人教版八年级数学下册第17章勾股定理试卷(b)(无答案).docx

合集下载

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。

人教版八年级数学下册单元测试《第17章 勾股定理》(B卷)(解析版)

人教版八年级数学下册单元测试《第17章 勾股定理》(B卷)(解析版)

《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,103.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.154.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.12【考点】勾股定理.【分析】设斜边长为x,则一直角边长为x﹣2,再根据勾股定理求出x的值即可.【解答】解:设斜边长为x,则一直角边长为x﹣2,根据勾股定理得,62+(x﹣2)2=x2,解得x=10,故选C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,10【考点】勾股定理.【分析】由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k.根据勾股定理,得另一条直角边是12k.根据题意,求得三边的长即可.【解答】解:设斜边是13k,直角边是5k,根据勾股定理,得另一条直角边是12k.根据题意,得:13k+5k+12k=60解得:k=2.则三边分别是26,24,10.故选D.【点评】用一个未知数表示出三边,根据已知条件列方程即可.熟练运用勾股定理.3.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.15【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.【点评】如果给的数据没有明确,此类题一定要分情况求解.4.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为 4.8 cm.【考点】勾股定理.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10 .【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.【考点】勾股定理.【分析】由已知可以利用勾股定理求得EC的长,从而可得到CD的长,再根据勾股定理求得AC的长即可.【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,∴EC==12,∵DE=7,∴CD=5,∴AC==12.【点评】此题考查学生对直角三角形的性质及勾股定理的运用.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】几何图形问题;数形结合.【分析】由DE垂直平分斜边AC,可得AD=CD,又由在Rt△ABC中,∠A=30°,即可求得∠BCD的度数,继而求得AB的长,则可求得答案.【解答】解:∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∵在Rt△BCD中,BD=1,∴CD=2BD=2,∴AD=CD=2,∴AB=AD+BD=3,∴AC==2.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.【考点】勾股定理的应用.【专题】计算题.【分析】首先过点B作BD⊥x轴于D,由A(0,2),B(4,3),即可得OA=2,BD=3,OD=4,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为.【点评】本题考查的是勾股定理的应用,解此题的关键是掌握辅助线的作法,掌握入射光线与反射光线的关系.。

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。

17 勾股定理同步练习(无答案)八年级数学下册人教版

17 勾股定理同步练习(无答案)八年级数学下册人教版

17.1 勾股定理一、单选题1.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.1442.已知点M的坐标为(3,−4),则下列说法正确的是()A.点M在第二象限内B.点M到x轴的距离为3C.点M关于y轴对称的点的坐标为(3,4)D.点M到原点的距离为53.⊙O的半径为10cm,弦AB//CD.若AB=12cm,CD=16cm,则AB和CD的距离为()A.2cm B.14cm C.2cm或14cm D.2cm或10cm 4.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=0.8米.竹竿高出水面的部分AD长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD为()A.1.5米B.1.7米C.1.8米D.0.6米5.已知,斜坡的坡度i=1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A.20√5米B.20米C.40√5米D.100米36.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为()A.(﹣1,0)B.(2−√5,0)C.(√13−3,0)D.(3−√13,0) 7.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()m.(π取3)A.30B.28C.25D.228.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC 上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.89.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P表示的数是()A.−√13−2B.−√13+2C.√13−2D.−√1310.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.11.如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:其中正确的有()△△ACE△△BCD;△△DAB=△ACE;△AE+AC=AD;△AE2+AD2=2AC2A.1个B.2个C.3个D.4个12.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为9,则BD2的值为()2A.13B.12C.11D.10二、填空题BC 13.如图,在△ABC中,按以下步骤作图:△分别以点B和C为圆心,以大于12的长为半径作弧,两弧相交于点M和N;△作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为_________.14.我国古代有这样一道数学问题:“枯木一根直立地上,高三丈,周八尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为3丈,底面周长为8尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是___________丈.15.风景秀丽的永嘉境内分布着许多国家级旅游景点,北斗卫星拍摄到永嘉小若岩风景区与埭头古村以及两条相互垂直的乡间公路的位置如图所示,A点的坐标为(2,4),B点的坐标为(6,1).现要在两条乡间公路上各建一个便民服务点C,D,形成一条便民服务通道.试求四边形ABCD的最小周长______.16.如图,Rt△ABC△Rt△FDE,△ABC=△FDE=90°,△BAC=30°,AC=4,将Rt△FDE沿直线l向右平移,连接BD、BE,则BD+BE的最小值为___.17.如图,Rt△ABC中,△ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=__________.三、解答题18.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:△测得水平距离BD的长为15米;△根据手中剩余线的长度计算出风筝线BC的长为25米;△牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?19.小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知CD=√3,求AB的长.20.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?21.如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B 的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.22.如图,在△ABC中,AD△BC,垂足为D,△B=60°,△C=45°.(1)求△BAC的度数.(2)若AC=2,求AD的长.23.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m (即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)。

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

人教版八年级数学第17章《勾股定理》单元同步检测试题时间:120分钟满分:150分一、选择题(本大题10小题,每小题4分,共40分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.&胡,点B. 1, & &C. 6, 7, 8D. 2, 3, 4【答案】B【解析】试题解析:A.(不)2+ (訴)V (厉)2,故该选项错误;B.I2+ (迈)2=(乔)1故该选项正确;C.62+7M2,故该选项错误;D.22+32#4\故该选项错误.故选B.考点:勾股定理.(■ {视频))2.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()【答案】D【解析】试题分析:由题意得:AABC是直角三角形,所以AB= 7A C2+BC2=7122+52=13,所以旗杆折断之前的高度=“AB+BC=5+13=18.“故选:D.考点:勾股定理.3.__________ 如图,学校有一块长方形花I甫I,有极少数人为了避开拐角走“捷径",在花铺内走出了一条“路\他们仅仅少走了步路(假设2步为1 m),却踩伤了花草()A.4B. 6C. 7D. 8【答案】D【解析】根据勾股定理可得斜边长是+ 82=10m.则少走的距离是6+8-10=4m,T2步为1米,・・・少走了 8步,故答案为:D.4. 如图,数轴上点A, B 分别对应1, 2,过点B 作PQ 丄AB,以点B 为圆心,AB 长为半径画弧,交PQ 于 点C,以原点O 为圆心,OC 长为半径画弧,交数轴于点M,则点M 对应的数是()如图所示:连接OC, 由题意可得:°A2,处=1, 贝 9 AC = ^22 + I 2 = &, 故戊M 对应的数是:& 故选:B. 5. 如图,已知AB 丄CD, A ABD, A BCE 都是等腰直角三角形.如果CD=7, BE=3,那么AC 的长为()AA. 8B. 5C. 3D.4■—F B CW % ■ I 1 10 1 2 女3【解析】试题解析: 6 m【答案】B & D.力【答案】B【解析】・・・△〃£>, △BCE都是等腰直角三角形,:・BD=BA, BE二BC=3, VCZ>7,・•・BM4B=4,4 C=^AB2 + BC2=5.故选B.点睛:熟练掌握勾股定理的运用.6.如图,在厶ABC 中,AD丄BC 于D, AB=17, BD=15, DC = 6,则AC 的长为()A. 11B. 10C. 9D. 8【答案】B【解析】本题主要考查了勾股定理.利用两次勾股定理即可解答.解:VAD1BC・•・ ZADC=ZADB=90°VAB=17, BD=15,AD U J AB S D S•・・DC=6AC=^AD2 + CD2= 1 o故选B7.如图,每个小正方形的边长为1, A, B, C是小正方形的顶点,则ZABC的度数为()A. 90°B. 60°C. 45°D. 30°【答案】C【解析】试题分析:根据勾股定理即可得到AB, BC, AC的长度,进行判断即可. 解:根据勾股左理可以得到:AC=BCW,AB=V10.•・・(V5)2+(V5)2=(V10)2.AAC2+BC2=AB2.A A ABC是等腰直角三角形.A ZABC=45°.故选C.A _______c—~~8.如图,--艘轮船位于灯塔。

人教版数学八年级下册第十七章 勾股定理测试卷(附答案)

人教版数学八年级下册第十七章 勾股定理测试卷(附答案)

人教版数学八年级下册第十七章勾股定理测试卷一、单选题(共10题;共20分)1.判断以下各组线段为边作三角形,可以构成直角三角形的是()A. 6,15,17B. 7,12,15C. 13,15,20D. 7,24,252.如图,在的正方形网格中,的顶点都在格点上,下列结论错误的是A. B. C. D.3.下列各组数中不能作为直角三角形的三边长的是()A. 7,24,25B. ,4,5C. ,1,D. 40,50,604.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A. 2.7 米B. 2.5 米C. 2.1 米D. 1.5 米5.如图,在中,是上一点,已知,,,,则的长为()A. B. C. D.6.将一根24cm 的筷子,置于底面直径为15cm,高8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h 的取值范围是()A. h≤15cmB. h≥8cmC. 8cm≤h≤17cmD. 7cm≤h≤16cm7.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A. 4B. 8C. 2πD. 168.在四边形中,,若,则的大小为()A. B. C. D.9.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A. 10B. 12C. 13D. 1410.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 360B. 400C. 440D. 484二、填空题(共10题;共30分)11.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________12.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部在距离根部处,这棵大树在折断前的高度为________ .13.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是________.14.没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为________cm.15.在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)

人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。

{word试卷}人教版八年级数学下册第17章勾股定理综合训练(含答案)

{word试卷}人教版八年级数学下册第17章勾股定理综合训练(含答案)

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:人教版八年级数学第17章勾股定理综合训练一、选择题(本大题共10道小题)1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 3,4,5C. 3,4,5D. 4,7,82. 三角形的三边为,由下列条件不能判断直角三角形的()A. B.C. D.3. 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25 B.三角形周长为25C.斜边长为5 D.三角形面积为204. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()A B C D5. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定6. 如图,在由单位正方形组成的网格图中标有,,,四条线段,其中能构成一个直角三角形三边的线段是()A.,, B.,,C.,, D.,,7. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.88. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍9. 如图,梯子斜靠在墙面上,,当梯子的顶端沿方向下滑米时,梯足沿方向滑动米,则与的大小关系是()A. B. C. D.不确定10.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D. 不能确定二、填空题(本大题共6道小题)11. 在中,,(1)如果,则;(2)如果,则;(3)如果,则;(4)如果,则.12. 已知直角三角形两边,的长满足,则第三边长为______________.13. 如图,点是的角平分线上一点,过点作交于点.若,则点到的距离等于__________.14. 如图,一个长为米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为米,如果梯子的顶端下滑米,那么,梯子底端的滑动距离米(填“大于”、“等于”、“小于”)15. 若的三边满足条件:,则这个三角形最长边上的高为16. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池,已知剩余的两直角三角形(阴影部分)的斜边长分别为和,则剩余的两个直角三角形(阴影部分)的面积和...为.三、解答题(本大题共5道小题)17. 张大爷家承包了一个长方形鱼池,已知其面积为,其对角线长为,为建立栅栏,要计算这个长方形鱼池的周长,你能帮张大爷计算吗?18. 在中,是边上的中线,,求证:.19. 已知斜边的长为,两直角边的差为,求三角形的周长及斜边上的高.20. 中,,,.若,如图1,根据勾股定理,则.若不是直角三角形,如图2和图3,请你类比勾股定理,试猜想与的关系,并证明你的结论.图3图2图1abcab ccbaABCABC CBA21. 如图,是斜边的中点,,分别在,上,,判断,与的数量关系并证明你的结论.人教版八年级数学第17章勾股定理综合训练-答案一、选择题(本大题共10道小题)1. 【答案】B【解析】按照勾股数的规律计算.选B.2. 【答案】A3. 【答案】C【解析】在直角三角形中,直接应用勾股定理.可得斜边为5.选C.4. 【答案】C【解析】注意实际长度.应用勾股定理逆定理.选C.5. 【答案】C【解析】速度一定且相同,路程比=时间比.再用勾股定理,直线距离应该是25分钟的路程.选C.6. 【答案】B【解析】,,,,选B.7. 【答案】D【解析】本题易错.最短边为6,它的高为8.选D .8. 【答案】B9. 【答案】B【解析】由勾股定理得,化简得,10. 【答案】B 【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题(本大题共6道小题)11. 【答案】(1)5;(2)10;(3)13;(4)25【解析】直接应用勾股定理,且为斜边. (1)5;(2)10;(3)13;(4)25.12. 【答案】或或【解析】根据绝对值和平方根的非负性可知:或或.13. 【答案】【解析】过点作,并交于点.∵是的角平分线,∴.又∵,∴.∴.∴.∴.14. 【答案】大于【解析】由勾股定理可知:大于15. 【答案】【解析】由,得,得三角形是直角三角形,所以高为16. 【答案】【解析】,,,在中,①在中,②在中,,即③③①②得,,最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故.三、解答题(本大题共5道小题)17. 【答案】【解析】设长方形的长和宽分别为,有,代入,可得18. 【答案】构造如上图所示的一个,延长,使,连接.易证得≌.∴,∴.∴.∴.∴.19. 【答案】【解析】由条件可设,∵,∴.又∵,∴.从而三角形的周长为.由三角形的面积公式可得,解得.20. 【答案】图2猜想:.证明:过点作于设,,,即,故.图3猜想:.证明:过作,交的延长线于.设为,则有根据勾股定理,得.即,∵,,∴,∴.21. 【答案】.延长到,使,连结、.显然,∴,,∵∴∴为直角三角形.∴.。

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。

当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

 人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案一、选择题:1.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1254.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.55.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形6.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20B.22C.24D.268.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米A.4米B.5米C.7米D.8米9.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.6010.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米11.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:212.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为()A.6B.7C.8D.9二、填空题:13.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.14.三边为9、12、15的三角形,其面积为 .15.一个直角三角形的周长为60,一条直角边和斜边的长度之比为4:5,这个直角三角形三边长从小到大分别为_______.16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB=.18.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.三、解答题:19.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.20.如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?23.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.24.如图,C为线段BD上一动点,分别过点B、D作AB BD,ED BD,连结AC、EC,已知线段AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.参考答案1.D2.B3.B4.D5.C6.A7.C9.A10.C11.B12.C13.答案为:2.4cm;14.3615.答案为:15,20,25;16.答案为:少走了4步.17.答案为:1.518.答案为:126或66.19. (1)a=45cm.B=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.20.解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.21.22.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.23.24.。

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。

人教版数学八年级下第十七章《勾股定理》单元检测题含答案

人教版数学八年级下第十七章《勾股定理》单元检测题含答案

《勾股定理》单元检测题一.选择题(每小题只有一个正确答案)1.设直角三角形的两条直角边分別为a 和b,斜边长为c,已知b = l2, C = 13,则a 二 ( )A. 1 B 、5 C 、10 D 、252。

在下列四组数中,不是勾股数的一组数是()A 、a = 15» b = 8, c = 17B 、d = 9, b = \2, c = 15 c 、a = 7,b = 24, c = 25D 、d = 3, b = 59 c = 1 3° —个三角形的三边长为15,20, 25,则此三角形最大边上的高为() A 、10 B 、12 C 、24 D 、484.如图,有一个由传感器控制的灯A 装在门上方离地高4、5 m 的墙上,任何东西只要移 至距该灯5 m 及5 m 以内时,灯就会自动发光,请问一个身高1、5 m 的学生要走到离墙 多远的地方灯刚好发光?()5•下列选项中,不能用来证明勾股左理的是()6c 若直角三角形的三边长分别为a —b 、a 、a + b.且°、b 都是正整数,则三角形其 中一边的长可能为()A 、22B 、32C 、62D 、82127。

如图,△ABC 中,&C=3, BC=5, AD 丄BC 交 3C 于点 D, /W 二二,延长 3C 至 E 使得 CE 二BC, 5将△&3C 沿AC 翻折得到"FC,连接EF,则线段EF 的长为()8•如图,点P 是平而坐标系中一点,则点P 到原点的距簡是()49 1 ■ ■ 1 X 1 1 X -2-10 -1 1 2 3 4X » A 、3 B 、2 C 、7 D 、5C 、 32 TD 、 32T A 、 6B 、 810c 如图,长方体的底而边长分别为2cm 和3cm,髙为6cm. 始经过4个侧而缠绕一圈达到点B,那么所用细线最短需要()A 、 11cmB N 2 >/34 cmC 、 (84*2 \/10 )cm 二、填空题11. 一个直角三角形的两条直角边长为6和&则它的斜边上的髙是 _____________ . 12 •如图所示,一段楼梯,髙3C 是3m r 斜边4C 是5 m,如果在楼梯上铺地毯,那么至少需 13•如图•在东四走向的铁路上有A 、B 两站(视为直线上的两点)相距36千米,在A 、B 的正北分別有C 、D 两个蔬菜基地,英中C 到A 站的距离为24千米,D 到B 站的距离为 12千米,现要在铁路AB 上建一个蔬菜加工厂E,使蔬菜基地C 、D 到E 的距离相等,则E 站应建在距A 站 ________ 千米的地方.15•如图,点A. B. 0是单位为1的正方形网格上的三个格点,00的半径为0A,点P是B 、 9cmD 、6 5/2 cmC 、 如果用一根细线从点A 开D 、(7+3x/5 )cm优弧AmB的中点,贝I J A APB的面积为______三、解答题16c 如图,在四边形ABCD 中,AB = BC = 1, CD=JJ,DA=1,且ZB = 90\ 求:(l)ZBAD的度数;⑵四边形ABCD的而积(结果保留根号)。

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

人教版八年级下册第17章 勾股定理 本章测试卷(答案解析)

人教版八年级下册第17章 勾股定理 本章测试卷(答案解析)

第17章勾股定理本章测试卷一、选择题(本大题共12小题)1.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.102.在△ABC中,三个角和三条边分别满足下列条件:①∠A=∠B,a:c=1:;②a:b:c=1:2:3;③(a+b)2﹣c2=2ab;④a+b=14,ab=48,c=10.其中能证明△ABC是直角三角形的有()A. 1个B. 2个C. 3个D. 4个3.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A. cm B.4cm C. cm D.3cm5.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1696.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里7.若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A. 7cm B. 10cm C.cm D. 12cm8.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或109.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.1010.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是A.13cm B.261cm C.61cm D.234cm11.如图,已知AD是△ABC的高,把三角形纸片ABC折叠,使A点落在D处折痕为EF,则下列结论中错误的是()A. EF⊥AD B. EF=BC C. DF=AC D. DF=AB12.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B. 2 C. 3 D. 4二、填空题(本大题共6小题)13.在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.14.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=015.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).16.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是.17.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.18.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍放入(填“能”或“不能”).三、解答题(本大题共8小题)19.已知:如图,在△ABC,BC=2,S=3,∠ABC=135°,求AC、AB的长.△ABC20.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.21.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 …a 22﹣1 32﹣1 42﹣1 52﹣1 …b 4 6 8 10 …c 22+1 32+1 42+1 52+1 …(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a= ,b= ,c= ;猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.22.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A.B.C.D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E小正方形的顶点上,且△ABE 的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.23.已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.24.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

人教版八年级下册第17章《勾股定理》质检卷(附答案)

人教版八年级下册第17章《勾股定理》质检卷(附答案)

人教版八年级下册第17章《勾股定理》质检卷满分100分姓名:___________班级:___________座号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面各组数据中是勾股数的是()A.0.3,0.4,0.5B.5,12,13C.1,4,9D.5,11,122.(3分)若一直角三角形两边长为4和5,则第三边长为()A.3B.C.3或D.不确定3.(3分)如图,以Rt△ABC的三边为边分别作正方形Ⅰ、Ⅱ、Ⅲ,已知正方形Ⅰ与正方形Ⅱ的面积分别为25和9,则正方形Ⅲ的面积为()A.4B.8C.16D.344.(3分)如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.45.(3分)若一个三角形三边a,b,c满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.等腰直角三角形D.直角三角形6.(3分)如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣17.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC =12km,BC=16km,则M,C两点之间的距离为()A.13km B.12km C.11km D.10km8.(3分)如图,已知∠C=90°,AB=12,BC=3,CD=4,∠ABD=90°,则AD=()A.10B.13C.8D.119.(3分)一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际测量误差忽略不计)()A.34英寸(87厘米)B.29英寸(74厘米)C.25英寸(64厘米)D.21英寸(54厘米)10.(3分)如图所示,一个长为10m的梯子AB靠在墙上,梯子的顶端B到墙根O的距离为8m,如果梯子的顶端B沿墙下滑1m,那么梯子的底端A向外移到A′,那么AA′()A.大于1m B.小于1m C.等于1m D.以上都不对二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知三角形三边长分别是6,8,10,则此三角形的面积为.12.(3分)如图,锐角△ABC中,∠A=45°,AB=8,BC=10,则BC边上的高为.13.(3分)如图,一艘轮船由海平面上的A地出发向南偏西45°的方向行驶50海里到达B 地,再由B地向北偏西15°的方向行驶50海里到达C地,则A、C两地相距海里.14.(3分)四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.15.(3分)平面直角坐标系中,点P(﹣3,4)到原点的距离是.16.(3分)如图,字母A所代表的正方形面积为.17.(3分)如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.18.(3分)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共7小题,满分46分)19.(6分)设直角三角形的两条直角边长分别为a和b,斜边长为c(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.20.(6分)如图,网格中小正方形的边长均为1.你在网格中画出一个△ABC,要求:顶点都在格点(即小正方形的顶点)上;三边长满足AB=,BC=2,AC=,并求出该三角形的面积.21.(6分)如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.22.(6分)在一棵树的10米高的B处有两只猴子.一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米?23.(6分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?24.(8分)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE =1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.25.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=2.5千米,CH =2千米,HB=1.5千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.(精确到0.01)参考答案一.选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.C;4.B;5.D;6.B;7.D;8.B;9.B;10.A;二.填空题(共8小题,满分24分,每小题3分)11.24;12.;13.50;14.1;15.5;16.64;17.1.4;18.84;85;三.解答题(共7小题,满分46分)19.解:(1)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=12,b=5,∴c===13;(2)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=3,c=4,∴b===;(3)∵直角三角形的两条直角边长分别为a和b,斜边长为c,c=10,b=9,∴a===.20.解:如图,△ABC即为所求:则S△ABC=3×3﹣﹣﹣=4.21.证明:∵MN⊥AB于N,∴BN2=BM2﹣MN2,AN2=AM2﹣MN2∴BN2﹣AN2=BM2﹣AM2,又∵∠C=90°,∴AM2=AC2+CM2∴BN2﹣AN2=BM2﹣AC2﹣CM2,又∵BM=CM,∴BN2﹣AN2=﹣AC2,即AN2﹣BN2=AC2.22.解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m23.解:∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12海里/时,答:乙船的航速是36÷3=12海里/时.24.解:(1)∠ADC是直角.理由是:∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=42+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC=AE+CE=4+1=5,∴AC2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF==.25.解:(1)是.理由如下:在△CHB中,CB=2.5,CH=2,HB=1.5,∵CH2+HB2=22+1.52=6.25,CB2=2.52=6.25,∴CH2+HB2=CB2,∴CH⊥AB,故CH是从村庄C到河边的最近路;(2)设AC=x千米,则AB=AC=x千米,AH=x﹣1.5(千米)在Rt△AHC中,由勾股定理得:AH2+HC2=AC2∴x2=(x﹣1.5)2+22解得:x≈2.08答:原来的路线AC的长约为2.08千米.。

(完整)人教版八年级数学下第17章勾股定理专项训练含答案,推荐文档

(完整)人教版八年级数学下第17章勾股定理专项训练含答案,推荐文档

第17章勾股定理专项训练专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离)•用计算法求平面中最短问题1 •如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C 走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________________ 步路(假设2步为i m,却踩伤了花草.2•小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站 B.设A吐80 km, BO20 km,/ ABC= 120° .请你帮助小明解决以下问题:⑴求A, C之间的距离.(参考数据.21"4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h, “武黄城际列车”的平均速度为180 knYh,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3. 如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm, 30 cm, 10 cm A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A. 13 cmB. 40 cm4. 如图,已知/ B=Z C=Z D=Z E= 90°,且A吐CD- 3, BO 4, DE= EF=2,则AF的长是 __________ .用对称法求平面中最短冋题5. 如图,在正方形ABC[中, AB边上有一点E, AE= 3,E吐1,在AC上有一点P,使EP+ BP最短,求EP+ BP的最短长度.6•高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN 的距离分别为AA = 2 kn, BB = 4 kn, A B'= 8 km要在高速公路上A'、B' 之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.BA■7M A1'h r f N(第6题)用展开法求立体图形中最短问题类型1圆柱中的最短问题1rJ I(第7题)7•如图,已知圆柱体底面圆的半径为—,高为2, AB CD分别是两底面的n直径•若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是____________ (结果保留根号)•类型2圆锥中的最短问题8. 已知:如图,观察图形回答下面的问题:(1) 此图形的名称为 _______ .(2) 请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个_________ .(3) 如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4) SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.类型3正方体中的最短问题9. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处.(1) 请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.类型4长方体中的最短问题10. 如图,长方体盒子的长、宽、高分别是12 cm 8 cm 30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2.巧用勾股定理解折叠问题名师点金:折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律•利用勾股定理解答折叠问题的一般步骤:⑴运用折叠图形的性质找出相等的线段或角;⑵ 在图形中找到一个直角三角形,然后设图形中某一线段的长为x,将此直角三角形的三边长用数或含有x 的代数式表示出来;⑶利用勾股定理列方程求出x;⑷进行相关计算解决问题.巧用全等法求折叠中线段的长1. (中考泰安)如图①是一直角三角形纸片,/ A= 30°, BO4 cm将其折叠,使点C落在斜边上的点C处,折痕为BD,如图②,再将图②沿DE折叠,使点A 落在DC 的延长线上的点 A 处,如图③,贝朋痕DE 的长为()巧用对称法求折叠中图形的面积2. 如图所示,将长方形 ABCD 沿直线BD 折叠,使点C 落在点C'处,BC 交AD于 E ,AD= 8,A 吐4,求厶BED 的面积.巧用方程思想求折叠中线段的长 3. 如图,在边长为6的正方形ABCD 中, E 是边CD 的中点,将△ ADE 沿 AE 对折至△ AFE 延长EF 交BC 于点G 连接AG.⑴ 求证:△ ABG^^ AFG ⑵求BG 的长.(第3题)巧用折叠探究线段之间的数量关系4. 如图,将长方形ABCC 沿直线EF 折叠,使点C 与点A 重合,折痕交ADC. 2「2 cmD. 3 cm(第2于点E,交BC于点F,连接CE.(1)求证:AE= AF= CE= CF;b, c三者之间的数量关系式.⑵设AE= a, ED= b, DOc,请写出一个a,专训3.利用勾股定理解题的7种常见题型名师点金:勾股定理建立起了“数”与“形”的完美结合,应用勾股定理可以解与直角三角形有关的计算问题,证明含有平方关系的几何问题,作长为jn(n为正整数)的线段,解决实际应用问题及专训一、专训二中的最短问题、折叠问题等,在解决过程中往往利用勾股定理列方程(组),有时需要通过作辅助线来构造直角三角形,化斜为直来解决问题.利用勾股定理求线段长1. 如图所示,在等腰直角三角形ABC中,/ ABG90°,点D为AC边的中点,过D点作DEIDF,交AB于E,交BC于F,若AE= 4, FO3,求EF的长.利用勾股定理作长为冷的线段2. 已知线段a,作长为,13a的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为.^3a.利用勾股定理证明线段相等3. 如图,在四边形ABFC中, Z ABC= 90°, CDLAD AD = 2AW—CD.求证: AB= BC.利用勾股定理证明线段之间的平方关系4. 如图,/ C= 90°, AM= CM MPLAB于点P. 求证:B P=B C+A P.利用勾股定理解非直角三角形问题5. 如图,在△ABC中,/利用勾股定理解实际生活中的应用6•在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行50驶速度不能超过60 km/h即§ m/s,并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B 在点A 的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO 为其中的一段.(1)求点B和点C的坐标;⑵一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:,:3~ 1.7)(第6利用勾股定理探究动点问题7.如图,在Rt△ ABC中,/ ACB= 90°, A吐5 cm, AO3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t秒.⑴求BC边的长;⑵当厶ABP为直角三角形时,借助图①求t的值;(3) 当厶ABP为等腰三角形时,借助图②求t的值.答案专训11. 4(第2题)2. 解:⑴如图,过点C作AB的垂线,交AB的延长线于点E.vZ ABC= 120°,A Z BCE= 30°.在Rt△ CBE中,v BO20 km,二BE= 10 km由勾股定理可得CE= 10 3 km在Rt△ ACE中, v AC= AU+ CE= (AB+ BE)2+ CE= 8 100 + 300= 8 400,•••AC= 2^/21^20X 4.6 = 92(km).80 i⑵选择乘“武黄城际列车” •理由如下:乘客车需时间t i=器=13(h),乘92 20 1“武黄城际列车”需时间t2-180+40= i90( h).1 1 一T 13>1g0,A选择乘“武黄城际列车”._ s~\(第3题)3. C点拨:将台阶面展开,连接AB如图,线段AB即为壁虎所爬的最短路线.因为BC= 30X 3+ 10X 3= 120(cm),AC= 50 cm,在Rt△ ABC中,根据勾股定理,得AB=AC + BC= 16 900,所以A吐130 cm所以壁虎至少爬行130 cm4. 105. 解:如图,连接BD交AC于O,连接ED与AC交于点P,连接BP.(第5题)易知BDLAC,且BO= OD 二BF= PD 贝U BF+ EF= ED,此时最短.T AE= 3 , AD= 1 + 3 = 4,由勾股定理得E D=A E + A D= 32+ 42= 25 = 52,••• ED= BP+ E吐5.6. 解:如图,作点B关于MN的对称点C,连接AC交MN于点P,则点P即为所建的出口 .此时A B两城镇到出口P的距离之和最小,最短距离为AC的长.作ADL BB 于点D,在Rt△ ADC中, AD= A B'= 8 km, DC= 6 km•I AC= ;A D+D C= 10 km,• ••这个最短距离为10 kmB* **«* = *«M Jkw"c(第6题)7. 2 2点拨:将圆柱体的侧面沿AD剪开并铺平得长方形AA D D,连接2 1 AC如图•线段AC就是小虫爬行的最短路线•根据题意得A吐一X2n X- = 2. n 2在Rt△ ABC中,由勾股定理,得AC = AB+ BC = 22+ 22= 8,二AO -'8 = 2 . 2.J )c p1J .fJ*A£i J(第7题)8 •解:⑴圆锥⑵扇形⑶把此立体图形的侧面展开,如图所示,AC为蜗牛爬行的最短路线.⑷在Rt△ ASC中,由勾股定理,得AC = 102+ 52= 125,二AC= “25= 5 ,5 故蜗牛爬行的最短路程为5 5.9. 解:(1)蚂蚁能够最快到达目的地的可能路径有如图的AC -和AG.⑵如图,AC 1=『+( 4+ 4) 2= 4 5.AC= / (4 + 4) 2+ 42= 4 5.所以蚂蚁爬过的最短路径的长是 4.5.10. 解:分为三种情况:(1)如图①,连接EC在Rt△ EBC中,E吐12+ 8 = 20(cm),BC= *X 30= 15(cm).由勾股定理,得EC= ^202+ 152= 25(cm).⑵如图②,连接EC.根据勾股定理同理可求CE= ,673 cm>25 cm⑶如图③,连接EC.根据勾股定理同理可求CE=p 122+(30+ 8+ 15) 2= Q2 953( cm)>25 cm综上可知,小虫爬行的最短路程是25 cm(第10题)专训21. A2. 解:由题意易知AD// BC •••/2=73.•••△BC D与厶BCD关于直线BD对称,•••7 1 = 7 2. •••/ 1 = 7 3.二E吐ED.设E吐x,贝U ED= x, AE= AD- ED= 8 -x.在Rt△ ABE中,AB + AE = BE,•42+ (8 —x)2= x2. • x = 5.1 1•DE= 5. • S^BED= ~DE4 AB=:X 5X 4= 10.2 2解题策略:解决此题的关键是证得ED= EB然后在Rt△ ABE中,由BE= AB + A E,利用勾股定理列出方程即可求解.3. (1)证明:在正方形ABCD中, AD= AB 7 D=7 B= 90°.•••将△ ADS沿AE对折至△ AFE•AD= AF, DE= EF,7 D=7 AFE= 90°.•AB= AF,7 B=7 AFG= 90°.又••• AG= AG • Rt△ AB® Rt△ AFGHL).(2)解:ABG^^AFQ • BG= FG.设BG= FG= x,则GC= 6 —x ,••• E为CD的中点,•CE= DE= EF= 3 ,•EG= 3 + x.•在Rt△ CEG中 , 3 + (6 —x) = (3 + x),解得x= 2.•BG= 2.4. (1)证明:由题意知,AF= CF, AE= CE, 7 AFE=7 CFE 又四边形ABCD是长方形,故AD// BC,• 7 〈CFE.:/ AFE=7 AEF.•i AE= AF= EC= CF.(2)解:由题意知,AE= EO a, ED= b, DO c,由/ D= 90°知,E D + DC =CE,即卩b2+ c2= a2.专训3(第1题)1. 解:如图,连接BD.•••等腰直角三角形ABC中,点D为AC边的中点,••• BD丄AQ BD平分/ ABC等腰三角形三线合一),二/ ABD=Z CBD= 45 又易知/ C= 45°,•••/ ABD=Z CBD=Z C.••• BD= CD.v DEI DF, BDL AC,•••/ FDC^Z BDF=Z EDB^Z BDF.•••/ FDC=Z EDB.在厶EDB与△ FDC中,Z EBD=Z C,BD= CDZ EDB=Z FDC•••△ EDB^A FDCASA,••• BE= FO 3.二A吐7,贝U BC= 7.二BF= 4.在Rt△ EBF中,EF= BE + BF= 32+ 42= 25,••• EF= 5.2. 2a;3a3. 证明:v CDL AD, •••/ ADC= 90°,即厶ADC是直角三角形. 由勾股定理,得AD+ cD= A C.又v A D= 2AB —cD,••• A D+C D = 2AB.••• AC= 2AB.VZ ABC= 90°,.・仏ABC是直角三角形.由勾股定理,得A W+B(C=A C,:.A^+B C = 2AB,故B(C= A B,即卩A吐BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.4. 证明:如图,连接BM.V PML AB,•••△AMP均为直角三角形.••• B E+P M = B M, A P+P M= A M.同理可得B C+C M= B M.••• B0+ P M = B C+C M.又V CM= AM•••cM= A M=A P+P M.••• B0+ P M = B C+A P+P M.••• B0= B C + A P.5. 思路导引:过点A作AD丄BC于D,图中出现两个直角三角形一一Rt△ACD 和Rt△ ABD这两个直角三角形有一条公共边AD借助这条公共边可建立起两个直角三角形之间的联系解:如图,过点A作ADL BC于点D.•••Z ADC 90°又VZ C= 60° ,:丄 CA9 90°—/ C= 30°,二CD= qAO 5.•••在Rt△ ACD中, AD= AC—CD = T0f 5 3.•••在Rt△ ABD中,BD= AB —AD = 11.•BO B» CD= 11 + 5= 16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.6. 思路导引:⑴ 要求点B和点C的坐标,只要分别求出0B和0C的长即可. (2)由(1)可知BC的长度,进而利用速度公式求得汽车在这段限速路上的速度,50并与3比较即可.解:⑴在Rt△ AOB中,v/ BA6 60°,1•/ AB0= 30°,二0A= 2AB.•/ 0A= 100 m •- AB= 200 m由勾股定理,得0吐AB —0A= 2002—1002= 100 3( n).在Rt△ A0C中, v/ CA0= 45°,•/ 0C=/ 0A(= 45°.•0C= 0A= 100 m • B( —100 3, 0) , C(100, 0).⑵•这辆汽车超速了.7. 解:(1)在Rt△ ABC中, BC= A B— AC= 52—32= 16,• BC= 4 cm(2)由题意知BP= t cm,①如图①,当/ APB为直角时,点P与点C重合,BP= BC= 4 cm,即t = 4;②如图②,当/ BAP为直角时,B吐t cm, CF= (t —4)cm, AC= 3 cm,在Rt△ ACP中, AP= 32+ (t —4)2,在Rt△ BAP中,AB + AP = BP,即52+ [32+ (t —4)2] = t2,解得t =孚⑶①如图①,当B 吐AB 时,t = 5;②如图②,当 A 吐AP 时,B 吐2BO8 cm, t = 8;(第7题⑶)③ 如图③,当B 吐AP 时,A 吐B 吐t cm, CP= |t — 4| cm AO3 cm,综上所述:当△ ABP 为等腰三角形时, AH打 <■①塚 ? 尸 5 (第7题⑵)t = 4 或 t 25 ~4 故当△ ABP 为直角三角形时,在 Rt △ ACP 中, AP = AC + CP ,所以 t 32 + (t — 4)2,解得 t = 25 J.。

人教版数学八年级下册第17章 勾股定理 单元练习卷 含答案

人教版数学八年级下册第17章 勾股定理 单元练习卷  含答案

第17章勾股定理一.选择题(共8小题)1.下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是()A.B.C.D.2.下列四组线段中,不能组成直角三角形的是()A.1,1,B.,,C.5,12,13 D.6,8,103.若△ABC的三边长分别为a,b,c,且满足(a﹣b)•(a2+b2﹣c2)=0,则△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4.下列四组数中不是勾股数的是()A.3,4,5 B.2,3,4 C.5,12,13 D.8,15.175.下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2﹣1,2n,n2+1(n是大于1的整数),其中是勾股数的有()A.1组B.2组C.3组D.4组6.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的之边长为1,则图中阴影部分的面积为()A.1 B.3 C.4﹣2D.4+27.已知点M(3,﹣2),N(a,5),当M,N两点间的距离最短时,a的值为()A.0 B.﹣2 C.3 D.58.如图,Rt△ABC中,∠ABC=90°,∠BAC=30°,AC=2,分别以三边为直径画半圆,则两个月形图案的面积之和(阴影部分的面积)是()A.B.πC.D.二.填空题(共8小题)9.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.10.直角三角形两直角边长分别为3和4,则它斜边上的高为.11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.12.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是.13.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).14.如图,△ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为2cm/s和1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为ts,则当t=s时,△PBQ为直角三角形.15.若两个较小自然数的平方和等于另一个自然数的平方,那么这三个自然数叫做一组勾股数,如3、4、5.请再写出一组勾股数.16.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要元钱.三.解答题(共8小题)17.如图:Rt△ABC斜边BC的中垂线交AB边于点E,若AC=3,BC=5,求AE的长.18.已知,如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2,求证:AB=BC.19.如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)20.如图,△ABC中,∠A=90°,OD⊥BC,OD=DC=DB,请以O为中心将△ABC顺时针旋转90°,180°,270°,画出这个图案.(1)请问前后图案的边界组成了什么图形?(2)能用这个图案验证勾股定理吗?21.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.22.如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)求△BCD的面积.23.观察下列两组勾股数:(1)3,4,5;5,12,13;7,24,25;…(2)6,8,10;10,24,26;14,48,50;…你发现上述两组勾股数各有什么特征?请用含有字母m,n的式子表示出来(m<n).你还能发现勾股数有什么特征?24.如图在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点D的位置问船向岸边移动了大约多少米?(假设绳子是直的结果精确到0.1米参考数据:≈1.414,≈1.732)参考答案一.选择题(共8小题)1.解:A、中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理,本选项不符合题意.B、不能证明勾股定理,本选项符合题意.C、利用A中结论,本选项不符合题意.D、中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理,本选项不符合题意,故选:B.2.解:A、12+12=()2,故能构成直角三角形;B、()2+()2≠()2,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、62+82=102,故能构成直角三角形.故选:B.3.解:∵(a﹣b)•(a2+b2﹣c2)=0,∴(a﹣b)=0或(a2+b2﹣c2)=0,即a=b或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选:D.4.解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.5.解:①62+82=100=102,6、8、10是勾股数;③∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2﹣1)2+(2n)2=(n2+1)2,n2﹣1,∴n2﹣1,2n,n2+1(n是大于1的整数)是勾股数.故选:D.6.解:∵直角三角形斜边长为2,最短的之边长为1,∴该直角三角形的另外一条直角边长为,∴S阴影=22﹣4××1×=4﹣2.故选:C.7.解:∵点M(3,﹣2),N(a,5),当M,N两点间的距离最短时,∴MN⊥x轴,∴a=3,故选:C.8.解:∵∠ABC=90°,∠BAC=30°,AC=2,∴BC=AC=1,由勾股定理得,AB==,∴两个月形图案的面积之和=×π×()2+×π×()2+×1×﹣×π×12=,故选:A.二.填空题(共8小题)9.解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.10.解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.11.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故答案是:3.12.解:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.故答案为:勾股定理.13.解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.14.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=6﹣2x,BQ=x,∴6﹣2x=2x,解得x=;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(6﹣2x),解得x=.答:或秒时,△BPQ是直角三角形.故答案为或.15.解:根据题意:62+82=102,所以6、8、10为勾股数.故答案为:6、8、10.16.解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.三.解答题(共8小题)17.解:连接CE,由勾股定理得,AB===4,∵DE是BC的中垂线,∴EC=EB=4﹣AE,由勾股定理得,AC2+AE2=EC2,即32+AE2=(4﹣AE)2,解得,AE=.18.证明:∵∠ABC=90°,∴AB2+BC2=AC2,∵CD⊥AD,∴∠ADC=90°,∴AD2+CD2=AC2,∵AD2+CD2=2AB2,∴AC2=2AB2,∴AB2+BC2=2AB2,∴AB2=BC2,∴AB=BC.19.证明:∵,∴(a+b)(a+b)=2ab+c2,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.20.解:(1)如图所示:前后4个图形的边界组成了正方形.(2)可以证明勾股定理.证明:如图所示两直角边及斜边长分别为a、b、c.则有正方形面积:S=c•c=c2,又有:S=4×ab+(b﹣a)2=2ab+b2﹣2ab+a2=a2+b2,故:a2+b2=c2所以即可得证勾股定理.21.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.22.解:(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=17∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=60.23.解:(1)∵32=4+5,52=12+13,72=24+25,∴m2=n+(n+1),即将m2拆分为两个连续的整数之和;(2)∵m=6,10,14时,对应n的值为:8=32﹣1,10=32+1,24=52﹣1,26=52+1,…∴n=()2﹣1;对应第三个勾股数的值为:10=32+1,26=52+1,50=72+1,…∴第3个勾股数为:()2+1.24.解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴AB==12(m),∵此人以0.5m/s的速度收绳,6 s后船移动到点D的位置,∴CD=13﹣0.5×6=10(m),∴(m),∴BD=AB﹣AD=12﹣5≈3.3(m),答:船向岸边移动了大约3.3m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 马鸣风萧萧
第17章勾股定理试卷B
一、选择题
1.以下列长度为边长的三角形是直角三角形的是( )
A .5,6,7
B .7,8,9
C .6,8,10
D .5,7,9
2.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
3.如图所示,矩形纸片ABCD 中,AB=6cm ,BC=8cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )
A .258cm
B .254cm
C .252
cm D .8cm
4.如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=10,AC=6,则△ACD 的周长为( )
A .14
B .16
C .18
D .20
5.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段( )
A .4条
B .6条
C .7条
D .8条
6.如图,将Rt △ABC 绕点A 按顺时针旋转一定的角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上,若AC =3,∠B =60°,则CD 的长为( ) A .0.5 B .1.5 C. 2 D .1
二、填空题
7.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为 .
8.如图,矩形ABCD 中,AB=12cm ,BC=24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积 .
9.如图,每个小正方形的边长为1,A 、B 、C
是小正方形的顶点,则∠ABC
的度数为 .
A B C
10.如图所示,在△ABC 中,AB ∶BC ∶CA =3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向B 点以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动,如果同时出发,则过3秒时,
△BPQ 的面积为________cm 2.
三、解答题
11.如图,在△ABC 中,AD ⊥BC ,垂足为D ,∠B=60°,∠C=45°.
(1)求∠BAC 的度数.
(2)若AC=2,求AD 的长.
12.如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长
13.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1) A 城是否受到这次台风的影响?为什么?
(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
14.如图,在一次数学课外活动中,小明同学在点P 处测得教学楼A 位于北偏东60°方向,办公楼B 位于南偏东45°方向.小明沿正东方向前进60米到达C 处,此时测得教学楼A 恰好位于正北方向,办公楼B 正好位于正南方向.求教学楼A 与办公楼B 之间的距离(结果精确到0.1米).(供选用的数据:2≈
1.414,3≈1.
732)
东 北 F E A
B。

相关文档
最新文档