中线,且都在三角形内部,求证:若DAB CAE ∠=∠,则ABC△或者是等腰三角形,或者是直角三角形.解析 如图,D 与E 无非是三种位置关系,由对称性,可归结为两种:D 与E 重合,或D 位于E 的左侧.D FA若D 与E 重合时,ABC △显然为等腰三角形.若D 在E 的左侧,设AB 中点为F ,连接FD 、FE .则EF 为中位线,由条件,知 AEF CAE DAB ADF ∠=∠=∠=∠,故A 、F 、D 、E 共圆,于是 90BAC BAE EAC FDB ADF ∠=∠+∠=∠+∠=︒.22. 设A 、B 、C 、D 、E 是单位半圆上依次五点,AE 是直径,且AB a =,BC b =,CD c =,DE d =,证明:22224a b c d abc bcd +++++<.解析 如图,连接CA 、CE ,则AC CE ⊥,设CAE α∠=,CEA β∠=,则由四点共圆及余弦定理,有:βαAEDCB2224AE AC CE ==+22222cos 2cos a b ab c d cd βα=+++++2222a b c d ab CE cd AC =++++⋅+⋅,由于ABC ∠,90CDE ∠>︒,故CE CE c >=,AC BC b >=,代入,即得 22224a b c d abc bcd >+++++.23. 已知四边形ABCD 内接于圆,点E 、F 分别为AB 、CD 上的动点,且满足AE CFEB FD=,又点P 在EF 上且满足PE ABPF CD=,证明:APD △与BPC △的面积之比与点E 、F 无关. 解析 如图,不妨设AD 、BC 延长后交于S ,由四点共圆知ABS CSF △∽△,又E 、F 分别是对应点,故ASE CSF △∽△.于是ES AS AB PEFS CS CD PF===,于是SP 平分ESF ∠进而平分ASB ∠,于是P 至AD 、BC 距离相等,APD BPC S ADS BC=△△,与E 、F 无关.(图中SE 、SF 、SP 未画出.)PSCF D BE AAD BC ∥时,结论不变.24. AB 是圆O 的直径,C 为AB 延长线上的一点,过点C 作圆O 的割线,与圆O 交于D 、E 两点,OF是BOD △的外接圆1O 的直径,连接CF 并延长交圆1O 于点G .求证:O 、A 、E 、G 四点共圆. 解析 如图,连接AD 、DG 、GA 、GO 、DB 、EA 、EO .A因为OF 是等腰DOB △的外接圆的直径,所以OF 平分DOB ∠,即2DOB DOF ∠=∠.又12DAB DOB ∠=∠,所以DAB DOF ∠=∠.又DGF DOF ∠=∠,所以DAB DGF ∠=∠,因此,G 、A 、C 、D 四点共圆.所以AGC ADC ∠=∠.而90AGC AGO OGF AGO ∠=∠+∠=∠+︒,90ADC ADB BDC BDC ∠=∠+∠=︒+∠,因此AGO BDC ∠=∠.因为B 、D 、E 、A 四点共圆,所以BDC EAO ∠=,又OA OE =,所以EAO AEO ∠=∠.从而AGO AEO ∠=∠,所以,O 、A 、E 、G 四点共圆.25. 已知ABC △中,AD BC ⊥于D ,DM AC ⊥于M ,DB AB ⊥于N ,NM 与BC 延长线交于E ,求证:111CD BD DE-=. 解析 如图,延长DM ,作EF DM ⊥于F ,由FDE CAD ∠=∠,知AMD DFE ADC △∽△∽△,所以DM EF AD DE =,DF ADEF CD=,又由A 、N 、D 、M 四点共圆,得NAD NMD ∠=∠,从而MEF ABD △∽△,从而MF AD EF BD =,因此AD AD DF MF DM AD CD BD EF EF EF DE -=-==,于是111CD BD DE-=. NMBDCEFA26. 凸四边形ABCD 中,ABD α∠=,CBD β∠=,若sin sin sin()AB BC BD βααβ+=+,则A 、B 、C 、D 共圆.解析 如图,不妨设ABC △外接圆交直线BD 于D '.βαD'CBDA由托勒密定理得AB CD BC AD AC BD '''⋅+⋅=⋅两边同除以外接圆直径,得sin sin sin()AB BC BD βααβ'+=+,于是由条件BD BD '=(因为sin()0αβ+≠),故D 与D '重合,即A 、B 、C 、D 共圆.。

九年级数学尖子生培优竞赛专题辅导第十二讲关于圆的基本知识(含答案)

九年级数学尖子生培优竞赛专题辅导第十二讲关于圆的基本知识(含答案)

第十二讲关于圆的基本知识趣题引路】20世纪40年代美国数学家冯•诺伊曼等人编写了一本研究取胜对策的书.在这本书中有一个有趣的问题: 一只鼠在圆形的湖边碰上了猫,鼠连忙纵身跳到水里,猫不会游水,于是紧紧地盯住鼠,在湖边跟着鼠跑动,打算在鼠爬上岸时抓住它•已知猫奔跑的速度是鼠游水速度的2. 5倍.聪明的读者,你知道鼠怎样才能逃脱猫的追捕?解析如图12-1,鼠在点A碰上了猫,若鼠跳到湖里后径宜游到对岸点C;则猫从A到C要跑半个圆周,由于半圆长是直径的-^1.58(倍)<2.5(倍),因此猫还是能抓住鼠,所以,鼠若要逃脱猫的追捕,就必须(原文是经字,好像不通)利用猫环湖跑动这一特点,跳下水以后先游到圆心O,看准猫当时所在的位垃如立刻转身朝着B对岸的点£>游去,这时鼠要游的距离是半径OD,猫要跑的距离是半圆BCD,也就是OD的兀倍,兀〜3. 14>2.5,所以当猫到点D时,鼠已经逃之夭夭了.图12-1知识延伸】圆是初中数学中重要的内容,圆的基本性质虽然比较简单但具有较强的适用性•确定圆的条件就是通过三个点找到圆心和半径,然后画图.弧、弦和直径的关系(垂径左理)是研究有关圆的知识的基础,垂径左理指的是:垂直于弦的直径平分这条弦,并且平分弦所对的弧,立理的题设和结论共涉及5条:(1)过圆心;(2)垂直弦:(3)平分弦:(4)平分劣弧:(5)平分优弧.在这5条中只要2条成立,那么剩下3条也是成立的.这样理解和记忆垂径左理即揭示了定理中的条件和结论的内在联系.圆既是轴对称图形,又是中心对称图形,它具有旋转对称性,这是圆的最基本最重要的性质,是证明其他定理的工具.例两人轮流在一个圆桌上放同样大小的硬币.每人每次只能放一枚,且任何两枚硬币不能有重叠部分,谁先放完最后一枚使得对方再也找不到空地可以放下一枚硬币时,谁就获胜•问谁一左能获胜?他要想获胜,必须采取怎样的策略?解析先放的那个人一左能获胜,他首先在圆心放一枚硬币,然后不论对方怎样放一枚硬币,他都在对方放硬币的位宜关于圆心对称的位巻上再放一枚硬币,由于圆是关于圆心对称的图形,故只要对方有放硬币的地方,他就有放硬币的地方,可见最后胜利一左属于先放硬币的人.(下页提上来的,保持语段的完整性)点评几何中,(X,刃一(一X,—刃是以原点为对称中心的映射,这种映射叫做对称变换•圆是中心对称图形,先耙硬币放在圆桌的正中央,以后不管对方放在哪里,他下一步都把硬币放在对方硬币关于中心对称的地方,先放硬币的肯左获胜.例2 如图12-2, AABC中,周长AB+BC+AC=2・求证:ZEC —定能被一个直径为1的圆盖住.证明设A、D两点将zMBC周长分成相等的两部分,即AB+BD=AC+CD=\.似钢笔改动的录入)以AD的中点0为圆心,丄为半径画圆,它一立能盖住△ABC.这是因为在三角形中.一边上的中线小于2另两边和的一半,即OB<1(AB+BD)=1, OC<1(AC+CD)=1 ,2 2 2 2・・・B、C两点均在圆O内.而A2XAB+BD=1・:.OA<L,点 A 在<90 内,2即OO盖住了/XABC.点评这一问题典型地反映了覆盖问题的证明思路,第一部分是设计,第二部分是运用了一个熟知的结论证明(即三角形一边上的中线小于另两边和的一半).从表面上看,是先设汁后证明,苴实,只有证明在胸, 才能得出设计.例3在美国的亚利桑那州,有一个巨大的右坑,它的直径1280m,深180m,据说它是在数千年以前, 一个巨大的陨石落到地上砸出来的•请你估算一下,这个巨大的陨石直径有多大?因此,(OC-DC)2+DB2=OB2.即(片180)2+(竺)2=妙2X2-360X+18024-6402=JI2,解得x= 1228m.这个巨大的陨石直径为2456m.点评有关弦、弦心距、半径、弓高的计算或涉及到弦、弦的中点的问题,通常是构造直角三角形或运用垂径立理.好题妙解】佳题新题品味例1已知如图12-4, AB为00的弦,OC丄于C,问O C+AC何时取最大值?S12-4解析连04、0B,过A作AD丄OB于D,设0A = OB=R, ZAOB=a,则AD=0A• s in a=R• sin a.S DAOB=—AD • OB2= -R• Rsin a= 1 /?2sin a,2 2(OC+ACgOG+AU+LAO OC=OA2^2S AAOH=/?2+/?2sin a.当“=90°时,sin 有最大值1,即(OC+AC)有最大值2疋,因而,当ZAOB=90° , OC+AC取得最大值R.点评一般地,最大、最小值常在某个特殊点取得,经试验后猜测,点A运动到和圆心的连线垂直于OB 时,OC+AC 取得最大值.例2 一条60m宽的河上架有一座半径为55m的圆弧形拱桥,请问一顶部宽12m且高出水而8m的船能否通过此桥,请说明理由.E@12-5解析假左该船恰能通过桥时,桥的半径为/?,如图12-5, 表示水而宽,EF为船宽,MP为船顶到水面AB的距离,设O P=x(O为圆心),依题意得,在RtZkOBP中,R2=302+F,①在RtAOEM中,用=(8+X)2+62,②①、②求得 /?= 10^34 >55,即船恰能通过时,桥的半径为10炉m,但现在桥的半径为55m,所以该船不能通过此桥.点评可先假定该船恰能通过桥,则12m宽的船顶为圆弧形拱桥的一弦,作出垂径和一条过该弦端点的半径,运用垂径左理及勾股立理求出这条半径/?,就能解决此问题.中考真题欣赏例1 (重庆市中考题)如图12-6, AM是00的直径,过00上一点B作BN丄AM,垂足为N,其延长线交OO于点C,弦CD交AM于点E(1)如果CD丄/W,求证:EN=NW(2)如果弦CD交AB于点F,且CD=AB,求证:C&=EF・ED;(3)如果弦CD、AB的延长线(根据网上2002年重庆中考数学试题添加,后而的解答也是这个意思)交于点F,且CD=AB.那么(2)的结论是否仍成立?若成立,请证明:若不成立,请说明理由.图12』证明(1)连结BW 9:AM是直径,•••ZABM=90°・•: CD丄AB, :.BM〃CD A ZECN=ZMBN.9:AM丄BC,:・CN=BN.ARtACE/V^RtABM/V,:・EN=NM・(2)连结BD, BE、AC.•••点E是BC垂直平分线AM上一点,:.BE=EC.I CD=AB9 :. CD =AB , :. AD =BC , ••• ZACD=ZBDC.9:AB=AC, AE=AE. :.AABE^AACE,:・ZABE=ZACD=ZBDC, ZBED是公共角,•••△BEDs△FEB,—EF BE:.BE2=EF • ED. :.CE2=EF • ED.(3)结论成立证明如图12-7仿⑵可证ZBEQ'ACE、:・BE=CE, ZABE= ZACE.•••AB=CD, :. ZACB=ZDBC:.BD//AC. ZBDE+ZACE=180°=ZFBE+ZABE,:・ZBDE=ZFBE, ZBED是公共角,•••△BEDs&EB, A—=—EF EB:.BE^EF • ED、:.CE2=EF • ED.点评本题利用直径AM垂直BC和弦CD=AB这两个条件,得到弧相等,角相等,再利用三角形全等, 相似来解决问题.例2 (黄冈市中考题)已知,如图12-8, C为半圆上一点,AC =CE ,过点C作直径AB的垂线QP, P为垂足,弦AE分别交PC, CB于点D, F.(1)求证:AD=CD;气2(2)若DF=二,tanZ£C5=- > 求的长.4 4cE@12-7证明(1)连结人(7, V AC =CE , :.ZCEA = ZCAE.9: ZCEA=ZCBA, •••ZCBA=ZCAE・VAB是直径,A ZACB=90°・•:CP丄AB, :.ZCBA=ZACP・:.ZCAE= ZACP,:・AD=CD・⑵解析:ZACB=90° , ZCAE=ZACP.:.ZDCF=ZCFD. :・AD=CD=DF=-・4••• ZECB= ZDAP. tanZEC5=-,4DP 3A tan ZDAP=一 =-PA 49:OP2+PA2=DA2, :.DP= - , PA=1, CP=2・4A ZAC5=90° , CP丄AB.:.'APCs'CPB, , APB=4.PC PB点评(1)利用AC =CE ,把圆周角,互余的角联系起来,从而解决问题.⑵利用RtAACF和ZACP=ZCAD这两个条件得到CD=DF,再转化ZECB为ZDAP,问题便迎刃而解.竞赛样题展示例(2000年“鲁中杯”绍兴四市、县初中数学联赛试题)已知如图12-9,在以O为圆心的圆中,弦CD 垂直于直径AB,垂足为H,弦BE与半径OC相交于点F,且OF=FC,弦DE与弦AC相交于点G.(1)求证:AG=GCx⑵若AG=* , AH:AB=\:3,求△CDG的面积与△BOF的而积.证明(1)连结AD. 9:AB 是直径,AB 丄CD ••• BC =BD , ••• ZCAB=ZDAB. :. ZDAG=2ZCAB.V ZBOF= ZCAB+ZOCA ,又9: ZCAB=ZOCA, :.ZB0F=2ZCAB, :. ZBOF= ZDAG.OBFs 厶DAG ,故竺=21•••ZOBF=ZADG,:仏r)A | •:0B=0C=20F, 9:AC=2AG,即 AG=GC.(2)解析 连结 BC, A ZBCA=90° ,又••'CH 丄AB, :.A^AH - AB ・• •AH— — X AB= — X 6=2・ 3 3CH = J AC —AH 丄=J (2®-22 = 2迈.:.S^ACD =丄 CD • AH= - X4x/2 X2= 4迈.・・・AG=CG,:皿心沁=尹心= 由•: HBOF S HDAG点评 由垂径左理处BC =BD ,从而得到孤所对的圆周角相等,将已始与未知之间的关系联系起来,再通过三角形相似、射影定理等解决问题.OF AGAG 2團 12-9过关检测】4级1 •如图12-10, 00的直径AB和弦CD相交于点& 已知AE=\ cm. EB=5 cm, ZDEB=60c,,求仞的长.2•如图12-11,公园里大观览车半径为25m,已知观览车绕圆心O顺时针匀速转动,旋转一周用12mim 某人从观览车的最低处(地面A处)乘车,问经过4min后,此人距地而CD的髙度是多少米?(观览车最低处距地而的髙度忽略不讣)3•如图12-12, AB是OO的直径,P是OA上一点,C是00上一点,求证:D4•已知AB是00的直径,M是OA上的点,弦P0经过点M,且PM=M0•求证:3AP =B().5.如图12-13, 一根木棒(AB )长为么“斜靠在与地而(0M)垂直的墙壁(ON)上,与地而的倾角为60° , 若木棒A端沿NO下滑,B端沿OM向右滑行,于是木棒的中点P也随之运动.已知A端下滑到A'时,Af =(筋-血)心则中点P随之运动的路线有多长?6.当湖泊结冰时,有一只球浮在湖而上,将球取岀后在冰上留下一个球形凹洞,深8cm,洞口直径为24cm, 球的半径是多少厘米?B级1・已知点P到00的最小距藹为4cm,最大距离为8cm,求00的半径.2 •如图12-14,已知00的直径为4cm, M是劣弧AB的中点,从M作弦且MN=2苗cm, MN、AB交于点P,求ZAPM的度数.3•已知OO的半径为乩C、D是直径AB同侧圆周上的两点,AC的度数为96° , BD的度数为36。

初中数学竞赛专题-第七章九点圆定理及应用

初中数学竞赛专题-第七章九点圆定理及应用

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知LMPQ 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知OLV HPV △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径.又90LDP ∠=︒,90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有CH CB CD CF =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上.注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上. 事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12H P H A =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心.连AO ,则AO PV ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则ON AG ⊥,由此知AON AGL ∠=∠. 又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆.例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分. 证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆,由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.(2001年全国高中联赛题)A证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅,从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()BD BD DC BF BF FA ⋅+=+,亦即2222BF BD BD DC AF FB OF OD -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥.(2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-5M HK OAB A 1B 1C 1C证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和 CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌. 显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1NB A '∠=∠. 同理,NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠.于是,12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠.由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠.同理,902C DA C CA ''∠=∠=︒-∠. 于是,18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP ''的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C AB(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形. (2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=,2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点.(IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥, 由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有1231TT T S =. 同理,1232TT T S =.故有3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PQLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >. 【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上. 2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R <.(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点.2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.第七章九点圆定理及应用习题A1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,PH'的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切.同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O 的I 的对称点. 其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥. 同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC,△ABD,△BCD,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫ ⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫ ⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦224412x y =+12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。

九级数学圆基础知识全解析圆拔高练习

九级数学圆基础知识全解析圆拔高练习

九年级数学圆的基础知识全剖析(圆)拔高练习
试卷简介:本卷所有是选择题,共 5 道题,每题20 分,总分值100 分。

测试时间30 钟。

本套试卷立足圆基础,察看了学生对圆中知识的掌握程度。

学习建议:本讲主要内容是圆中知识的综合运用,在中考时出现形式也灵便多变,大家
需要熟练掌握这些知识,多加练习,学会灵便运用。

一、单项选择题(共5道,每道20分)
1.〔2021 台湾〕如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A、C 两点在圆上,AC
均分∠BAD且交BD 于 F 点.假设∠ADE=19°,那么∠AFB的度数为〔〕
2.〔2021 黄冈〕一个几何体的三视图以下:其中主视图和左视图都是腰长为4、底边为2 的
等腰三角形,那么这个几何体的侧面张开图的面积为〔〕
A.2 π
B.
C.4 π
D.8 π
3.〔2021 上海〕矩形ABCD中,A B=8,BC =3 ,点P 在边AB 上,且BP=3AP,若是圆P
是以点P 为圆心,PD为半径的圆,那么以下判断正确的选项是〔〕
A.点B、C均在圆P 外
B .点B 在圆P 外、点C在圆P 内
C .点B 在圆P 内、点C在圆P 外
D.点B、C均在圆P 内
4.〔2021 浙江〕在平面直角坐标系xOy 中,以点(-3,4)为圆心,4 为半径的圆〔〕
A.与x轴订交,与y轴相切
B.与x轴相离,与y轴订交
C.与x轴相切,与y轴订交
D.与x轴相切,与y轴相离
5.〔2021广东〕如图,AB切⊙O于点B,OA=,AB=3,弦BC∥OA,那么劣弧的弧长为〔〕
A.
B.
C.
D.。

【九年级】九年级数学竞赛转化灵活的圆中角讲座

【九年级】九年级数学竞赛转化灵活的圆中角讲座

【九年级】九年级数学竞赛转化灵活的圆中角讲座【例题求解】[示例1]如图所示,直线AB和⊙ o在a点和B点相交,o点在AB点上,C点在AB点上⊙ o、及∠ AOC=40°,点E是直线AB上的一个移动点(与点o不重合),直线EC相交⊙ o在另一个点D,因此有de=do的正点思路点拨在直线ab上使de=do的动点e与⊙o有怎样的位置关系?通过角度计算确定e点的位置和数量,考虑三种情况:e点在AB上(e在⊙ o)在BA或ab的延长线上(E点在外侧⊙ o)注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.[例2]如图所示,已知△ ABC是等腰直角三角形,D是倾斜边BC的中点,以及⊙ o 通过点a和D分别在点e、F和m与边AB、AC和BC相交。

对于以下五个结论:① ∠ FMC=45°;②ae+af=ab③;④2bm2=bf×ba⑤ 四边形aemf是矩形的。

正确结论的数量为()a.2个b.3个c.4个d.5个思路,充分利用与圆相关的角度,找到特殊三角形、特殊四边形和相似三角形,并逐一验证注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.【例3】如图所示,已知外切曲面的半径⊙ 四边形ABCD的o为5,对角线AC和BD 的交点为e,AB2=AE×AC,BD=8,求出△ 阿布德思路点拨由条件出发,利用相似三角形、圆中角可推得a为弧bd中点,这是解本例的关键.【例4】如图所示,已知AB是⊙ o、 C是一个重点⊙ o、连接AC,并通过C点和CD点画一条直线⊥ D中的AB(AD)(1)求证:ac2=ag×af;(2)如果E点是ad上的任何点(a点除外),上述结论仍然有效吗?如果是,请画一个数字并加以证明;如果没有,请解释原因思路点拨(1)作出圆中常用辅助线证明△acg∽△afc;(2)在e点移动的情况下,要判断上述结论是否正确,关键是要根据主题的意义准确地绘制图形注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】如图所示,内接六边形ABCDEF满足AB=CD=EF,对角线ad、be和CF在点Q处相交。

完整版北师大版九年级数学中考总复习九圆的专题辅导

完整版北师大版九年级数学中考总复习九圆的专题辅导

中考总复习九:圆一、基础知识和基本图形1.确定圆的条件:不在同一直线上的三个点确定一个圆.2.圆的有关性质:1 构成的直角三角形.,)垂径定理及推论:落实,(2)(圆心角、圆周角、弧、弦及弦心距之间的关系:.直线与圆:3d1r,则:)直线与圆的位置关系:设圆的半径为,圆心到直线的距离为(d r;直线和圆相交①<d r;知交点,连半径,证垂直;不知交点,作垂直,证半径。

直线和圆相切②=r d .直线和圆相离③>2)切线的性质定理及判定定理、切线长定理.(轴对称)(.圆和圆的位置关系:4,r ) d Rr (R 则:设圆的半径分别为>和、圆心距为rdRdr = R;两圆外切;两圆外离+>+rR RdR r rd = ;<+–;两圆相交两圆内切–<(r R = 0 )d d.<两圆内含一同心圆.有关圆的计算51 )扇形弧长和扇形面积.(2)三角形的内切圆.(3)圆锥的侧面展开.(4)有关阴影面积.(割补法)(二、例题AC2______________O OABCR1sin B.的长为是△的外接圆,⊙,.的半径则弦=,=如图,⊙B放到一个直角三角形中去运用三角函数值,这就需要作直分析:如何利用好圆的半径,如何把角B 转化到直角三角形中了。

径,并构造直径所对的圆周角,这样就把角AOODCD ,连,交圆于解答:作直径AC=3 利用勾股定理求得:2O的直径,已知,的切线,为切点,是⊙.如图,分别是).的度数为(BA CD....分析:本题利用圆心角与圆周角的关系,以及切线长定理解决D 解答:3.如图,梯形中,,,,,以为圆心在梯形内_____________ .画出一个最大的扇形(图中阴影部分)的面积是分析:要求扇形面积,关键是确定半径和圆心角60AE=4BCEB AEA。

于度,,可求得∠⊥,所以最大扇形面积为为解答:过作4,那么线.如果圆的半径为,且经过点.在中,,______________ .段的长等于OBCBC 下两种情况在上和在分析:此题应分类讨论,考虑圆心53或解答:=AB=5DC=3ABCOADBCDAC5,是⊙,的内接三角形,点,且.如图,已知:△⊥,于O______________ .则⊙的直径等于B45AO 度,再构造直径为分析:先解三角形,求得∠AOOECE ,连解答:作直径于,交圆AE= E=B=45度,所以直径∠可求得∠B 6MND,若,.如图,已知大半圆⊙切小半圆于点与小半圆⊙大半圆的弦相内切于点MNABMN4_____________ .,当时,则此图中的阴影部分的面积是=∥分析:此题需用到垂径定理和整体带入MNE于作解答:连接⊥,过2 阴影面积为7OBCxyBABOC45 °,、若∠轴交于、.已知:如图,△=内接于圆,圆与直角坐标系的两点,A2 BC=__________ OBC750B___________;则点点的坐标为°,(,点坐标为∠).=的长.ABAC ,可求得、解答:连BC= B ,)(8O3cm BOOBOAAB=OAPA出外一点,交⊙,动点.如图,⊙的半径为于点,从点为⊙,cm/s OAP_______s运动的时间为发,以立即停止.当点的速度在⊙上按逆时针方向运动一周回到点BPO相切.与⊙时,51 或解答:要考虑到两种情况,OODBF9FAB,在.已知:点⊙在线段上,点为⊙的直径,上BCADCBD AC1平分,.于点)求证:(O的切线;是⊙2AD=AF=CD的长.,求)若,(1ODOD//BC ,证明解答:()连CD= 2)利用方程和相似,求得(10ABCDOPADBDAD=BD=4PC,.如图,、、,连接是⊙.已知的两条弦,它们相交于点6CD的长.,求=ACCD=8 ,求得∽解答:连,利用11 IABCA I ABCDBCE.的内心,线段的外接圆于点边于点的延长线交△.,如图,点交是△1ID=BD;)求证:(A=65I D2ABC在优弧,,当点上运动时,求与(,)设△的外接圆的半径为,的的取值范围.函数关系式,并指出自变量解答:1IBD=BID ∠)提示:证∠(6 2)()(12左侧的.点是半圆上位于的半径.如图,点是半圆上的动点,作于.点,连结交线段于,且2O O1的()若⊙的切线.()求证:是⊙关①求.半径为,,设的函数关系式.当②于的值.时,求解答:DP DO1OD;,证()连⊥PO 2;,()①连EBC 中求②,提示:在三角形ABAB13的左边),与轴交轴相交于点、在点两点(点.二次函数的图象与CM是它的顶点.于点,点1A 5CM相离;)求证:以为圆心,直径为(的圆与直线21AACM相切.的圆心在轴上移动,平移多少个单位,使⊙(与直线)将()中的⊙解答:1,()2个单位.()。

北师大九级圆讲义教师版带答案

北师大九级圆讲义教师版带答案

圆知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。

2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

圆上任意两点间的部分叫做圆弧,简称弧。

连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

在同圆或等圆中,能够重合的两条弧叫做等弧。

例 P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.解题思路:圆内最长的弦是直径,最短的弦是和OP 垂直的弦,答案:10 cm ,8 cm. 知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d >r ;反过来,当d >r 时,点在圆外。

当点在圆上时,d =r ;反过来,当d =r 时,点在圆上。

当点在圆内时,d <r ;反过来,当d <r 时,点在圆内。

例 如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心,AB 的长为半径画圆,则点E 在圆A的_________,点F 在圆A 的_________.解题思路:利用点与圆的位置关系,答案:外部,内部练习:在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.答案:点P 在圆O 上.知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。

3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。

圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

九年级圆的基础知识点、经典例题与课后习题[1]

九年级圆的基础知识点、经典例题与课后习题[1]

九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级圆的基础知识点、经典例题与课后习题(word版可编辑修改)的全部内容。

圆【知识梳理】1.圆的有关概念和性质(1)圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论.③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒"表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”.半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣弧..。

(为了区别优弧和劣弧,优弧用三个字母表示。

)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆.⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

九年级圆知识点及习题(含答案)[1]

九年级圆知识点及习题(含答案)[1]

(完整word版)九年级圆知识点及习题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)九年级圆知识点及习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)九年级圆知识点及习题(含答案)(word版可编辑修改)的全部内容。

圆圆的有关概念与性质1。

圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3。

垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 .4。

在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5。

同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6。

直径所对的圆周角是 90°,90°所对的弦是直径 .7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8。

与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9。

圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1。

点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d 〈 r。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛辅导系列讲座九——圆
1、如图,已知P是边长为a的正方形ABCD内一点,△PBC是等边三角形,则△PAD的外接圆半径是
()
A、a B
、 2 a C、
3
2
a D、
1
2
a
2、如图,在矩形ABCD中,
AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则Sin∠CBE=()
A

6
3
B、
2
3
C、
1
3
D、
10
10
3、如图,圆心在原点,半径为2的圆内有一点P(
2
2

2
2
),过P点作弦AB与劣弧AB组成一个弓形,则该弓形面积的最小值为()
A、π-1
B、π-2
C、
4
3
π-1 D、
4
3
π- 3
4、如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴切与点Q,与y轴交于点M(0,2),
N(0,8),则点P的坐标是()
A、(5,3)
B、(3,5)
C、(5,4)
D、(4,5)
5、在底面直径是2,母线长为4的圆锥,若一只小虫子以点A出发,绕侧面一周又回到点A,则它
爬行的最短路线长是()
A、2π
B、 4 2
C、4 3
D、5
6、如果一个三角形的面积和周长都被一直线所平分,则这条直线必经过这个三角形的()
A、内心
B、外心
C、重心
D、垂心
7、如图,⊙O与Rt△ABC的斜边AB切于点D,与直角边AC交于点E且,DE∥BC,已知AE=2 2 ,
AC=3 2 ,BC=6,则⊙O的半径是()
A、3
B、4
C、4 3
D、2 3
D
A
C
8、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,联结DP ,DP 交AC 于点Q ,若QP=QO ,则QC
QA =
( ) A 、2 3 -1
B 、2 3
C 、 3 + 2
D 、 3 +2
9、如图,AB 是半圆O 的直径,半圆O 的内接正方形CDEF 的边长为1,AD=m ,DB=n ,那么m n
n m
+的值为________.
10、如图,AD 是半圆的直径,AD=4,B 、C 为半圆上的两点,弦AB=BC=1,则弦CD 的长为__________. 11、已知半径分别为1和2的两个圆外切于点P ,则点P 到两圆的外公切线的距离为___________. 12、如图,从⊙O 外一点M 作圆的切线MA ,切点为A ,再作割线MBC ,交⊙O 于B 、C 两点,∠AMC 的平分线交于AC 于E ,交AB 于D ,则DB EC
AB AC
+的值等于______.
13、如图,在△ABC ,AB=AC= 5 ,BC=2,以AB 为直径的⊙O 分别交AC
、BC 于点D 、E ,则△CDE 的面积为_______.
14、已知O 为△ABC 的外心,AD 为BC 边上的高,∠CAB=66°,∠ABC=44°,则∠OAD=_________
. 15、P 是⊙O 的直径AB 的延长线上一点,PC 与⊙O 相切于点C ,∠APC 的平分线交AC 于Q ,则∠PQC=_______.
16、2008年8月8日,第29届奥运会在北京举行,奥运五环旗象征着全世界人民的大团结,五环旗中,五个大小相等的环形环环相扣,三个环在上,两个环在下,五个环的中心联结成一个等腰梯形,构成一个喜庆、和谐、优美的轴对称图形.如图,假设O 2O 4=a ,O 1O 5=2a ,∠O 1=α,则等腰梯形O 1O 2O 4O 5的对角线O 1O 4的长为____________.
17、如图,OB 是以(0,a )为圆心,a 为半径的弦,过点B 作⊙O 1的切线,P 为劣弧OB 上的任一点,
且过P 分别作OB 、AB 、AO 的垂线 (1)求证:PD 2
=PE ·PF ;
(2)当∠BOC=30°,点P 为弧OB 的中点时,求D 、E 、F 、P 四点坐标于S △DEF .
18、只用圆规,把一个已知圆的圆心四等分.
19、如图,四边形ABCD 内接于圆,AB=AD ,其对角线交于点E ,点F 在线段AC 上,使得∠BFC=∠BAD ,若∠BAD=2∠DFC ,求BE
DE 的值.
20、如图,已知AB 是⊙O 的弦,过O 作AB 的平行线交⊙O 于点C ,交⊙O 过点B 的切线于D ,求证:∠ACB=∠D .
21、如图,AB 是半圆O 的直径,C 是弧AB 的中点,M 是弦AC 的中点,CH ⊥BM ,垂足为H ,求证:CH 2
=AH ·OH .
D
22、AB 是⊙O 的一条弦,它的中点为M ,过点M 作一条非直径的弦CD ,过点C 和D 做⊙O 的两条切线分别与直线交于P 、Q 两点,求证PA=QB .
23、如图,AB 是⊙O 的直径,AB=d ,过点A 作⊙O 的切线并在其上取一点C ,使AC=AB ,联结OC 交⊙O 于D ,BD 的延长线交AC 于E ,求AE .
24、如图,P 为⊙O 外一点,过P 作⊙O 的两条切线,切点分别为A 、B ,过A 作PB 的平行线交⊙O 于点C ,联结PC 交⊙O 于点E ,联结AE 并延长AE 交PB 于K ,求证:PE ·AC=CE ·KB .
25、在半径为r 的⊙O 中,AB 为直径,C 为弧AB 的中点,D 为弧BC 的三分之一分点,且弧DB 的长度是弧CD 长的两倍,连结AD 并延长交⊙O 的切线CE 于点E (C 为切点),求AE 的长.
C
C
27、在锐角△ABC ,中,AD ⊥BC ,D 为垂足,DE ⊥AC ,E 为垂足,DF ⊥A B ,F 为垂足,O 为△ABC 的外心,求证
(1)△AEF ∽△ABC ; (2)AO ⊥EF . 28、
29. 如图,BC 是⊙O 的弦,OD ⊥BC 于E ,交BC ⌒ 于D ,点A 是优弧BmC 上的动点(不与B 、C 重合),
BC =34,ED =2.求cos ∠A 的值及图中阴影部分面积的最大值.
30.如图,在边长为8的正方形ABCD 中,点O 为AD 上一动点(4<OA <8),以O 为圆心,OA 的长为半径的圆交边CD 于点M ,连接OM ,过点M 作⊙O 的切线交边BC 于N . (1)求证:△ODM ∽△MCN ;
(2)设DM = x ,OA=R ,求R 关于x 的函数关系式;
(3)在动点O 逐渐向点D 运动(OA 逐渐增大)的过程中,△CMN 的周长如何变化?说明理由. 31.已知点O 为锐角△ABC 的外心,直线AO 与BC 交于点K ,点L ,M 分别是边AB 、AC 上的点,且有KL=KB ,KM=KC .证明:LM//BC .
32.如图,在△ABC 中,AB=AC ,D 是边BC 的中点,满足CE ⊥AB,BE=BD.过线段BE 的中点M 作直线MF ⊥BE ,交△ABD 的外接圆的劣弧AD 于点F. 求证:ED ⊥DF.
33.如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切,若圆A 、圆B 、圆C 的半径分别为a 、b 、c (且c <b <a ),则a 、b 、c 一定满足的关系为 ( ) A .c a b +=2 B .c b a +=
C .
b a
c 1
11+= D .
b
a c 111+= 34.某同学用牙膏纸盒制作一个如图所示的笔筒,笔筒的筒
底为长4.5厘米,宽3.4厘米的矩形.则该笔筒最多能放半径为
0.4厘米的圆柱形铅笔
( )
M
H
G
F
E
D
C
B
A
35.如图.AB是⊙O的直径.CD是过OB中点的弦,且CD⊥AB,以CD为直径的半圆交AB于E,DE的延长线交⊙O于F,连结CF,若⊙O的半径为1.则CF的长为 ( )
3
A.1 B. 2 C. 3 D.
2
36.已知等腰三角形△ABC中,AB=AC,∠C的平分线与AB边交于点P,M为△ABC的内切圆⊙I与BC边的切点,作MD//AC,交⊙I于点D.证明:PD是⊙I的切线.
37.⊿ABC的内切圆分别切BC、CA、AB于点D、E、F,过F作BC的平行线分别交直线DA、DE于点H、G,求证:FH=HG.
38.如图,在⊙O中,弦CD垂直于直径AB,M是OC的中点,AM的延长线交⊙O于点E,DE与BC交于点N.求证:BN=CN.
39.在⊿ABC中,AB>AC,内切圆⊙I与边BC、CA、AB分别切于点D、E、F,M是边BC的中点,AH
⊥BC于点H,∠BAC的平分线AI分别与直线DE、DF交于点K、L.证明:M、L、H、K四点共圆.40.平面上一个半径r的动圆沿边长a的正三角形的外侧滚动,其扫Array过区域的面积为 .
41.如图,四边形ABCD为⊙O的内接四边形,对边BC、AD交于点F,
AB、DC交于点E.⊿ECF的外接圆与⊙O的另一个交点为H,AH与EF交于点M,MC与⊙O交于点G.证明:(1)M为EF的中点;
(2)A、G、E、F四点共圆.
42.⊿ABC是⊙O的内接三角形,AB>AC>BC,点D在弧BC上,过点O分别作AB、AC的垂线与AD
交于点E、F,射线BE、CF交于点P.若BP=PC+PO,则∠BAC= .。

相关文档
最新文档