线性回归方程高考题
线性回归方程高考题讲解
1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 应的生产能耗 (吨标准煤)的几组对照数据:
3
4
5
6
2.5
3
4
4.5
( 1)请画出上表数据的散点图;
(吨)与相
(2)请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程;
(3)已知该厂技改前 100 吨甲产品的生产能耗为 90 吨标准煤.试根据( 2)求出的 线性回归方程,预测生产 100 吨甲产品的生产能耗比技改前降低多少吨标准煤 ?
(2)求出 y 关于 x 的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工 10 个零件需要多少时间?
(注:
(参考数值:
)
2、假设关于某设备的使用年限 x 和所支出的维修费用 y( 万元 ) 统计数据如下 :
使用年限 x 2
3
4
5
6
维修费用 y 2.2 3.8 5.5 6.5 7.0
若有数据知 y 对 x 呈线性相关关系 . 求:
(1) 填出下图表并求出线性回归方程 =bx+a 的回归系数 , ;
序号 x
1
2
2
3
3
4
4
5
5
6
∑
y
xy
x2
2.2
3.8
5.5
6.5
7.0
(2) 估计使用 10 年时 , 维修费用是多少 .
3、某车间为了规定工时定额, 需要确定加工零件所花费的时间, 为此作了四实试验, 得到的数据如下:
零件的个数 x(个) 2
3
4
5
加工的时间 y(小时) 2.5
高考数学复习典型题型专题讲解与练习94 一元线性回归模型及其应用
高考数学复习典型题型专题讲解与练习 专题94 一元线性回归模型及其应用题型一 求回归直线方程例1.(2022·甘肃·临泽县第一中学高二阶段练习(文))已知变量x 和y 正相关,则由如下表所示的观测数据算得的线性回归方程为【答案】B 【解析】 【分析】先求出样本的中心点的坐标,再代入选项检验即得正确答案. 【详解】 由题得12345543210,10x -----+++++==0.92 3.1 3.9 5.1 4.15 2.9 2.10.9010y -----+++++==,所以样本中心点的坐标为(0,0),代入选项检验得选B. 故答案为B 【点睛】(1)本题主要考查回归方程直线的性质,意在考查学生对该知识的掌握水平.(2) (,)x y 称为样本点的中心,回归直线过样本点的中心.这是回归方程的一个重要考点,要理解掌握并灵活运用.规律方法 求线性回归方程的一般步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x -,y -,∑n i =1x 2i ,∑ni =1x i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑n i =1x i y i -n x - y -∑n i =1x 2i -nx -2,a ^=y --b ^x -.(6)写出线性回归方程y ^=b ^x +a ^.例2.(2019·新疆·乌鲁木齐市第二十中学高二期中)随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y (万元)有如表的数据资料:(1) 在给出的坐标系中作出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa 、ˆb ; (3)估计使用年限为12年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆn i i i n ii x y nxy bx nx==-=-∑∑, ˆˆay bx =-.) 【答案】(1)见解析; (2) 1.23b =0.08a =; (3)估计使用12年时,支出总费用是14.84万元.. 【解析】 【分析】(1)在坐标系中描点可得散点图;(2)代入公式可求;(3)根据方程代入x=12可得费用. 【详解】(1)散点图如图,由图知y 与x 间有线性相关关系.(2)∵4x =,5y =,51112.3i i i x y ==∑,52190i i x ==∑,∴2112.354512.31.2390541ˆ0b-⨯⨯===-⨯;5 1.2340.ˆ0ˆˆ8ay bx =-=-⨯=. (3)线性回归直线方程是 1.2308ˆ.0yx =+, 当12x =(年)时, 1.23120.0814.8ˆ4y =⨯+=(万元).即估计使用12年时,支出总费用是14.84万元. 【点睛】本题主要考查回归直线在生活中的应用,明确所给公式中各个模块的含义,代入公式可求.题目难度不大,侧重于应用性.例3.(2022·全国·高二单元测试)有一位同学家里开了一个小卖部,他为了研究气温对热茶销售的影响,经过统计,得到一个卖出热茶杯数与当天气温的对比表如下: 气温x/℃ -5 0 4 7 12 15 19 23 27 31 36热茶销售杯数y/杯 156 150 132 128 130 116 104 89 93 76 54(1)画出散点图;(2)你能从散点图中发现气温与热茶的销售杯数之间关系的一般规律吗? (3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系; (4)试求出回归直线方程;(5)利用(4)的回归方程,若某天的气温是2 ℃,预测这一天卖出热茶的杯数.【答案】(1)见解析;(2)见解析;(3)见解析;(4) 2.354774ˆ1.y x =-+;(5)143【解析】 【详解】分析:(1)以x 轴表示气温,以y 轴表示热茶杯数,可作散点图;(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此热茶的销售杯数与气温是相关的,气温越高,卖出去的热茶杯数越少;(3)从散点图可以看出,这些点大致分布在一条直线附近,根据不同的标准可以画出不同的直线来近似地表示这种线性相关关系; (4)由题中所给的数据求得回归方程即可;(5)结合回归方程的预测作用和(4)中的结论整理计算即可求得最终结果. 详解:(1)以x 轴表示气温,以y 轴表示热茶杯数,可作散点图如下图所示.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此热茶的销售杯数与气温是相关的,气温越高,卖出去的热茶杯数越少.(3)从散点图可以看出,这些点大致分布在一条直线附近,根据不同的标准可以画出不同的直线来近似地表示这种线性相关关系,如图所示.(4)因112i i 1169x ,x 411∑===为335,11i 11228y ,xiyi 1411∑===778. 所2169122814778-111111b 1694335-1111⨯⨯=⎛⎫⨯ ⎪⎝⎭^以≈-2.35, 1228169a 2.35147.74.1111=+⨯=^所以回归直线方程y 2.35x 147.74.=-+^为(5)由(4)的方程,当x=2,y 4.70147.74143.04,=-+=^时因此若某天的气温为2 ℃,这一天大约可以卖出143杯热茶.点睛:(1)正确运用计算^a ,^b 的公式和准确的计算,是求线性回归方程的关键. (2)分析两变量的相关关系,可由散点图作出判断,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.题型二 利用回归直线方程对总体进行估计例4.(2022·江西抚州·高二期末(理))保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y 辆与年份代码x 年的数据如下表:(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车.参考公式:回归方程y bx a =+斜率和截距的最小二乘估计公式分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.【答案】(1)219y x =+ (2)27900 【解析】【分析】(1)第一步分别算第x ,y 的平均值,第二步利用1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果. (1)3x =,305070+100+110=725y ++=,1222222221130+250+370+4100+5110-5372==211+2+3+4+5-53ni ii ni i x y nx yb x nx==-⨯⨯⨯⨯⨯⨯⨯=⨯-∑∑,因为a y bx =-,所以72213=9a =-⨯,所以219y x =+(2)预测该地区2022年抽样1000汽车调查中新能源汽车数,当7x =时,217993y =⨯+=,该地区2022年共有30万辆汽车,所以新能源汽车93300000279001000N =⨯=. 规律方法 本题已知y 与x 是线性相关关系,所以可求出回归方程进行估计和预测.否则,若两个变量不具备相关关系或它们之间的相关关系不显著,即使求出回归方程也毫无意义.例5.(2022·陕西·西安中学高二期中(理))偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差(实际成绩-平均分=偏差).在某次考试成绩统计中,某老师为了对学生数学偏差x (单位:分)与物理偏差y (单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:(1)若x 与y 之间具有线性相关关系,求y 关于x 的线性回归方程;(2)若该次考试该数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.(下面是参考数据和参考公式)()()()()()()()()()818222222222120 6.515 3.513 3.53 1.520.550.510 2.518 3.532420151332510181256i ii ii x yx===⨯+⨯+⨯+⨯+⨯+-⨯-+-⨯-+-⨯-==+++++-+-+-=∑∑,回归直线方程为ˆˆˆy bx a =+,其中()()()1122211ˆˆˆnni i iii i nni ii i x y nxy x x y y b x nx x x ay bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑【答案】(1)11ˆ42yx =+ (2)94 【解析】 【分析】(1)根据最小二乘法即可求出y 关于x 的线性回归方程;(2)设该同学的物理成绩为ω,则物理偏差为91.5ω-,数学偏差为8,根据回归方程可知,1191.5842ω-=⨯+,即可解出.(1)由题意可得,20151332(5)(10)(18)582x +++++-+-+-==,()()()6.5 3.5 3.5 1.50.50.5 2.5 3.5988y +++++-+-+-==, 1222159324ˆ81285412568()2ni ii nii x y nxybxnx ==--⨯⨯===-⨯-∑∑,所以9151ˆˆ8422a y bx =-=-⨯=,故线性回归方程为11ˆ42yx =+. (2)由题意,设该同学的物理成绩为ω,则物理偏差为:91.5ω-. 而数学偏差为128-120=8,∴1191.5842ω-=⨯+,解得94ω=, 所以,可以预测这位同学的物理成绩为94.例6.(2022·广东揭阳·高二期末)从2018年1月1日起,广东、等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:有评估机构从以往购买了车险的车辆中随机抽取1000 辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆每年出险次数的概率):(1)求某车在两年中出险次数不超过2次的概率;(2)经验表明新车商业车险保费与购车价格有较强的线性相关关系,估计其回归直线方程为:1201600y x =+.(其中x (万元)表示购车价格,y (元)表示商业车险保费).李先生2016 年1月购买一辆价值20万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费,并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保) 【答案】(1)0.8744;(2)3846元,减轻了车主负担. 【解析】 【分析】(1)利用互斥事件的概率公式列式计算即得;(2)求出下一年车险保费倍率X 的分布列,并求出期望,即可得出车主下一年的保费,并根据期望是否大于1得出结论. 【详解】(1)设某车在两年中出险次数为N , 则(2)(0)(1)(2)P N P N P N P N ≤==+=+=5005005003805001003803802210001000100010001000100010001000=⋅+⋅⋅+⋅⋅+⋅0.8744=, 所以某车在两年中出险次数不超过2次的概率为0.8744; (2)设该车辆2017 年的保费倍率为X ,则X 为随机变量,X 的取值为0.85 ,1,1.25 ,1.5 ,1.75 , 2, X 的分布列为:下一年保费倍率X 的期望为:()0.850.510.38 1.250.1 1.50.015 1.750.00420.0010.9615+E X =⨯⨯+⨯+⨯+⨯+⨯=,该车辆估计2017年应缴保费为:()1202016000.96153846⨯+⨯=元, 因0.96151<,则车险新政总体上减轻了车主负担.题型三 线性回归分析例7.(2022·山东·日照青山学校高二期末)共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,某站点6天的使用单车用户的数据如下,用两种模型①y bx a =+;②y a =分别进行拟合,得到相应的回归方程1ˆ10.7 3.4yx =+,2ˆ22.8y =,进行残差分析得到如表所示的残差值及一些统计量的值:(1)残差值的绝对值之和越小说明模型拟合效果越好,根据残差,比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;(2)残差绝对值大于3的数据认为是异常数据,需要剔除,剔除异常数据后,重新求出(1)中所选模型的回归方程.(参考公式:1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-) 【答案】(1)该选模型①,理由见解析 (2)111y x =+ 【解析】 【分析】(1)求出两模型的残差值的绝对值之和进行比较即可,(2)先剔除异常数据,然后利用回归方程的公式结合已知数据进行计算即可 (1)应该选择模型①模型①的残差值的绝对值之和为1.1+2.8+7.5+1.2+1.9+0.4=14.9 模型②的残差值的绝对值之和为0.3+5.4+4.3+3.2+1.6+3.8=18.6. ∵14.9<18.6,∴模型①的拟合效果较好,应该选模型①.(2)剔除异常数据,即剔除第3天的数据后,得()1 3.563 3.65x =⨯-=,()14164340.65y =⨯-=, 511049343920i ii x y==-⨯=∑,522191382i i x ==-=∑.∴51522159205 3.640.6189.2ˆ11825 3.6 3.617.25i ii ii x y xybxx ==--⨯⨯====-⨯⨯-∑∑, ˆˆ40.611 3.61ay bx =-=-⨯=. ∴y 关于x 的回归方程为111y x =+.规律方法 (1)解答线性回归问题,应通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模型的拟合效果,在此基础上,借助回归方程对实际问题进行分析.(2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适. ②残差平方和法:残差平方和∑ni =1 (y i -y ^i )2越小,模型的拟合效果越好. ③决定系数法:R 2=1-∑ni =1(y i -y ^i )2∑ni =1 (y i -y -)2越接近1,表明回归的效果越好. 例8.(2022·河南·南阳中学高三阶段练习(文))2022年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.yx =+,模型②:ˆ14.4y=;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7y x a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附: 刻画回归效果的相关指数()()22121ˆ1niii nii y yR y y ==-=--∑∑,且当2R 越大时,回归方程的拟合效果越好.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-4.1≈ 【答案】(1)对A 型材料进行应用改造的投入为17亿元时的直接收益为72.93(亿元); (2)投入17亿元比投入20亿元时收益小. 【解析】 【分析】(1)根据模型和相关系数公式计算比较即可,然后将x =17代入较好的模型即可预测直接收益;(2)根据回归方程过样本中心点(,x y )求出ˆa,再令x =20算出预测的直接收益,即可算出投入20亿元时的总收益,与(1)中的投入17亿元的直接收益比较即可. (1)对于模型①,对应的15222740485460=387y ++++++=,故对应的()772221171750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为21.314.472.9ˆ3y=≈(亿元).另解:本题也可以根据相关系数的公式,直接比较79.13和20.2的大小,从而说明模型②拟合精度更高、更可靠. (2) 当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.例9.(2022·陕西·高新一中高三阶段练习(理))2022年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造.根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.yx =+,模型②:ˆ14.4y=;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7y x a =-+.(1)根据表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益; (2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,回归方程的拟合效果越好 4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)2221R R >,模型②拟合精度更高、更可靠,收益为72.93;(2)投入17亿元比投入20亿元时收益小. 【解析】 【分析】(1)根据题意求得()1221i i y y =-∑,再根据2R 的计算公式,即可分别求得2212,R R ,则可判断不同模型的拟合度;(2)根据题意,求得回归直线方程,即可代值计算,求得预测值. (1)对于模型①,对应的15222740485460387y ++++++==,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ21.314.472.93y=≈. (2) 当17x >时, 后五组的212223242568.56867.5666523,6755x y ++++++++====,由最小二乘法可得67(0.7)238ˆ 3.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1574.172.93-⨯++=>,故投入17亿元比投入20亿元时收益小.题型四 残差分析与相关指数的应用例10.(2022·河北·藁城新冀明中学高二阶段练习)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和; 【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件; (3)各组残差见解析,残差平方和为3.8182. 【解析】 【分析】(1)根据表中数据描点即可求解;(2)根据表中数据,求出x ,y ,612i i x =∑,61i i i x y =∑,代入公式求出线性回归方程的系数ˆb,进而求出ˆa即可得回归直线方程; (3)根据残差的定义及残差平方和公式即可求解. (1)解:散点图如下:(2) 解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818ii i y y=--+++--==++∑. 规律方法 (1)利用残差分析研究两个变量间的关系时,首先要根据散点图来判断它们是否线性相关,是否可以用线性回归模型来拟合数据,然后通过残差e ^1,e ^2,…,e ^n 来判断模型拟合的效果.(2)若残差点比较均匀地分布在水平带状区域中,带状区域越窄,说明模型拟合度越高,回归方程预报精确度越高.例11.(2022·河北·大名县第一中学高二阶段练习)随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.华为技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x (亿元)与科技升级直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①:ˆ 4.111.8yx =+;模型②:ˆ14.4y=;当17x >时,确定y 与x 满足的线性回归方程为0.7y x a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①、②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益. (附:刻画回归效果的相关指数,()()22121ˆ1niii nii y yR y y ==-=--∑∑ 4.1≈)(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.附:用最小二乘法求线性回归方程ˆˆˆybx a =+的系数:()()()1122211ˆˆˆ,nni iii i i nniii i x ynx yxx y y bay bx xnx xx ====-⋅--===---∑∑∑∑ 【答案】(1)回归模型②,72.93(亿元);(2)投入20亿元时,公司的实际收益更大. 【解析】 【分析】(1)根据表中数据比较21R 和22R 可判断拟合效果,进而求出预测值; (2)求出,x y ,进而求出a ,得出回归方程得求出结果. 【详解】解:(1)由表格中的数据,182.479.2>,∴()()772211182.479.2iii i y y y y ==>--∑∑,∴()()772211182.479.211iit t y y y y ==-<---∑∑可见模型①的相关指数21R 小于模型②的相关指数22R . 所以回归模型②的拟合效果更好.所以当17x =亿元时,科技升级直接收益的预测值为ˆ21.314.421.3 4.114.472.93y=≈⨯-=(亿元). (2)当17x >时,由已知可得2122232425235x ++++==,68.56867.5666667.25y ++++==.∴0.767.20.72383.3a y x =+=+⨯=.∴当17x >时,y 与x 满足的线性回归方程为ˆ0.783.3yx =-+. 当20x时,科技升级直接收益的预测值为ˆ0.72083.369.3y=-⨯+=亿元.当20>亿元,x亿元时,实际收益的预测值为69.3574.3+=亿元72.93∴技术升级投入20亿元时,公司的实际收益更大.题型五非线性回归分析例12.(2022·全国·模拟预测)某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y表示每天使用扫码支付的人次,统计数据如下表所示:根据以上数据,绘制了如图所示的散点图.(1)根据散点图,判断在推广期内,y a bx=+与x=⋅(c,d均为大于零的常数)哪一个y c d适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及题干中表格内的数据,建立y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次.参考数据:其中lg i i v y =,7117i i v v ==∑.参考公式:对于一组数据)()()(1122,,,,,,n n u v u v u v ⋅⋅⋅,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为1221ˆni i i nii uv nuvunuβ==-=-∑∑,ˆav u β=-. (3)推广期结束后,为更好地服务乘客,车队随机调查了100人次的乘车支付方式,得到如下结果: 已知该线路公交车票价2元,使用现金支付的乘客无优惠,使用公交卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有5人次乘客享受7折优惠,有10人次乘客享受8折优惠,有15人次乘客享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.【答案】(1)x y c d =⋅适宜(2))(0.25ˆ 3.4710xy=⨯,活动推出第8天使用扫码支付的人次为347(3)199200元 【解析】 【分析】(1)根据散点图即可判断回归方程类型;(2)根据题意中的数据,利用最小二乘法求出ˆb ,进而求出ˆa,即可得出回归方程,令8x =求解即可;(3)根据题意分别求出享受7折优惠、8折优惠、9折优惠的收入,进而加起来即可. (1)根据散点图判断,x y c d =⋅适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型. (2)∵x y c d =⋅,∴两边同时取常用对数,得lg lg lg y c x d =+. 设lg a c =,lg b d =,则v a bx =+.∵4x =, 1.54v =,721140i i x ==∑,∴7172221750.1274 1.547ˆ0.2514074287i i i i i x v xvbx x==--⨯⨯====-⨯-∑∑,ˆˆ0.54av bx =-=,∴ˆ0.540.25v x =+,∴)(0.540.250.25ˆ10 3.4710xx y +==⨯,把8x =代入上式,得0.540.258 2.5420.54ˆ10101010347y+⨯===⨯=, ∴y 关于x 的回归方程为)(0.25ˆ 3.4710xy=⨯,活动推出第8天使用扫码支付的人次为347. (3)由题意,可知一个月中使用现金的乘客有1000人次,共收入100022000⨯=(元);使用公交卡的乘客有6000人次,共收入6000 1.69600⨯=(元).使用扫码支付的乘客有3000人次,其中,享受7折优惠的有500人次,共收入500 1.4700⨯=(元),享受8折优惠的有1000人次,共收入1000 1.61600⨯=(元),享受9折优惠的有1500人次,共收入1500 1.82700⨯=(元),故该车队一辆车一个月的收入为200096007001600270016600++++=(元).∴估计该车队一辆车一年的收入为1660012199200⨯=(元).规律方法求非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程.(4)分析拟合效果:通过计算决定系数或画残差图来判断拟合效果.(5)根据相应的变换,写出非线性回归方程.例13.(2022·黑龙江·哈尔滨市第六中学校高二期末)区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表注:参考数据5174.691i i y ==∑,51312.761i i i x y ==∑,5110.980i i z ==∑,5140.457i i i x z ==∑(其中ln z y =).附:样本()(),1,2,,i i x y i n =⋅⋅⋅的最小二乘法估计公式为1221ni ii nii x ynxy b xnx==-=-∑∑,a y bx =-(1)根据表中数据判断,y a bx =+与e dx y c =(其中e 2.71828=⋅⋅⋅,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)(2)根据(1)的结果,求y 关于x 的回归方程;(3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的“优胜公司”,已知在每场比赛中,甲胜乙的概率为12,甲胜丙的概率为13,乙胜丙的概率为35,若首场由甲乙比赛,则求甲公司获得“优胜公司”的概率. 【答案】(1)dx y ce = (2)0.75170.0591x y e -= (3)310【解析】【分析】(1)根据表中数据判断y 关于x 的回归方程为非线性方程;(2)令ln z y =,将y 关于x 的非线性关系,转化为z 关于x 的线性关系,利用最小二乘法求解;(3)利用相互独立事件的概率相乘求求解; (1)根据表中数据e dx y c =适宜预测未来几年我国区块链企业总数量. (2)e dx y c =,ln ln y dx c ∴=+,令ln z y =,则ln z dx c =+,5110.980 2.19655ii zz ====∑,5112345355ii xx =++++===∑由公式计算可知122140.457310.980.7517,5545ni ii n i i x znxzb x nx==-⨯==--=-∑∑ˆln 2.1960.751730.0591c z dx =-=-⨯=- ln 0.75170.0591y x ∴=-,即ln 0.75170.0591y x ∴=-,即0.75170.0591x y e -=所以y 关于x 的回归方程为0.75170.0591x y e -= (3)设甲公司获得“优胜公司”为A 事件. 则11123112113232352253210()P A ⨯+⨯⨯⨯+⨯⨯⨯==所以甲公司获得“优胜公司”的概率为310.例14.(2022·湖南·长沙一中高三阶段练习)数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1-9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP上进行一段时间的训练,每天的解题平均速度y(秒)与训练天数x(天)有关,经统计得到如表的数据:现用by ax=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过50天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为23,已知在前3局中小明胜2局,小红胜1局.若每局不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1iitx =)。
线性回归方程高考题讲解
线性回归方程高考题讲解线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
专题01 线性回归方程(解析版)
【解析】解: x 0 1 2 3 3 , y m 3 5.5 7 m 15.5 ,
4
2
4
4
这组数据的样本中心点是 ( 3 , m 15.5) , 24
关于 y 与 x 的线性回归方程 yˆ 2.1x 0.85 ,
m 15.5 2.1 3 0.85 ,解得 m 0.5 ,
x (次数 / 分
20
30
40
50
60
钟)
y( C)
25
27.5
29
32.5
36
A. 33 C
B. 34 C
C. 35 C
【解析】解:由题意,得 x 20 30 40 50 60 40 , 5
y 25 27.5 29 32.5 36 30 , 5
则 k y 0.25x 30 0.25 40 20 ;
故答案为:10.
例 7.已知一组数据点:
x
x1
x2
x8
y
y1
y2
y8
8
用最小二乘法得到其线性回归方程为 yˆ 2x 4 ,若数据 x1 , x2 , , x8 的平均数为 1,则 yi i 1
16 .
3
原创精品资源学科网独家享有版权,侵权必究!
【解析】解:由题意, x 1 ,设样本点的中心为 (1, y) , 又线性回归方程为 yˆ 2x 4 ,则 y 2 1 4 2 ,
购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用 Y (单位:万元)的分布列为:
Y
30
20
70
120
P
0.3
0.4
0.2
0.1
E(Y ) 30 0.3 20 0.4 70 0.2 120 0.1 25 (万元)
(完整)线性回归方程高考题
线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归方程高考的题目讲解
线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
(完整版)线性回归方程必练题(强烈推荐).doc
《线性回归方程》强化训练1、(门槛题)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5加工的时间y (小时) 2.5 3 4 4.5(Ⅰ)在给定的坐标系中画出表中数据的散点图;(Ⅱ)求出 y 关于 x 的线性回归方程? ? ?,并在坐标系中画出回归直线;y bx a(Ⅲ)试预测加工10个零件需要多少时间?n附录:参考公式:? x i x y i y?i 1 ,?b n y bx .2 ax i xi 12 、(泸州市 2017 届高三一诊第 20 题)某班主任为了解本班学生的数学和物理考试成绩间关系,在某次阶段性测试中, 他在全班学生中随机抽取一个容量为 5 的样本进行分析。
该样本中5位同学的数学和物理成绩对应如下表:学生编号123 4 5 数学分数 x 89 9193 95 97 物理分数 y8789899293( Ⅰ ) 根据上表数据,用变量y 与 x 相关系数说明物理成绩y 与数学成绩 x 之间线性相关关系的强弱; ( Ⅱ ) 建立 y 与 x 的线性回归方程(系数精确到0.01),并预测该班数学分数为 88 的学生的物理分数 .5552附录:参考数据:y i450,x i y i41880,y i y4.90 ;i 1i 1i 1n参考公式:相关系数rx i x y i y?i 1; 回归直线的方程是 ??,nny bxa2 2i 1 x i xi 1 y iyn其中对应的回归估计值:?x i x y iy?i 1, ?,参考值:15 3.87bny bx .2ai 1 x i x3、( 2016年全国新课标高考Ⅲ卷第 18 题)下图是我国 2008 年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明;(Ⅱ)建立 y 关于 t 的回归方程(系数精确到0.01),预测 2016 年我国生活垃圾无害化处理量 777y)2附注:参考数据:y i 9.32 ,t i y i 40.17 ,( y i0.55 , 7 2.646 .i 1 i 1i 1nt y it i y参考公式:相关系数ri 1,nn22t ty i yii 1i 1n)) ))(t i t )( y iy)i 1) )回归方程 ya bt 中斜率和截距的最小二乘估计公式分别为:bn,a=y (t it ) 2i 1.)bt .4 、( 2015 年全国新课标高考Ⅰ卷第 19 题)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响,对近 8 年的宣传费x i 和年销售量 y i i 1,2,L ,8ytz数据作了初步处理,得到下面的散点图及一些统计量的值.r ur ur 8888xyw(x i x) 2(w i w) 2( x i x)( y iy)( w i w)( y i y)i 1i 1i1i 146.6 563 6.8289.81.61469108.8ur8表中 w ix i , w =1w i .8 i 1(Ⅰ)根据散点图判断, y a bx 与 y cd x ,哪一个适宜作为年销售量y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程;(Ⅲ)已知这种产品的年利润 z 与 x , y 的关系为 z 0.2 y x ,根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费 x49 时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费 x 为何值时, 年利润的预报值最大?附:对于一组数据 (u 1, v 1 ) , (u 2 , v 2 ) , , (u n , v n ) , 其回归直线 vu 的斜率和截距的最小二乘估计分别为:n(u iu)(v iv)μ i 1μμ=n,=vu .(u i u)2i 1。
线性回归方程[高考数学总复习][高中数学课时训]
线性回归方程1.下列关系中,是相关关系的为 (填序号).①学生的学习态度与学习成绩之间的关系; ②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系.答案 ①②2.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l 2.已知在两人的试验中发现变量x 的观测数据的平均值恰好相等,都为s ,变量y 的观测数据的平均值也恰好相等,都为t ,那么下列说法中正确的是 (填序号). ①直线l 1,l 2有交点(s ,t )②直线l 1,l 2相交,但是交点未必是(s ,t ) ③直线l 1,l 2由于斜率相等,所以必定平行 ④直线l 1,l 2必定重合 答案 ① 3.下列有关线性回归的说法,正确的是 (填序号). ①相关关系的两个变量不一定是因果关系 ②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系 ④任一组数据都有回归直线方程 答案 ①②③ 4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 . 答案 ①②③5.已知回归方程为yˆ=0.50x -0.81,则x =25时,y ˆ的估计值为 . 答案 11.69例1 下面是水稻产量与施化肥量的一组观测数据: 施化肥量 15 20 25 30 35 40 45 水稻产量320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而基础自测增长吗?解 (1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化 肥施用量的增加而增长.例2 (14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程. 解 (1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分(2)x =101 (0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y=101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42, 9分bˆ=∑∑==-∙-ni ini ii xn xyx n yx 1221≈0.813 6,a ˆ=1.42-1.74×0.813 6≈0.004 3, 13分∴回归方程y ˆ=0.813 6x +0.004 3.14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5∑=41i iiy x=3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144xxyx yx i ii ii -∙-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -bˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x +0.35. (3)现在生产100吨甲产品用煤 y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =5.1283.1120.850.767.66++++=93.6.bˆ=25125155xxyx y xi ii i i-∙-∑∑==≈0.880 9.aˆ=y -bˆx =93.6-0.880 9×30=67.173. ∴回归方程为yˆ=0.880 9x +67.173.3.某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?解 (1)n =6,∑=61i ix=21,∑=61i iy=426,x =3.5,y =71,∑=612i ix =79,∑=61i ii yx =1 481,bˆ=26126166xxyx y xi ii i i-∙-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y -bˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx =77.37-1.82x . (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x =6,代入回归方程:yˆ=77.37-1.82×6=66.45(元)当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是.答案 a ,c ,b2.回归方程yˆ=1.5x -15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x =10时,y =0 答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为yˆ=8.25x +60.13,下列叙述正确的是 .①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ② 4.三点(3,10),(7,20),(11,24)的回归方程是 .答案 yˆ=1.75x +5.75 5.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i ix=52,∑=81i iy=228,∑=812i ix =478,∑=81i iiy x=1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 . 答案 ①③④8.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程yˆ=b ˆx +a ˆ表示的直线一定过定点 . 答案 (4,5) 二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.解(1)数学成绩和物理成绩具有相关关系.(2)以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近. 10.(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线. 解 (1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i ix=60 975,∑=51i iiy x=12 952,bˆ=25125155xxyx y xi ii i i-∙-∑∑==≈0.196 2aˆ=y -bˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x +1.814 2.11.某公司利润y 与销售总额x (单位:千万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21,y =71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1,=712i ix =102+152+172+202+252+282+322=3 447,∑=71i iiy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177xx yx y xi i i i i-∙-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104,aˆ=y -bˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x -0.084. (3)把x =24(千万元)代入方程得, yˆ=2.412(千万元). ∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:因此,x =525=5,y =5250 =50,∑=512i ix =145,∑=512i iy =13 500,∑=51i iiy x=1 380.于是可得:bˆ=25125155xxyx y xi ii i i-∙-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -bˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x +17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,yˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.。
线性回归方程的高考题
线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归高考题
线性回归高考题 Last updated on the afternoon of January 3, 2021线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 63 4(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y若有数据知y对x呈线性相关关系.求:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 3 4(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966697381899091已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据: (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y34(I )请画出上表数据的散点图;(II )请根据上表提供的数据,求出y关于x的线性回归方程;(III )已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II )求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤? 7、以下是测得的福建省某县某种产品的广告费支出x 与销售额y (单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8 销售额y30406050702456830 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x 与销售额y (单位:百万元)之间的一般规律吗? (2)求y 关于x 的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元) 8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y 与腐蚀时间t 之间对应的一组数据: (1)画出散点图;(2)试求腐蚀深度y 对时间t 的回归直线方程。
高考线性回归方程总结
第二讲 线性回归方程一、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:∑∑∑===-⋅---=ni ini ini iiy y x x y y x x r 12121)()())((,其中:(1)⎩⎨⎧<>负相关正相关00r r ;2相关性很弱;相关性很强;3.0||75.0||<>r r例题1:下列两个变量具有相关关系的是A.正方形的体积与棱长;B.匀速行驶的车辆的行驶距离与行驶时间;C.人的身高和体重;D.人的身高与视力;例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线121+-=x y 上,则样本相关系数为 例题3:r 是相关系数,则下列命题正确的是:(1)]75.0,1[--∈r 时,两个变量负相关很强;2]1,75.0[∈r 时,两个变量正相关很强; (3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)41.0=r 时,两个变量相关性很弱; 3、散点图:初步判断两个变量的相关关系;例题4:在画两个变量的散点图时,下列叙述正确的是 A.预报变量在x 轴上,解释变量在y 轴上; B.解释变量在x 轴上,预报变量在y 轴上; C.可以选择两个变量中的任意一个变量在x 轴上;D.可以选择两个变量中的任意一个变量在y 轴上; 例题5:散点图在回归分析过程中的作用是A.查找个体个数B.比较个体数据的大小C.研究个体分类D.粗略判断变量是否线性相关二、线性回归方程:1、回归方程:a x b yˆˆˆ+= 其中2121121)())((ˆxn xy x n yx x x y yx x bni ini ii ni ini ii--=---=∑∑∑∑====,x b y aˆˆ-=代入样本点的中心 例题1:设),(),,(),,(2211n n y x y x y x 是变量n y x 的和个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线过一、二、四象限,以下结论正确的是 A.直线l 过点),(y x B.当n 为偶数时,分布在l 两侧的样本点的个数一定相同 C.的和y x 相关系数在0到1之间 D.的和y x 相关系数为直线l 的斜率例题2:工人月工资y 元依劳动生产率x 千元变化的回归直线方程为x y9060ˆ+=,下列判断正确的是A.劳动生产率为1000元时,工资为150元;B.劳动生产率提高1000元时,工资平均提高150元;C.劳动生产率提高1000元时,工资平均提高90元;D.劳动生产率为1000元时,工资为90元;例题3:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y,则不正确的是 A.y 与x 具有正的线性相关关系; B.回归直线过样本点的中心),(y xC.若该大学某女生身高增加1cm,则其体重约增加D.若该大学某女生身高为170cm,则可断定其体重必为例题4:为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 A.1-=x y B.1+=x y C.x y 2188+= D.176=y 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差; (2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高; 3残差平方和∑=-ni i iyy12)ˆ(越小,模型拟合精度越高; 3、相关指数:∑∑==---=n i ini i iy yyyR 12122)()ˆ(1(1)其中:∑=-ni i iyy12)ˆ(为残差平方和;∑=-ni i y y 12)(为总偏差平方和; (2))1,0(2∈R ,越大模型拟合精度越高; 例题5:下列说法正确的是(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差; A.12 B.34 C.14 D.23例题6:关于回归分析,下列说法错误的是A.在回归分析中,变量间的关系若是非确定关系,则因变量不能由自变量唯一确定;B.线性相关系数r 可以是正的,也可以是负的C.样本点的残差可以是正的,也可以是负的D.相关指数2R 可以是正的,也可以是负的 例题7:下列命题正确的是(1)线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; (2)残差平方和越小的模型,拟合的效果越好;(3)用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好; (4)随机误差e 是衡量预报精确度的一个量,但它是一个不可观测的量;(5)i eˆ表示相应于点),(i i y x 的残差,且0ˆ1=∑=ni ie;A.135B.245C.124D.23例题8:已知x 与y 之间的几组数据如下表:a xb yˆˆˆ+=;若某同学根据上表中的前两个数据)2,2(),0,1(求得的直线方程为a x b y '+'=,则下列结论正确的是A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 例题9:关于某设备的使用年限x年和所支出的维修费用y 万元有下表所示的资料:(1)线性回归方程a x b yˆˆˆ+=中的回归系数b a ˆ,ˆ; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断; (3)使用年限为10年时,维修费用大约是多少 三、非线性回归模型:例题1:如果样本点分布在某一条指数函数曲线bx ae y =的周围,其中a 和b 是参数,通过两边取自然对数的方法,把指数关系式变成对数关系式后,下列哪个变换结果是正确的 A.a bx y ln ln ⋅= B.a bx y ln ln += C.a bx y ln ln ln ⋅= D.a bx y ln ln ln += 例题2:下列回归方程中, 是线性回归方程; 是非线性回归方程;(1)27.3688.0ˆ+=x y28.1225.0ˆ2-=x y 3x e y 3.16.2ˆ= (4)x y5.14ˆ-= 5xe y 185.038.1ˆ-=例题3:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x 单位:千元对年销售量y 单位:t 和年利润z 单位:千元的影响,对近8年的年宣传费和年销售量i=1,2,···,8数据作了初步处理,得到下面的散点图及一些统计量的值;表中w 1 w =1881i w=∑1Ⅰ根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型给出判断即可,不必说明理由Ⅱ根据Ⅰ的判断结果及表中数据,建立y 关于x 的回归方程;Ⅲ以知这种产品的年利率z 与x 、y 的关系为z=;根据Ⅱ的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少 (ii )年宣传费x 为何值时,年利率的预报值最大附:对于一组数据u 1 v 1,u 2 v 2…….. u n v n ,其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:四、独立性检验:例题1:下表是一个22⨯列联表:的值分别为 ;例题2:可以粗略的判断两个分类变量是否有关系的是 A.散点图 B.残差图 C.等高条形图 D.以上都不对例题3:在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大A.d c c b a a ++与 B.d a c d c a ++与 C.c b c d a a ++与 D.ca cd b a ++与例题4:在判断两个分类变量是否有关系的常用方法中,最为精确的方法是 A.考察随机误差e B.考察线性相关系数r C.考察相关指数2R D.考察独立性检验中的2K例题5:在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是;①若2k 的观测值满足635.62≥k ,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有 99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99&的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误;A.①B. ①③C. ③D. ②例题6:在调查学生数学成绩与物理成绩之间的关系时,得到如下数据人数:数学成绩与物理成绩之间有把握有关;A. B. C. D.。
线性回归方程高考题
线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3456【43(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:456使用年限x2&3维修费用y~若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x212@2334^4556《∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个),2345加工的时间y(小时)34(1)在给定的坐标系中画出表中数据的散点图;¥(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:!8934567》66697381899091已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:;245683040605070(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.…6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x3456y34;(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:8广告费支出x245】6销售额y3040605070(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗(2)求y关于x的回归直线方程;@(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s)510152030深度y(m)6$10101316(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归方程高考题完整版
线性回归方程高考题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 63 4(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 22 33 44 55 6∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 3 4(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 3 4(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 30深度y(m) 6 10 10 13 16(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
高二线性回归方程试题及答案
回归直线方程1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++3、面向全市招聘事业编工作人员,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x,y,z,s,p的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的PK比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率.答案1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.解:(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2. …3分(2)由(1)知各小组依次是, 其中点分别为,对应的频率分别为,故可估计平均值为.7分 (3)由(2)可知空白栏中填5.由题意可知, ,401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x m (0.080.10.140.120.040.02)0.51m m +++++⋅==2m =[0,2),[2,4),[4,6),[6,8),[8,10),[10,12]1,3,5,7,9,110.16,0.20,0.28,0.24,0.08,0.0410.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=12345232573, 3.855x y ++++++++====,,根据公式,可求得 ………………10分, ………………11分 所以所求的回归直线方程为. ………………12分2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.【解析】(Ⅰ)51122332455769i ii x y=⨯+⨯+⨯+⨯+⨯==∑522222211234555ii x==++++=∑26953 3.8121.2,555ˆ310b-⨯⨯===-⨯3.8 1.230ˆ.2a=-⨯= 1.20.2y x =+ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3, 所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人 数为3.依题意,得,,,, . …………………9分 故的分布列如下:所以. …………………12分 3、面向全市招聘事业编工作人员 ,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x ,y ,z ,s ,p 的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的 PK 比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率. 解:(1)由题意知,参加招聘考试的人员共有p == 50人, ∴x == 0.18, 22160(9001800) 3.74 5.0241055510060K -=≈<⨯⨯⨯3,1,1,3=--ξ33381(3)56C P C =-==ξ12533815(1)56C C P C =-==ξ21533830(1)56C C P C ===ξ30533810(3)56C C P C ===ξξ115301033(1)135********E =-⨯+-⨯+⨯+⨯=ξ160.32950y = 50×0.38 = 19, Z = 50﹣9﹣19﹣16 = 6, S = = 0.12 ----------------------------------------------------------6分(Ⅱ)由(Ⅱ)知,参加面试的应聘人员共6人.若参加面试的6人分别记为:S 1 , S 2 , a , b , c , d .( 其中S 1 , S 2 表示松山区的参赛选手,a , b , c , d 表示其他旗、县的选手)则所有的比赛为: (S 1 , S 2 ) (S 1 , a ) (S 1 ,b ) (S 1 ,c ) (S 1 , d ) (S 2 , a ) (S 2 , b ) (S 2 , c ) (S 2 ,d ) (a , b ) ( a , c ) ( a , d ) ( b , c ) (b , d ) (c , d ) 共十五个场次的比赛,有松山区选手出现的比赛有9场. 若有松山区选手参加比赛的事件为:A 则P (A ) =-------------------------------12分65035。
(完整)线性回归方程高考题
线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归方程题型
欢迎阅读线性回归方程
1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
∧
b
2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
欢迎阅读
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:7
1
9.32 i
i
y =
=
∑,7
1
40.17
i i
i
t y =
=
∑
0.55
=,≈2.646.
3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x
8
(I关于年宣传费x
(II
(III)已知这种产品的年利润z与x,y的关系为0.2
z y x
=-,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?。
竞赛班高考数学练习专题(9)--线性回归分析
竞赛班高考数学练习(9)——线性回归分析1.在两个变量的回归分析中,作散点图是为了( )A. 直接求出回归直线方程B. 直接求出回归方程C. 根据经验选定回归方程的类型D. 估计回归方程的参数 2.下列四个结论:①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;③线性相关系数|r|越大,两个变量的线性相关性越弱;反之,线性相关性越强;④在回归方程0.52y x =+中,当解释变量x 每增加一个单位时,预报变量y 增加0.5个单位. 其中正确的结论是( ) A. ①② B. ①④C. ②③D. ②④3.某同学在只听课不做作业的情况下,数学总不及格.后来他终于下定决心要改变这一切,他以一个月为周5一个月内每天做题数x 5 8 6 4 7 数学月考成绩y8287848186ˆˆ1.6yx a =+题数为( ) A. 8 B. 9 C. 10 D. 11 4.下列关于回归分析的说法中错误的有( )个(1).残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.(2).回归直线一定过样本中心(),x y 。
(3)两个模型中残差平方和越小的模型拟合的效果越好。
(4) 甲、乙两个模型的2R 分别约为0.88和0.80,则模型乙的拟合效果更好。
A. 4 B. 3 C. 2 D. 15.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( )A. 模型3的相关指数2R 为0.50B. 模型2的相关指数2R 为0.80C. 模型1的相关指数2R 为0.98D. 模型4的相关指数2R 为0.256.相关变量x ,y 的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归直线方程:22y b x a =+,相关系数为2r .则( ) A. 1201r r <<< B. 2101r r <<< C. 1210r r -<<<D. 2110r r -<<<7(补).2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是( D )①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加13.743个 ③可预测 2019 年公共图书馆业机构数约为3192个 A. 0 B. 1 C. 2 D. 37.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01)(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如表关系:周光照量X (单位:小时) 3050X <<5070X ≤≤70X >光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数12211()()()()niii nniii i x x yy r x x yy ===--=--∑∑∑,参考数据:51()()6i i i x x y y =--=∑,521()25ii x x =-=∑,521()2,0.30.55ij y y =-=≈∑,0.90.95≈8.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间x 与乘客等候人数y 之间的关系,选取一天中的六个不同的调查小组先从这组数据中选取其中的组数据求得线性回归方程,再用剩下的组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数ˆy,再求ˆy 与实际等候人数y 的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.(1)若选取的是前4组数据,求y 关于x 的线性回归方程ˆy bxa =+; (2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟? 参考公式:用最小二乘法求线性回归方程˙ˆˆˆy bx a =+的系数公式:()()()1122211ˆˆˆ,n niii ii i nnii i ix x y y x y n x ybay bx x x xnx ====---••===---∑∑∑∑,9.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至该兴趣小组确定的研究方案是先从这组数据中选取组,用剩下的组数据求线性回归方程,再用被选出的2组数据进行检验.(1)若选取的是1月和6月的两组数据,请根据2月至5月的数据求出y 关x 于的线性回归方程;(2)若由线性回归方程得到的估计数,与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问:该小组所得的线性回归方程是否理想?附;()()()1122211=nni i i ii i nni i i i x x y y x y nxyb x x x nx a y bx====⎧---⎪⎪=⎪⎨--⎪⎪=-⎪⎩∑∑∑∑10.某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:°C)的数据,如表:(1)求y 关于x 的回归直线方程ˆˆˆybx a =+; (2)设该地3月份的日最低气温2~(,)X N μσ,其中μ近似为样本平均数,2σ近似为样本方差,求()0.6 3.8P X <<参考公式:()()()1122211ˆnni iiii i nniii i x ynxyx x yy bxnx x x ====---==--∑∑∑∑,ˆˆay bx =- 计算参考值:22222258911295,2125108898117287++++=⨯+⨯+⨯+⨯+⨯=.3.2,()0.6827,(22)0.9545P X P X μσμσμσμσ≈-<<+=-<<+=.竞赛班高考数学练习(9)——参考答案更正第7题第(2)问答案选择题1--6 CDC CCD解答题7.【详解】(1)由已知数据可得2456855x++++==,3444545y++++==所以相关系数()()0.95ni ix x y yr--===≈∑因为0.75r>,所以可用线性回归模型拟合y与x的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归方程高考题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
线性回归方程高考题
1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:
3 4 5 6
3 4
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)
2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:
使用年限x 2 3 4 5 6
维修费用y
若有数据知y对x呈线性相关关系.求:
(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;
序号x y xy x2
1 2
2 3
3 4
4 5
5 6
∑
(2) 估计使用10年时,维修费用是多少.
3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:
零件的个数x(个) 2 3 4 5
加工的时间y(小时) 3 4
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间
(注:
4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:
3 4 5 6 7 8 9
66 69 73 81 89 90 91
已知:.
(Ⅰ)画出散点图;
(1I)求纯利与每天销售件数之间的回归直线方程.
5、某种产品的广告费用支出与销售额之间有如下的对应数据:
2 4 5 6 8
30 40 60 50 70
(1)画出散点图:
(2)求回归直线方程;
(3)据此估计广告费用为10时,销售收入的值.
6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x 3 4 5 6
y 3 4
(I)请画出上表数据的散点图;
(II)请根据上表提供的数据,求出y关于x的线性回归方程;
(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤
(参考公式及数据: ,)
7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:
广告费支出x 2 4 5 6 8
销售额y 30 40 60 50 70
(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗
(2)求y关于x的回归直线方程;
(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)
8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:
时间t(s) 5 10 15 20 30
深度y(m) 6 10 10 13 16
(1)画出散点图;
(2)试求腐蚀深度y对时间t的回归直线方程。
参考答案
一、计算题
1、解:(1)
(2)
序号
l 3 9
2 4
3 12 16
3 5
4 20 25
4 6 27 36
18 14 86
所以:
所以线性同归方程为:
(3)=100时,,所以预测生产100吨甲产品的生产能耗比技术改造前降低吨标准煤.
2、解:(1) 填表
x y xy x2
序
号
1 2 4
2 3 9
3 4 16
4 5 25
5 6 36
∑20 25 90
所以
将其代入公式得
(2) 线性回归方程为=+
(3) x=10时,=+=×10+= (万元)
答:使用10年维修费用是(万元)。
3、解:(1)散点图如图
(2)由表中数据得:
回归直线如图中所示。
(3)将x=10代入回归直线方程,得(小时)
∴预测加工10个零件需要小时。
4、解:(Ⅰ)散点图如图:
(Ⅱ)由散点图知,与有线性相关关系,设回归直线方程:,
,
,
∵,
∴.
,
故回归直线方程为.
5、解:(1)作出散点图如下图所示:
(2)求回归直线方程.
=(2+4+5+6+8)=5,
×(30+40+60+50+70)=50,
=22+42+52+62+82=145,
=302+402+602+502+702=13500
=1380.
=.
因此回归直线方程为
(3)=10时,预报y的值为y=10×+=.
6、解:(I)如下图
(II)=+43+54+=
== ,==3. 5
故线性回归方程为
(III)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为+=.
故耗能减少了90-=(吨).
7、解:(1)(略)
(2)y=+
(3)(百万元)
8、(1)略(2)y=14/37x+183/37。