冶金传输原理1

合集下载

材料加工冶金传输原理

材料加工冶金传输原理

材料加工冶金传输原理一、材料加工材料加工是用各种方法(如机械、热、化学、电等)改变材料的形态、组织、结构和性能的过程。

主要分为塑性加工、切削加工、焊接、热处理等几种。

塑性加工是利用金属材料可塑性变形的特性,通过变形使其得到所需形状、尺寸和性能的过程。

常见的塑性加工方法有锻、挤压、拉伸等。

锻造是利用重锤、压力机等装置对金属材料进行加工的过程;挤压则是利用挤压机对材料进行轴向挤压得到所需的截面形状和尺寸;拉伸则是利用拉伸机将金属材料拉长而得到所需的形状。

切削加工是通过将金属材料的形状、尺寸、表面粗糙度、轮廓等进行切除,从而得到所需的形状、尺寸和性能的过程。

常见的切削加工方法有车削、铣削、钻削等。

车削是利用车床将金属材料旋转进行切除的过程;铣削则是利用铣床进行平面上的加工和修整;钻削则是利用钻床进行孔的加工。

焊接是通过固化剂的作用,将金属材料在高温或者高压的条件下进行接合的过程。

常见的焊接方法包括电弧焊、气焊、激光焊等。

热处理则是通过加热金属材料到一定温度,进行保温和冷却,改变金属组织结构从而改变其性能的过程。

常见的热处理方法包括退火、正火、淬火等。

二、冶金冶金是对金属资源进行提取、加工和利用的过程。

包括选矿、冶炼、铸造、加工等几个环节。

选矿是将含金属矿石中的金属元素和有用矿物从其它无用的矿物中进行分选的过程。

常见的选矿方法有重选、浮选等。

冶炼是将选出的含金属矿石通过热加工或者化学反应将其提炼出来的过程。

常见的冶炼方法有火法冶炼、湿法冶炼等。

铸造则是用熔融的金属材料通过铸造工艺在合适的模具内进行凝固而得到所需的形状和尺寸的过程。

常见的铸造方法有压铸法、砂型铸造法、永久模铸造法等。

加工则是对金属材料进行塑性加工和切削加工等的过程。

常见的加工方法与上述相似。

三、传输原理传输是指物体或物质在空间中向某一方向运动的过程。

而传输原理是指在某种条件下物质传递的规律、原理和机制。

材料加工和冶金的过程中,传输原理起到了至关重要的作用。

冶金传输原理传热学-第一章

冶金传输原理传热学-第一章

(9) 两黑体表面间的辐射换热
A (T14 T24 )
T1
T2



4 T1


图1-7
T24


q12 (T14 T24 )

两黑体表面间的辐射换热



1-2
一根水平放置的蒸汽管道, 其保温层外径d=583 mm,外表面实测平
均温度及空气温度分别为
外表面的发射率
定律有:
t
t w1
q dx
0

tw 2
tw1
dt q
tw1 tw2

dx
dt (q ) dx

Q
tw2
dt
t w1
q

t w2
0

x
q
t w1 t w 2

t r t R
t
t w1
dt
dx
Q Φ

t w1 t w 2
A
关于几个问题的讨论
1、传输现象的本质是什么? 2、冶金过程中的传输现象? 3、动量传输与热量传输有联系吗? 4、你对热量传输的直观认识如何?
第一章 绪 论
§1-0 概 述
1. 传热学(Heat Transfer)
(1) 研究热量传递规律的科学,具体来讲主要有热量传递 的机理、规律、计算和测试方法
稳态过程通过串联环节的热 流量相同。
3 、传热过程的计算
针对稳态的传热过程,即 Φ=const 传热环节有三种情况,则其热流量的表达式 如下:
Ah1 t f 1 t w 1 A

冶金传输原理

冶金传输原理

1.不压缩流体:指流体密度不会随压强改变而变化,或该变化可忽略的流体。

2.速度边界层:指在靠近边壁处速度存在明显差异的一层流体,即从速度为零到0.99倍的地方称为速度边界层。

3.雷诺准数及其物理意义:uLRe ρμ=,表征惯性力与粘性力之比。

是流态的判断标准。

4.傅立叶准数及其物理意义:2s a Fo τ=,也称时间准数,表示非稳定传热所进行的时间与其达到平衡状态所需要的总时间之比;或τ时间内非稳态传热的传热量与其达到稳态(平衡)时传输的总热量之比。

5.热通量与传质通量:单位时间内通过单位面积的热量称为热(量)通量;单位时间通过单位面积的物质量称为传质通量。

6.角系数:由表面1投射到表面2的辐射能量21→Q 占离开表面1的总辐射能量1Q 的份数称为表面1对表面2的角系数,用符号12ϕ表示,即:12112Q Q→=ϕ。

7.流向传质与非流向传质:与流体流动方向相同的传质叫做流向传质;与流体流向垂直的传质叫做非流向传质。

8. 层流流体质点在流动方向上分层流动,各层互不干扰和掺混,这种流线呈平等状态的流动称为层流。

9. 表面力作用于流体微元界面(而非质点)上的力,该力与作用面的大小成比例 10.粘性系数表征流体变形的能力,由牛顿粘性定律所定义的系数:yxx du dyτμ=±,速度梯度为1时,单位面积上摩擦力的大小。

11.温度梯度:在温度场中某点P 的温度梯度定义为该点所在等温面或等温线法线方向,单位长度上的温度增量。

12.修伍德准数的表达式:DLk Sh c ⋅=13.傅立叶准数的物理意义:2s a Foτ=,傅立叶准数又称时间准数,表征不稳态传热趋于稳态的程度,或者说是不稳态传热进行的时间与由不稳态传热达到稳态所用总时间之比。

14.黑度(辐射率、发射率):实际物体的辐射力与相同温度下黑体的辐射力之比称为物体的黑度,也叫发射率、辐射率。

15.角系数:由表面1投射到表面2的辐射能量21→Q 占离开表面1的总辐射能量1Q 的份额称为表面1对表面2的角系数。

材料加工冶金传输原理自然对流传热的计算

材料加工冶金传输原理自然对流传热的计算

材料加工冶金传输原理自然对流传热的计算(最新版)目录一、材料加工冶金传输原理1.动量传输2.热量传输3.质量传输二、自然对流传热的计算1.自然对流空气冷却式冷凝器的传热计算2.强制通风空气冷却式冷凝器的传热计算三、应用实例1.材料加工中的应用2.冶金工程中的应用正文一、材料加工冶金传输原理在材料加工和冶金工程中,动量、热量和质量的传输是非常重要的过程。

动量传输指的是流体流动过程中,动量在流体中的传递和分布。

热量传输则是指热量在流体中的传递和分布,通过传热过程,可以实现流体温度的变化和热量的传递。

质量传输是指在流体中,质量的传递和分布,可以实现流体组成和浓度的变化。

动量、热量和质量的传输过程是相互关联的,它们在材料加工和冶金工程中起着重要的作用。

例如,在钢铁冶炼过程中,需要通过热量传输实现钢铁的熔化和凝固,同时需要通过动量传输和质量传输实现钢铁成分的均匀分布和调控。

二、自然对流传热的计算自然对流传热是一种常见的传热方式,它主要依赖于流体的自然对流和湍流。

在自然对流传热中,流体的温度差会导致流体的密度差,从而产生自然对流。

自然对流传热在空气冷却式冷凝器、散热器等设备中有着广泛的应用。

对于自然对流空气冷却式冷凝器的传热计算,可以采用一种比较简单的近似传热计算方法。

这种方法主要考虑了流体的自然对流和湍流,可以较为准确地预测冷凝器的传热效果。

强制通风空气冷却式冷凝器的传热计算则需要考虑流体的强制通风和湍流。

通过传热计算,可以优化冷凝器的结构和设计,提高冷凝器的传热效率。

三、应用实例材料加工和冶金工程中的动量、热量和质量传输原理,在实际应用中具有广泛的应用。

例如,在钢铁冶炼过程中,通过控制流体的动量、热量和质量传输,可以实现钢铁的熔化、凝固和成分调控。

在铝合金铸造过程中,通过控制流体的动量、热量和质量传输,可以实现铝合金的熔化、凝固和组织调控。

自然对流传热在空气冷却式冷凝器和散热器等设备中的应用,可以提高设备的传热效率,降低设备的能耗。

材料加工冶金传输原理自然对流传热的计算

材料加工冶金传输原理自然对流传热的计算

材料加工冶金传输原理自然对流传热的计算(原创实用版)目录一、材料加工冶金传输原理1.动量传输2.热量传输3.质量传输二、自然对流传热的计算1.自然对流空气冷却式冷凝器的传热计算2.强制通风空气冷却式冷凝器的传热计算正文一、材料加工冶金传输原理在材料加工和冶金工程中,流体流动、传热和传质过程是重要的环节,它们对整个工艺过程的产生和影响不容忽视。

为了更好地理解和掌握这些过程,我们需要从动量、热量和质量传输的角度进行深入研究。

1.动量传输动量传输是指流体在运动过程中,由于流速和压力的变化导致动量的传递。

在材料加工和冶金工程中,动量传输通常涉及到流体的输送和混合过程,以及流体与固体颗粒之间的作用力。

2.热量传输热量传输是指热量从高温区域向低温区域传递的过程。

在材料加工和冶金工程中,热量传输主要包括热传导、热对流和热辐射三种方式。

其中,热对流是指由于流体的流动导致热量的传递过程。

3.质量传输质量传输是指物质在流体中传递的过程。

在材料加工和冶金工程中,质量传输通常涉及到溶质、悬浮颗粒和气泡等在流体中的传递和分离过程。

二、自然对流传热的计算在制冷装置中,自然对流空气冷却式冷凝器和强制通风空气冷却式冷凝器是两种常见的传热设备。

下面分别介绍它们的传热计算方法。

1.自然对流空气冷却式冷凝器的传热计算自然对流空气冷却式冷凝器的传热计算通常采用牛顿冷却定律和热传导定律相结合的方法。

首先,需要确定冷凝器的热负荷和传热系数;其次,根据冷凝器的结构和材料,计算出冷凝器的热传导阻力和热容;最后,利用牛顿冷却定律计算出冷凝器的传热速率。

2.强制通风空气冷却式冷凝器的传热计算强制通风空气冷却式冷凝器的传热计算通常采用对流传热公式进行计算。

首先,需要确定冷凝器的热负荷和传热系数;其次,根据冷凝器的结构和材料,计算出冷凝器的对流换热系数;最后,利用对流传热公式计算出冷凝器的传热速率。

冶金传输原理

冶金传输原理

《冶金传输原理》动量传输的发展历程❖大约公元前250年,阿基米德提出浮力定律推动了造船和航海的发展;❖17至18世纪牛顿提出了粘性内摩擦公式,伯努利得到不可压缩流体的伯努利方程,欧拉建立理想流体微分方程;❖19世纪末期,雷诺的层、湍流实验;❖20世纪普朗特提出边界层理论为飞机制造和航空业的发展铺平了道路;❖19世纪气体动力学研究才开始,黎曼和马赫观测到了激波。

动量传输应用领域❖航空航天、造船、水力等行业与流体力学同步发展起来的;❖热能、动力设备的运行靠其内部的流体流动;❖化学工业的生产是在伴有化学反应、传热、传质的流动过程中完成的;❖建筑工业中的给排水与暖通、机械工业中的润滑与液压传动;❖电子产品的生产和计算机运行所需的冷却。

1、动量传输基本概念❖1。

动量传输:是以流体为研究对象去研究流体的运动和平衡规律的基本规律,以及流体与固体之间相互作用的一门学科。

❖2.内容❖⑴流体的重要特性、平衡规律(第一章)❖流体流动基本方程、运动规律(第二章)❖实际流体的运动规律(一维的管内流动)(第三章)❖气体动力学理论(第四章)❖相似原理与模型研究(第五章)❖⑵掌握压力、流速、流量等测量仪表结构、原理。

❖⑶解决实际工程问题:如管路设计、计算流场P、v分布及改进混合均匀程度1、1 流体1.1.1 流体的定义:❖1定义:流体是一种受任何微小剪切应力作用都能连续变形的物质。

❖如压力:是与物体表面想垂直的力,不属剪切力。

❖2与固体的区别:❖⑴固体只能以静变形抵抗剪切力存在(只要作用力不变,固体变形不再变化)❖⑵流体受任何微小剪切应力则连续变形。

除非外力停止作用以密度为例:说明连续介质的概念。

1、流体质点从几何上讲,宏观上看仅是一个点,无尺度、无表面积、无体积,从微观上流体质点中又包含很多流体分子。

从物理上讲,具有流体诸物理属性。

2、流体微团流体微团虽很微小,但它有尺度、有表面积、有体积,可作为一阶、二阶、三阶微量处理。

流体微团中包含很多很多个流体分子,也包含很多个流体质点。

冶金传输原理(武汉科技大学)第一章

冶金传输原理(武汉科技大学)第一章

a. 正负号的意义,
由于粘性应力的方向与流动方向平行,则τ yx与dvx /dy 的 方向无关(梯度是矢量)粘性应力是一对大小相等,方向相 反的力。 亦是一矢量,正负号表示力的方向。同时也可表为 粘性动量通量。
2014-9-12
15
流体的粘性
b.粘性动量通量:
通过单位面积在单位时间内传递的动量。

Pa
2014-9-12
4
第一章 动量传输的基本概念
1、 1 流体及连续介质模型 在剪切应力的作用下会发生 连续的变形的物质。
1、流体的定义:
流体的密度
m lin v 0 V
பைடு நூலகம்ΔV 从宏观上看应足够小, 而从微观上看应足够大。
2014-9-12
5
流体及连续介质模型 流体的密度
m v
2014-9-12
16
1.3.4
牛顿流体与非牛顿流体
牛顿流体: 满足牛顿粘性定律的流体。 两个含义: 1 、当速度梯度为零时,粘性力为零。 2 、粘性力与速度梯度呈线性关系。 非牛顿流体: 凡不满足牛顿粘性定律的流体均称为非牛顿 流体。
2014-9-12
3
二 单位换算: 力 : 1kgf=9.807 N 1N=0.102kgf 压力(强):1atm=1.01325×105 Pa 1atm=760mmHg=10332mmH2O 1at=10000mmH2O=735.6mmHg=9.807×104 1mmH2O=1kgf/㎡=9.8Pa 能量: 1kJ=0.239kcal 1kcal=4.187kJ 1w=1J/s=0.86kcal/h 1kcal/h=1.163w
固定
y
v x(y)
H 稳定 开始 x

(2020年7月整理)冶金传输原理总复习.doc

(2020年7月整理)冶金传输原理总复习.doc

第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。

2 连续介质流体是在空间上和时间上连续分布的物质。

3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。

1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。

这就是分子不规则运动的动量交换形成的粘性阻力。

2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。

5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。

符号表示动量是从流体的高速流层传向低速流层。

动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。

ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。

在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。

当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。

这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。

冶金 ——传输原理总复习.

冶金 ——传输原理总复习.

第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。

2 连续介质流体是在空间上和时间上连续分布的物质。

3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。

1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。

这就是分子不规则运动的动量交换形成的粘性阻力。

2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。

5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。

符号表示动量是从流体的高速流层传向低速流层。

动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。

ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。

在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。

当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。

这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。

冶金传输原理

冶金传输原理

冶金传输原理
冶金传输原理是一种利用热能运动的传输原理,它可以将金属的能量传输到另一处。

原理上可以分为三个步骤:第一步,金属受到外力,金属表面的温度会上升;第二步,金属表面的温度会出现一定的温差,金属的热能会被传输到外部,金属表面的温度会减少;第三步,金属表面的温度会在一定的温差下减少,金属表面的热能会被传输到另一处,从而形成冶金传输原理。

冶金传输原理可以用来传输原料、产品或已熔化的金属。

传输的有效距离取决于金属的特性、系统的设计和制造技术,可以利用炉子之间的金属热量传输,得到较为有效的金属冶炼。

冶金传输原理是金属冶炼中一个重要的部分,从温度上可以实现温度控制,从而可以提高冶炼质量、降低能耗、提高运行效率。

冶金传输原理

冶金传输原理

名词解释
1、传输现象:传输现象为流体动力过程
2、研究方法:(1)物理研究方法:确定简化的物理模型——建立数学模型——数学求导(精确解、数值解)(2)数值计算法(3)实验研究法
3、流体作用力分类:表面力、体积力表面力(
4、等压面:在平衡流体中,静压力相等的各个点组成的面,称为等值面
5、连续介质:将流体视为连续不断的质点群组成,内部不存在间隙的介质,是流体运动的一种模型概念
6、流体微团:又称微元体或元体,可视为由质点点组成的、微小的流体单元
7、控制体:是指流场中某一确定的空间区域,这个区域的这个区域的周界称为控制体
8、相似理论:具有相同运动规律的同类物理现象所类似现象中,表征过程的各固类物理量之间彼此相似
9、因次分析法:将物理过程有关的物理量组成呢个因次准数,以确定准数的方法
10、因次和谐原理:任何物理量都是以相关物理量和这些物理量之间的关系来表征运动规律的11、温度梯度:温度场中任意一点沿等温面法线方向温度增加率称为改点的温度梯度12、。

冶金传输原理

冶金传输原理
针对欧拉描述(给出流场速度场),需要联立积分方程组消 去t,从而得到迹线族的表达式,确定具体质点即可得到 该质点的迹线。
u u ( x, y , z , t ) dx dt v v( x, y , z , t ) dy dt w w( x, y , z , t ) dz dt
M P V
ρ ΔVc
ΔV
M P lim V
V Vc
第一节 1.拉格朗日法
流体运动的描述
流场任一空间点上都对应一个流体质点,拉格朗日法着眼于流体质 点描述,通过各流体质点的运动规律,即其位置随时间的变化规律 来确定整个流场的运动规律。
初始时刻时空间坐标为(a,b,c)的质点,其位置随时间 变化的规律可表示为:
欧拉描述中的随体导数的例子:速度矢量的全导数
欧拉描述中,流体质点的加速度为:
DV V a V V Dt t V V V V u v w t x y z


u u u u ax t u x v y w z v v v v a y u v w t x y z w w w w u v w az t x y z
冶金传输原理
第一章 绪论
传输现象(Transport phenomena): 物理量从非平衡状态向平衡状态转移的过程。
平衡过程:物理系统内具有强度性质 的物理量不存在梯度; 传输现象涉及的领域: 材料加工、冶金过程; 制冷过程; 机械工程; 生化工程; 环境工程; 电子制造、封装
(2)欧拉描述中的随体导数:
物理量B B ( x, y, z , t )中的(x, y,z )具有双重含义 1.代表流场中的空间坐标; 2.代表t时刻某个流体质点的空间位置; 从跟踪流体质点的角度看,x, y,z均为时间t的函数, 因此物理量B随时间的变化率为:

冶金传输原理在冶金工程的应用

冶金传输原理在冶金工程的应用
热量自发地从高温区域向低温区域传递,导致温度分布变化。
质量传输
物质在相界面或浓度梯度作用下发生迁移,改变浓度分布。
传输原理研究内容
1 2
传输现象的数学描述
建立描述动量、热量和质量传输的数学模型。
传输过程的机理研究
探讨各种传输现象的内在机制和影响因素。
3
传输过程的模拟与优化
利用计算机模拟技术,对传输过程进行模拟分析, 优化工艺参数。
冶金工程中传输原理重要性
01
02
03
提高冶金生产效率
通过优化传输过程,提高 冶金生产效率,降低能耗 和物耗。
改善冶金产品质量
控制传输过程中的各种因 素,提高冶金产品的成分 均匀性、组织结构和力学 性能。
推动冶金技术创新
深入研究传输原理,为冶 金新技术、新工艺的开发 提供理论支持。
02 冶金工程中主要传输现象
热量传
传导传热
在冶金工程中,热量通过物体内部的分子、原子或电子的热运动进行传递,称为传导传热。例如,在 金属熔炼过程中,热量通过炉壁传导至金属熔体,维持其熔融状态。
对流传热
热量通过流体的流动进行传递称为对流传热。在冶金工程中,金属熔体、熔渣和气体的流动都会伴随 对流传热。例如,在连铸过程中,冷却水通过流动将热量从铸坯中带走,实现铸坯的冷却和凝固。
动量传
流体流动
在冶金工程中,动量传输主要涉及流体(如金属熔体、熔渣 、气体等)的流动。流动现象受到流体的物理性质(如密度 、粘度)、流动状态(层流或湍流)以及边界条件(如管道 形状、壁面粗糙度)等因素的影响。
搅拌与混合
动量传输还涉及冶金过程中的搅拌与混合现象。通过搅拌器 或气体搅拌等方式,实现金属熔体、熔渣和添加剂的均匀混 合,以促进化学反应的进行和冶金过程的优化。

冶金传输原理-第一篇动量传输

冶金传输原理-第一篇动量传输
原因:分子间间隙改变。加压→间隙减小→体积减小。 不可压缩性流体(液体):在相当大的压力下,流体几乎不改变其
原有的体积。 黏性:流体抵抗变形运动的性质。
6
15.12.2020
冶金与能源学院
College of Metallurgy and Energy
1.1 流体的概念及连续介质模型
连续介质模型
连续介质:把流体视为由大量宏观上的连续分布的质点组成的, 质点是组成流体的最小单元,质点间无间隙。也就是说,把流体看作 在空间和时间上是连续的。(注:稀薄气体分子间距大,不适用)
即动量是由高速流层向低速流层方向传输。
19
15.12.2020
冶金与能源学院
College of Metallurgy and Energy
(2)牛顿流体与非牛顿流体
牛顿流体:切应力与速度梯度的关系服从牛顿黏性定律的流体
✓ 当速度梯度为零时,黏性力为零; ✓ 黏性力与速度梯度呈线性关系。
代表:水、空气等。 非牛顿流体:凡不满足牛顿黏性定律的流体
College of Metallurgy and Energy
1.2 流体的主要物理性质
(1)流体的密度 ρ:
定义:单位体积内所具有流体的质量,kg/m3
对于均质流体 对于非均质流体
m
V
limm
V0 V
注:这里数学上的V0,在物理上理解为体 积 V 缩小到足够小体积 V * 的流体质点,该质点 的体积与流体体积相比是完全可忽略的小量。
定义:当作用流体上的压力增加时,流体所占有的体积将缩小,
(单位:1/Pa)
这种特性称为流体的压缩性。(用体积压缩系数 p 来表示)
p
1 V
dV dP

冶金传输原理

冶金传输原理

1传输过程:传输过程是从非平衡状态朝平衡状态转移的过程。

2连续介质模型:将流体看成是由无数多个流体质点所组成的密集而无间隙的连续介质,也叫做流体连续性的基本假设。

3流体的粘性:在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动。

6迹线:迹线就是流体质点运动的轨迹线。

7流线:在同一瞬时流场中的不同位置质点的流动方向线。

8流管:在流场内取任意封闭曲线L,通过曲线L 上每一点连续地作流线,则流线族构成一个管状表面叫流管。

9流束:在流管内取一微小曲面dA,通过dA上每个点作流线,这族流线叫流束。

10层流:流体在运动方向上分层运动,各层互不干扰和渗混,这种流线呈平行状态的流动成为层流。

11紊流:各质点在不同方向上作复杂的无规则运动,互相干扰地向前运动,这种流动成为湍流。

13沿程阻力:它是沿流动路程上由于各流体层之间的内摩擦而产生的流动阻力,因此也叫做摩擦阻力。

14局部阻力:流体在流动中因遇到局部障碍而产生的阻力称为局部阻力。

16数学分析法:数学分析法是从物理概念出发进行数学分析,建立起物理过程的数学方程式来揭示各有关物理参数之间的联系,然后在一定边界条件下求解。

17实验法则:实验法则是对某一具体的物理过程以实验测试为手段,直接对过程的有关物理量进行测定,然后根据测定结果找出各相关物理量之间的联系及变化规律。

18相似准数:在相似系统的对应点上,由不同物理量所组成的量纲为1的综合数群的数值必须相等,这个量纲为1的量往往称为无量纲量,综合数群叫相似准数。

19:量纲:物理量所属于的种类,称为这个物理量的量纲。

20:热量传输:热量传输是研究不同物体之间或者同一物体不同部分之间存在温差时热量的传递规律。

21:导热:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动进行的热量传递称为热传导,简称导热。

22:对流:对流是指流体各部分之间发生的相对位移,冷热流体相互掺混所引起的热量传递方式。

冶金传输的原理及应用

冶金传输的原理及应用

冶金传输的原理及应用1. 引言冶金传输是指将金属和合金从一个地方运输到另一个地方的过程。

它在冶金工业中起着至关重要的作用。

本文将介绍冶金传输的原理和应用,并通过列举例子帮助读者更好地理解。

2. 原理冶金传输的原理基于物质的运动规律和力学原理。

以下是冶金传输的主要原理:2.1 重力传输重力传输是最常见的一种冶金传输方式。

它基于物体受重力作用而向下运动的特性。

例如,在炼钢过程中,钢水通过重力从高炉注入到连铸机中。

重力传输的优点是简单且成本低廉,但其局限性是只适用于短距离和较小负载的传输。

2.2 气力传输气力传输是利用气体流动的动力将物料从一个地方运输到另一个地方。

常用的气体有空气、氮气和惰性气体等。

气力传输广泛应用于铸造、冶炼和烧结等工艺中。

例如,在冶金烧结过程中,通过气体将矿石和燃料输送到烧结机中。

气力传输的优点是传输距离远、传输速度快,但其缺点是能耗较高且对物料的流动性要求较高。

2.3 液力传输液力传输是利用液体流动的力将物料从一个地方传输到另一个地方。

常用的液体有水、液态金属等。

在铸造过程中,熔融金属通过液力传输到模具中进行浇铸。

液力传输的优点是传输效率高、传输速度快,但其缺点是需要消耗大量的液体介质,且在一些特殊情况下可能引起氧化或腐蚀。

3. 应用冶金传输主要应用于冶金工业中的炼铁、炼钢、铸造和烧结等工艺过程。

以下是冶金传输在这些工艺中的应用示例:3.1 炼铁在炼铁过程中,冶金传输用于将铁矿石、焦炭和石灰石等原材料输送到高炉中。

通过气力传输或重力传输,各种原料按照一定的比例和顺序加入高炉,实现铁的提取和冶炼。

3.2 炼钢炼钢过程中,冶金传输用于将熔融钢水从炼钢炉或转炉中输送到连铸机中进行铸造。

通过重力传输或液力传输,钢水顺利地从炉内流出,确保了铸造过程的连续进行。

3.3 铸造在铸造过程中,冶金传输用于将熔融金属从炉中输送到模具中进行浇铸。

通过液力传输,熔融金属被均匀地注入到模具中,形成所需的铸件。

冶金传输原理1-8[1].2.

冶金传输原理1-8[1].2.

冶金传输原理1-8[1].2.冶金传输原理(Principles of Transfer in Metallurgy)绪论1、冶金的分类:钢铁冶金、有色冶金共同特点(1)发生物态变化固?液态(2)物理化学变化原料与产品的性质、化学成分截然不同钢铁冶金:原料是矿石产品是钢铁钢铁工艺流程:(1)长流程:高炉、转炉、轧机(2)短流程:直接还原或熔融还原、电炉、轧机(1)高炉炼铁:烧结矿或球团矿(铁矿石造块)、焦炭(煤炼焦)、熔剂铁水(2)非高炉炼铁:天然块矿、粉矿或造块、块煤或气体还原剂、熔剂海绵铁(3)转炉炼钢:铁水、废钢、铁合金、氧气、造渣剂钢水(4)电炉炼钢:废钢(海绵铁)、铁水、铁合金、造渣剂钢水2.有色冶金:原料是矿石产品是有色金属(1)重金属:铜(造锍熔炼)、铅(还原熔炼)、锌(湿法冶炼)、锡(火法精炼)(2)轻金属:铝冶金、镁冶金(3)稀贵金属:锂冶炼、铍冶炼、钙锶钡制取、金银提炼3、课程概况一、课程性质专业基础课,是基础课和专业课之间的桥梁。

二、课程内容传输原理(动量、热量、质量传输)简称“三传”传输是指流体的(输送、转移、传递)动力过程、传热过程、物质传递过程的统称热量、动量、质量的传递与输送,热量传输、质量传输、动量传输(类似统一性)传输原理类似性:基本概念、运动规律、解析方法类似。

冶炼过程:高温、多相条件下进行的复杂物理化学过程。

传输过程:?冶炼过程中的物理过程,不涉及化学反应。

动量、热量、质量传递的过程。

(TransportPhenomena)举例:高炉炼铁的气固两相流动。

高炉强化冶炼,目的就是改善传输条件。

转炉炼钢的气液两相流动。

转炉底吹,目的也是改善传输条件。

冶金传输原理已成为现代冶金过程理论的基础!研究对象:动量、热量、质量传输(传递)过程的速率。

研究方法:理论研究(简单问题)、实验研究、数值计算(复杂问题)习题与思考题:如何加深对所学传输理论的理解和应用。

三、课程特点物理概念抽象,数学推导繁琐,计算公式多,计算过程复杂。

冶金传输原理 -回复

冶金传输原理 -回复

冶金传输原理-回复
冶金传输原理指的是将冶金产品(如熔融金属或粉末)从一个位置传输到另一个位置的原理。

冶金传输原理可以分为以下几种:
1. 重力传输:重力传输是指利用重力将冶金产品从高处传输到低处。

例如,熔融金属从炉底流出,通过导流管道流向铸造腔或保温水槽等。

2. 机械传输:机械传输是指利用机械力量将冶金产品从一个位置传输到另一个位置。

例如,使用输送带将矿石从矿山运输到炉料仓,或使用电动叉车将熔融金属从铸造腔中取出,运输到下一个加工工序。

3. 气力传输:气力传输是指利用气流将冶金产品从一个位置传输到另一个位置。

例如,在粉末冶金中,通过气力输送将粉末从一个反应室输送到另一个反应室进行合成反应。

4. 液力传输:液力传输是指利用液流将冶金产品从一个位置传输到另一个位置。

例如,在冶金生产过程中,通过液力球体传输机将熔融金属从一个铸造腔传输到另一个铸造腔进行加工。

以上是常见的冶金传输原理,不同的传输方式适用于不同的冶金工艺和产品,冶金工作者需要根据具体情况选择合适的传输方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体:在剪切应力的作用下会发生连续的变形的物质。

连续介质模型:任一时刻流动空间的每点都被相应的流体质点占据这样的模型是连续介质模型。

粘性:在做相对运动的两流体层的接触面上,存在一对等值而反向的力来阻碍两相邻流体层做相对运动,流体的这种性质称作流体的粘性。

牛顿粘性定律:当流体的流层之间存在相对位移,即存在速度梯度时,由于流体的粘性作用,在其速度不相等的流层之间以及流体与固体表面之间所产生的粘性力的大小与速度梯度和接触面积成正比,并与流体的粘性有关。

0,x xy v dv F A H dy μτμ==±(应用范围):应用于层流流动。

牛顿流体与非牛顿流体区别:是否服从牛顿粘性定律,即流动过程中的粘性切应力和速度梯度是否成正比。

作用在流体上的力:表面力,质量力或体积力。

拉格朗日法:把流体看成是由大量的流体质点组成的,着眼于对流体质点运动的描述,设法描述出每个质点自始至终的运动状态,即其位置随时间的变化规律。

是力学中质点运动描述方法在流体力学中的推广。

欧拉法:着眼于空间点,设法在流体空间的每一个点上,描述出流体运动随时间变化的状况。

梯度:()()P grad P nφφ∂=∂场量在空间变化快慢程度的一种度量,来源于等值面的方向导数,梯度就是最大的方向导数,不同等值面间显然两等值面的法线方向的距离最短,方向导数的取值也就最大标,量场的法向变化率即梯度,梯度本身是矢量,其正方向规定为沿等值面的法线方向,并指向函数值增大的一侧。

散度:divv v =∇⋅ 描述矢量场源(汇)及矢量场体积膨胀速度的一个概念表征物理量是否有源及源的强度。

散度可描述场在某点单位体积内源的强度,也可描述单位体积的体膨胀速率。

旋度:2rotv v ω=∇⋅= 描述流体旋转的强弱,旋度--流体在流场中某点单位面积上的环量。

流场的分类:从时空依赖性上分类:稳定场、非稳定场;均匀场、非均匀场。

从密度场的变化性质上分类:可压缩流体、不可压缩流体。

从粘性上分类:理想流体、实际流体(粘性流体)。

从流场的形态上分类:层流、湍流。

流线:流场中某一时刻的一条空间曲线,曲线上每一流体质点的速度方向与该曲线的切线方向重合。

迹线:流体质点在空间运动所走过的轨迹。

伯努利方程应用条件:1) 流体运动必须是稳定流动。

2) 所取的有效断面必须符合缓变流条件;但两个断面间的流动可以是缓变流动,也可以是急变流动。

3) 流体运动沿程流量不变。

对于有分支流(或汇流)的情况,可按总能量的守恒和转化规律列出能量方程。

4) 在所讨论的两有效断面间必须没有流量的输入或输出。

如果有能量的输入或输出,则可写成如下形式221211221222p v v P gz H P gz h ρρρρ-'++±=+++ 5) 上式适用于不可压缩流体稳定流动。

理想流体:指无黏性而不可压的流体,在流动时各层之间没有相互作用的切应力,即没有内摩擦力。

层流:流体质点在流动方向上分层流动,各层互不干扰和掺混,这种流线呈平行状态的流动称为层流,或称流线型流。

湍流:流体内部充满了可以目测的漩涡,这些漩涡除了在主体流动方向上随流体运动外,还在各个方向上做无规则的随机运动,流体在运动中相互掺混极不规则,这样的流动称为湍流。

湍流的起因:湍流的起因有两个一是漩涡的形成,二是漩涡脱离原来的流层。

漩涡的形成:由于流体的粘性,当流体在运动过程中存在一定的速度梯度时,具有不同速度的相邻流层间将产生切应力,从而产生漩涡;漩涡脱离原来流层:流动中流体一旦形成旋涡,漩涡的特性是旋转,旋转使漩涡上下流速不同从而引起压强差使漩涡脱离原来流层形成湍流。

流动阻力的分类:沿程阻力损失、局部阻力损失。

速度边界层:当流体以一定速度流经平板表面时,由于流体具有粘性,在垂直于流体流动方向上便产生了速度梯度。

在壁面附近存在着较大速度梯度的流体层,称为流动边界层,简称边界层。

热边界层:流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,形成一定的温度梯度,近壁处,流体温度发生显著变化的区域,称为热边界层或温度边界层。

浓度边界层:又称传质边界层,当流体与它所流过的固体表面之间,因浓度差而发生质量传递时,在固体表面附近形成的具有浓度梯度的薄层。

Re 与Re x 的异同:相同的是他们都代表雷诺数,而不同的是Re 是所有流动的雷诺数,Re x 是流体绕平板流动的雷诺数。

流层画法:层流(一个区),小湍流(三个区),大湍流(两个区)。

边界层脱离现象原因:边界层脱离是逆压力梯度(即)和固体壁面粘性阻滞作用的结果。

只有壁面粘性阻滞作用而没有逆压力梯度,不会产生回流,亦不会有边界层脱离现象。

绕流平板的情况亦是如此。

如果只有逆压力梯度而没有壁面粘性阻滞作用,运动中的流体质点就不会滞止下来,也不会有边界层脱离现象。

自由射流的自模性:射流主段中一切截面上的速度分布都是相似的,可用与雷诺数无关的普遍无量纲速度分布来表示,这种特性称为自由射流的自模性。

自由射流形成条件:1)四周的介质为静止介质,且物理性质与喷出的介质完全相同。

2)流股在整个流动过程中不受任何液面或固体壁面的限制。

自由射流示意图:旋转射流:具有轴向、径向和切向速度的射流称为旋转射流。

旋流强度:以轴向推力x F 和角动量0J 为基础组成的一个无因次数,是表征旋转射流特征的重要相似准数,称旋流强度,用S 表示其定义为00x J S F R =式中:0J --角动量矩N m ⋅;x F --轴向推力N ;0R --喷嘴的出口半径m 。

滞止状态:流动中某截面或某区域的速度等于零或处于静止的状态。

用下标“0”表示。

临界状态:一元恒定等熵气流中某一截面上的气流速度等于当地音速时的状态。

用下标“*” 表示。

极限状态:一元恒定等熵气流中某一截面上的0T =,该截面上的气流速度达到最大值max v 的状态。

附壁效应:当流体有离开本来的流动方向,改为随着凸出的物体流动的倾向,流体与它流过的物体表面之间存在摩擦,这时流体的流速会减慢。

只要物体表面的曲率不是太大,依据流体力学中的伯努利原理,流速的减缓会导致流体被吸附在物体表面上流动。

气流参数与流通截面的关系:可见,密度变化的方向与速度变化的方向相反。

当1Ma < 时,d dv vρρ=,即密度的相对变化比速度的相对变化 慢。

若气流加速()0dv >,则根据连续方程,必须截面 积减小()0dA <,才能使三者的相对变化相平衡。

若气流减速()0dv <,截面积就必须增大()0dA >。

当1Ma >时,d dv vρρ>,即密度的相对变化比速度的相对变化快。

若气流加速()0dv >,必须使截面 积增大()0dA >,才能保证各截面上的质量流量相等。

若气流减速()0dv <,则截面积就应减小()0dA <。

激波:激波又称为冲击波,是超音速气流在前进的过程中受到突然的压缩或遇到障碍物时出现的一种物理现象,它是在气体介质中存在的一个很薄的曲面,气体经过这个曲面要引起气体的速度、压力、密度、温度等状态参数的突变。

激波分为三种:正激波,激波面与气流方向垂直,气流经过激波后不改变流动方向;斜激波,激波面与气流方向不垂直,气流经过激波后改变流动方向;曲面激波,激波面为曲面形状,它是由正激波与斜激波系组成的。

膨胀波:膨胀波是气流在加速过程中形成的物理现象,气体通过膨胀波时,气流速度逐渐增加,而其他参数则逐渐降低。

运动微分方程的(单值条件):几何条件,物理条件,边界条件,初始条件。

导热微分方程的(单值条件):几何条件、物理条件、边界条件、时间条件。

模型相似条件:1)几何相似2)物理相似3)定解条件相似热导率λ:单位()/W m C ⋅︒表示沿热流方向的单位长度上,温度降低1C ︒时通过单位面积的导热量,其数值大小反映了物质的导热能力的大小,λ越大物质的导热能力越强。

相似准数的意义与性质:时均数/v Ho l l vττ== 是表征流体的速度场随时间变化特征的准数; 弗劳徳数22gl gl Fr v vρρ==表示了流体在流动过程中重力与惯性力的比值;欧拉数2p Eu v ρ∆=表示了流体的 压力与惯性力的比值;雷诺数2Re /vl v v lρρμμ==表示了流体流动过程中的惯性力与黏性力的比值。

对流换热的准数:努塞尔数:/1/hl l Nu hλλ==,物理意义可理解为流体的导热热阻和其对流热阻的比值, 它反映了给定流畅的对流换热能力与其导热能力的对比关系,其大小反应了对流传热能力的大小。

贝克来 数:Re Pr /vl vl cv Pe a a lηρηλ==⋅=⋅=,它反映了给定流场的热对流能力与热传导能力的对比关系。

普朗 特数:Pr ,Pr c a ημλ==数为一个由流体的几个物性参数组合而成,并且是一个无量纲的数,也是一个相 似准数,它反映了动量传输能力与热量传输能力的对比关系。

格拉晓夫数:32g tl Gr βη∆=,其物理意义反映了流体温差引起的浮升力所导致的自然对流流场中流体的浮升力与其粘性力之间的对比关系。

马赫数:Ma ——气流实际速度与音速之比,称为马赫数,v Ma c=。

施密特数:Sc 为联系动量传输与质量传输的相似准则,其值有流体的运动黏度η与物体的扩散系数AB D 之比构成。

1Sc >,有c δδ>,说明速度边界层厚度大于浓度边界层厚度。

1Sc <,有c δδ<,此时浓度边界层厚度大于速度边界层厚度。

1Sc =,有c δδ=,此时两个边界层厚度完全重合,速度分布曲线和浓度分布曲线也完全一样。

毕渥数:()()////1/v V F h V F Bi h λλ==表征的是物体与环境间的换热能力与其自身的导热能力之间的关系。

相似第一定理:彼此相似的现象必定具有相数值同的同名相似准数。

相似第二定理:凡同一类现象,如果定解条件相似,同时由定解条件的物理量所组成的相似准数在数值上相等,那么这些现象必定相似。

相似第三定理:描述某种现象的各种量之间的关系式可以表示成相似准数之间的函数关系式。

即()12,,0n F πππ⋅⋅⋅=这种关系式称为准数方程式。

相似准数的转换:1)相似准数的n 次方仍为相似准数;2)相似准数的乘积仍是相似准数;3)相似准数乘以无量纲数仍是相似准数;4)相似准数的和与差仍是相似准数。

热量传输的三种方式:传导传热,对流传热,辐射传热。

传导传热:在物体内部没有宏观位移的情况下,热量会从物体的高温部分传到低温部分;不同温度的物体互相接触时,热量也会在相互没有宏观位移的情况下,从高温物体传递到低温物体。

对流传热:流体中温度不同的各部分流体之间,由于发生宏观的相对运动而把热量有一处转移到另一处的传热现象,成为热对流。

相关文档
最新文档