2021高考数学浙江专用一轮习题:专题2+第10练+对数函数

合集下载

高考数学专题《对数与对数函数》习题含答案解析

高考数学专题《对数与对数函数》习题含答案解析

专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。

2021高考数学浙江专用一轮习题:专题2 第10练 对数函数

2021高考数学浙江专用一轮习题:专题2 第10练 对数函数

1.若lg2=a ,lg3=b ,则log 418等于( )A.a +3b a2 B.a +3b 2a C.a +2b a 2 D.a +2b 2a2.(2020·温州四校联考)设x =log 30.2,y =30.2,z =0.23,则x ,y ,z 的大小关系为( )A .x <z <yB .y <x <zC .y <z <xD .z <y <x3.(2020·金华市东阳中学期末)函数f (x )=log a (4-3ax )在[1,3]上是增函数,则实数a 的取值范围是( )A.⎝⎛⎭⎫49,1B.⎝⎛⎭⎫94,+∞C.⎝⎛⎭⎫0,49D.⎝⎛⎭⎫1,94 4.对于一个声强为I (单位:W/m 2)的声波,其声强级L (单位:dB)可由如下公式计算:L =10lg I I 0(其中I 0是能引起听觉的最弱声强),若声强为I 1时的声强级为70dB ,声强为I 2时的声强级为60dB ,则I 1是I 2的( )A .10倍B .100倍C .1010倍D .10000倍5.已知函数f (x )=⎩⎪⎨⎪⎧log 16x ,x >0,12log (-x ),x <0,若非零实数a 满足f (9)+log 43=f (-a 2),则a 的值为( )A.3或- 3B.2或- 2C.22或-22D.33或-33 6.已知对数函数f (x )=log a x 是增函数,则函数f (|x |+1)的大致图象为( )7.已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)等于( )A .2B .4C .-2D .-48.若函数f (x )=12log (-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎡⎦⎤43,3B.⎣⎡⎦⎤43,2C.⎣⎡⎭⎫43,2D.⎣⎡⎭⎫43,+∞ 9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则实数a 的取值范围是________.10.(2020·杭州市第二中学期末)若函数f (x )=log a (x +1)+2(a >0且a ≠1),图象恒过定点P (m ,n ),则m +n =________;函数g (x )=2e x nx +的单调递增区间为____________________.11.已知函数f (x )=log 2(x 2-2x +a )的最小值为2,则a 等于( )A .4B .5C .6D .712.已知函数f (x )在区间[0,+∞)上是增函数,且g (x )=-f (|x |).若g (lg x )>g (1),则x 的取值范围是( )A .[1,10)B.⎝⎛⎭⎫110,+∞C.⎝⎛⎭⎫110,10D.⎝⎛⎦⎤110,1∪()10,+∞ 13.函数f (x )的定义域为D ,若满足①f (x )在D 内是单调函数;②存在[m ,n ]⊆D 使f (x )在[m ,n ]上的值域为⎣⎡⎦⎤m 2,n 2,那么就称y =f (x )为“成功函数”,若函数f (x )=log a (a x +t )(a >0,a ≠1)是“成功函数”,则t 的取值范围是( )A.⎝⎛⎭⎫0,14 B.⎣⎡⎭⎫14,12 C.⎝⎛⎭⎫14,12 D.⎝⎛⎦⎤0,14 14.已知定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=log 12(1-x ),则f (x )在区间⎝⎛⎭⎫1,32上是( )A .增函数且f (x )>0B .增函数且f (x )<0C .减函数且f (x )>0D .减函数且f (x )<015.已知不等式⎝⎛⎭⎫20n -m ln ⎝⎛⎭⎫m n ≥0对任意正整数n 恒成立,则实数m 取值范围是________. 16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=________.答案精析1.D 2.A 3.C 4.A 5.D 6.B 7.C8.C 9.⎣⎡⎦⎤13,34 10.2 (-1,+∞)11.B 12.C13.A [∵f (x )=log a (a x +t )(a >0,a ≠1)是“成功函数”,当a >1时,f (x )在其定义域内为增函数, 当0<a <1时,f (x )在其定义域内为增函数,∴f (x )在其定义域内为增函数,由题意得f (x )=log a (a x +t )=x 2有两个不同的实数根, ∴a x +t =2x a ,a x -2x a +t =0, 令m =2x a >0,∴关于m 的方程m 2-m +t =0有两个不同的正数根, ∴⎩⎪⎨⎪⎧1-4t >0,t >0,解得t ∈⎝⎛⎭⎫0,14.] 14.B [设x ∈⎝⎛⎭⎫-12,0, 则-x ∈⎝⎛⎭⎫0,12, f (-x )=12log (1+x ),由于函数y =f (x )为R 上的奇函数,则f (x )=-f (-x )=-12log (1+x ),当x ∈⎝⎛⎭⎫1,32时,x -32∈⎝⎛⎭⎫-12,0, 则f (x )=f ⎝⎛⎭⎫x -32 =-12log ⎝⎛⎭⎫1+x -32=-12log ⎝⎛⎭⎫x -12=log 2⎝⎛⎭⎫x -12. 所以函数y =f (x )在⎝⎛⎭⎫1,32上是增函数,且当1<x <32时,12<x -12<1,f (x )<0.] 15.[4,5]16.9解析 因为f (x )=|log 3x |=⎩⎪⎨⎪⎧ -log 3x ,0<x <1,log 3x ,x ≥1, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧ 0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧ 0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增, 所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m=9.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

(浙江专版)高考数学一轮复习 2.6 对数与对数函数限时集训 理

(浙江专版)高考数学一轮复习 2.6 对数与对数函数限时集训 理

(限时:50分钟 满分:106分)一、选择题(本大题共8个小题,每小题5分,共40分)1.已知2x =9,y =log 223,则x +2y =( ) A .3B .4C .2D .log 422.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A.1b B .-1bC .-bD .b3.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b ) 4.函数y =lg|x -1|的图象是( )5.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f (0)<f (3) B .f (0)<f ⎝ ⎛⎭⎪⎫-12<f (3) C .f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0) D .f (3)<f (0)<f ⎝ ⎛⎭⎪⎫-12 6.设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a ),则m ,n ,p 的大小关系为( ) A .n >m >pB .m >p >nC .m >n >pD .p >m >n 7.(2013·丹东模拟)函数y =log 2(x 2+1)-log 2x 的值域是( )A .[0,+∞)B .(-∞,+∞)C .[1,+∞)D .(-∞,-1]∪[1,+∞)8.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12 B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2) D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13 二、填空题(本大题共6个小题,每小题4分,共24分)9.若a >0,a 23=49,则log 23a =________. 10.(2012·北京高考)已知函数f (x )=lg x .若f (ab )=1,则f (a 2)+f (b 2)=________.11.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.12.已知函数f (x )=a x (a >0且a ≠1)在区间[-2,2]上的值域不大于2,则函数g (a )=log 2a 的值域是________.13.(2013·台州模拟)已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是________.14.设0<a <1,函数f (x )=log a (a 2x -2a x-2),则使f (x )<0的x 的取值范围是________.三、解答题(本大题共3个小题,每小题14分,共42分) 15.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.16.设函数y =f (x )且lg(lg y )=lg(3x )+lg(3-x ).(1)求f (x )的解析式及定义域;(2)求f (x )的值域;(3)讨论f (x )的单调性.17.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.答 案[限时集训(八)]1.C 2.C 3.D 4.A 5.C 6.B 7.C 8.C9.解析:∵a 23=49, ∴log 23a 23=log 2349=2. ∴23log 23a =2,即log 23a =3. 答案:310.解析:∵f (x )=lg x ,f (ab )=1.∴lg(ab )=1.∴f (a 2)+f (b 2)=lg a 2+lg b 2=2lg a +2lg b=2lg(ab )=2.答案:211.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12. 由(1)(2)知a =2或a =12.答案:2或1212.解析:当a >1时,a 2≤2,故1<a ≤2;当0<a <1时,a -2≤2,故22≤a <1. 则当22≤a ≤2时, -12≤g (a )≤12, 又a ≠1,∴g (a )≠0.∴g (a )=log 2a 的值域为⎣⎢⎡⎭⎪⎫-12,0∪⎝ ⎛⎦⎥⎤0,12. 答案:⎣⎢⎡⎭⎪⎫-12,0∪⎝ ⎛⎦⎥⎤0,12 13.解析:令f (x )=2-ax ,∵a >0且a ≠1,∴函数f (x )=2-ax 在[0,1]上是减函数.又∵y =log a (2-ax )在[0,1]上是减函数,∴a >1.又∵f (x )=2-ax >0在[0,1]上恒成立,∴f (1)>0,即2-a >0,即a <2.∴1<a <2.答案:(1,2)14.解析:∵f (x )<0且0<a <1,∴a 2x -2a x -2>1,a 2x -2a x-3>0.即(a x -3)(a x +1)>0.∴a x >3,即x <log a 3.答案:(-∞,log a 3)15.解:∵f (x )=log a x ,当0<a <1时, ⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13-|f (2)| =log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13-|f (2)|= -log a 13-log a 2=-log a 23>0, ∴⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13>|f (2)|总成立. 则y =|f (x )|的图象如图.要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f (x )|≤1, 只需⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13≤1, 即-1≤log a 13≤1, 即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a , 即a ≥3;当0<a <1时,得a -1≥13≥a , 得0<a ≤13. 综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞). 16.解:(1)lg(lg y )=lg[3x ·(3-x )],∴lg y =3x ·(3-x ).∴y =103x (3-x )且⎩⎪⎨⎪⎧ 3x >0,3-x >0,⇒0<x <3.(2)∵y =103x (3-x ),设u =3x (3-x )=-3x 2+9x=-3⎝ ⎛⎭⎪⎫x -322+274,则y =10u ,当x =32∈(0,3)时,u max =274, ∴u ∈⎝⎛⎦⎥⎤0,274.∴y ∈(1,10274]. (3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数, 而y =10u 为增函数,∴在⎝ ⎛⎦⎥⎤0,32上,f (x )是增函数,在⎣⎢⎡⎭⎪⎫32,3上,f (x )是减函数. 17.解:(1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y ),∵Q (-x ,-y )在f (x )的图象上,∴-y =log a (-x +1),即y =g (x )=-log a (1-x ).(2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F(x)=log a 1+x1-x,x∈[0,1),由题意知,只要F(x)min≥m即可.∵F(x)=log a 1+x1-x=log a⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫1+2x-1在[0,1)上是增函数,∴F(x)min=F(0)=0,故m≤0即为所求.。

考点10 对数函数——2021年高考数学专题复习真题附解析

考点10 对数函数——2021年高考数学专题复习真题附解析

考点10:对数函数【题组一 定义辨析】1.下列函数是对数函数的个数 。

①log (2)a y x = ②2log 2xy =③2log 1y x =+④lg y x =2.已知对数函数()()233log m f x m m x =-+,则m =______。

3.若函数y =(a 2-3a +3)log a x 是对数函数,则a 的值为______.4.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫ ⎪⎝⎭等于 。

5.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为 。

【题组二 定义域】1.函数()()lg 2f x x +的定义域是 。

2.函数2()log (1)f x x =+-的定义域为 。

3.函数y =的定义域为 。

4.函数()()03ln 22x g x x -=+-的定义域是 。

5.已知函数y = ,则它的定义域是______.6.使()()1log 2x x -+有意义的x 的取值范围是________.7.函数y =lg(3-4sin 2x)的定义域为________.8.设函数f (x )=ln 11x x +-,则函数g (x )= f (2x )+ f (1x)的定义域_____________.9.如果函数33+()log xf x a x=-是奇函数,则()f x 的定义域是_____________.10.函数()(21)log 322xx y -=-的定义域为________.11.设函数2()lg(1)f x x =-,则函数1()2x y f -=的定义域是________12.函数()2ln 1y kx kx =-+的定义域为R ,则实数k 的取值范围是 。

13.已知函数()()()221lg 11f x a x x a --⎡⎤=-+⎣⎦的定义域为R ,则实数a 的取值范围是 。

【题组三 单调性】1.函数212()log (4)f x x =-的单调递增区间为 。

高考数学一轮复习(浙江版)专题2.6对数与对数函数(测)含解析

高考数学一轮复习(浙江版)专题2.6对数与对数函数(测)含解析

第二章函数第06节对数与对数函数班级__________ 姓名_____________ 学号___________ 得分__________一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届安徽省江南十校二模】已知全集为,集合,,则()A. B. C. D.【答案】C【解析】分析:利用一元二次不等式、对数不等式的解法化简两个集合,再利用集合的运算进行求解.2.【2018届湖南省长沙市长郡中学高考模拟卷(二)】若,则()A. B. C. D.【答案】D【解析】分析:由,结合指数函数的单调性可得,利用“特值法”可判断,错误,利用指数函数性质可得正确.详解:因为,所以由指数函数的单调性可得,因为的符号不确定,所以时可排除选项;时,可排除选项,由指数函数的性质可判断正确,故选D.3.【2017届福建省福州第三中学5月模拟】已知函数,则函数的大致图象是( )A. B.C. D.【答案】D4.【2017届北京市第十一中学十月月考】函数()2log ,0{ 2,0xx x f x a x >=-+≤有且只有一个零点的充分不必要条件是A. 0a <B. 102a <<C. 112a << D. 0a ≤或1a > 【答案】A【解析】函数()2log ,0{2,0x x x f x a x >=-+≤,当0x >时,由()0f x =,得2log 0x =,解得1x =.由题意可知,当0x ≤时, ()0f x =无解,即20x a -+=无解,因为(]20,1x∈,所以0a ≤或1a >.所以0a <是0a ≤或1a >的充分不必要条件. 故选A.5.【2018年高考二轮检测】函数f(x)=,0{1log ,09c ax b x x x +≤⎛⎫+> ⎪⎝⎭的图象如图所示,则a +b +c =()A. 43B. 73C. 4D. 133【答案】D6.【2018届山东省烟台市高考适应性练习(一)】已知奇函数的定义域为,且对任意,若当时,则( )A. B. C. -1 D. 1【答案】A【解析】分析:根据性质可得,然后再根据奇函数将问题转化到区间上解决即可.详解:由题意得,又函数为奇函数,∴.故选A.7.【2018届河北省衡水金卷一模】已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.【答案】D【解析】,故, 又,故,故选D.8.【2018届福建省厦门市第二次检查】已知,,则()A. B.C. D.【答案】C【解析】分析:根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,结合函数的单调性,从而可得结果.详解:由指数函数的性质可得,,由对数函数的性质可得,,,又,在上递增,所以,故选C.9.【2018届辽宁省丹东市模拟(二)】若函数存在最小值,则的取值范围为A. B. C. D.【答案】C【解析】分析:由分段函数在两端上的单调性,结合各段的最值,列不等式关系即可.详解:由函数,由题意可知.当时,,函数必须满足,否则函数无最小值.此时.当时,单调递减,满足.所以,解得.故选C.10.【2018届山东省烟台市高考适应性练习(二)】已知定义在上的奇函数在区间上是减函数,且满足.令,则的大小关系为()A. B.C. D.【答案】A【解析】分析:分析函数可知函数是周期为4的函数,且关于x =﹣1对称,所以可得f(x)在[﹣1,1]上是增函数,比较,的大小即可得解.详解:∵奇函数f(x)在区间[﹣2,﹣1]上是减函数,且满足f(x﹣2)=﹣f(x).∴f(x﹣4)=﹣f(x﹣2)=f(x),即函数的周期是4,又f(x﹣2)=﹣f(x)=f(﹣x),则函数关于x =﹣1对称,则函数在[﹣1,0]上是增函数,且f(x)在[﹣1,1]上是增函数,,,.又,所以.又,所以.综上.即0<c<a<b<1,又f(x)在[﹣1,1]上是增函数,∴f(b)>f(a)>f(c),故选:A.二、填空题:本大题共7小题,共36分.11【2018届四川省成都市第七中学三诊】__________.【答案】32.【2018届四川省成都市第七中学零诊】已知函数,若,则__________.【答案】-7【解析】分析:直接根据求a的值.详解:因为,所以故答案为:-7.13.【2018届四川省双流中学二模】已知,,则______________________. 【答案】【解析】试题分析:根据指数的运算规律得到a=2,b=,进而得到,再根据对数的运算得到结果.详解:,,,根据对数的运算得到结果为.14.【2017届浙江省杭州市第二中学5月仿真】已知2312m ⎛⎫= ⎪⎝⎭, 4x n =,则4l o g m =__________;满足log 1n m >的实数x 的取值范围是__________. 【答案】 13-; 1,03⎛⎫- ⎪⎝⎭【解析】(1)232m -=,所以234211log log 223m -==-;(2)2341log 213x x -=->,解得x 的取值范围是1,03⎛⎫- ⎪⎝⎭。

2021高考浙江版数学一轮复习: 第2章 重点强化训练1

2021高考浙江版数学一轮复习: 第2章 重点强化训练1

重点强化训练(一) 函数的图象与性质A 组 根底达标(建议用时:30分钟)一、选择题1.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,那么f (-2)=( )【导学号:51062063】A .-12B.12 C .2 D .-2B [因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.]2.f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,那么f (1)+g (1)=( )A .-3B .-1C .1D .3C [用“-x 〞代替“x 〞,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,应选C.]3.函数f (x )=3x +12x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)C [因为函数f (x )在定义域上单调递增,又f (-2)=3-2-1-2=-269<0, f (-1)=3-1-12-2=-136<0,f (0)=30+0-2=-1<0,f (1)=3+12-2=32>0,所以f (0)·f (1)<0,所以函数f (x )的零点所在区间是(0,1).]4.函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.假设实数a 满足f (log 2a )+f (log 12a )≤2f (1),那么a 的取值范围是( )A .[1,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]C [∵f (log 12a )=f (-log 2a )=f (log 2a ),∴原不等式可化为f (log 2a )≤f (1).又∵f (x )在区间[0,+∞)上单调递增,∴0≤log 2a ≤1,即1≤a ≤2.∵f (x )是偶函数,∴f (log 2a )≤f (-1).又f (x )在区间(-∞,0]上单调递减,∴-1≤log 2a ≤0,∴12≤a ≤12≤a ≤2.]5.(2021·湖州质检(二))假设f (x )是定义在(-∞,+∞)上的偶函数,∀x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,那么( ) A .f (3)<f (1)<f (-2) B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (-2)<f (1) D [由对任意的x 1,x 2∈[0,+∞),f (x 2)-f (x 1)x 2-x 1<0得函数f (x )为[0,+∞)上的减函数,又因为函数f (x )为偶函数,所以f (3)<f (2)=f (-2)<f (1),应选D.]二、填空题6.函数y =f (x )在x ∈[-2,2]上的图象如图2所示,那么当x ∈[-2,2]时,f (x )+f (-x )=________. 【导学号:51062064】图20 [由题图可知,函数f (x )为奇函数,所以f (x )+f (-x )=0.]7.假设函数y =log 2(ax 2+2x +1)的值域为R ,那么a 的取值范围为________.[0,1] [设f (x )=ax 2+2x +1,由题意知,f (x )取遍所有的正实数.当a =0时,f (x )=2x +1符合条件;当a ≠0时,那么⎩⎪⎨⎪⎧ a >0,Δ=4-4a ≥0,解得0<a ≤1, 所以0≤a ≤1.]8.(2021·温州质检)y =f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (2)=0,那么满足f (x -1)<0的x 的取值范围是________.(-∞,-1)∪(1,3) [依题意当x ∈(1,+∞)时,f (x -1)<0=f (2)的解集为x <3,即1<x <3;当x ∈(-∞,1)时,f (x -1)<0=f (-2)的解集为x <-1,即x <-1.综上所述,满足f (x -1)<0的x 的取值范围是(-∞,-1)∪(1,3).]三、解答题9.函数f (x )=2x ,当m 取何值时方程|f (x )-2|=m 有一个解,两个解?[解] 令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;10分当0<m <2时,函数F (x )与G (x10.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1).(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.【导学号:51062065】[解] (1)由⎩⎪⎨⎪⎧ f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,4分 解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .6分(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2x 2x -1-1(x >1).8分 ∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥2(x -1)·1x -1+2=4. 12分当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增,那么log 2x 2x -1-1≥log 24-1=1, 故当x =2时,函数g (xB 组 能力提升(建议用时:15分钟)1.(2021·浙江五校二联)函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,那么不等式⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( ) A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)C [f (x )为R 上的奇函数,那么f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2=|f (ln x )+f (ln x )|2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e <x <e ,应选C.]2.函数f(x),g(x)分别是定义在R上的偶函数与奇函数,且g(x)=f(x-1),那么f(2 019)的值为________.0[g(-x)=f(-x-1),由f(x),g(x)分别是偶函数与奇函数,得g(x)=-f(x +1),∴f(x-1)=-f(x+1),即f(x+2)=-f(x),∴f(x+4)=f(x),故函数f(x)是以4为周期的周期函数,那么f(2 019)=f(505×4-1)=f(-1)=g(0)=0.]3.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.[解](1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(2)f(x证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.10分(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).12分又f(x)在(0,+∞)上是增函数,∴0<|x-1|<16,解得-15<x<17且x≠1,14分∴x的取值范围是{x|-15<x<17且x≠1}.15分。

2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)

2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)

专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。

2021版高考数学导与练一轮复习(浙江版)知识梳理第三章第二节 对数与对数函数

2021版高考数学导与练一轮复习(浙江版)知识梳理第三章第二节 对数与对数函数

第二节对数与对数函数复习目标学法指导1.对数与对数运算(1)对数的概念.(2)常用对数与自然对数.(3)对数的运算性质.(4)对数的换底公式.2.对数函数及其性质(1)对数函数的概念.(2)对数函数的图象.(3)对数函数的性质.(4)指数函数与对数函数的关系.会求一些与对数函数有关的简单的复合函数的定义域、值域、单调性.(发展要求) 1.通过对数的概念,明确对数来源于指数,利用指数的知识理解与掌握对数.2.在同底的条件下,对数只能进行加、减运算,注意应用的顺序.3.掌握对数函数的图象与性质,一定要坚持分类讨论的思想.4.应用对数函数的性质解决对数类问题要遵循定义域优先的原则.一、对数如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做底数,N叫做真数底数的限制a>0,且a ≠1 对数式与指数式的互化:a x =N ⇔log a N=x负数和零没有对数1的对数是零,log a 1=0 底数的对数是1,log a a=1 对数恒等式:log a Na=Nlog a (M ·N)=log a M+log a Na>0,且a ≠1,M>0,N>0log a M N =log a M-log a N log a M n =nlog a M(n ∈R)公式:log a b=log log c cb a(a>0,且a ≠1;c>0,且c ≠1;b>0) 推广:log am b n =nm log a b(a>0且a ≠1,b>0);log a b=1log ba(a>0且a ≠1;b>0且b ≠1)1.法则理解应用法则log a M+log a N=log a (M ·N)时,注意M>0,且N>0,而不能只考虑到M ·N>0,导致增解. 2.与换底公式有关的结论 log a b ·log b c ·log c d=log a d. 二、对数函数1.对数函数的概念、图象与性质 概念 函数y=log a x(a>0,且a ≠1)叫做对数函数底数a>10<a<1图象定义域(0,+∞)值域R过定点(1,0),即x=1时,y=0性质在(0,+∞)上是增函数在(0,+∞)上是减函数2.指数函数与对数函数的关系指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.概念理解(1)对数函数的定义是形式定义,其解析式的特征为①系数为1;②次数为1;③底数a>0且a≠1;④真数只能是自变量x.(2)对数函数解析式中只有一个参数a,所以只需已知函数图象上一点坐标,即可确定一个对数函数.2.与对数函数图象相关的知识点(1)如图是对数函数①y=log a x;②y=log b x;③y=log c x;④y=log d x的图象,则a,b,c,d与1的大小关系是0<a<b<1<c<d.(2)对数函数图象之间的位置关系:在第一象限,图象从左到右,底数由小到大;(3)对数函数图象以y 轴为渐近线,进行图象变换时,渐近线也应随之变换;(4)底数互为倒数的对数函数的图象关于x 轴对称; (5)画对数函数图象应抓住三个关键点: (1a,-1),(1,0),(a,1). 3.与对数函数性质的应用相关联的知识(1)对数类函数的问题求解时要树立定义域优先的意识; (2)比较幂、对数大小的常用方法 ①单调性法:构造函数,利用其单调性;②中间量法:通过与特殊值比较大小判定结论,常见的有a 0=1,log a 1=0,log a a=1; ③数形结合法.1.函数12log x (D )(A){x|x>0} (B){x|x ≥1} (C){x|x ≤1} (D){x|0<x ≤1} 解析:要使得函数12log x 12log 0,0,x x ≥⎧⎪⎨⎪>⎩ 所以0<x ≤1,因此可知函数的定义域为{x|0<x ≤1}.选D.2.(2019·天津卷)已知a=log 52,b=log 0.50.2,c=0.50.2,则a,b,c 的大小关系为( A )(A)a<c<b (B)a<b<c(C)b<c<a (D)c<a<b解析:因为y=log5x是增函数,所以a=log52<log因为y=log0.5x是减函数,所以b=log0.50.2>log0.50.5=1.因为y=0.5x是减函数,所以0.5=0.51<c=0.50.2<0.50=1,即0.5<c<1.所以a<c<b.故选A.3.函数y=log a(3x-2)(a>0,且a≠1)的图象经过定点A,则A点坐标是( C )(A)(0,23) (B)(23,0)(C)(1,0) (D)(0,1)解析:当3x-2=1,即x=1时,y=log a1=0,故定点A为(1,0).4.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰·纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即a b=N⇔b=log a N.现在已知2a=3,3b=4,则ab= .解析:因为2a=3,3b=4,所以a=log23,b=log34,所以ab=log 23·log 34=ln3ln 2×ln 4ln3=ln 4ln 2=2. 答案:25.已知定义域为R 的偶函数f(x)在区间[0,+∞)上是增函数,若f(1)<f(lg x),则实数x 的取值范围是 . 解析:因为f(x)是偶函数,并且在区间[0,+∞)上是增函数, 所以f(x)在区间(-∞,0]上是减函数, 所以由f(1)<f(lg x)得|lg x|>1, 所以lg x>1或lg x<-1,所以x>10或0<x<110.所以实数x 的取值范围为{x|x>10或0<x<110}. 答案:{x|x>10或0<x<110}考点一 对数的基本运算[例1] (1)已知log a 2=m,log a 3=n,求a 2m+n ;(2)计算26666(1log 3)log 2log 18log 4-+⋅;(3)计算(log 32+log 92)·(log 43+log 83). 解:(1)法一 因为log a 2=m,log a 3=n, 所以a m =2,a n =3,所以a 2m+n =(a m )2·a n =22×3=12. 法二 因为log a 2=m,log a 3=n, 所以a 2m+n =(a m )2·a n =(log 2a a)2·log 3a a=22×3=12.(2)原式=266666612log 3log 3log log (63)3log 4-++⋅⨯() =26666612log 3log 3(1log 3)(1log 3)log 4-++-+()=22666612log3log 31(log 3)log 4-++-()=6621log 32log 2-() =666log 6log 3log 2- =66log 2log 2=1. (3)原式=(lg 2lg3+lg 2lg9)·(lg3lg 4+lg3lg8) =(lg 2lg3+lg 22lg 3)·(lg 32lg 2+lg 33lg 2) =3lg 22lg 3·5lg 36lg 2=54. 在对数运算中, 要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.1.(1)计算log 22的值是 ;(2)计算lg 4+lg 50-lg 2的值是 . 解析:(1)log 2=log 2=log 2 122-=-12. (2)lg 4+lg 50-lg 2=lg(4×50÷2)=lg 100=2. 答案:(1)-12(2)2 2.(2019·杭州市期末检测)设a=log 23,b=log 38,则2a = ;ab= . 解析:由a=log 23得2a=3,ab=log 23×log 38=ln3ln2×ln8ln 3=3ln 2ln 2=3ln 2ln 2=3.答案:3 3考点二 对数函数的图象及应用[例2] (1)已知函数y=log a (x+b)(a,b 为常数,其中a>0,且a ≠1)的图象如图,则下列结论成立的是( )(A)a>1,b>1 (B)a>1,0<b<1 (C)0<a<1,b>1 (D)0<a<1,0<b<1(2)设方程10x =|lg(-x)|的两个根分别为x 1,x 2,则( ) (A)x 1x 2<0 (B)x 1x 2=0 (C)x 1x 2>1 (D)0<x 1x 2<1解析:(1)函数y=log a (x+b)递减,所以0<a<1.同时log (1)0,log 0aa b b +<⎧⎨>⎩⇒11,01,b b +>⎧⎨<<⎩⇒0<b<1,故选D. (2)作出y=10x ,与y=|lg(-x)|的大致图象,如图. 显然x 1<0,x 2<0. 不妨设x 1<x 2,则x1<-1<x2<0,所以110x=lg(-x1),210x=-lg(-x2),此时110x<210x,即lg(-x1)<-lg(-x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想. (2)常将一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2018·绍兴市柯桥区二模)若log a2<log b2<0,则( B )(A)0<a<b<1 (B)0<b<a<1(C)a>b>1 (D)b>a>1解析:log a2<log b2<0,所以a,b都小于1,log a2<log b2⇒lg2lg a <lg2lg b⇒lg a>lgb⇒a>b,综上0<b<a<1.故选B.2.(2019·温州适应性测试)已知实数a>0,b>0,a≠1,且满足lna 则下列判断正确的是( C )(A)a>b (B)a<b(C)log a b>1 (D)log a b<1解析:由a aa得aa=0,设f(x)=ln x-x +1x(x>0), 则f ′(x)=1x-12x-12x x =2(1)2x x x--,则函数f(x)=ln x-x +1x在(0,+∞)上单调递减,且f(1)=0,所以当0<x<1时,ln x-x +1x>0,即ln x>x -1x;当x>1时,ln x-x +1x<0,即ln x<x -1x,在平面直角坐标系内画出函数y=ln x 与y=x -1x的图象如图所示,由图易得若ln b=1a a-=a-1a,则0<b<a<1或1<a<b,A,B 错误;当a>1时,1<a<b,函数y=log a x 为增函数,则log a b>log a a=1,当0<a<1时,0<b<a<1,函数y=log a x 为减函数,则log a b>log a a=1,C 正确,D 错误,故选C.考点三 对数函数的性质及应用 [例3] 已知函数f(x)=12log (x 2-2ax+3).(1)若f(-1)=-3,求f(x)的单调区间;(2)是否存在实数a,使f(x)在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解:(1)由f(-1)=-3,得12log (4+2a)=-3.所以4+2a=8,所以a=2. 这时f(x)= 12log (x 2-4x+3),由x 2-4x+3>0, 得x>3或x<1,故函数的定义域为(-∞,1)∪(3,+∞). 令g(x)=x 2-4x+3,则g(x)在(-∞,1)上单调递减, 在(3,+∞)上单调递增.又y=12log x 在(0,+∞)上单调递减,所以f(x)的单调递增区间是(-∞,1), 单调递减区间是(3,+∞).(2)不存在满足题意的实数a,理由:令h(x)=x 2-2ax+3,要使f(x)在(-∞,2)上为增函数,应使h(x)在(-∞,2)上单调递减,且恒大于0.因此2,(2)0,a h ≥⎧⎨>⎩即2,740,a a ≥⎧⎨->⎩a 无解.所以不存在实数a,使f(x)在(-∞,2)上为增函数.(1)利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题时,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的. (2)利用对数性质比较大小的解题策略①能化为同底数的对数值可直接利用其单调性进行判断.②既不同底数,又不同真数的对数值,先引入中间量(如-1,0,1等),再利用对数函数的性质进行比较.③底数不同,真数相同的对数值,可利用函数图象或比较其倒数大小来进行.1.(2018·江苏卷)函数2log 1x -的定义域为 .解析:由20,log 10x x >⎧⎨-≥⎩解得x ≥2,所以函数2log 1x -{x|x ≥2}.答案:{x|x ≥2} 2.函数f(x)=log 2x·log 2(4x)的最小值为 ,此时x 的值是 . 解析:f(x)=log x log 2(4x)=12log 2x ·(2+log 2x),可令log 2x=t,t ∈R,则y=12t ·(2+t)=12t 2+t, 当t=-1时,函数取到最小值为-12, 此时x=12. 答案:-1212考点四 易错辨析[例4] (2018·天津卷)已知a=log 2e,b=ln 2,c=121log 3,则a,b,c 的大小关系为( )(A)a>b>c (B)b>a>c (C)c>b>a (D)c>a>b 解析:c=121log 3=log 23>log 2e=a>1,即c>a. 又b=ln 2=21log e<1<log 2e=a,即a>b. 所以c>a>b.故选D.(1)由于a 与c 既不同“底”又不同“真”,所以无法直接比较大小,造成思维受阻;(2)在利用对数函数的单调性比较大小时因函数的单调性判断错误而致误.1.已知a=2log 3.45,b=4log 3.65,c=3log 0.315(),则( C )(A)a>b>c (B)b>a>c (C)a>c>b (D)c>a>b解析:c=3log 0.315()=3log 0.35=310log 35.法一 在同一坐标系中分别作出函数y=log 2x,y=log 3x,y=log 4x 的大致图象,如图所示.由图象知,log 23.4>log 3103>log 43.6. 由于y=5x 为增函数. 所以2log 3.45>310log 35>4log 3.65.即2log 3.45>3log 0.315()>4log 3.65,故a>c>b.故选C.法二 因为103<3.4, 所以log 3103<log 33.4<log 23.4. 因为log 43.6<log 44=1,log 3103>log 33=1, 所以log 43.6<log 3103. 所以log 23.4>log 3103>log 43.6. 由于y=5x为增函数.所以2log 3.45>310log 35>4log 3.65.即2log 3.45>3log 0.315()>4log 3.65,故a>c>b.故选C.2.(2018·全国Ⅲ卷)设a=log 0.20.3,b=log 20.3,则( B ) (A)a+b<ab<0 (B)ab<a+b<0 (C)a+b<0<ab (D)ab<0<a+b 解析:因为a=log 0.20.3>log 0.21=0, b=log 20.3<log 21=0,所以ab<0.因为a b ab +=1a +1b =log 0.30.2+log 0.32=log 0.30.4,1=log 0.30.3>log 0.30.4>log 0.31=0,所以0<a b ab +<1,所以ab<a+b<0.故选B.类型一 对数的基本运算 1.已知x,y 为正实数,则( D ) (A)2lg x+lg y =2lg x +2lg y (B)2lg(x+y)=2lg x ·2lg y (C)2lg x ·lg y =2lg x +2lg y (D)2lg(xy)=2lg x ·2lg y 解析:2lg x+lg y =2lg x ·2lg y ,选项A 错; 2lg x ·2lg y =2lg x+lg y =2lg(xy),选项B 错; 令x=10,y=10,则2lg x ·lg y =2, 2lg x +2lg y =4,选项C 错.故选D. 2.已知函数f(x)=123e 1,2,1log ,2,3x x x x -⎧-<⎪⎨-≥⎪⎩则f(x)的零点为( A )(A)1,2 (B)1,-2(C)2,-2 (D)1,2,-2解析:当x<2时,令f(x)=e x-1-1=0, 即e x-1=1,解得x=1满足x<2; 当x ≥2时,令f(x)=log 3213x -=0, 则213x -=1,即x 2=4,得x=-2(舍)或x=2. 因此,函数y=f(x)的零点为1,2,故选A.3.已知函数f(x)= 311log (3),2,3,2,x x x x -+-<⎧⎪⎨≥⎪⎩则f(-6)+f(log 312)= ,满足f(x)>3的x 的取值范围是 . 解析:f(-6)=1+log 39=3, 因为log 312>log 39=2, 所以f(log 312)=4; 则f(-6)+f(log 312)=7;当x<2时,1+log 3(3-x)>3,解得x<-6, 当x ≥2时,3x-1>3,解得x>2,所以f(x)>3的x 的取值范围为(-∞,-6)∪(2,+∞). 答案:7 (-∞,-6)∪(2,+∞) 类型二 对数函数的图象及应用4.函数y=2log 4(1-x)的图象大致是( C )解析:函数y=2log 4(1-x)的定义域为(-∞,1),排除A,B; 函数y=2log 4(1-x)在定义域上单调递减,排除D.故选C.5.(2019·嘉兴市、丽水市、衢州市高三模拟测试)函数y=ln(x+21x +)·cos 2x的图象可能是( D )解析:设f(x)=y=ln(x+21x +)·cos 2x,则易得函数的定义域为R,且f(-x)=ln[-x+2()1x -+]·cos2(-x)=ln[21()1x x +-+]·cos2x=-ln(x+21x +)·cos 2x=-f(x),所以函数f(x)=ln(x+21x +)·cos2x 为奇函数,则函数图象关于原点中心对称,排除A,B;f ′(x)=22111x x x x ++++·cos2x-2ln(x+21x +)·sin 2x=211x +·cos 2x-2ln(x+21x +)·sin 2x,f ′(0)=1,即函数f(x)=ln(x+21x +)·cos2x 在原点处的切线的斜率为1,不为0,排除C,故选D.6.若不等式(x-1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围是 . 解析:设f 1(x)=(x-1)2,f 2(x)=log a x,要使当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,只需f 1(x)=(x-1)2在(1,2)上的图象在f 2(x)=log a x 图象的下方.当0<a<1时,显然不成立; 当a>1时,如图所示,要使x ∈(1,2)时,f 1(x)=(x-1)2的图象在f 2(x)=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2]. 答案:(1,2]7.已知x 1,x 2,x 3分别为方程2x =12log x, 1()2x=log 2x, 1()2x=12log x 的根,则x 1,x 2,x 3的大小关系是 (从小到大排列).解析:作出y=2x ,y=12log x,y=1()2x,y=log 2x 的大致图象,由图象知x 1<x 3<x 2.答案:x 1<x 3<x 2类型三 对数函数的性质及应用8.(2019·浙江省教育绿色评估联盟)已知a=121()3-,b=32,c=121log3,则( C )(A)a>b>c (B)c>a>b (C)a>c>b (D)c>b>a 解析:因为a=121()3-=3,b=32,c=121log 3=log 23,则a>b,又322=8<3,则log 2322=32<log 23,即b<c;构造函数f(x)=log 2x-x,则f ′(x)=1ln 2x 2x2ln 2x -因此函数f(x)在区间(0,4(e 2log )2)上单调递增,在区间 (4(e 2log )2,+∞)上单调递减,由f(4)=0,知f(3)<0,即 a>c,故选C.9.函数f(x)=12log (x 2-4x)的单调递减区间是 ;单调递增区间是 .解析:由x 2-4x>0,解得x>4或x<0,即函数定义域为(-∞,0)∪(4,+∞),根据复合函数的单调性知f(x)= 12log (x 2-4x)的单调递减区间是(4,+∞),单调递增区间是(-∞,0). 答案:(4,+∞) (-∞,0) 10.关于函数f(x)=lg 21xx+ (x ≠0),有下列结论: ①其图象关于y 轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数; ③f(x)的最小值是lg 2;④f(x)在区间(-1,0)和(1,+∞)上是增函数. 其中所有正确结论的序号是 . 解析:因为函数f(-x)=lg 2()1x x -+-=lg 21x x+=f(x),所以函数为偶函数,即图象关于y 轴对称,故①正确.因函数y=x+1x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以函数y=|x|+1x在(-∞,-1)和(0,1)上单调递减,在(-1,0)和(1,+∞)上单调递增,从而函数f(x)在区间(-1,0)和(1,+∞)上是增函数,在区间(-∞,-1)和(0,1)上是减函数,故②错,④正确.因为21x x +=|x|+1x≥所以f(x)≥lg 2,即最小值为lg 2,故③正确. 答案:①③④11.已知f(x)是定义在R 上的偶函数,且在[0,+∞)上为增函数,f(13)=0,则不等式f(18log x)>0的解集为 .解析:因为函数f(x)是偶函数,所以f(x)=f(|x|),所以f 18log x)>0⇔f(|18log x|)>f(13). 因为f(x)在[0,+∞)上为增函数, 所以|18log x|>13, 即18log x<-13或18log x>13. 因为18log x=-log 8x=-13log 2x, 所以不等式可转化为log 2x>1或log 2x<-1, 所以x>2或0<x<12. 答案:(0,12)∪(2,+∞) 类型四 易错易误辨析12.若log a 43<2,则a 的取值范围是( D )(C)(0,1)∪) (D)(0,1)∪∞)解析:log a 43<2等价于log a 43<log a a 2, 201,43a a <<⎧⎪⎨>⎪⎩或21,4,3a a >⎧⎪⎨<⎪⎩ 解得0<a<1或, 故选D.13.已知函数f(x)=|ln(x-1)|,满足f(a)>f(4-a),则实数a 的取值范围是( A ) (A)(1,2) (B)(2,3) (C)(1,3) (D)(2,4)解析:函数f(x)=|ln(x-1)|的定义域为(1,+∞),由f(a)>f(4-a)可得|ln(a-1)|>|ln(4-a-1)|=|ln(3-a)|,两边平方得[ln(a-1)]2>[ln(3-a)]2⇔[ln(a-1)-ln(3-a)][ln(a-1)+ln(3-a)]>0,则ln(1)ln(3)0,ln(1)ln(3)0,10,30,a aa aaa--->⎧⎪-+->⎪⎨->⎪⎪->⎩①或ln(1)ln(3)0,ln(1)ln(3)0,10,30,a aa aaa---<⎧⎪-+-<⎪⎨->⎪⎪->⎩②解①得a无解,解②得1<a<2,所以实数a的取值范围是(1,2), 故选A.。

2021高考数学一轮复习 课后限时集训10 对数与对数函数 理 北师大版

2021高考数学一轮复习 课后限时集训10 对数与对数函数 理 北师大版

课后限时集训10对数与对数函数 建议用时:45分钟一、选择题1.函数y =log 32x -1+1的定义域是( ) A .[1,2]B .[1,2)C.⎣⎢⎡⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫23,+∞C [由⎩⎪⎨⎪⎧log 32x -1+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 32x -1≥log 313,x >12,解得x ≥23.]2.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -2A [由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .]3.(2019·全国卷Ⅰ)已知a =log 2 0.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <aB [∵a =log 20.2<0,b =20.2>1,c =0.20.3∈(0,1),∴a <c <b .故选B.]4.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1A [由题意知,m 1=-26.7,m 2=-1.45, 所以52lg E 1E 2=-1.45-(-26.7)=25.25,所以lg E 1E 2=25.25×25=10.1,所以E 1E 2=1010.1.故选A.]5.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定A [由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).]二、填空题6.计算:lg 0.001+ln e +2-1+log 23=________.-1 [原式=lg 10-3+ln e +2log 2=-3+12+32=-1.]7.函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________.(5,+∞) [由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).]8.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.[0,+∞) [当x ≤1时,由21-x≤2,解得x ≥0,所以0≤x ≤1;当x >1时,由1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.]三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. [解] (1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log x . (1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.[解] (1)当x <0时,-x >0,则f (-x )=log (-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以x <0时,f (x )=log (-x ), 所以函数f (x )的解析式为f (x )=⎩⎨⎧log x ,x >0,0,x =0,log -x ,x <0.(2)因为f (4)=log 4=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数,所以0<|x 2-1|<4,解得-5<x <5且x ≠±1, 而x 2-1=0时,f (0)=0>-2, 所以-5<x < 5.1.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0D [由a ,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得,当a >1时,b >a >1,当0<a <1时,0<b <a <1,代入验证只有D 项满足题意.]2.已知f (x )=lg(10+x )+lg(10-x ),则( ) A .f (x )是奇函数,且在(0,10)上是增函数 B .f (x )是偶函数,且在(0,10)上是增函数 C .f (x )是奇函数,且在(0,10)上是减函数 D .f (x )是偶函数,且在(0,10)上是减函数 D [函数f (x )的定义域为(-10,10), 又∵f (-x )=lg(10-x )+lg(10+x )=f (x ),∴f (x )为偶函数. 又f (x )=lg(100-x 2),令t =100-x 2,易知t 在(0,10)上是减函数,结合复合函数可知,故f (x )在(0,10)上是减函数,故选D.]3.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R )有下列命题:①函数y =f (x )的图像关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.①③④ [∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R ),显然f (-x )=f (x ),即函数f (x )为偶函数,图像关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1|x |=lg x 2+1x =lg ⎝ ⎛⎭⎪⎫x +1x , 令t (x )=x +1x ,x >0,则t ′(x )=1-1x2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即f (x )在x =1处取得最小值lg 2.由偶函数的图像关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.]4.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明;(3)当a >1时,求使f (x )>0的x 的取值范围. [解] (1)因为f (x )=log a (x +1)-log a (1-x ),所以⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数的定义域为{x |-1<x <1}. (2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得x +11-x>1,解得0<x <1.所以x 的取值范围是(0,1).1.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.(0,1) [由题意知,在(0,10)上,函数y =|lg x |的图像和直线y =c 有两个不同交点,所以ab =1,0<c <lg 10=1,所以abc 的取值范围是(0,1).]2.若函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,求实数a 的取值范围.[解] 当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a ⎝ ⎛⎭⎪⎫43-a >0, 即0<43-a <1,又2×12-a >0,解得13<a <43,且a <1,故13<a <1; 当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数, 所以log a (1-a )>0, 即1-a >1,且2×12-a >0,解得a <0,且a <1,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.。

2021版高考数学一轮复习浙江专用精练:2.2 函数的基本性质(试题部分) Word版含解析

2021版高考数学一轮复习浙江专用精练:2.2 函数的基本性质(试题部分) Word版含解析

姓名,年级:时间:2。

2 函数的基本性质探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点函数的单调性与最值1.理解函数的单调性、最大(小)值及其几何意义.2.会讨论和证明函数的单调性.2017浙江,17,4分函数单调性的判断函数的最值★★★函数的奇偶性与周期性1。

理解函数的奇偶性,会判断函数的奇偶性。

2。

了解函数的周期性.2019课标全国Ⅱ文,6,5分函数的奇偶性指数函数★★★2016浙江文,3,5分函数的奇偶性函数的图象分析解读1。

函数的单调性是函数的一个重要性质,是高考的常考内容,例如判断或证明函数的单调性,求单调区间,利用单调性求参数的取值范围,利用单调性解不等式。

考题既有选择题与填空题,又有解答题,既有容易题和中等难度题,也有难题.2。

函数的奇偶性在高考中也时有出现,主要考查奇偶性的判定以及与周期性、单调性相结合的题目,这类题目常常结合函数的图象进行考查.3.函数的周期性,单独考查较少,一般与奇偶性综合在一起考查,主要考查函数的求值问题,以及三角函数的最小正周期等.4.预计2021年高考试题中,仍会对函数的性质进行重点考查,复习时应高度重视.破考点练考向【考点集训】考点一函数的单调性与最值1。

下列函数中,在(0,+∞)上是增函数的是()A 。

y=(12)|x|B 。

y=|ln x |C 。

y=x 2+2|x | D.y=|x -1x |答案 C2.(2019黑龙江顶级名校联考,9)若函数f(x )=lo g 12(x 2+ax+6)在[-2,+∞)上是减函数,则a 的取值范围为( )A 。

[4,+∞)B 。

[4,5) C.[4,8) D 。

[8,+∞) 答案 B3。

(2019北京文,3,5分)下列函数中,在区间(0,+∞)上单调递增的是( ) A.y=x 12 B 。

y=2-x C.y=lo g 12x D.y=1x答案 A考点二 函数的奇偶性与周期性1。

(2019浙江“七彩阳光”联盟期中,4)已知函数y=f(x )+cos x 是奇函数,且f (π3)=1,则f (-π3)=( ) A.—2 B.-1 C 。

2021高考数学浙江专用一轮习题:专题2 第10练 对数函数 (含解析)

2021高考数学浙江专用一轮习题:专题2 第10练 对数函数 (含解析)

1.若lg 2=a ,lg 3=b ,则log 418等于( ) A.a +3b a 2 B.a +3b 2a C.a +2b a 2 D.a +2b 2a2.(2020·温州四校联考)设x =log 30.2,y =30.2,z =0.23,则x ,y ,z 的大小关系为( )A .x <z <yB .y <x <zC .y <z <xD .z <y <x3.(2020·金华市东阳中学期末)函数f (x )=log a (4-3ax )在[1,3]上是增函数,则实数a 的取值范围是( )A.⎝⎛⎭⎫49,1B.⎝⎛⎭⎫94,+∞C.⎝⎛⎭⎫0,49D.⎝⎛⎭⎫1,94 4.对于一个声强为I (单位:W/m 2)的声波,其声强级L (单位:dB)可由如下公式计算:L =10lg I I 0(其中I 0是能引起听觉的最弱声强),若声强为I 1时的声强级为70 dB ,声强为I 2时的声强级为60 dB ,则I 1是I 2的( )A .10倍B .100倍C .1010倍D .10 000倍5.已知函数f (x )=⎩⎪⎨⎪⎧log 16x ,x >0, 12log (-x ),x <0,若非零实数a 满足f (9)+log 43=f (-a 2),则a 的值为( )A.3或- 3B.2或- 2C.22或-22D.33或-33 6.已知对数函数f (x )=log a x 是增函数,则函数f (|x |+1)的大致图象为( )7.已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)等于( )A .2B .4C .-2D .-48.若函数f (x )=12log (-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎡⎦⎤43,3B.⎣⎡⎦⎤43,2C.⎣⎡⎭⎫43,2D.⎣⎡⎭⎫43,+∞ 9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则实数a 的取值范围是________.10.(2020·杭州市第二中学期末)若函数f (x )=log a (x +1)+2(a >0且a ≠1),图象恒过定点P (m ,n ),则m +n =________;函数g (x )=2ex nx +的单调递增区间为____________________.11.已知函数f (x )=log 2(x 2-2x +a )的最小值为2,则a 等于( )A .4B .5C .6D .712.已知函数f (x )在区间[0,+∞)上是增函数,且g (x )=-f (|x |).若g (lg x )>g (1),则x 的取值范围是( )A .[1,10) B.⎝⎛⎭⎫110,+∞ C.⎝⎛⎭⎫110,10 D.⎝⎛⎦⎤110,1∪()10,+∞ 13.函数f (x )的定义域为D ,若满足①f (x )在D 内是单调函数;②存在[m ,n ]⊆D 使f (x )在[m ,n ]上的值域为⎣⎡⎦⎤m 2,n 2,那么就称y =f (x )为“成功函数”,若函数f (x )=log a (a x +t )(a >0,a ≠1)是“成功函数”,则t 的取值范围是( )A.⎝⎛⎭⎫0,14 B.⎣⎡⎭⎫14,12 C.⎝⎛⎭⎫14,12 D.⎝⎛⎦⎤0,14 14.已知定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=log 12(1-x ),则f (x )在区间⎝⎛⎭⎫1,32上是( ) A .增函数且f (x )>0B .增函数且f (x )<0C .减函数且f (x )>0D .减函数且f (x )<015.已知不等式⎝⎛⎭⎫20n -m ln ⎝⎛⎭⎫m n ≥0对任意正整数n 恒成立,则实数m 取值范围是________. 16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=________.答案精析1.D 2.A 3.C 4.A 5.D 6.B 7.C8.C 9.⎣⎡⎦⎤13,34 10.2 (-1,+∞)11.B 12.C13.A [∵f (x )=log a (a x +t )(a >0,a ≠1)是“成功函数”,当a >1时,f (x )在其定义域内为增函数, 当0<a <1时,f (x )在其定义域内为增函数, ∴f (x )在其定义域内为增函数,由题意得f (x )=log a (a x +t )=x 2有两个不同的实数根, ∴a x +t =2x a ,a x -2x a +t =0, 令m =2x a >0,∴关于m 的方程m 2-m +t =0 有两个不同的正数根, ∴⎩⎪⎨⎪⎧1-4t >0,t >0,解得t ∈⎝⎛⎭⎫0,14.] 14.B [设x ∈⎝⎛⎭⎫-12,0, 则-x ∈⎝⎛⎭⎫0,12, f (-x )=12log (1+x ),由于函数y =f (x )为R 上的奇函数,则f (x )=-f (-x )=-12log (1+x ),当x ∈⎝⎛⎭⎫1,32时,x -32∈⎝⎛⎭⎫-12,0, 则f (x )=f ⎝⎛⎭⎫x -32 =-12log ⎝⎛⎭⎫1+x -32=-12log ⎝⎛⎭⎫x -12=log 2⎝⎛⎭⎫x -12. 所以函数y =f (x )在⎝⎛⎭⎫1,32上是增函数,且当1<x <32时,12<x -12<1,f (x )<0.] 15.[4,5]16.9解析 因为f (x )=|log 3x |=⎩⎪⎨⎪⎧ -log 3x ,0<x <1,log 3x ,x ≥1, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧ 0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧ 0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增, 所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m =9.。

(浙江版)高考数学一轮复习专题2.10函数的综合问题与实际应用(测)(2021学年)

(浙江版)高考数学一轮复习专题2.10函数的综合问题与实际应用(测)(2021学年)

(浙江版)2018年高考数学一轮复习专题2.10 函数的综合问题与实际应用(测)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题2.10 函数的综合问题与实际应用(测))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题2.10 函数的综合问题与实际应用(测)的全部内容。

第10节 函数的综合问题与实际应用班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1. 在一次数学测验中,采集到如下一组数据 x2- 1-2y0.24 0.51 1 2.02 3.98 8.02则下列函数与x 、y 的函数关系最接近的是(其中a 、b 是待定系数)( )A.b ax y +=B.x b a y += C 。

b ax y +=2 D。

xb a y += 【答案】B【解析】由数据知x 、y 之间的函数关系近似为指数型,选B .2.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的( )【答案】B 【解析】则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:B3。

下图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,若水面下降0。

42米后,则水面宽为( )(A)2。

2米 (B)4.4米 (C )2。

2021届高考数学(浙江专用)一轮课件:§3.5 对数与对数函数

2021届高考数学(浙江专用)一轮课件:§3.5 对数与对数函数

1 2
2
1 2
>0,所以a+1> 1
>1-a,又 1 <a<1,
2a
2a
2
所以loga(a+1)<loga 21a <loga(1-a),即m<p<n.故选D.
答案 (1)D (2)D
方法总结 对数式大小的比较方法
考法二 对数函数的图象与性质的应用
例2 (1)若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象 大致是 ( )
c.logaMn=④ nlogaM (n∈R). 3.对数函数的图象与性质
a>1
图象
Hale Waihona Puke 性质定义域:(0,+∞) 值域:R 过点(1,0),即x=1时,y=0 当x>1时,y>0; 当0<x<1时,y<0 是(0,+∞)上的增函数
0<a<1
当x>1时,y<0; 当0<x<1时,y>0 是(0,+∞)上的减函数
4.反函数 指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它 们的图象关于直线y=x对称.其图象关系如图所示.
知能拓展
考法一 对数式大小的比较方法
-1
例1 (1)已知a= 2 3
,b=lo g14 15 ,c=log3 14 ,则
( )
A.b>c>a B.a>b>c C.c>b>a D.b>a>c
数a的取值范围为 .
解题导引 (1)

2021年高考数学一轮复习《对数与对数函数》精选练习(含答案)

2021年高考数学一轮复习《对数与对数函数》精选练习(含答案)

2021年高考数学一轮复习《对数与对数函数》精选练习一、选择题1.已知2x=3,log 4 83=y ,则x +2y 等于( )A.3B.8C.4D.log 48 2.计算:log 39100+2log 310=( )A.0B.1C.2D.3 3.已知log 2x=4,则x -12=( )A.13B.123C.33D.14 4.在对数式log (x -1)(3-x)中,实数x 的取值范围应该是( )A.1<x <3B.x >1且x ≠2C.x >3D.1<x <3且x ≠2 5.计算:log 618+2log 62的结果是( )A.-2B.2C. 2D.log 62 6.已知log 32=a ,log 35=b ,则log 310等于( )A.a +bB.a -bC.abD.a b7.已知|lga|=lgb(a>0,b>0),那么( )A.a=bB.a=b 或ab=1C.a=±bD.ab=18.若lgx=lga +2lgb -3lgc ,则x=( )A.a +2b -3cB.2ab 3cC.ab 2c 3 D.ab 2-c 39.已知lg2=a ,lg3=b ,则log 36=( )A.a +b a B.a +b b C.a a +b D.ba +b10.若log a x=2,log b x=3,log c x=6,则log abc x 的值为( )A.1B.2C.3D.4 11.函数的定义域为( )A.[﹣1,2)∪(2,+∞)B.(﹣1,2)∪(2,+∞)C.(﹣1,+∞)D.[﹣1,+∞)12.函数则f(1)+f(-log 32)的值是( )A.2B.3C.5D.7 13.若函数,则f(f(10)=( )A.lg101B.2C.1D.014.已知a=log 23-1,(0.5)b =5,c=log 32,则a ,b ,c 的大小关系为( )A.c<b<aB.b<a<cC.a<c<bD.a<b<c 15.已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a16.函数f(x)=log a x(0<a<1)在[a,2a]上的最大值与最小值之差为0.5,则a 等于( )A. B. C. D.17.已知函数,则f(x)的递减区间是( )A.(-∞,1)B.(-3,-1)C.(-1,-1)D.(1,+∞) 18.函数f(x)=ln|x -1|的图象大致是( )19.函数y=|log 2x|的图像是图中的( )20.函数f(x)=12-log 3x 的定义域是( )A.(-∞,9]B.(-∞,9)C.(0,9]D.(0,9) 二、填空题21.计算:(log 43+log 83)(log 32+log 98)=________. 22.若4a =25b=10,则1a +1b =________.23.化简:lg 3+2lg 2-1lg 1.2=________.24.函数f(x)=ln(x+2)+ln(4-x)的单调递减区间是________.25.函数的定义域是_____________.26.已知函数f(x)=,则f(f(3))=________.27.函数的定义域为_______.28.若a>0且a≠1,则函数y=log a(x-1)+2的图像恒过定点________.29.若f(x)=log a x+(a2-4a-5)是对数函数,则a=________.30.函数y=log2(x2-2x+3)的值域是________.31.已知函数f(x)=log(3x2-ax+5)在(-0.5,+∞)上是减函数,则实数a的取值范围是________0.532.已知f(x)=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解得 m=1,则 n=3,所以 n =9.
3
m
5
n),则 m+n=________;函数 g(x)= ex2+nx 的单调递增区间为____________________.
11.已知函数 f(x)=log2(x2-2x+a)的最小值为 2,则 a 等于( )
A.4 B.5 C.6 D.7
12.已知函数 f(x)在区间[0,+∞)上是增函数,且 g(x)=-f(|x|).若 g(lg x)>g(1),则 x 的取
1.若 lg 2=a,lg 3=b,则 log418 等于( )
A.a+3b a2
B.a+3b 2a
C.a+2b a2
D.a+2b 2a
2.(2020·温州四校联考)设 x=log30.2,y=30.2,z=0.23,则 x,y,z 的大小关系为( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x
是“成功函数”,则 t 的取值范围是( )
0,1 A. 4
1,1 B. 4 2
1,1 C. 4 2
0,1 D. 4
14.已知定义在 R 上的奇函数 f(x)满足 f
x+3 2
=f(x),当 x∈
0,1 2
时,f(x)=log1(1-x),则
2
2
1,3 f(x)在区间 2 上是( ) A.增函数且 f(x)>0 B.增函数且 f(x)<0 C.减函数且 f(x)>0 D.减函数且 f(x)<0
3.(2020·金华市东阳中学期末)函数 f(x)=loga(4-3ax)在[1,3]上是增函数,则实数 a 的取值范
围是( )
4,1 A. 9
4.对于一个声强为 I(单位:W/m2)的声波,其声强级 L(单位:dB)可由如下公式计算:L=
10lg I (其中 I0 是能引起听觉的最弱声强),若声强为 I1 时的声强级为 70 dB,声强为 I2 时的声 I0
=log2
x-1 2
.
2
4
所以函数
y=f(x)在
1,3 2
上是增函数,且当
1<x<3时,1<x-1<1,f(x)<0.]
222
15.[4,5]
16.9
解析 因为 f(x)=|log3x| = -log3x,0<x<1,
log3x,x≥1, 所以 f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴f(x)在其定义域内为增函数,
由题意得 f(x)=loga(ax+t)=2x有两个不同的实数根,
x
x
∴ax+t= a 2 ,ax- a 2 +t=0,
x
令 m= a 2 >0,
∴关于 m 的方程 m2-m+t=0 有两个不同的正数根,
1-4t>0, ∴
t>0,
解得
t∈
0,1 4
.]
14.B
[设
x∈
由 0<m<n 且 f(m)=f(n),
0<m<1, 可得 n>1,
log3n=-log3m,
0<m<1, 则 n>1,
mn=1,
所以 0<m2<m<1,
则 f(x)在[m2,1)上单调递减,在(1,n]上单调递增,
所以 f(m2)>f(m)=f(n),
则 f(x)在[m2,n]上的最大值为 f(m2)=-log3m2=2,
强级为 60 dB,则 I1 是 I2 的( )
A.10 倍
B.100 倍
C.1010 倍
D.10 000 倍
lloogg116x,x>0,
5.已知函数 f(x)= 2 -x,x<0,
若非零实数 a 满足 f(9)+log43=f(-a2),则 a 的值
为( )
A. 3或- 3
B. 2或- 2
C. 2或- 2
20-m m 15.已知不等式 n ln n ≥0 对任意正整数 n 恒成立,则实数 m 取值范围是________. 16.已知函数 f(x)=|log3x|,实数 m,n 满足 0<m<n,且 f(m)=f(n),若 f(x)在[m2,n]上的最大 值为 2,则 n =________.
m
3
答案精析
值范围是( )
A.[1,10)
1 ,+∞ B. 10
1 ,10 C. 10
D.
1 ,1 10
∪(10,+∞)
13.函数 f(x)的定义域为 D,若满足①f(x)在 D 内是单调函数;②存在[m,n]⊆D 使 f(x)在[m,
m,n n]上的值域为 2 2 ,那么就称 y=f(x)为“成功函数”,若函数 f(x)=loga(ax+t)(a>0,a≠1)
2
2
D. 3或- 3
3
3
6.已知对数函数 f(x)=logax 是增函数,则函数 f(|x|+1)的大致图象为( )
1
7.已知函数 f(x)是定义在 R 上的奇函数,且当 x≥0 时,f(x)=log2(x+2)-1,则 f(-6)等于
() A.2 B.4 C.-2 D.-4
8.若函数 f(x)= log 1 (-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数 m 的取值范围
1.D 2.A 3.C 4.A 5.D 6.B 7.C 1,3
8.C 9. 3 4 10.2 (-1,+∞) 11.B 12.C
13.A [∵f(x)=loga(ax+t)(a>0,a≠1)是“成功函数”,当 a>1 时,f(x)在其定义域内为增函数, 当 0<a<1 时,f(x)在其定义域内为增函数,
-1,0 2

则-x∈
0,1 2

f(-x)= log 1 (1+x),
2
由于函数 y=f(x)为 R 上的奇函数,
则 f(x)=-f(-x)=- log 1 (1+x),
2
当 x∈
1,3 2
时,x-3∈
-1,0 2

2
则 f(x)=f
x-3 2
=- log 1
1+x-3 2
2
=- log 1
x-1 2
2
为( )
4,3 A. 3
4,2 B. 3
4,2 C. 3
4,+∞ D. 3
x2+4a-3x+3a,x<0,
9.已知函数 f(x)=
(a>0 且 a≠1)在 R 上单调递减,则实数 a 的
logax+1+1,x≥0
取值范围是________. 10.(2020·杭州市第二中学期末)若函数 f(x)=loga(x+1)+2(a>0 且 a≠1),图象恒过定点 P(m,
相关文档
最新文档