八年级(上)数学整式测试题(一)(无答案)

合集下载

八年级数学上册《整式》计算题练习100道(无答案)-新人教版

八年级数学上册《整式》计算题练习100道(无答案)-新人教版

八年级数学上册《整式》计算题练习100道(无答案)-新人教版《整式》计算题练习100道2、332()()a a a3、2323()()a a a4、 223()x5、3231()4x y z11、263373()()(2)x x x12、433111()()()a a a13、232(2)(2)n14、33612(0.25)0.1252(2)15、3312()()n x y xy16、5524226()()()()()x x x x x x17、232323(3)()x y x y18、32322()()(3)a b a b19、32008200910010010.25(4)8()220、122()()m m m a a a21、3233633(4)(3)2(2)x x x x x22、234342343()()()x y x y x y23、4354832263()2()5()x y xy x y x y x y24、已知 27927813n n n ,求n 的值25、已知23,24n m,求2312m n值26、已知36,92m n,求2413m n值27、(3x+10)(x+2)28、(4y-1)(y-5)29、(2x-521)()y x y25230、()()()x y z y z x z x y21、232(4)122()b a ab a a b b4332、若m为正整数,且x2m=3,求:(3x3m)2-13(x2)2m的值33、532a a a()()34、21n m m51252535、2(x-8)(x-5)-(2x-1)(x+2)36、232m m m m m m2(43)3(46)37、04331113()()()33338、若3918()n m x y y x y ,求: 值222223(2)mn m m n mn39、2()x y40、(35)(106)x y y x41、20092008(2)(2)42、3373(2)(2)x y x y43、22232x x x x x(3)42(32)44、化简求值:其中1x y4,22 2x y x y x y x y x y(2)()(2)2(3)()45、2(1)x y46、(32)(23)x y y x47、2211(3)(3)22x y x y48、30131241()()()()335249、23021771()()(1.92)()(3)99350、化简求值:其中214x y 32431(1)2()22(1)2xy x x y x y x y x51、22222()()()a b a b a b52、22()()4a b a b ab53、222()()()a b a b a b54、2222x y x y x y y x()()()()55、22a b a b a b a b(23)(23)(23)(23)56、化简求值:其中1x x x x x(21)(1)2(3)(4)57、(32)(32)m n m n58、(3)(3)a b b a59、4422()()()x y x y x y60、33()()a b a b a b61、1212()()m n m n a b a b62、化简求值:其中1,1x y3 222()()3()()4x x y y x x y y x y63、(26)(3)y y64、(0.5)(0.5)xy xy65、3(2)(1)2(5)(3)x x x x66、22222x y x y x y(3)(3)(9)67、2222111()()(2)222y x y x x y68、42(1)(1)(1)(1)x x x x69、已知211x x ,求x 的值。

八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析

八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析

《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。

(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)(1)

(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)(1)

一、选择题1.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-52.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 3.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .94.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )m﹣3 4 3 1nA .1B .2C .5D .7 5.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .210 6.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.757.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .58.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> 9.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 10.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .611.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc - 12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1 B .1- C .2 D .2-二、填空题13.10的整数部分是a .小数部分是b ,则2a b -=______.14.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____.15.已知有理数a ,b 满足0ab <,a b a b +=+,521a b b a ++=--,则()31222a b a b ⎛⎫++⋅- ⎪⎝⎭的值为______. 16.计算:32(2)a b -=________.17.已知,a b 满足1,2a b ab -==,则a b +=____________18.因式分解:24a b b -=______.19.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.20.若9m =4,27n =2,则32m ﹣3n =__.三、解答题21.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).22.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下: 外卖送单数量补贴(元/单) 每月不超过500单 6超过500但不超过m 单的部分()700900m ≤≤ 8超过m 单的部分 10(2)设5月份某“外卖小哥”送餐x 单()500x >,求他这个月的工资总额(用含x ,m 的代数式表示).23.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 24.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.25.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯26.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.2.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯--∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 3.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可.∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 4.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 5.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+ ()()2=322x y x y --- =()()2535--⨯-=25+15=40【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.6.D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】 2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.7.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律8.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.C解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键. 10.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 11.C解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.12.B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键. 14.3x -4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a 由题意得:∴ay=3xy-4y ∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x -4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a , 由题意得:12342y a xy y ⋅⋅=-, ∴ay=3xy-4y ,∴a=3x-4,故答案为:3x-4.【点睛】 此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加. 15.0【分析】分情况讨论或根据绝对值的性质化简得到即可求出结果【详解】解:①时(矛盾)舍去;②时原式故答案是:0【点睛】本题考查代数式的求值解题的关键是掌握绝对值的化简利用整体代入的思想求值解析:0【分析】分情况讨论,0a >,0b <或0a <,0b >,根据绝对值的性质化简,得到312022a b ++=,即可求出结果.【详解】解:①0a >,0b <时,()521a b b a b a b a ++=--=---=-⎡⎤⎣⎦,610a b ∴++=,0a b a b +=+≥,()61510a b a a b ∴++=+++>(矛盾),∴舍去;②0a <,0b >时,()521a b b a b a a b ++=--=--=-,4310a b ∴++=,312022a b ∴++=, ∴原式()00a b =-=.故答案是:0.【点睛】本题考查代数式的求值,解题的关键是掌握绝对值的化简,利用整体代入的思想求值. 16.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.17.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 18.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 19.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出 解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.20.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n÷=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.(1)ab 平方米;22r π平方米,(2)2872平方米【分析】(1)根据长方形面积公式即可表示出广场面积;根据圆的面积公式即可表示草地和水池的面积;(2)长方形面积减去草地和水池的面积的和即可得到广场空地的面积,再代入求值即可.【详解】(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为214r 4π⨯⨯+2r π=22r π平方米,故答案是:ab 平方米;22r π平方米;(2)依题意得:空地的面积为 22ab r π-当a =70,b =50,r =10时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯2871.62872=≈答:广场空地的面积约为2872平方米.【点睛】本题考查列代数式、求代数式的值,列出正确的代数式是正确解答的关键.22.(1)3400元;(2)当500<x≤m ,工资总额为8x ;当x >m ,工资总额为10x-2m【分析】(1)根据题意和表格中的数据可以求得若某“外卖小哥”4月份送餐400单,他这个月的工资总额;(2)根据题意和表格中的数据可以写出各段工资总额与x 的关系式;【详解】解:(1)工资总额=1000+400×6=3400元(2)当500<x≤m ,工资总额为:1000+500×6+8(x-500)=8x当x >m ,工资总额为:1000+500×6+8(m-500)+10(x-m )=10x-2m【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,分段分析解答.23.232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+, 当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 24.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.25.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.26.(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

人教版八年级数学上册整式的乘法 同步练习及答案1

人教版八年级数学上册整式的乘法 同步练习及答案1

一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)一、选择题1.下列运算正确的是( )A. a2⋅a3=a6B. (−a2)3=−a5C. a10÷a9=a(a≠0)D. (−bc)4÷(−bc)2=−b2c22.下列等式从左到右的变形,属于因式分解的是( )A. a(x−y)=ax−ayB. x3−x=x(x+1)(x−1)C. (x+1)(x+3)=x2+4x+3D. x2+2x+1=x(x+2)+13.(−3)100×(−13)101等于( )A. −1B. 1C. −13D. 134.将9.52变形正确的是( )A. 9.52=92+0.52B. 9.52=(10+0.5)(10−0.5)C. 9.52=102−2×10×0.5+0.52D. 9.52=92+9×0.5+0.525.若(a+b)2=7,(a−b)2=3则a2+b2−3ab的值为( )A. 0B. 2C. 3D. 46.一个三角形的面积为(x3y)2,它的一条边长为(2xy)2,那么这条边上的高为( )A. 12x4 B. 14x4 C. 12x4y D. 12x27.若(x−3)(2x+1)=2x2+ax−3,则a的值为( )A. −7B. −5C. 5D. 78.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63= 82−12故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 549.已知正方形的面积是(16−8x+x2)cm2(x>4cm),则正方形的周长是( )A. (4−x)cmB. (x−4)cmC. (16−4x)cmD. (4x−16)cm10.已知4m=a,8n=b其中m,n为正整数,则22m+6n=( )A. ab2B. a+b2C. a2b3D. a2+b3二、填空题11.分解因式:x4−4x2=______.12.若2a−3b=−1,则代数式4a2−6ab+3b的值为________.13.若x+y=2,x−y=1则代数式(x+1)2−y2的值为____.14.计算:20182−2019×2017=______.15.已知a+1a =3,则a2+1a2=________.16.已知a+1a =√ 10,则a−1a的值为_________;17.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为______.三、解答题18.规定a∗b=2a×2b,求:(1)求2∗3;(2)若2∗(x+1)=16,求x的值.19.先化简,再求值:(a+b)(a−b)−(a−b)2+2b2,其中a=−3,b=12.20.(1)已知a m=5,a n=12求a2m−3n的值;(2)已知9m×27n=81,求(−2)2m+3n的值.21.如果a∗b=c,则a c=b,例如:2∗8=3则,23=8.(1)根据上述规定,若3∗27=x,求x的值;(2)记3∗5=a,3∗6=b,3∗2=c求32a+b−c的值.22.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.答案和解析1.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、幂的乘方与积的乘方进行计算即可.【解答】解:A.a2⋅a3=a5故A错误;B.(−a2)3=−a6故B错误;C.a10÷a9=a(a≠0)故C正确;D.(−bc)4÷(−bc)2=b2c2故D错误;故选C.2.【答案】B【解析】解:因式分解是指将一个多项式化为几个整式的乘积故选:B.根据因式分解的定义即可判断.本题考查因式分解的定义,解题的关键是正确理解因式分解的定义,本题属于基础题型.3.【答案】C【解析】【分析】本题考查了积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【解答】解:原式=[(−3)×(−13)]100×(−13)=−13.故选C.4.【答案】C【解析】【分析】本题考查的是完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10−0.5)2=102−2×10×0.5+0.52故选:C.5.【答案】B【解析】【分析】此题考查的是完全平方公式的应用以及代数式的求值.先根据完全平方公式将已知条件中的等式展开,再联立方程组,利用加减消元即可求出整体ab的值和a2+b2的值.然后把得到的数值代入a2+b2−3ab计算即可.【解答】解:∵(a+b)2=7∴a2+2ab+b2=7①∵(a−b)2=3∴a2−2ab+b2=3②①+②,得:2a2+2b2=10∴a2+b2=5;①−②得4ab=4∴ab=1a2+b2−3ab=5−3=2故选B.6.【答案】A【解析】【分析】本题考查整式的运算,解题的关键是数量运用整式的运算法则,本题属于基础题型.根据整式的运算法则即可求出答案.【解答】解:设这条边上的高为ℎ×ℎ×(2xy)2=x6y2由三角形的面积公式可知:12x4,故选A.∴ℎ=127.【答案】B【解析】【分析】本题考查了多项式乘以多项式,熟练掌握整式乘法的相关运算法则是解题的关键.将题中所给等式左边利用多项式乘多项式的运算法则进行计算,再与等式右边比较即可得出答案.【解答】解:(x−3)(2x+1)=2x2+x−6x−3=2x2−5x−3∵(x−3)(2x+1)=2x2+ax−3∴a=−5.故选:B.8.【答案】D【解析】【分析】本题考查了平方差公式在新定义类计算中的简单应用,正确将所给的数字拆成平方差的形式是解题的关键.根据数字的特点,分别将31、41和16写成两个正整数的平方差的形式,而54不能写成两个正整数的平方差的形式,则问题得解.【解答】解:因为31=(16+15)×(16−15)=162−15241=(21+20)×(21−20)=212−20216=(5+3)×(5−3)=52−3254不能表示成两个正整数的平方差.所以31、41和16是“创新数”,而54不是“创新数”.故选D.9.【答案】D【解析】解:∵16−8x+x2=(4−x)2,x>4cm∴正方形的边长为(x−4)cm∴正方形的周长为:4(x−4)=4x−16(cm)故选:D.首先利用完全平方公式进行因式分解,即可得到正方形的边长,进而可计算出正方形的周长.此题主要考查了因式分解法的应用,关键是利用完全平方公式进行因式分解,从而得到正方形的边长.10.【答案】A【解析】【分析】本题考查的是幂的乘方与积的乘方,同底数幂的乘法有关知识.将已知等式代入22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2可得.【解答】解:∵4m=a,8n=b∴22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2=ab2故选A.11.【答案】x2(x+2)(x−2)【解析】解:x4−4x2=x2(x2−4)=x2(x+2)(x−2);故答案为x2(x+2)(x−2);先提取公因式再利用平方差公式进行分解,即x4−4x2=x2(x2−4)=x2(x+2)(x−2);本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.【答案】1【解析】【分析】本题综合考查了因式分解中提取公因式法的应用,分组法和整体代入求值法和相反数等相关知识点,重点掌握提取公因式法.由已知字母a、b的系数为2、−3,代数式中前二项的系数分别为4、−6,提取此二项的公因式2a后,代入求值变形得−2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a−3b=−1∴4a2−6ab+3b=2a(2a−3b)+3b=2a×(−1)+3b=−2a+3b=−(2a−3b)=−(−1)=1.故答案为1.13.【答案】6【解析】【分析】此题主要考查了公式法分解因式,正确将原式变形是解题关键.直接利用平方差公式将原式变形进而得出答案.【解答】解:∵x+y=2,x−y=1∴(x+1)2−y2=(x+1−y)(x+1+y)=2×3=6.故答案为6.14.【答案】1【解析】解:原式=20182−(2018+1)×(2018−1)=20182−20182+1=1故答案是:1.原式变形后,利用平方差公式计算即可求出值.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.【答案】7【解析】【分析】本题主要考查了代数式求值及完全平方公式,熟记完全平方公式的几个变形是解决本题的关键.将已知等式的两边完全平方后求得a2+1a2的值即可.【解答】解:∵a+1a=3∴(a+1a )2=9,即a2+2+1a2=9∴a2+1a2=7.故答案是7.16.【答案】±√ 6【解析】【分析】本题主要考查了完全平方公式的应用,把a+1a =√ 10的两边平方得出a2+1a2的值,再进一步配方得出(a−1 a )2的值,从而得到a−1a的值.【解答】解:∵a+1a=√ 10∴(a+1a)2=(√ 10)2=10∴a2+1a2+2=10∴a2+1a2=8∴a2+1a2−2=8−2=6即(a−1a)2=6∴a−1a的值为±√ 6.故答案为±√ 6.17.【答案】45【解析】【解析】[分析]:根据“杨辉三角”确定出所求展开式第三项的系数即可。

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。

八年级数学上册 整式的乘除(习题及答案)(人教版)

八年级数学上册 整式的乘除(习题及答案)(人教版)

整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(答案解析)(1)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(答案解析)(1)

一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .72.下列各式由左边到右边的变形中,是分解因式的为( ) A .2105525x x x x x -=⋅- B .()a x y ax ay +=+C .()22442x x x -+=- D .()()2163443x x x x x -+=-++3.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅=4.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .125.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18 C .5 D .9 6.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4 C .﹣6 D .6 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-38.下列计算中能用平方差公式的是( ). A .()()a b a b -+- B .1133x y y x ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+9.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.7510.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .511.下列运算中,正确的是( ) A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题13.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.14.分解因式:32m n m -=________. 15.因式分解269x y xy y -+-=______.16.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.17.若294x kx ++是一个完全平方式,则k 的值为_____. 18.已知正实数a ,满足17a a-=,则1a a +=________.19.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____ 20.分解因式:2a 2﹣8=______.三、解答题21.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-①22()(94)x y a b =-+② 2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.22.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8, 解:原式=a 2+6a +8+1-1=a 2+6a +9-1 =(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2) ②M =a 2-2a -1,利用配方法求M 的最小值. 解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2. 请根据上述材料解决下列问题: (1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值.23.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式); (2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题: ①10.39.7⨯②(2)(2)m n p m n p +--+ 25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.26.阅读材料:把形2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b abab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果. 【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答. 【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式; B 、()a x y ax ay +=+,不是分解因式; C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式;故选:C . 【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.3.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.4.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.5.C解析:C 【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3, ∴3x 2−4x +6=3, ∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C . 【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.6.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.7.C解析:C 【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可. 【详解】∵2a =1,b 是2的相反数, ∴1a =±,b=-2, 当a=1时,a+b=1-2=-1, 当a=-1时,a+b=-1-2=-3, 故选:C . 【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键.8.B解析:B 【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可.【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式. 故选:B . 【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.9.D解析:D 【分析】 先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭=20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯ =34-, 故选:D . 【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.10.A解析:A 【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解 【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么: 第1次输出的结果是5 第2次输出的结果是16 第3次输出的结果是8 第4次输出的结果是4 第5次输出的结果是2 第6次输出的结果是1 第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等 故选:A 【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律11.C解析:C 【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可. 【详解】 解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意. 故选:C . 【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.12.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1, ∴x y 的立方根为﹣1, 故选:B . 【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5 【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可. 【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6 ∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6, ∴m=-5或5或1或-1, ∴m 的最大值为5, 故答案为:5. 【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.14.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键 解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可. 【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+. 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2 【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.16.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值.【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=,∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.17.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 18.【分析】根据应用完全平方公式求出的值即可求出的值【详解】解:=9=9+2=11故答案为:【点睛】本题考查完全平方公式的应用需要对已知式子平方灵活运用完全平方公式是解决本题的关键解析:11 【分析】 根据17a a -=,应用完全平方公式,求出221a a+的值,即可求出1a a +的值. 【详解】 解:17a a -=,217a a ⎛⎫∴-= ⎪⎝⎭, ∴22127a a +-=, ∴221a a+=9, 222112a a a a ⎛⎫∴+=++ ⎪⎝⎭=9+2=11, 0a >,10a a ∴+>, 111a a∴+=, 故答案为:11.【点睛】本题考查完全平方公式的应用,需要对已知式子平方,灵活运用完全平方公式是解决本题的关键.19.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,①+②,得2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.20.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.22.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.23.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==,而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.24.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯- 22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.(1)()22a -;(2)25-;(3)△ABC 为等边三角形,理由见解析.【分析】(1)根据完全平方公式即可因式分解;(2)先将原式化成最简式,然后将2226100a a b b ++-+=,分成两个完全平方公式的形式,根据非负数的性质求出a 、b 的值,代入最简式中计算即可;(3)将已知等式化成几个平方和的形式,再利用非负数的性质求解即可.【详解】解:(1)∵()22442a a a -+=-,故答案为:()22a -;(2)()()()33242a b a b a b ab ab +-+-÷=()2222222a b ab a b ab -+-÷=222222223a b a b a b -+-=-∵2226100a a b b ++-+=,∴()()22130a b ++-=, ∴13a b =-=,,把13a b =-=,代入上式得:()222223213322725a b -=⨯--⨯=-=-; (3)△ABC 为等边三角形,理由如下:∵222426240a b c ab b c ++---+=,∴()()()2221310a b c b -+-+-=, ∴01010a b c b -=-=-=,,,∴1a b c ===,∴△ABC 为等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负数的应用.。

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2

1 9
53.7 0
) C. 20
1
D. 2 3
1 8

m
n 2

a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4

2 4
.

2

3

⑷ x y


.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a

人教版八年级上册数学 第十四章 整式的乘法与因式分解 章末综合测试(含解析)

人教版八年级上册数学 第十四章 整式的乘法与因式分解 章末综合测试(含解析)

第十四章整式的乘法与因式分解章末综合测试一.选择题1.下列计算正确的是()A.x3+x3=x6B.b2+b2=2b2C.x m•x5=x5m D.x5•x2=x102.若22m+1+4m=48,则m的值是()A.4B.3C.2D.83.若a2+(m﹣3)a+4是一个完全平方式,则m的值应是()A.1或5B.1C.7或﹣1D.﹣14.如图1,从边长为m的正方形中去掉一个边长为n的小正方形,然后将剩余部分剪后拼成如图2的长方形,上述操作能验证的等式是()A.(m+n)2=m2+2mn+n2B.(m﹣n)2=m2﹣2mn+n2C.m2﹣n2=(m+n)(m﹣n)D.m2+mn=m(m+n)5.下列各式可以利用平方差公式计算的是()A.(x+2)(﹣x﹣2)B.(5a+y)(5y﹣a)C.(﹣x+y)(x﹣y)D.(x+3y)(3y﹣x)6.下列各项分解因式正确的是()A.a2﹣1=(a﹣1)2B.a2﹣4a+2=(a﹣2)2C.﹣b2+a2=(a+b)(a﹣b)D.x2﹣2x﹣3=(x﹣1)(x+3)7.多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+98.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,用公式法分解因式的有()A.2个B.3个C.4个D.5个9.下列各式从左到右的变形中,是因式分解的是()A.m(a+b+c)=ma+mb+mc B.x2+6x+36=(x+6)2C.a2﹣b2+1=(a+b)(a﹣b)+1D.10x2﹣5x=5x(2x﹣1)10.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2﹣ab﹣bc﹣ca的值等于()A.0B.1C.2D.3二.填空题11.计算:(x2)3﹣2x2•x4=.12.(6a3b2﹣14a2b2+8a2b)÷(﹣2a2b)=.13.已知a,b满足a﹣b=1,ab=2,则a+b=.14.计算202020202﹣20202018×20202021=.15.如图,边长分别为a,b的两个正方形并排放在一起,当a+b=16,ab=60时阴影部分的面积为.16.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2020的智慧数共有个.17.下列各式能用乘法公式进行计算的是(填序号).①(﹣4x+5y)(﹣4x﹣5y)②(﹣4y﹣5x)(﹣5y+4x)③(5y+4x)(﹣5y﹣4x)④(﹣4x+5y)(5y+4x)18.因式分解:m2﹣n2﹣2m+1=.19.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.20.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题21.整式的乘法(1)(﹣2a)2(a2﹣2a+1).(2)(x﹣3y)(x+5y).22.同学们知道,完全平方公式是:(a+b)2=a2+b2+2ab,(a﹣b)2=a2+b2﹣2ab,由此公式我们可以得出下列结论:ab=[a+b)2﹣(a2+b2)]①(a﹣b)2=(a+b)2﹣4ab②利用公式①和②解决下列问题:已知m满足(3m﹣2020)2+(2019﹣3m)2=5,(1)求(3m﹣2020)(2019﹣3m)的值;(2)求(6m﹣4039)2的值.23.(1)已知a+b=5,ab=,求下列各式的值:①a2+b2;②(a﹣b)2.(2)若x+y﹣2z+1=0,求9x•27y÷81z的值.24.(1)已知关于x、y的多项式x2+kxy﹣y2+xy+3不含xy项,且满足2a+4b﹣k﹣3=0,ab﹣2k =0,求代数式a2+4b2的值;(2)已知(2x2﹣2019)2+(2020﹣2x2)2=4,求代数式(4x2﹣4039)2的值.25.分解因式(1)2ax2﹣8a;(2)x2﹣2xy+y2﹣1;(3)(x﹣1)(x﹣3)+1;(4)16x4﹣81y4.26.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴,解得:n=﹣7,m=﹣21,∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值;(2)已知二次三项式3x2+4ax+1有一个因式是(x+a),求另一个因式以及a的值.27.若x满足(5﹣x)(x﹣2)=2,求(x﹣5)2+(2﹣x)2的值.解:设5﹣x=a,x﹣2=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,所以(x﹣5)2+(2﹣x)2=(5﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=32﹣2×2=5.请运用上面的方法求解下面的问题:(1)若x满足(8﹣x)(x﹣2)=5,求(8﹣x)2+(x﹣2)2的值;(2)已知正方形ABCD的边长为x,E、F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,求长方形EMFD的周长.参考答案一.选择题1.解:A、x3+x3=2x3,故本选项不合题意;B、b2+b2=2b2,故本选项符合题意;C、x m•x5=x m+5,故本选项不合题意;D、x5•x2=x7,故本选项不合题意;故选:B.2.解;∵22m+1+4m=22m+1+22m=48,∴(2+1)×22m=3×24,即3×22m=3×24,∴2m=4,解得m=2.故选:C.3.解:根据题意得:(m﹣3)a=±2•a•2,则m﹣3=±4,解得:m=7或﹣1.故选:C.4.解:图1的阴影部分的面积为m2﹣n2,图2是长为(m+n),宽为(m﹣n)的矩形,其面积为(m+n)(m﹣n),故选:C.5.解:(x+2)(﹣x﹣2)=﹣(x+2)2=﹣(x2+4x+4)=﹣x2﹣4x﹣4;(5a+y)(5y﹣a)=25ay﹣5a2+5y2﹣ay=24ay﹣5a2+5y2;(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣(x2﹣2xy+y2)=﹣x2+2xy﹣y2;(x+3y)(3y﹣x)=(3y+x)(3y﹣x)=9y2﹣x2.故选:D.6.解:A、a2﹣1=(a+1)(a﹣1),所以A选项错误;B、a2﹣4a+2在实数范围内不能因式分解;C、﹣b2+a2=a2﹣b2=(a+b)(a﹣b),所以C选项正确;D、x2﹣2x﹣3=(x﹣3)(x+1),所以D选项错误.故选:C.7.解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).故选:C.8.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.9.解:A、是整式的乘法,不是因式分解,原变形错误,故此选项不符合题意;B、x2+12x+36=(x+6)2,x2+6x+36≠(x+6)2,原变形错误,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,原变形错误,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,原变形正确,故此选项符合题意;故选:D.10.解:a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011、b=2012x+2012、c=2012x+2013时,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选:D.二.填空题11.解:(x2)3﹣2x2•x4=x6﹣2x6=﹣x6,故答案为:﹣x6.12.解:(6a3b2﹣14a2b2+8a2b)÷(﹣2a2b)=6a3b2÷(﹣2a2b)﹣14a2b2÷(﹣2a2b)+8a2b÷(﹣2a2b)=﹣3ab+7b﹣4.故答案为:﹣3ab+7b﹣4.13.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.14.解:原式=202020202﹣(20202020﹣2)×(20202020+1)=202020202﹣(202020202+20202020﹣40404040﹣2)=202020202﹣202020202﹣20202020+40404040+2=20202022,故答案为:20202022.15.解:根据题意得:S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab﹣b2=(a2+b2﹣ab)=[(a+b)2﹣3ab],把a+b=16,ab=60代入得:S阴影部分=38.故图中阴影部分的面积为38.故答案为38.16.解:∵(n+1)2﹣n2=2n+1,∴所有的奇数都是智慧数,∵2020÷2=1010,∴不大于2020的智慧数共有1010个.故答案为:1010.17.解:①(﹣4x+5y)(﹣4x﹣5y)=(4x﹣5y)(4x+5y);②(﹣4y﹣5x)(﹣5y+4x)=﹣(5x+4y)(4x﹣5y);③(5y+4x)(﹣5y﹣4x)=﹣(4x+5y)(4x+5y)=﹣(4x+5y)2,④(﹣4x+5y)(5y+4x)=﹣(4x﹣5y)(4x+5y).故答案为①③④.18.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).19.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.20.解:因式分解x2+ax+b时,∵甲看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵乙看错了b的值,分解的结果为(x﹣8)(x+4),∴a=﹣8+4=﹣4,∴原二次三项式为x2﹣4x﹣12,因此,x2﹣4x﹣12=(x﹣6)(x+2),故答案为:(x﹣6)(x+2).三.解答题21.解:(1)原式=4a2(a2﹣2a+1)=44﹣8a3+4a2;(2)原式=x2﹣3xy+5xy﹣15y2=x2+2xy﹣15y2.22.解:(1)设3m﹣2020=x,2019﹣3m=y,∴x2+y2=5且x+y=﹣1,∴(3m﹣2020)(2019﹣3m)=xy=[(x+y)2﹣(x2+y2)]=﹣2;(2)(6m﹣4039)2=[(3m﹣2020)﹣(2019﹣3m)]2=(3m﹣2020)2+(2019﹣3m)2﹣2(2019﹣3m)(3m﹣2020)=x2+y2﹣2xy=5+4=9.23.解:(1)①a2+b2=(a+b)2﹣2ab=25+=;②(a﹣b)2=(a+b)2﹣4ab=25+1=26;(2)∵x+y﹣2z+1=0,∴2x+3y﹣4z=﹣2,∴9x•27y÷81z=(32)x•(33)y÷(34)z=32x•33y÷34z=32x+3y﹣4z=3﹣2=24.解:(1)根据题意,k=﹣1,2a+4b=2,a+2b=1,又∵ab﹣2k=0,∴ab=2k=﹣2,a2+4b2=(a+2b)2﹣4ab=1+8=9.(2)设2x2﹣2019=m,2x2﹣2020=n.∴原式(2x2﹣2019)2+(2020﹣2x2)2=4,即为m2+n2=4,求代数式(4x2﹣4039)2的值即为求(m+n)2.又∵m﹣n=1,∴(m﹣n)2=m2+n2﹣2mn=4﹣2mn=1.∴2mn=3.因此,(m+n)2=m2+n2+2mn=4+3=7.25.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=(x﹣y)2﹣1=(x﹣y+1)(x﹣y﹣1);(3)原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2;(4)原式=(2x)4﹣(3y)4=(4x2+9y2)(4x2﹣9y2)=(4x2+9y2)(2x+3y)(2x﹣3y).26.解:(1)设另一个因式是(x+b),则(2x﹣5)(x+b)=2x2+2bx﹣5x﹣5b=2x2+(2b﹣5)x﹣5b=2x2+3x﹣k,则,解得:,则另一个因式是:x+4,k=20.(2)设另一个因式是(3x+m),则(x+a)(3x+m)=3x2+(m+3a)x+am=3x2+4ax+1,则,解得,或,另一个因式是3x﹣1或3x+1,故另一个因式是3x+1,a=1或3x﹣1,a=﹣1.27.解:(1)设8﹣x=a,x﹣2=b,则ab=5,a+b=6,∴(8﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=36﹣10=26.(2)∵AE=1,CF=3∴DE=x﹣1,DF=x﹣3,∵长方形EMFD的面积是35,∴DE•DF=(x﹣1)(x﹣3)=35,设x﹣1=a,x﹣3=b,则ab=35,a﹣b=2,∴(a+b)2=(a﹣b)2+4ab=4+140=144,又∵a+b>0,∴a+b=12,∴长方形EMFD的周长=2DE+2DF=2(a+b)=24.。

人教版初中数学八年级上单元试卷第章 整式的乘法与因式分解【培优卷】(解析版)

人教版初中数学八年级上单元试卷第章  整式的乘法与因式分解【培优卷】(解析版)

第14章整式的乘法与因式分解培优卷一、单选题1. ( 3分) 某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A.490<x<510B.490≤x≤510C.490<x≤510D.490≤x<510【答案】B【考点】有理数的加法【解析】【解答】解:根据题意得:500﹣1≤x≤500+10,即490≤x≤510,故答案为:B【分析】由题意用有理数的加法法则可得490≤x≤510。

2. ( 3分) 方程3x(x﹣1)=4(x﹣1)的根是()A.43B.1 C.43和1 D.43和﹣1【答案】C【考点】因式分解﹣运用公式法,因式分解法解一元二次方程【解析】【解答】原方程变形整理后得:(x﹣1)(3x﹣4)=0,x﹣1=0或3x﹣4=0,解得:x1=1,x2=43,故答案为:C.【分析】将方程移项后进行因式分解,即可得到方程的两个根。

3. ( 3分) 下列说法错误的是()A.两条射线组成的图形叫角B.两点之间线段最短C.两点确定一条直线D.0是单项式【答案】A【考点】单项式,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,角的概念【解析】【解答】解:A、两条有公共端点的射线组成的图形叫角,此选项符合题意;B、两点之间线段最短,此选项不符合题意;C、两点确定一条直线,此选项不符合题意;D、数字0是单项式,此选项不符合题意;故答案为:A.【分析】根据角的定义、两点之间距离、直线的性质以及根据单项式的定义逐一判断即可.4. ( 3分) 任意给定一个非零数x,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()→平方→→→结果A.xB.x2C.x+1D.x−1【答案】D【考点】整式的混合运算【解析】【解答】根据题意得:(x2+x)÷x-2=x2÷x+x÷x-2=x+1-2=x-1,故答案为:D.【分析】根据程序先列出算式,然后计算即可.5. ( 3分) 下列各式计算正确的是()A.(a+1)2=a2+1B.a2+a3=a5C.a8÷a2=a6D.3a2﹣2a2=1【答案】C【考点】同底数幂的除法,完全平方公式及运用【解析】【解答】解:A、(a+1)2=a2+2a+1,故本选项错误;B、a2+a3≠a5,故本选项错误;C、a8÷a2=a6,故本选项正确;D、3a2﹣2a2=a2,故本选项错误;故选C.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.是一个完全平方式,则k的值为()6. ( 3分) 已知多项式x2+kx+ 14A.±1B.﹣1C.1D.±12【答案】A【考点】完全平方公式及运用是一个完全平方式,【解析】【解答】解:∵多项式x2+kx+ 14∵x2+kx+ 14=(x± 12)2,∵k=±1,故答案为:A【分析】根据完全平方公式a2±2ab+b2=(a±b)2,得到k=±1.7. ( 3分) 关于x、y的多项式x2−4xy+5y2+8y+15的最小值为()A. -1B.0C.1D.2【答案】A【考点】完全平方公式及运用,偶次幂的非负性【解析】【解答】解:原式=x2−4xy+5y2+8y+15=x2−4xy+4y2+y2+8y+16-1=(x−2y)2+(y+4)2-1∵ (x−2y)2≥0,(y+4)2≥0,∵原式≥-1,∵原式的最小值为-1,故答案为:A.【分析】利用完全平方公式对代数式变形,再运用非负性求解即可.8. ( 3分) 下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x-1=x(x+5)-1B.x2-4+3x=(x+2)(x-2)+3xC.x2-9=(x+3)(x-3)D.(x+2)(x-2)=x2-4【答案】C【考点】因式分解的定义【解析】【解答】A.右边不是积的形式,故A错误;B.右边不是积的形式,故B错误;C.x2-9=(x+3)(x-3),故C正确.D.是整式的乘法,不是因式分解选C【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解9. ( 3分) 式子(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)化简的结果为()A.21010−1B.21010+1C.22020−1D.22020+1【答案】C【考点】平方差公式及应用【解析】【解答】解:设S= (2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1),∵(2—1)S=(2—1)(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)∵S= (22−1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)= (24−1)(24+1)(28+1)⋅⋅⋅(21010+1)= (21010−1)(21010+1)= 22020−1,故答案为:C.【分析】利用添项法,构造平方差公式计算即可.10. ( 3分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0【答案】D【考点】平方差公式及应用【解析】【解答】解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∵ 332−1的个位数字为0,∵ 2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故答案为:D.【分析】先将2变形为(3-1),再根据平方差公式求出结果,根据规律得出答案即可.二、填空题目11. ( 4分) 若m a=2,m b=3,m c=4,则m2a+b﹣c=________.【答案】 3【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:∵m a=2,m b=3,m c=4,∵m2a+b﹣c=(m a)2•m b÷m c=4×3÷4=3.故答案为:3.【分析】根据同底数幂的乘法与除法法则则及幂的乘方与积的乘方法则进行计算即可.12. ( 4分) 比较大小: 2√2________ √7. (填“>”、“<"或“=")【答案】>【考点】实数大小的比较【解析】【解答】解:(2√2)2=8,(√7)2=7,∵8>7,∴2√2>√7.故答案为:>.【分析】首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.13. ( 4分) 若x+y=1,xy=-7,则x2y+xy2=________.【答案】-7【考点】提公因式法因式分解【解析】【解答】解:∵x+y=1,xy=-7,∵原式=xy(x+y)=-7,故答案为:-7【分析】先将多项式提取公因式xy,将多项式分解成xy(x+y),再将已知条件中的值代入计算出即可。

《常考题》初中八年级数学上册第十四章《整式的乘法与因式分解》测试卷(课后培优)

《常考题》初中八年级数学上册第十四章《整式的乘法与因式分解》测试卷(课后培优)

一、选择题1.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.计算()201920180.52-⨯的值( )A .2B .2-C .12D .12- D 解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.4.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x -- D .()()111n x x x -+- D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 5.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ D 解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.6.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.7.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D 解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.9.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= D 解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题11.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()x y=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.13.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】 此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.14.若23x =,25y =,则22x y +=____________.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键. 15.已知25m =,2245m n +=,则2n =_______.【分析】将变形整体代入即可求解【详解】解:∵=∴故答案为:【点睛】本题主要考察了同底数幂的乘法幂的乘方解题的关键是熟练掌握同底数幂的乘法幂的乘方的逆运算解析:95. 【分析】 将2245m n +=变形()222=22222m n n n m m+⋅=⋅,整体代入即可求解. 【详解】解:∵()222=22222m n n n m m+⋅=⋅=25245n ⋅= ∴9245255n =÷=. 故答案为:95. 【点睛】 本题主要考察了同底数幂的乘法、幂的乘方,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的逆运算.16.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12 【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.17.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 18.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.19.分解因式:2221218ax axy ay -+=_________.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 20.若9m =4,27n =2,则32m ﹣3n =__.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂 解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.计算(1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y ) 解析:(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.24.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-. 解析:2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 25.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算: 281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.解析:(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n 2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-=;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.26.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少?解析:-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 27.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 解析:(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 28.化简:(1)()34322223x y x y z x y -÷;(2)2(4)3(1)(3)x x x x -+-+.解析:(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷ 223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(含答案解析)(1)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(含答案解析)(1)

一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.()()()2483212121+++···()32211++的个位数是( ) A .4 B .5C .6D .83.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x -4.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭5.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .16.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 7.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4 B .4 C .﹣6 D .6 8.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数9.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .2510.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab += 11.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或412.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________. 14.若2,3x y a a ==,则22x y a +=_______________________.15.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.16.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)17.已知2m n +=,2mn =-,则(1)(1)m n --=________.18.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________. 19.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________20.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.三、解答题21.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.22.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值.23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.24.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.25.若x 满足()()944x x --=,求()()2249x x -+-的值.解:设9,4x a x b -=-=,则()()944x x ab --==,()()945a b x x +=-+-=,222222(9)(4)()252417x x a b a b ab ∴-+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值;(2)若x 满足()()632x x --=,求()()2263x x -+-的值;(3)已知正方形ABCD 的边长为x ,E ,F 分别是AD DC 、上的点,且1AE =,3CF =,长方形EMFD 的面积是48,分别以MF DF 、为边作正方形,求阴影部分的面积.26.若一个三位或三位以上的整数A分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m,右边数均为n,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x)(1-2y)=1-2y-2x+4xy=1-2(x+y)+4xy=1-2×2-4=-7;故选:A.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有4种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.4.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.5.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.6.C解析:C 【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论. 【详解】解:空白部分的面积:2()a b -, 还可以表示为:222a ab b -+, ∴此等式是222()2a b a ab b -=-+. 故选:C . 【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.7.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.8.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.9.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.10.A解析:A 【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可. 【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确. 故选A. 【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.11.D解析:D 【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值. 【详解】∵|m ﹣3n ﹣2019|=1, ∴m ﹣3n ﹣2019=±1, 即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2, ∴(2020﹣m +3n )2的值为0或4, 故选:D . 【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.12.D解析:D 【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断. 【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y =,故该项错误;D 、235x x x ,故该项正确;故选:D . 【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25 【分析】利用完全平方公式的结构特征,即可求出m 的值. 【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36 【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可. 【详解】解:∵2,3x ya a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36, 故答案为36. 【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键.15.(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式【详解】解:从左到右三个小长方形的面积分别为:mambmc 大长方形的面积为:m (a+b+c )三个小长方形的面积和等解析:()m a b c ma mb c ++=++(等号两边交换位置也正确) 【分析】根据三个小长方形的面积和等于大长方形的面积可列等式. 【详解】解:从左到右三个小长方形的面积分别为:ma 、mb 、mc , 大长方形的面积为:m (a+b+c ),三个小长方形的面积和等于大长方形的面积,m (a+b+c )= ma+mb+mc , 故答案为:()m a b c ma mb c ++=++. 【点睛】本题考查了单项式乘以多项式的几何意义,分别表示出各个长方形的面积,找到等量关系是解题关键.16.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2 【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.17.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.18.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键.19.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.20.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248a b ab π++【分析】 先求出圆形钢板的面积,再减去两个小半圆的面积即可.【详解】 解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a b πππ+-⨯-⨯, =()2248a b ab π++, 故答案为:()2248a b ab π++.【点睛】 本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.三、解答题21.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长;(2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.22.2【分析】根据相反数和倒数的概念以及数的大小比较法则确定x+y ,ab 以及m 的值,从而代入计算.【详解】解:∵x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,∴x+y=0,ab=1,m=-1∴(x +y )﹣abm=0-1×(-1)=2.【点睛】本题考查代数式求值,掌握相反数及倒数的概念以及数的大小比较,正确计算是解题关键.23.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.24.(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.25.(1)5;(2)13;(3)28【分析】(1)设(5-x )=a ,(x-2)=b ,根据已知等式确定出所求即可;(2)设(6-x )=a ,(x-3)=b ,根据已知等式确定出所求即可;(3)设正方形ABCD 边长为x ,进而表示出MF 与DF ,求出阴影部分面积即可.【详解】解:(1)设(5-x )=a ,(x-2)=b ,则(5-x )(x-2)=ab=2,a+b=(5-x )+(x-2)=3,∴(5-x )2+(x-2)2=(a+b )2-2ab=32-2×2=5;(2)设(6-x )=a ,(x-3)=b ,则(6-x )(x-3)=ab=-(6−x)(3−x)=-2,a+b=(6-x )+(x-3)=3,∴(6-x )2+(3-x )2=(a+b )2-2ab=32+2×2=13;(3)∵正方形ABCD 的边长为x ,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)•(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM 2-DF 2=(x-1)2-(x-3)2.设(x-1)=a ,(x-3)=b ,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a 2-b 2=(a+b )(a-b )=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式的几何背景.应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.26.(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】(1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键.。

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试卷(含答案)一、单选题1.若3x =15, 3y =5,则3x y -=( )A .5B .3C .15D .102.下列各式从左到右的变形中,是因式分解的为( )A .()()222422x y x x y -+=+-+B .()()2933x x x -=+-C .()x a b ax bx -=-D .211x x x x ⎛⎫+=+ ⎪⎝⎭ 3.有足够多张如图所示的A 类、B 类正方形卡片和C 类长方形卡片,如果要拼一个长为()32a b +、宽为()2a b +的大长方形,则需要C 类卡片的张数为( )A .3B .4C .6D .74.将下列多项式分解因式,得到的结果中不含因式1x -的是( )A .21x -B .()()22x x x -+-C .221x x ++D .221x x -+5.式子 ()()()()()24810102121212121++++⋅⋅⋅+ 化简的结果为( )A .101021-B .101021+C .202021-D .202021+6.若a 2,则代数式246a a ++的值等( ).A .5B .9C .3 D .57.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++D .()()2222a b a b a ab b +-=+- 8.方程 x 2=(x ﹣1)0 的解为( )A .x=-1B .x=1C .x=±1D .x=09.在等式a 3•a 2•( )=a 11中,括号里填入的代数式应当是( )A .a 7B .a 8C .a 6D .a 310.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣6二、填空题11.已知a +b =2,a ﹣b =3.则a 2﹣b 2的值为 ___.12.已知8×2m ×16m =211,则m 的值为____.13.利用乘法公式计算:2123124122-⨯=___.14.若226m n -=-,且3m n -=-,则m n + =____.15.观察等式①9 -1=2×4 ①25 -1=4×6 ①49 -1=6×8,按照规律写出第n 个等式为_________. 16.分解因式(2a ﹣1)2+8a =__.17.若()2242x ax x ++=-,则a =_____.18.若代数式26x x b -+可化为2()1x a --,则b a -的值是________.三、解答题19.把下列各式分解因式:(1)2x 2-32x 4;(2)3ax 2-6axy+3ay 2.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.已知a 、b 、c 是①ABC 的三边长,且a 2+2b 2+c 2﹣2b (a+c )=0,试判断①ABC 的形状,并证明你的结论.22.计算(1)x 3•x 4•x 5(2)2321(6)(2)3xy xy x y --; (3)(﹣2mn 2)2﹣4mn 3(mn+1);(4)3a 2(a 3b 2﹣2a )﹣4a (﹣a 2b )223.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:①已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.①计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.B【详解】解:3x y -=33x y =155=3, 2.B【详解】A 、结果不是积的形式,故此选项错误;B 、 x 2−9=(x +3)(x −3),故此选项正确;C 、x (a −b )=ax −bx ,是整式的乘法,故此选项错误;D 、结果中有不是整式的式子,故此选项错误.3.D【详解】解:①()()22322672a b a b a ab b ++=++, ①需要C 类卡片7张,4.C【详解】()()2111x x x -=+-,故A 不符合题意;()()()()2122-+-=--x x x x x ,故B 不符合题意;()22211x x x ++=+,故C 符合题意; ()22211-+=-x x x ,故D 不符合题意;5.C【详解】解:设S = ()()()()()24810102121212121++++⋅⋅⋅+ ,①(2—1)S =(2—1) ()()()()()24810102121212121++++⋅⋅⋅+ ①S = ()()()()()224810102121212121-+++⋅⋅⋅+ = ()()()()448101021212121-++⋅⋅⋅+ = ()()101010102121-+ = 202021- ,6.A【详解】解:246a a ++2442a a =+++()222a =++ 把a 2代入()222a =++中原式)2222=++ 325=+= 7.A【详解】甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b -,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-.8.A【详解】①(x -1)0有意义,①x -1≠0,即x≠1,①x 2=(x ﹣1)0①x 2=1,即x=±1①x=-1.9.C【详解】①325a a a =,①1156a a a ÷=;故括号里面的代数式应当是6a .10.A【详解】解:原式=x 3+(m ﹣2)x 2+(n ﹣2m )x ﹣2n ,①乘积项中不含x 2和x 项,①m ﹣2=0,n ﹣2m =0,解得:m =2,n =4.11.6【详解】解:当a +b =2,a -b =3时,a 2-b 2=(a +b )(a -b )=2×3=6.故选:6.12.85【详解】8×2m ×16m =21134112222m m ⨯⨯=351122m +=835m 11? m 5+=∴=故答案为85 13.1.【详解】解:原式22222123(1231)(1231)123(1231)12312311=-+⨯-=--=-+=,故答案为:114.2【详解】解:①m 2-n 2=(m+n )(m -n )=6,且m -n=3,①m+n=215.(2n+1)2 – 1=2n(2n+2)【详解】①9-1=32-1=2×4,①25-1=52-1=4×6,①49-1=72-1=6×8…因此第n 个等式为:(2n+1)2-1=2n (2n+2)(n 为大于或等于1的自然数). 故答案为(2n+1)2-1=2n (2n+2)(n 为大于或等于1的自然数)16.(2a +1)2【详解】原式═4a 2+4a +1=(2a )2+4a +1=(2a +1)2,故答案为:(2a +1)2.17.-4【详解】解:①()2242x ax x ++=-,①4a =-故答案为4-18.5【详解】222()121x a x ax a--=-+-,根据题意得26a=,21a b-=,解得a=3,b=8,那么b a-=5. 19.(1)2x2(1+4x)(1-4x).(2) 3a(x2-2xy+y2)=3a(x-y)2.【详解】解(1)2x2-32x4=2x2(1-16x2)=2x2(1+4x)(1-4x).(2)3ax2-6axy+3ay2=3a(x2-2xy+y2)=3a(x-y)2.20.天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.【详解】依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.①ABC是等边三角形.证明见解析【详解】①ABC是等边三角形,理由:①a2+2b2+c2﹣2b(a+c)=0①a2+b2+c2﹣2ba﹣2bc+b2=0,①(a﹣b)2+(b﹣c)2=0,则a=b,b=c,故a=b=c,则①ABC是等边三角形.22.(1)x12;(2)﹣12x2y3+2x4y3;(3)﹣4mn3;(4)﹣a5b2﹣6a3.【详解】(1)原式=x3+4+5=x12;(2)原式=(﹣6xy)×2xy2+(﹣6xy)(﹣13x3y2)=﹣12x2y3+2x4y3;(3)原式=4m2n4﹣4m2n4﹣4mn3=﹣4mn3;(4)3a5b2﹣6a3﹣4a×(a4b2)=3a5b2﹣6a3﹣4a5b2=﹣a5b2﹣6a3.23.(1)B;(2)①3;①21 40.【详解】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①①x2﹣4y2=(x+2y)(x﹣2y),①12=4(x﹣2y)得:x﹣2y=3;①原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+120)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解学年八年级数学上学期单元测试卷

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解学年八年级数学上学期单元测试卷

第十四章 整式的乘法与因式分解(时间:100分钟,分值:150分)一.选择题目(共12小题,每小题4分,共48分)1.下列运算正确的是( )A .x 4+x 4=x 8B .x 6÷x 2=x 3C .x •x 4=x 5D .(x 2)3=x 52.计算﹣(﹣2x 3y 2)4的结果是( )A .16x 7y 6B .﹣16x 7y 6C .16x 12y 8D .﹣16x 12y 83.多项式3x 2y 2﹣12x 2y 4﹣6x 3y 3的公因式是( )A .3x 2y 2zB .x 2y 2C .3x 2y 2D .3x 3y 2z4.下列多项式乘以多项式能用平方差公式计算的是( )A .(a +b )(﹣b ﹣a )B .(﹣a +b )(﹣b ﹣a )C .(a +b )(b +a )D .(﹣a +b )(b ﹣a ) 5.下列各式中,正确的因式分解是( )A .a 2﹣b 2+2ab ﹣c 2=(a +b ﹣c )(a ﹣b ﹣c )B .﹣(x ﹣y )2﹣(x ﹣y )=﹣(x ﹣y )(x ﹣y +1)C .2(a ﹣b )+3a (b ﹣a )=(2+3a )(a ﹣b )D .2x 2+4x +2﹣2y 2=(2x +2+2y )(x +1﹣y )6.若2x 2+m 与2x 2+3的乘积中不含x 的二次项,则m 的值为( )A .﹣3B .3C .0D .1 7.计算(−23)2021×(32)2021的结果是( )A .﹣1B .1C .23D .32 8.若(2x ﹣1)0有意义,则x 的取值范围是( )A .x =﹣2B .x ≠0C .x ≠12D .x =12 9.若x 2﹣mx +16是完全平方式,则m 的值等于( )A .2B .4或﹣4C .2或﹣2D .8或﹣810.已知a =817,b =279,c =913,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a11.若(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,则a 的值为( )A .0B .2C .12D .﹣212.如图所示的是4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为64,小正方形的面积为16,若分别为x ,y (x >y )表示为小长方形的长和宽,则下列关系式中不正确的是( )A .x +y =8B .xy =24C .x 2﹣y 2=32D .4xy +16=64二.填空题目(共4小题,每小题4分,共16分)13.计算:6m 3÷2m = .14.若a m =2,a n =5,则a 2m +2n = .15.计算:20212﹣2020×2022= .16.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+12)×(1+122)×(1+124)×(1+128)+1215= . 三.解答题(共8大题,共86分)17.(8分)计算:(1)√9−|﹣3|+(π﹣3.14)0﹣(﹣1); (2)199×201;18.(8分)计算:(1)(4a 2b +6a 2b 2﹣ab 2)÷2ab ; (2)(2x -3y )219.(8分)计算:(1)(x +y ﹣2z )(x ﹣y +2z ). (2)(x ﹣y )(2x +y )﹣(x +y )(x ﹣y ).20.(12分)因式分解:(1)﹣3a 3b 2+6ab 3 (2)4x 2﹣9;(3)2m2﹣12m+18.(3)(a﹣2b)2﹣(3a﹣2b)221.(12分)解方程或不等式:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1)(2)x(3x﹣2)<3(x﹣2)(x+1)22.(12分)在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12.(1)求出a的值;(2)在(1)的条件下,且b=﹣3时,计算(x+a)(x+b)的结果.23.(12分)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形“正方形(如图2).(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,xy=94,则(x﹣y)2=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.24.(14)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是;(2)如图2所示的大正方形,是由四个三边长分别为a、b、c的全等的直角三角形(a、b为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)整式测试题(二)
一、填空题(30分)
1、若2
28125y mxy x ++是完全平方式,求m 的值为____________。

2、若3x+1·2x+1=62x-3,则x= 。

3、当3m+2n -3=0时,则8m ·4n = 。

4、已知 (x - ay) (x + ay ) = x 2 - 16y 2 , 那么 a = 。

5、若a+b=5,ab=4,则a 2+ b 2的值为_____________________。

6、已知3,2==n m a a ,则n m a 23-的结果为_________________________。

7、若两个连续自然数的平方差是15,则这两个自然数的积为 。

8、化简:(2-1)(2+1) (22+1) (24+1)…(232+1)+1= 。

9、322236129xy y x y x -+中各项的公因式是__________。

10、6
43623y x xy x -+-是 次 项式,其中最高次项的系数是 。

二.选择题(每小题3,共30分)
1.下列运算中正确的是( )
A 、a 2·(a 3)2=a 7
B 、(12
)-2-│-1│-(π-1)0=2 C 、(a -2)2=a 2-4 D 、-0.005=5×10-3
2.已知除式是x 2+2x ,商式是x ,余式是-1,则被除式是( )
A x 3+2x 2-1
B 、x 2+2x
C 、x 2-1
D 、x 2-3x+1
3.使(x 2+px+q )(x 2-x )乘积中不含x 2与x 3的p 、q 的值是( )
A 、p=0,q=0
B 、p=1,q=1
C 、p=-1,q=-1
D 、p=-1,q=1
4.下列各式从左到右的变形,是因式分解的是:( )
A 、x x x x x 6)3)(3(692+-+=+-
B 、()()103252
-+=-+x x x x C 、()2
24168-=+-x x x D 、()()()()2332-+=+-x x x x 5.若3x 3-x -1=0,则9x 4+12x 3-3x 2-7x+1998的值等于( )
A 、1998
B 、1999
C 、2001
D 、2002
6下列语句中错误的是( )
A 、数字0也是单项式
B 、单项式-a 的系数与次数都是 1
C 、21πxy 是二次单项式
D 、-3
2ab 的系数是 -32 7下列计算结果正确的是( )
A 、(3x 4 )2 = 6x 8
B 、(-x 4)3 = -x 12
C 、(-4a 3 )2 =4a 6
D 、〔(- a)4〕5 = - a 20
8列计算结果正确的是( )
A 、a 3·a 3 = a 9
B 、m 2·n 2 = mn 4
C 、x m ·x 3 = x 3+m
D 、y ·y n = y n
9、下列计算结果错误的是( )
A 、(ab)7÷(ab)3 = (ab)4
B 、(x 2 )3 ÷(x 3 )2 = x
C 、(-32m)4÷ (-32m)2 = (- 3
2m)2 D 、(5a)6÷(- 5a)4 = 25a 2 10、下列式子中一定相等的是( )
A 、(a- b )2 = a 2 - b 2
B 、(a+ b)2 =a 2 + b 2
C 、(a - b)2 = b 2 -2ab + a 2
D 、a 3 – b 3 = (a+b)(a 2 - ab+b 2 )
三.解答题(每小题4分,共24分)
1、(ab+1)2-(ab -1)2
2、(a m )n (-a 3m )2n ÷(a mn )5-2(-a mn )2
3、(2a -2b+3c )(2a+2b -3c )
4、
⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+161141121121
5、( a - 2 ) ( a + 2 ) - 3 ( 2 a - 1)2 - ( 2 a 3- 4 a ) ÷( 2 a )
6、623432363(
0.9)455
a x a x ax ax +-÷
四、把下列各式分解因式:(每小题4分,共24分)
1、222axy y x a -
2、c ab ab abc 249714+--
3、()y x y x m +--2
4、()()2
2169b a b a +--
5、2236123xy y x x +-
6、()()110252
+-+-x y y x
五、(本题6分)
有一道题目是一个多项式减去6142
-+x x ,小强误当成了加法计算,结果得到322+-x x 。

正确的结果应该是多少?
六、(本题6分)若x 2-11x+1=0,则x 2+1x 2 的值为。

相关文档
最新文档