期末复习之不等式知识点总结
高中不等式知识点总结
高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。
在高中数学中,我们学习了许多不等式的性质和解法。
下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。
1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。
不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。
1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。
根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。
二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。
2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。
这个性质称为不等式的传递性。
利用不等式的传递性,我们可以简化不等式的推导过程。
2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。
这个性质称为不等式的加减性质。
利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。
2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。
这个性质称为不等式的乘除性质。
利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。
2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。
不等式知识点总结
一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
常见不等式的解法知识点总结
常见不等式的解法知识点总结一、基本不等式性质:1.改变不等式方向:对于不等式a<b,如果将两边同时取反,即将其转化为-a>-b,不等式方向会改变。
2.加减同一个数:对于任意实数a,b和c,如果a<b,那么a+c<b+c;如果a>b,那么a-c>b-c。
3.乘除同一个正数:对于任意正数a,b和c,如果a<b,那么a*c<b*c;如果a>b,那么a/c>b/c。
但是,当乘除同一个负数时,不等号方向会反转。
4.取倒数:当一个不等式两边同时取倒数时,不等号的方向会改变。
二、一元一次不等式的解法:1. 用常数计算法:对于形如 ax+b>0 或 ax+b<0 的一元一次不等式,我们可以先计算出 a 的正负性或者大小关系,然后根据 a 的正负性或者大小关系,确定不等式的解集。
2. 画数轴法:对于形如 ax+b>0 或 ax+b<0 的不等式,我们可以在数轴上画出关于 x 的对应的一次方程的解集,然后根据不等号的方向,确定不等式的解集。
3.分析法+图解法:对于一元一次不等式,我们可以通过手工计算和图解的方法,找出不等式的解集。
三、一元二次不等式的解法:1. 变形法:对于形如 ax^2+bx+c>0 或 ax^2+bx+c<0 的一元二次不等式,我们可以通过变形,将其转化为一元二次方程的解法。
首先,我们将不等式转化为一元二次方程,然后通过求解一元二次方程的解来确定不等式的解集。
2. 区间取值法:对于形如 ax^2+bx+c>0 或 ax^2+bx+c<0 的一元二次不等式,我们可以使用区间取值法。
首先,我们求出一元二次函数的零点,然后根据一元二次函数的开口方向和零点的位置,确定不等式的解集。
四、绝对值不等式的解法:1.绝对值的定义:首先,我们需要了解绝对值的定义,即,x,表示x的绝对值,其定义如下:当x≥0时,x,=x;当x<0时,x,=-x。
不等式知识点大全
不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
不等式与方程根知识点总结
不等式与方程根知识点总结一、不等式的基本概念1.1 不等式的定义不等式是一种比较两个数大小关系的数学表达式,它由不等号(>、<、≥、≤)连接的两个表达式组成。
例如,3x+5>7就是一个不等式,其中3x+5和7分别是两个表达式,>是不等号。
1.2 不等式的性质不等式有一些基本的性质,包括传递性、反对称性和加减乘除性。
传递性指的是如果a>b且b>c,则a>c;反对称性指的是如果a>b且b>a,则a=b;加减乘除性指的是如果a>b,则a+c>b+c,a-c>b-c,a×c>b×c,a/c>b/c(其中c>0)。
1.3 不等式的解法解不等式的方法分为图解法和代数法两种。
图解法是通过将不等式转化成图形的方式来求解,代数法是通过代数运算来求解。
对于一元一次不等式,通常使用图解法来求解。
1.4 不等式的应用不等式在实际问题中有着广泛的应用,例如在经济学、管理学和自然科学等领域。
例如,利润不等式可以用来描述一个企业的盈利状况,生态平衡不等式可以用来描述生态系统的稳定性。
二、方程的基本概念2.1 方程的定义方程是一个等式,它表示两个表达式相等。
例如,3x+5=7就是一个方程,其中3x+5和7是两个表达式,=是等号。
2.2 方程的性质方程有一些基本的性质,包括等价性、对称性和变换性。
等价性指的是如果a=b,则b=a;对称性指的是如果a=b且b=c,则a=c;变换性指的是如果a=b且c=d,则a+c=b+d。
2.3 方程的解法解方程的方法分为试解法、代数法和图解法三种。
试解法是通过试验一些数值来求解,代数法是通过代数运算来求解,图解法是通过将等式转化成图形的方式来求解。
2.4 方程的应用方程在实际问题中也有着广泛的应用,例如在物理学、工程学和金融学等领域。
例如,牛顿第二定律可以用方程的形式来表示,弹性力学中的胡克定律也可以用方程的形式来表示。
高中不等式知识点总结
高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
不等式的期末复习(关键知识点)
不等式的复习易错点:不等式两边都乘(或除以)同一个负数,不等号的方向改变.在计算的时候符号方向容易忘记改变.另外,不等式还具有互逆性和传递性.不等式的互逆性:如果a>b ,那么b<a ;如果b<a ,那么a>b . 不等式的传递性:如果a>b ,b>c ,那么a>c .一、不等式的基本概念【例1】 不等号的关键词.(1)正数 (2)非负数 (3)超过 (4)不超过 (5)最多 (6)至少 (7)不大于 (8)不小于【例2】 用不等式表示:⑴ x 的15与6的差大于2; ⑵ y 的23与4的和小于x ;【例3】 根据a b >,则下面哪个不等式不一定成立 ( )A . 22a c b c +>+B . 22a c b c ->-C . 22ac bc >D . 22a bc c>【例4】 若x y x y +>-,y x y ->,那么下列式子正确的是 ( )A . 0x y +>B . 0y x -<C . 0xy <D . 0yx>【例5】 如果0b a <<,则下列哪个不等式是正确的( )A .2b ab <B .2a ab >C .22b a >D .22b a ->-二、不等式的解集不等式的解集 在数轴上表示的示意图x a >xax a <xax a ≥xax a ≤a x【例1】 不等式215x +≥的解集在数轴上表示正确的是 ( )DCBA4204206420420-2【例2】 解不等式:3(2)61x x +<-【例3】 解不等式:342163x x --≤;【例4】 不等式132x x +>的负整数解是_______.【例5】 已知12(3)(21)3a a -<-,求关于x 的不等式(4)5a x x a ->-的解集.【例6】 已知m 、n 为实数,若不等式(2)340m n x m n -+-<的解集为49x >,求不等式(4)230m n x m n -+->的解集.【例7】 关于x 的不等式()122a x a +>+的解集是2x <-,则系数a ( )A.是负数B.是大于1-的负数C.是小于1-的负数D.是不存在的【例8】 若不等式ax a <的解集是1x >,则a 的取值范围是______.三、不等式组的解集不等式 图示 解集 x ax b >⎧⎨>⎩b ax a >(同大取大数)x ax b <⎧⎨<⎩abx b <(同小取小数)x ax b<⎧⎨>⎩ abb x a <<(大小交叉中间找)x ax b >⎧⎨<⎩ab无解(大大小小没有解)【例1】 不等式组10,2x x ->⎧⎨<⎩的解集是A .x >1B .x <2C .1<x <2D .0<x <2【例2】 求不等式组2(2)43,251x x x x -≤-⎧⎨--⎩<的整数解.【例3】 不等式组331482x x x +>⎧⎨-≤-⎩的最小整数解是( )A .0B .1C .2D .-1【例4】 不等式322x -<-<的正整数解为__________.1、讨论一次不等式组中的字母系数【例5】 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,求m 的取值范围.【例6】 已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,求a 的取值范围.【例7】解下列不等式:53xx-<-;【例8】523xx-> -2、一元一次不等式组与方程的结合【例9】若方程组4143x y kx y+=+⎧⎨+=⎩的解满足条件01x y<+<,求k的取值范围.【例10】已知关于x、y的方程组325x y ax y a-=+⎧⎨+=⎩的解满足0x y>>,化简3a a+-.【例11】已知关于,x y的方程组2743x y mx y m+=+⎧⎨-=-⎩的解为正数.(1)求m的取值范围; (2)化简325m m+--.四、不等式组的解集【例1】某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【例2】2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A B,两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?【例3】某饮料厂开发了A B,两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A B,两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:⑴有几种符合题意的生产方案?写出解答过程;⑵如是A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?原料名称甲乙饮料名称A20克40克B30克20克【例4】某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请选择最省钱的租车方案.。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结
不等式知识点总结不等式是数学中重要的概念,经常在解决实际问题和证明不等式性质时使用。
下面我将对不等式的定义、性质以及解不等式的方法进行总结。
1. 不等式的定义不等式是数学中用不等号表示的关系式。
不等式包括大于等于、小于等于、大于、小于四种形式。
例如:a≥b表示a大于等于b;c<b表示c小于b。
2. 不等式的性质(1)传递性:如果a≥b,b≥c,那么a≥c。
如果a<b,b<c,那么a<c。
(2)对称性:如果a≥b,那么b≤a;如果a<b,那么b>a。
(3)加法性:如果a≥b,那么a+c≥b+c;如果a<b,那么a+c<b+c。
(4)乘法性:如果a≥b,且c>0,那么ac≥bc;如果a≥b,且c<0,那么ac≤bc。
3. 不等式的解法(1)加减法解法:对于形如ax+b≥0或ax+b<0的一元一次不等式,可以通过加减法解法进行求解。
例如:5x+3>2x+7,首先将等式化简得到3x>-4,然后除以系数3得到x>-4/3。
(2)乘法解法:对于形如ax²+bx+c>0或ax²+bx+c<0的二次不等式,可以通过乘法解法进行求解。
例如:x²+2x-4>0,首先求出二次方程x²+2x-4=0的根,然后根据二次曲线的凹凸性判断不等式的解集。
(3)分段解法:对于形如|x-a|<b的不等式,可以通过分段解法求解。
例如:|x-3|<5,可以将不等式分为两个部分,x-3<5和x-3>-5,然后求解这两个部分的解集,并取其交集作为原不等式的解集。
4. 不等式的应用(1)代数不等式的应用:代数不等式常常应用于经济学、物理学、生物学等实际问题分析中。
例如:求最大值、最小值、稳定性等。
(2)几何不等式的应用:几何不等式常常应用于解决关于图形的问题,如边长关系、面积关系等。
不等式知识点总结.ppt
g(x) g(x)
ab
f(x) g(x)
a
g(x),或f (x) f (x) g(x)
b
g(x)
a1 a2 an a1 a2 an
平 方 法f (x) g(x) f 2 (x) g2 (x) 划 分 区 域 讨 论 法 : 适 合于 两 个 或 两 个 以 上 绝 对值 号 的 不 等 式
利 用 绝 对 值 的 几 何 意 义:
10.解不等式 (1)一元一次不等式
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
(2)一元二次不等式:
0, x x1 , x x2 (x1 x2 )
ax2
bx
c
0(a
0)
0, x b 2a
0, x R
(3)高次不等式: (x a1 )( x a2 ) (x an ) 0
7.绝对值的定义 8.绝对值的性质
a,(a 0)
a
0, (a
0)
a,(a 0)
a 0
a
b
a
b
a
b
a b
a
n
an
a b ab a b
a
1
a2
an
a1
a2
an
9.绝对值的解法
x a,(a 0) a x a
x
a, (a
0)
x
a, 或x
a
公
式
法
f(x) f(x)
式 对
不 值
等 不
高 式 等式
次
不
等
式
指 数 不 等 式
超 越 不 等 式对 数 不 等 式
不等式知识点总结全面版
3. 整式形式
基
本
不
等
式 根式形式
定
理
分式形式
倒数形式
a 2 b 2 2 ab
a2 b2
1 (a b ) 2 2
ab
a
b
2
2
ab a 2 b 2 2
(9)数学归纳法:
不等式知识点
7.绝对值的定义
8.绝对值的性质
a,(a 0)
a
0,(a
0)
a, (a 0)
a 0
a
b
a
b
a
b
a b
a
n
an
a b ab a b
a1
a2
an
a1
a2
an
不等式知识点
别 式
法法 法
数 学
构 造
换
归 函元
纳 法
数 法
法
解不等式 不等式的应用
整式不等式 可化为整式不等式的不等式
不等式知识点
二.知识要点
1.两实数大小的比较 2.不等式的性质
a b a b 0 a b a b 0 a b a b 0
对称性a b b a
g(x)
a1 a2 an a1 a2 an
高中不等式知识点总结
高中不等式知识点总结摘要:一、高中不等式的基本概念二、高中不等式的性质1.对称性2.传递性3.可加性4.可积性三、高中不等式的比较大小方法1.作差比较法2.作商比较法四、高中不等式的应用1.解不等式2.不等式的证明正文:一、高中不等式的基本概念不等式是数学中一种表示大小关系的方式,它用符号">"、"<"或">="、"<="连接。
在高中数学中,我们主要学习如何运用不等式的性质来比较大小和解决实际问题。
二、高中不等式的性质高中不等式具有以下基本性质:1.对称性:如果a>b,那么b<a;如果a<b,那么b>a。
这意味着不等式的方向可以随意改变,大小关系不变。
2.传递性:如果a>b,且b>c,那么a>c。
这意味着如果一个数大于另一个数,那么这两个数中的较大的数必定也大于第三个数。
3.可加性:如果a>b,且c>d,那么a+c>b+d。
这意味着两个不等式相加,不等号的方向不变。
4.可积性:如果a>b,且c>d,那么ac>bd。
这意味着两个不等式相乘,不等号的方向不变。
三、高中不等式的比较大小方法在高中数学中,我们通常运用以下两种方法来比较大小:1.作差比较法:比较两个数的大小,可以先将它们相减,如果差值大于0,那么被减数大于减数;如果差值小于0,那么被减数小于减数。
2.作商比较法:比较两个数的大小,可以先将它们相除,如果商大于1,那么被除数大于除数;如果商小于1,那么被除数小于除数。
四、高中不等式的应用高中不等式在实际应用中十分广泛,主要包括解不等式和证明不等式。
1.解不等式:解不等式是求解不等式所表示的数学问题的过程,通常需要运用不等式的性质,将不等式转化为等式,从而求得解集。
2.不等式的证明:不等式的证明是运用不等式的性质和已知条件,论证某个不等式是否成立的过程。
数学不等式关键知识点总结
数学不等式关键知识点总结一、不等式的概念不等式是用来表示两个数之间大小关系的数学式子。
通常,我们用符号"<"、">"、"≤"、"≥"来表示不等式中的大小关系。
例如,"2 < 3"表示2小于3;"4 ≥ 2"表示4大于或等于2。
在不等式中,我们把不等号的左边称为不等式的左侧,右边称为不等式的右侧。
这里需要说明的是,不等式并不仅仅是单纯的数值比较,还可以是变量的比较。
二、不等式的解集解集是不等式的一个重要概念。
解集指的是满足不等式的所有可能的解的集合。
对于单变量不等式,解集通常用一个不等式表示出来,例如"-2 < x < 3"表示x的取值范围在-2和3之间;对于多变量不等式,解集通常用一个不等式组表示出来,例如"2x + 3y ≤ 6"和"x + y < 4"表示x和y的取值范围。
解集的求解是解决不等式问题的关键步骤之一。
三、不等式的性质1. 加法性质:不等式两边同时加上(减去)同一个数,不等号方向不变。
例如,若a > b,则a + c > b + c;若a < b,则a - c < b - c。
2. 乘法性质:不等式两边同时乘以(除以)同一个正数,不等号方向不变;不等式两边同时乘以(除以)同一个负数,不等号方向改变。
例如,若a > b 且c > 0,则ac > bc;若a > b 且c < 0,则ac < bc。
3. 联立性质:若a > b 且 c > d,则a + c > b + d。
四、不等式的解法解不等式的方法通常有图形法、代数法和参数法等。
其中,代数法是解不等式的主要方法之一,主要有以下几种方法:1. 直接法:适用于一次不等式的情况,通过对不等式进行简单的加法、减法、乘法、除法等操作,得到不等式的解集。
不等式知识点总结
不等式知识点总结①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ban b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+、几个著名不等式①平均不等式:112a b a b --+≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤.变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβu r u r 是两个向量,则,αβαβ⋅≤u r u r u r u r 当且仅当βu r 是零向量,或存在实数k ,使k αβ=u r u r时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<*,1)k N k >∈>等.5求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6切).7则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x gx f x gx >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥。
不等式知识点总结(精选5篇)
不等式知识点总结(精选5篇)不等式知识点总结篇11、不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
2、不等式的性质不等式有以下性质:不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。
3、实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa)的形式。
4、一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。
解一元一次不等式组时。
一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
不等式知识点总结篇2不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
不等式知识点总结
不 等 式1、 不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有: 1对称性:a>b ⇔b<a ;2传递性:若a>b ,b>c ,则a>c ; 3可加性:a>b ⇒a+c>b+c ;4可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
5同向相加:若a>b ,c>d ,则a+c>b+d ; 6异向相减:b a >,d c <d b c a ->-⇒. 7正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
8乘方法则:若a>b>0,n ∈N+,则n nb a >;9开方法则:若a>b>0,n ∈N+,则n n b a >;10倒数法则:若ab>0,a>b ,则b1a 1<。
2、绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。
(2)|b ||a ||b a |||b ||a ||+≤±≤-3、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注重与不等式的运算性质联合使用; (3) 证明不等式的过程中,放大或缩小应适度。
4、一元二次不等式ax 2+box>0(a>0)解法.: 一元二次不等式的解集其实就和二次项系数、二次方程的根以及不等号有关,因而可以总结解一元二次不等式的一般步骤:先把二次项系数化成正数,再解对应二次方程,最后根据方程的根的情况,结合不等号的方向写出解集(可称为“三步曲”法).一元二次方程的解的讨论0>∆0=∆ 0<∆二次函数c bx ax y ++=2(0>a)的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅5、整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 6、分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f7、含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. (1)ax a a a x <<-⇔><)0(;(2)ax a x a a x >-<⇔>>或)0(;(3)ax f a a a x f <<-⇔><)()0()(;(4)a x f a x f a a x f >-<⇔>>)()()0()(或;(5))()()()()(x g x f x g x g x f <<-⇔<;(6))()()()()()(x g x f x g x f x g x f >-<⇔>或;(7)ax b b x a a b b x a -≤≤-≤≤⇔>>≤≤或)0(;(8)⎪⎩⎪⎨⎧≠<⇔⎩⎨⎧≠<⇔><0)(])([)(0)()()()0()()(22x g x g a x f x g x g a x f a a x g x f 。
不等式知识点总结
不等式知识点总结不等式是数学中的一个重要概念,它描述了数的大小关系。
在不等式中,通过使用不等号(<, ≤, >, ≥)来表示不同数的大小关系。
1. 基本不等式:- 加减法不等式:如果a > b,则有a + c > b + c,a - c > b - c; - 乘法不等式:如果a > b 且 c > 0,则有ac > bc;如果a > b且 c < 0,则有ac < bc;- 除法不等式:如果a > b 且 c > 0,则有a/c > b/c;如果a >b 且c < 0,则有a/c < b/c;- 幂不等式:如果a > b 且 n > 1,则有a^n > b^n;如果0 < a < b 且 0 < n < 1,则有a^n > b^n。
2. 不等式的性质:- 传递性:如果a > b 且 b > c,则有a > c;- 对称性:如果a > b,则有b < a;- 反身性:对于任意的a,有a = a;- 加减性:如果a > b,则有a + c > b + c;- 乘除性:如果a > b 且 c > 0,则有ac > bc,a/c > b/c。
3. 不等式的求解:- 确定不等式的解集:通过比较不等式中的数的大小关系,可以确定不等式的解集。
例如,对于不等式2x + 1 > 5,可以通过移项得到2x > 4,再除以2得到x > 2,解集为{x | x > 2}。
- 不等式的逆运算:对于不等式a > b,可以通过取倒数、开平方、开n次方等逆运算来改变不等式的大小关系。
- 不等式的绝对值:当不等式中存在绝对值时,需要对绝对值进行分类讨论,分别讨论绝对值的正负情况,然后求解不等式。
完整版)不等式知识点归纳大全
完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。
不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。
2.解分式不等式f(x)。
a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。
3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。
4.解含参不等式时,常常需要分类等价转化。
按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。
二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。
2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。
三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。
2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。
四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。
2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。
不等式知识点总结
不等式知识点总结不等式(Inequality)是数学中一个重要的概念,它描述的是两个数或两个式子之间大小关系的一种表示方式。
不等式可以用来解决许多实际问题,例如优化问题、利润问题、经济政策问题等。
下面将对不等式的基本概念、性质、解法以及应用进行总结。
一、不等式的基本概念不等式表示的是数或式之间的大小关系,它与等式相似,但不同的是不等式的结果为真时称为“成立”,结果为假时称为“不成立”。
不等式的基本形式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)四种形式。
二、不等式的性质1.相等性质:若两个不等式中的量相等,则两个不等式具有相同的大小关系。
2.传递性质:若a>b且b>c,则a>c。
也就是说,如果a大于b,而b大于c,则a大于c。
3.加减性质:若a>b,则a+c>b+c;若a>b,则a-c>b-c。
也就是说,如果a大于b,则a加上(或减去)相同的数c后仍然大于(或小于)b。
4. 正数性质:若 a>b 且 c>0,则 ac>bc。
也就是说,如果 a 大于b,而 c 大于 0,则 a 乘以 c 后仍然大于 b。
三、不等式的解法不等式的解法可以根据不等式的类型和条件的不同而有所不同,下面介绍几种常见的解法方法。
1.图解法:对于一元一次不等式,我们可以将其转化为坐标系中的图形表示,通过观察图形的位置判断不等式的解集。
例如,对于不等式x>3,我们可以在坐标系中画出一条过点(3,0)的直线,然后观察直线的右边区域即可确定不等式的解集。
2.代入法:对于一元一次不等式,我们可以根据不等式的条件逐个代入可能的解集,然后判断不等式的成立与否。
例如,对于不等式2x+1>5,我们可以依次代入x=2、x=3、x=4,然后判断不等式是否成立。
3.移项法:对于一元一次不等式,我们可以通过移项将不等式转化为等式,然后求解等式的根,再根据根的取值范围确定不等式的解集。
高中数学不等式知识点总结
弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2baab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b <+≤-若则(当仅当a=b 时取等号) ⑦b an b n a m a mb a b<++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)kk k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式总结
一、不等式的主要性质:
(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0
(5)倒数法则:b
a a
b b a 110,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法
0>∆
0=∆ 0<∆ 二次函数
c bx ax y ++=2 (0>a )的图象
一元二次方程
()的根
00
2>=++a c bx ax
有两相异实根 )(,2121x x x x <
有两相等实根
a
b
x x 221-==
无实根
的解集)0(02>>++a c bx ax
{}21x x x x x
><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2
R
的解集)0(02><++a c bx ax {}21x x x x
<<
∅
∅
三、均值不等式
1.均值不等式:如果a,b 是正数,那么
).""(2
号时取当且仅当==≥+b a ab b
a 2、使用均值不等式的条件:一正、二定、三相等
期末复习之不等式、框图试题
一、选择题
1.已知c<d, a>b>0, 下列不等式中必成立的一个是()
A.a+c>b+d
B.
C.ad<bc
D.a–c>b–d
2.设变量满足约束条件:,则目标函数的最小值为
A. B. C. D.
3.不等式的解集是()
A. B.
C. D.
4.若不等式的解集为,则等于()
A. B.8 C. D.1
5.已知a>0,b>0,a+b=2,则的最小值是
A. B.4 C. D.5
6.已知,函数的最小值是( )
A.2
B.4
C.6
D.8
7.不等式的解集为()
A.(1,+∞)
B.(-∞,-2)
C.(-2,1)
D.(-∞,-2)∪(1,+∞)
8.执行如图所示的程序框图,如果输入m=1,n=1,则输出的m的值为
A.11
B.10
C.9
D.8
9.执行如图所示的程序框图,输出的 S 值为( )
A.1
B.3
C.7
D.15
10.执行如图程序框图其输出结果是
A. B.
C.
D.
二、填空题()
11.变量x ,y 满足条件,则z=2x+y 的最小值为 ______ .
12.不等式-x 2-x+6>0的解集是 ______ .
13.下图是一个算法流程图,则输出的 k 的值是 .
14.右图是一个算法流程图,则输出的的值是 .
13题图 14题图
15.阅读右面的程序框图,运行相应的程序,输出的结果为 .
16.下图程序执行后输出的T 的值是 。
17.某程序框图如图所示,该程序运行后输出的的值是。
三、解答题()
18.已知不等式x 2-2x +k 2-3>0对一切实数x 恒成立,则实数k 的取值范围是 ▲ .
19.用作差法比较2x 2+5x+3与x 2+4x+2的大小.
20.比较下列两组数的大小,并说明理由. (1)
+
与
+
(2)当x >1时,x 3与x 2-x+1.
21.已知方程ax 2+bx+2=0的两根为-和2. (1)求a 、b 的值;
(2)解不等式ax 2+bx-1>0.
22.解下列不等式: (1)-x 2+x+6≤0 (2)x 2-2x-5<2x .
23.已知x >0,y >0,且x+y=1,求+的最小值.
15题图
16题图
17题图。