遗传算法在0-1一维背包问题上的应用研究

合集下载

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。

物品i的重量是wi,其价值为vi。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。

(2)基因:染色体的每一个比特。

(3)种群:解的集合。

(4)适应度:衡量个体优劣的函数值。

2、控制参数(1)种群规模:解的个数。

(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。

(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。

3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。

(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。

三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。

种群:用二维数组表示,每一行表示一个染色体。

基于遗传算法求解0—1背包问题的算法探讨

基于遗传算法求解0—1背包问题的算法探讨

Vo . 7 No. 11 4
0c . 00 t2 8
20 0 8年 1 O月
基 于遗 传 算 法 求解 0—1背包 问题 的算 法探 讨
刘 锐 张金 波 刘 蕊 洁 李积 宪
( 兰州交通 大学 数 理与软 件工程 学 院 , 甘肃 兰州 7 0 7 ) 300
摘 要 0—1背包 问题 是 一 类 典 型 的 组 合 优 化 问 题 , 且 是 N 并 P完 全 问 题 , 有重 要 的研 究 意 义 . 绍 了贪 婪 算 法 和 基 本 具 介
LuR i Z agJ b LuR ie L J i i u hn n o i uj i i a i i x n ( c ol f ahma c , h s s n otaeE g er g L nh uJ oogU iesy S ho o te t s P yi dS f r n i e n , a zo i t nvr t, M i ca w n i a n i
On t e A g rtm fS l i g t e 0 —1 Kn p a k P o lm s d Olt e Ge ei g r h h l o i h o o vn h — a s c r b e Ba e i h n tc A o i m l t
i p o e e ei lo i m a r vd e tra p o i t o u in . m r v d g n t a g rt c h c n p o i e b t p rx ma e s l t s e o
Ke wo d g nei l o t m ;g e d l o t m ;0—1 k a s c r b e y r s: e tc ag r h i r e y ag r h i n p a k p o l m

解决0-1背包问题的遗传分布估计算法

解决0-1背包问题的遗传分布估计算法

解决0-1背包问题的遗传分布估计算法余娟;贺昱曜【期刊名称】《计算机工程与应用》【年(卷),期】2014(000)009【摘要】0-1背包问题是典型的NP难问题,针对0-1背包问题提出分布估计算法(EDA)与遗传算法(GA)相结合的算法(E-GA)。

该算法在每一次迭代中由二者共同产生种群,并行搜索,两种方法产生的个体数目动态变化,将EDA的全局搜索与GA的局部搜索能力、EDA的快速收敛性与GA的种群多样性结合,实现优势互补。

通过三个背包问题算例进行算法验证,与以往文献相比,结果显示该算法所获最优值优于文献最优值,运行时间短且收敛速度快。

%0-1 knapsack problem is a classic NP-hard problem. For the 0-1 knapsack problem, a combined parallel search algorithm(E-GA)is proposed. The population is generated by Genetic Algorithm(GA)and Estimation of Distribution Algorithm(EDA)together. The population proportion caused by two algorithms is changed dynamically, which combines the global statical information and location information and overcomes the shortcoming of GA and EDA. The algorithm is applied to three widely used knapsack samples, and the results show that proposed E-GA algorithm has better search ability and convergence speed than the other algorithms.【总页数】6页(P12-16,31)【作者】余娟;贺昱曜【作者单位】西北工业大学航海学院,西安 710072;西北工业大学航海学院,西安 710072【正文语种】中文【中图分类】TP18【相关文献】1.用基本遗传算法解决0-1背包问题 [J], 闫丽2.一种结合贪婪因子求解0-1背包问题的分布估计算法 [J], 谭阳;周虹3.基于佳点集遗传算法的0-1背包问题解决方法 [J], 徐宗杨;唐耀庚;王晓霞4.求解折扣{0-1}背包问题的新遗传算法 [J], 吴聪聪; 贺毅朝; 赵建立5.求解0-1背包问题的混合贪婪遗传算法 [J], 陈桢;钟一文;林娟因版权原因,仅展示原文概要,查看原文内容请购买。

遗传算法介绍及在01背包问题的应用

遗传算法介绍及在01背包问题的应用

遗传算法介绍及在01背包问题的应⽤遗传算法背景:最优化问题确定或⼏乎确定的⽅式寻找充满随机性的启发式⽅法,例如遗传算法遗传算法原理:进化论的物竞天择,适者⽣存基本概念:基因和染⾊体: 基因是不能分割的最⼩单位,染⾊体⼀组基因的组合,实例⽤基因表⽰遗传特征,简单⼀般就是以基因作为遗传特征种群和个体遗传和变异遗传不是平稳的,有⼀定概率变异,可能变好,可能变坏基因交叉,基因突变:变化太频繁⽆法收敛到近似最优解,变化频率太底也不⾏,⽆法保证种群多样性,可能收敛到局部最优解。

选择:根据个体的适应度,按照⼀定规则种群中选择优良个体遗传到下⼀代。

适应度:个体对环境的适应程度。

流程:算法设计:1. 基因的编码: 01背包问题可以采⽤ 01编码2. 适应度评估函数背包问题可以根据基因101001,计算出对应的价值,价值越⼤越好3. 遗传算⼦设计a) 选择算⼦ i. ⽐例选择:⼜称轮盘赌选择,按种群⽐例来确定 ii. 随机竞争选择每次随机选择两个或多个,取适应度⾼的。

iii. 最佳保留选择选择最好的替换最差的,⽽且不参与交叉和变异 iv. 排序选择 v. 确定式采样选择 b) 交叉算⼦ i. 单点交叉随机选择1个点,随机概率交换这个点的⽚段 ii. 两点交叉与多点交叉随机选择两个点或多个点,随机概率交换每个点的⽚段 iii. 均匀交叉⼀致交叉,基因上每个点都按照相同概率互换基因⽚段 iv. 算术交叉⽤于浮点数编码表⽰的基因,线性组合产⽣ c) 变异算⼦ i. 单点变异随机选择⼀个点,随机概率变异 ii. 固定位置变异⼀个或⼏个固定位置,随机变异 iii. 均匀变异每个⽚段,使⽤均匀分布的随机数,以⼩的随机概率进⾏变异 iv. 边界变异如果基因编码规则有边界值(最⼤最⼩),根据规则选⼀个替换成边界值 v. ⾼斯变异4. 运算参数种群⼤⼩M,交叉概率Pc,变异概率Pm,进化迭代次数T01背包问题遗传算法的应⽤:Weight = { 35, 30, 60, 50, 40, 10, 25 }; Value = { 10, 40, 30, 50, 35, 40, 30 };TEST_ROUND = 500; 测试次数OBJ_COUNT = 7;CAPACITY = 150;背包重量POPULATION_SIZE = 32; 种群个数MAX_GENERATIONS = 100;//500; 种群迭代次数P_XOVER = 0.8; 交叉编译概率P_MUTATION = 0.15; 变异概率选择算⼦采⽤轮盘赌策略交叉算⼦:两点交叉,随机个数的基因位进⾏交换(1~7的随机数),交换的位置也是随机等概率选择变异算⼦:对随机个数的基因位进⾏变异每个位置被交换的概率是相等的结果统计正确的次数:success 495github。

遗传算法的0-1背包问题(c语言)

遗传算法的0-1背包问题(c语言)

基于遗传算法的0-1背包问题的求解摘要:一、前言组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。

比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。

但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。

尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。

遗传算法已经成为组合优化问题的近似最优解的一把钥匙。

它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。

背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为)2(O n ,传统上采用动态规划来求解。

设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。

二、问题描述背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?该问题的模型可以表示为下述0/1整数规划模型:目标函数:∑==ni i i n x c x x x f 121),,(max Λ⎪⎩⎪⎨⎧=∈≤∑=),2,1(}1,0{t .s 1n i x p x w i n i i i i Λ (*)式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。

遗传算法求解0-1背包问题

遗传算法求解0-1背包问题

一、实例一:1.问题描述假设:背包最大重量为300,物品的数量为10,物品的价值:[95 75 23 73 50 22 6 57 89 98],物品的重量:[89 59 19 43 100 72 44 16 7 64]2.Matlab代码(1)参数初始化,导入本问题的物品的价值和重量数据,并设定背包最大重量。

wei=[9575 23 73 50 22 6 57 89 98];val=[89 59 19 43 100 72 44 16 7 64];w=300; %总重量约束值(2)随机产生数量为30的种群。

生成30*10的0-1矩阵。

So =round(rand(30,10));So=hardlim(So); %So为随机产生的矩阵,值为0或1[ZQ,Y] = size(So);(3)迭代次数为50代,交叉概率为90%,变异概率为5%.ds = 50; pc = 0.9; pm = 0.05;(4)设置适应度函数,利用惩罚函数降低不合格解的适应度,惩罚因子设为1.5.pu=1.5;syd =So*val'-pu*So*val'./(So*wei').*((So*wei'-w)>0).*(So*wei'-w);figure(1);hold on;(5)用轮盘赌进行选择操作,用选择出的个体构成的种群替代旧的种群better1=1; ip = 1; updatef=-10; %betterl为当前算出的总价值,ip为代数whileip<= dsfori=1:ZQfi(i)=syd(i)-min(syd)+1;endfori=1:ZQsp(i)=fi(i)/sum(fi);endfori=2:ZQsp(i)=sp(i-1)+sp(i);endfori=1:ZQp=rand(1); sindex=1;while p >sp(sindex)sindex=sindex+1;endnewSo(i,:)=So(sindex,:);endfori=1:ZQSo(i,:)=newSo(i,:);end(6)设置的交叉概率pc为90%,产生要配对的父代的序号,经过50次顺序调换,将原有顺序打乱,使相邻两个个体作为交叉的父代fori=1:ZQweiindex(i)=i;endfori=1:ZQpoint=unidrnd(ZQ-i+1);temp=weiindex(i);weiindex(i)=weiindex(i+point-1);weiindex(i+point-1)=temp;endfori=1:2:ZQp=rand(1);if(p<pc)point=unidrnd(Y-1)+1;for j=point:(Y-1)ch=So(weiindex(i),j);So(weiindex(i),j)=So(weiindex(i+1),j);So(weiindex(i+1),j)=ch;endendend(7)设置变异的概率为5%,产生50*10的0-1矩阵,对1的位置进行变异M=rand(ZQ,Y)<=pm;So=So-2.*(So.*M)+M;(8)产生精英染色体,you1是适应度最大的染色体,you2为适应度最小的染色体,最优解为不超过背包容量的适应度最大的syd2数组,better3即为每代的最优值,并用粉色星号画出来。

遗传算法求解0-1背包问题(步骤)(精)

遗传算法求解0-1背包问题(步骤)(精)

遗传算法求解0-1背包问题。

(步骤)#include "iostream.h"#include "iomanip.h"#include "stdlib.h"#include "math.h"#include "time.h"//定义问题的最大规模#define max 100//问题规模,即共有多少个包int packageNum;//每个包的重量int packageWeight[max];//每个包的价值int packageValue[max];//约束,背包的最大容量int limitWeight;//群体的规模int colonySize;//colonyState[i][k] 表示一个染色体//colonyState[1...colonySize][ 0|1 ] 表示一代群体int colonyState[max][2][max];// currAge 表示当前代的编号// (currAge+1)%2 表示下一代的编号int currAge = 0;//个体评价信息表typedef struct tagIndividualMsg{int index;int value;} IndividualMsg;IndividualMsg individualMsg[max];//////////////////////////////////////////////////////////// // 函数声明void printColonyState( int nextAge );//////////////////////////////////////////////////////////// //初始化群体void colonyInit(){int i , j;int w;for( i = 0 ; i < colonySize ; i++ ){//保证找到一个符合约束的染色体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][currAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][currAge][j];}}}}//对个体进行评价int cmp( const void *a , const void *b ){IndividualMsg *x = (IndividualMsg *)a;IndividualMsg *y = (IndividualMsg *)b;return y->value - x->value;}void individualEstimate(){int i , j;for( i = 0 ; i < colonySize ; i++ ){individualMsg[i].index = i;individualMsg[i].value = 0;for( j = 0 ; j < packageNum ; j++ )individualMsg[i].value += packageValue[j] * colonyState[i][currAge][j]; }qsort( individualMsg , colonySize , sizeof(IndividualMsg) , cmp );}//终止循环的条件bool stopFlag(){//进行n 代进行后停止static int n = 50;if( n-- <= 0 )return true;elsereturn false;}//赌轮选择int gambleChoose(){int wheel[max] = { 0 };int i = colonySize - 1;int choose;wheel[i] = individualMsg[i].value;for( i-- ; i >= 0 ; i-- )wheel[i] = ( individualMsg[i].value + wheel[i+1] ) + colonySize * ( colonySize - i ); int seed = abs( wheel[0] - ( rand() % ( 2 * wheel[0] ) + 1 ) );choose = colonySize - 1;while( seed > wheel[choose] )choose--;// cout<<"----------------------------------------"<<endl;// cout<<"wheel :"<<endl;// for( i = 0 ; i < colonySize ; i++ )// cout<<setw(5)<<wheel[i];// cout<<endl;// cout<<"seed = "<<seed<<endl;// cout<<"choose "<<choose<<endl;return choose;}//交叉void across( int male , int female , int index ){int nextAge = (currAge+1)%2;int i , j , t;int acrossBit = rand() % (packageNum-1) + 1;for( j = 0 ; j < packageNum ; j++ ){colonyState[index][nextAge][j] =colonyState[individualMsg[male].index][currAge][j];colonyState[index+1][nextAge][j] =colonyState[individualMsg[female].index][currAge][j];}for( i = 0 ; i < acrossBit ; i++ ){t = colonyState[index][nextAge][i];colonyState[index][nextAge][i] = colonyState[index+1][nextAge][i];colonyState[index+1][nextAge][j] = t;}}//变异void aberrance( int index ){int seed , nextAge;nextAge = (currAge+1)%2;//只有1/3 的概率发生异变seed = rand() % ( packageNum * 3 );if( seed < packageNum )colonyState[index][nextAge][seed] = ( colonyState[index][nextAge][seed] + 1 ) % 2;}//处理死亡个体void dealDeath(){int i , j;int weight , w;int nextAge = (currAge+1)%2;for( i = 0 ; i < colonySize ; i++ ){weight = 0;for( j = 0 ; j < packageNum ; j++ )weight += packageWeight[j] * colonyState[i][nextAge][j];if( weight > limitWeight ){//随机生成新的个体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][nextAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][nextAge][j];}}}}printColonyState( nextAge );}//最优个体保护void saveBest(){int i , j;int min , minp , value;int nextAge = ( currAge+1)%2;min = individualMsg[0].value;minp = -1;for( i = 0 ; i < colonySize ; i++ ){value = 0;for( j = 0 ; j < packageNum ; j++ )value += packageValue[j] * colonyState[i][nextAge][j]; if( value <= min ){min = value;minp = i;}}if( minp >= 0 ){for( j = 0 ; j < packageNum ; j++ ){colonyState[minp][nextAge][j] =colonyState[individualMsg[0].index][currAge][j];}}}//////////////////////////////////////////////////////////// void setProblem(){int i;packageNum = 5;int w[] = { 5 , 4 , 3 , 2 , 1 };int v[] = { 8 , 9 , 3 , 1 , 2 };for( i = 0 ; i < packageNum ; i++ ){packageWeight[i] = w[i];packageValue[i] = v[i];}limitWeight = 13;colonySize = 5;}void printProblem(){int i;cout<<"----------------------------------------"<<endl;cout<<"problem state:"<<endl;cout<<"packageNum = "<<packageNum<<endl;cout<<"limitWeight = "<<limitWeight<<endl;cout<<"Weight: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageWeight[i];cout<<endl;cout<<"Value: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageValue[i];cout<<endl;}void printColonyState( int k ){cout<<"----------------------------------------"<<endl;cout<<"colonyState-->";if( k == currAge )cout<<"currAge:"<<endl;elsecout<<"next age:"<<endl;int i , j;for( i = 0 ; i < colonySize ; i++ ){for( j = 0 ; j < packageNum ; j++ )cout<<setw(2)<<colonyState[i][k][j];cout<<endl;}}void printIndividualMsg(){int i;cout<<"----------------------------------------"<<endl;cout<<"Individual Msg:"<<endl;for( i = 0 ; i < colonySize ; i++ ){cout<<individualMsg[i].index<<"\t"<<individualMsg[i].value<<endl; }}////////////////////////////////////////////////////////////void main(){srand( (unsigned int)time(NULL) );setProblem();printProblem();//初始群体colonyInit();printColonyState( currAge );while( !stopFlag() ){//评价当前群体individualEstimate();//生成下一代for( int i = 0 ; i < colonySize ; i += 2 ){int male = gambleChoose();int female = gambleChoose();across( male , female , i );aberrance( i );aberrance( i + 1 );}//处理死亡个体dealDeath();//最优个体保护saveBest();//现在的下一代变成下一轮的当前代currAge = ( currAge + 1 ) % 2;//printColonyState( currAge );}//输出问题解individualEstimate();cout<<"近似解:"<<endl;int j , w = 0;cout<<setw(10)<<"Value:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<packageValue[j];cout<<endl;cout<<setw(10)<<"Weight:";for( j = 0 ; j < packageNum ; j++ ){w += packageWeight[j] * colonyState[individualMsg[0].index][currAge][j]; cout<<setw(5)<<packageWeight[j];}cout<<endl;cout<<setw(10)<<"Choose:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<colonyState[individualMsg[0].index][currAge][j];cout<<endl;cout<<"limitWeight: "<<limitWeight<<endl;cout<<"总重量: "<<w<<endl;cout<<"总价值: "<<individualMsg[0].value<<endl; }////////////////////////////////////////////////////////////。

遗传算法的0-1背包问题(c语言)

遗传算法的0-1背包问题(c语言)

基于遗传算法得0—1背包问题得求解摘要:一、前言组合优化问题得求解方法研究已经成为了当前众多科学关注得焦点,这不仅在于其内在得复杂性有着重要得理论价值,同时也在于它们能在现实生活中广泛得应用。

比如资源分配、投资决策、装载设计、公交车调度等一系列得问题都可以归结到组合优化问题中来、但就是,往往由于问题得计算量远远超出了计算机在有效时间内得计算能力,使问题得求解变为异常得困难。

尤其对于NP完全问题,如何求解其最优解或就是近似最优解便成为科学得焦点之一、遗传算法已经成为组合优化问题得近似最优解得一把钥匙。

它就是一种模拟生物进化过程得计算模型,作为一种新得全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算得地位。

背包问题就是一个典型得组合优化问题,在计算理论中属于NP-完全问题,其计算复杂度为,传统上采用动态规划来求解。

设w[i]就是经营活动i 所需要得资源消耗,M就是所能提供得资源总量,p[i]就是人们经营活动i得到得利润或收益,则背包问题就就是在资源有限得条件下,追求总得最大收益得资源有效分配问题。

二、问题描述背包问题( Knapsack Problem)得一般提法就是:已知n个物品得重量(wei ght)及其价值(或收益profit)分别为与,背包得容量(contain)假设设为,如何选择哪些物品装入背包可以使得在背包得容量约束限制之内所装物品得价值最大?该问题得模型可以表示为下述0/1整数规划模型:目标函数:(*)式中为0-1决策变量,时表示将物品装入背包中,时则表示不将其装入背包中。

三、求解背包问题得一般方法解决背包问题一般就是采取动态规划、递归回溯法与贪心方法、动态规划可以把困难得多阶段决策变换为一系列相互联系比较容易得单阶段问题、对于背包问题可以对子过程用枚举法求解,而且约束条件越多,决策得搜索范围越小,求解也越容易。

它得主要缺点就是用数值方法求解时会随着状态变量得个数呈指数级得增长,往往对于求解背包问题得实际问题就是不现实得。

遗传算法求解01背包问题

遗传算法求解01背包问题

遗传算法求解01背包问题一、问题描述01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。

01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为W i,其价值为V i,背包的容量为C。

选择合适的物品装入背包,使得背包中装入的物品的总价值最大。

注意的一点是,背包内的物品的重量之和不能大于背包的容量C。

在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。

称此类问题为0/1背包问题。

01背包问题是NP问题,传统的解决方法有动态规划法、分支界限法、回溯法等等。

传统的方法不能有效地解决01背包问题。

遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。

二、遗传算法1、遗传算法的基本思想遗传算法的搜索从一个被称作种群的候选解集开始,新的种群由旧的种群中产生以期得到更好的种群。

从旧种群中按照解的适应度来选择解以产生新的解;适应度越大,解被选择生成后代的机率也越大。

这个从已有种群中选择双亲并产生后代的迭代过程持续到遗传算法的停止条件满足为止。

2、遗传算法的基本元素。

遗传算法由以下几个原素组成:由染色体组成的种群,根据适应度进行选择以及交叉产生后代。

三、用遗传算法求解01背包问题1、01背包问题中染色体的表示。

用向量X来表示染色体,X = {x1,x2,……,x n}。

,x i∈{0,1},x i=1表示物品i装入了背包,x i =0表示物品i未装入背包。

每个染色体对应其当前装入背包的物品的总价值和总重量。

背包中物品的中价值代表了该物品的适应度。

程序中定义了这样的一个结构来表示染色体:typedef struct{int Weight; //染色体代表的物品的总重量int Fitness; //染色体代表的物品的价值(适应度)int Gene[NUMG]; //用元素取值于定义域{0,1}的数组表示染色体。

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告Pb03000982 王皓棉一、问题描述:背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。

而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。

遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。

因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。

GA是一种群体型操作,该操作以群体中的所有个体为对象。

选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。

遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。

遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。

二、实验目的:通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。

三、算法设计:1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大max.进化代数genx=1表2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n,ix=0表示不装入背包。

例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包,i这三个物件被选入包中。

实现遗传算法的0-1背包问题【精品毕业设计】(完整版)

实现遗传算法的0-1背包问题【精品毕业设计】(完整版)

实现遗传算法的0-1背包问题求解及其改进学校:学院:专业:姓名:学号:课程名称:指导老师:一、 问题陈述0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。

01背包问题的一般描述如下:给定n 个物品和一个背包,物品i 的重量为Wi ,其价值为Vi ,背包的容量为C 。

选择合适的物品装入背包,使得背包中装入的物品的总价值最大。

注意的一点是,背包内的物品的重量之和不能大于背包的容量C 。

在选择装入背包的物品时,对每种物品i 只有两种选择:装入背包或者不装入背包,即只能将物品i 装入背包一次。

称此类问题为0/1背包问题。

其数学模型为:在满足∑w i x i ≤C n i=1的条件下求解 max ∑v i x i n i=1 ,其中i =1,2,3,4…,n0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。

传统的方法不能有效地解决0-1背包问题。

遗传算法(Genetic Algorithms )则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。

二、遗传算法分析与实现1、遗传算法概述遗传算法(Genetic Algorithm )是一类借鉴生物界的进化规律(适者生存,优胜劣汰)演化而来的随机化搜索方法。

算法根据问题的目标函数构造一个适值函数,对一个由多个解(每个解对应一个染色体)构成的和种群进行评估、遗传、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。

其特点是具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

• 遗传算法一般是直接在解空间搜索, 而不像图搜索那样一般是在问题空间搜索, 最后才找到解(如果搜索成功的话)。

• 遗传算法的搜索随机地始于搜索空间的一个点集, 而不像图搜索那样固定地始于搜索空间的初始节点或终止节点, 所以遗传算法是一种随机搜索算法。

智能控制作业遗传算法求解背包问题

智能控制作业遗传算法求解背包问题

智能控制作业遗传算法求解背包问题智能控制遗传算法求解背包问题——16组遗传算法求解背包问题摘要:遗传算法是在分析遗传个体进化机制基础上提出的一种新型优化算法。

本论文根据0-1 背包问题的特点,提出用于求该问题的遗传算法及相关的解决方案,阐明算法的具体实现过程。

通过对其他文献中仿真实例的计算和结果比较,表明应用该算法求解背包问题取得了良好的效果。

该算法同样可以应用于其他组合优化题。

关键词:背包问题;遗传算法一.概述背包问题(knapsack problem) 是运筹学中一个典型的优化难题,有着广泛的实际应用背景,如管理中的资源分配、投资决策、预算控制等问题,并且经常作为其他问题的子问题被研究。

研究背包问题的求解算法在理论上和实践中都具有一定的意义。

从计算复杂性理论来看,背包问题是个NP 完全问题,该问题的求解方法主要有启发式算法,如贪心算法、遗传算法、粒子群算法。

以遗传算法为代表的生物进化算法建立在达尔文自然选择学说的基础上,是对生物进化过程的模拟,是人们对从自然演化过程中抽象出的概念、原则和机制的类比应用,被广泛用于解决复杂的计算问题。

其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

它是现代有关智能计算中的关键技术。

本文在分析遗传算法的基础上,提出了将贪婪修复方法与遗传算法相结合,构成混和遗传算法,并应用于求解经典背包问题。

它是可以解决复杂问题的新方法。

本论文系统的介绍背包问题的遗传算法解决方案。

二.背包问题的数学模型背包问题的定义:我们有n 种物品,物品j 的重量为wj ,价格为pj 。

我们假定所有物品的重量和价格都是非负的。

背包所能承受的最大重量为W 。

基于遗传算法解决01背包问题研究

基于遗传算法解决01背包问题研究
背包 , 则O 1背 包 问题 的数 学模 型 为 ma x f ( x , 。 … … ,
) 一> : P ( i 一1 , 2 , 3 ……, ) , n 个物体的背包问题的
i— l
v e c t o r <i n t > &b a b y l , v e c t o r <i n t >  ̄b a b y 2 ){
个 体 的 同 时 比较 , 搜 索 使 用 评 价 函数 启 发 , 过 程 简单 , 使 用 概 率机 制 进 行 迭 代 , 具 有随机 性, 具 有 可 扩展 性 , 容 易 与 其 它 算 法 结合 。基 本 0 1背 包 问题 , 提 出遗 传 问 题 解 决 的 关键 技 术 , 设 计 评 价 函数 和 遗 传 算 子 , 并通过散播 变异 、 移 位 变 异、 插入 变异 改 进 0 l背 包 问题 中 的 遗 传 算 法 , 很 好 地 解 决 了遗传 问题 。
关键词 : 遗传算 法; 0 1背 包 I " - I 题; 评价函数 ; 遗传 算子
中 图分 类号 : TP 3 1 2
文献标识码 : A
文章编号 : 1 6 7 2 - 7 8 0 0 ( 2 0 1 4 ) 0 0 2 - 0 0 7 4 - 0 2
i n t S e l e c t e d Ge n o me一 0 :


i nt c p — Ra nd l nt ( 0,m i Ch r o mo Le n g t h一 1 ) ;

f o r( i n t i 一 0;i <c p;+ + i ) {

2 . 2 用 遗 传 算 子 改 变 繁 殖 过 程 中 产 生 的 子 个 体 遗 传 组 成

毕业论文—基于遗传算法的0-1背包问题研究.doc

毕业论文—基于遗传算法的0-1背包问题研究.doc

学士学位论文基于遗传算法的0-1背包问题研究学院:信息工程与自动化学院专业年级: 自动化2009级学生姓名:学号:指导教师:职务:实验师起止时间:2013年3月—2013年6月Kun Ming University of Science andTechnologyBachelor's Degree ThesisGenetic Algorithm for 0-1 KnapsackProblemCollege:Faculty of Information Engineering and Automation Profession:Automation Class Three, Grade 2009 Name:Number:Teacher:Position:ExperimentalistTime: March 2013—June 2013毕业设计(论文)任务书信自院自动化专业09级学生姓名:毕业设计(论文)题目:基于遗传算法的0-1背包问题研究毕业设计(论文)内容:1.0-1背包问题的数学描述;2.遗传算法原理与应用;3.运用遗传算法求解0-1背包问题,并在matlab环境中实现仿真;4.在matlab环境中进行GUI界面设计,实现相关参数的输入与进化曲线的输出显示。

专题(子课题)题目:专题(子课题)内容:毕业设计(论文)指导教师(签字):主管教学院(部)长(签字):年月日摘要本文介绍了0-1背包问题的基本概念,综述了求解0-1背包问题的传统方法;对遗传算法进行了理论研究,详细的阐述了遗传算法的基本原理、研究趋势和在0-1背包问题中的应用;利用Matlab仿真平台对2个算例进行了测试,证明了遗传算法求解背包问题的有效性;通过实例分析了种群规模、迭代次数以及变异概率对算法结果的影响;设计了图形用户界面(GUI),实现了参数的输入与仿真结果显示。

关键词:0-1背包问题;遗传算法;种群规模;Matlab;GUIAbstractThis paper introduces the basic concept of 0-1 knapsack problem, solving 0-1 knapsack problem, the paper summarized the traditional methods; Genetic algorithm for the theoretical research, elaborated the basic principle of genetic algorithm in detail, the research trend and application in the 0-1 knapsack problem; Using Matlab simulation platform for 2 example was tested and proved the effectiveness of the genetic algorithm for solving knapsack problem; Analyzes the population size, number of iterations, and the influence of the mutation probability on the algorithm results; Design a graphical user interface (GUI), realize the input parameters and the simulation results show Key Words:0-1 knapsack problem;Genetic algorithm;Popsize;Matlab;GUI目录摘要 (I)ABSTRACT (II)目录................................................................................................................................................................. I II 前言. (V)第一章绪论 (1)1.1背包问题简介 (1)1.1.1 0-1背包问题背景 (1)1.1.2背包问题的研究现状 (1)1.2遗传算法简介 (2)1.2.1 遗传算法的研究现状与发展趋势 (3)1.2.2 遗传算法的特点 (5)1.2.3 遗传算法分类 (6)1.2.4遗传算法的应用 (7)1.3本文主要工作 (7)第二章基于遗传算法的0-1背包问题研究 (9)2.1遗传算法的思想 (9)2.1.1遗传算法的数学基础 (10)2.1.2遗传算法基本原理 (12)2.1.3遗传算法的实现过程 (13)2.2使用遗传算法求解0-1背包问题 (16)2.3数值试验以及结果分析 (20)2.3.1算例1 (21)2.3.2算例2 (24)第三章GUI界面设计 (29)3.1概述 (29)3.2GUI界面设计 (29)3.2.1GUI界面设计步骤 (29)3.2.2界面运行结果 (33)第四章结论与展望 (36)4.1结论 (36)4.2展望 (36)总结与体会 (38)致谢 (40)参考文献 (41)附录一源程序 (43)MATLAB主程序 (43)GUI界面设计程序 (51)附录二外文文献翻译 (60)附录三外文文献原文 (71)前言背包问题(Knapsack Problem)是一种组合优化NP完全问题,相似的问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。

一种求解0-1背包问题的启发式遗传算法

一种求解0-1背包问题的启发式遗传算法

一种求解0-1背包问题的启发式遗传算法王秋芬;梁道雷【摘要】分析求解背包问题的多种方法,研究背包问题的贪婪策略及最优值的特点,将贪婪策略融入到遗传算法的种群初始化、交叉算子、变异算子中,将分治策略引入到选择算子中,提出一种启发式遗传算法.实验结果表明:算法无论在求解速度上还是在求解质量上都有明显改进.%In this paper we analyse various methods for solving the knapsack problem, and study the greedy strategy of knapsack problem and the characteristics of its optimal value. By integrating the greedy strategy into population initialisation, crossover operator and mutation operator of the genetic algorithm, and introducing the divide-and-conquer strategy to selection operator, we propose a heuristic genetic algorithm. Experimental results show that for both the quality of solution and the time consumed in problem solving, this algorithm all makes obvious improvement.【期刊名称】《计算机应用与软件》【年(卷),期】2013(030)002【总页数】6页(P33-37,57)【关键词】背包问题;遗传算法;贪婪策略;分治策略【作者】王秋芬;梁道雷【作者单位】华东师范大学计算机科学技术系上海200062;浙江理工大学理学院浙江杭州310018【正文语种】中文【中图分类】TP3010 引言0-1背包问题的一般描述为:给定n个物品的重量wi(wi>0)和价值pi(pi>0)(i=1,2,…,n),又给定一个背包,容量限制为C(C>0),问如何装入物品,使得在不超过背包容量限制的前提下,装入的物品总价值最大,单个物品不允许分割。

基于遗传算法的0-1背包问

基于遗传算法的0-1背包问

The
end!
解决背包问题的一般方法


贪心 --求解时计算复杂度降低了很多。 --难以得到最优解,有时所得解与最优解相差 甚远。 因此, 我们可以探索使用遗传算法解决物件 数较多的背包问题。
运行结果及分析


Байду номын сангаас
实例数据:
Weight={80,82,85,70,72, 70,66,50,55,25, 50,55,40,48,50, 32,22,60,30,32, 40,38,35,32,25, 28,30,22,50,30, 45,30,60,50,20, 65,20,25,30,10 20,25,15,10,10, 10, 4, 4, 2, 1} Profit={220,208,198,192,180, 180,165,162,160,158, 155,130,125,122,120, 118,115,110,105,101, 100,100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 8, 5, 3, 1}

生物的进化是以集团的形式共同进行的,这样的一个团 体称为群体(Population),或称为种群。 组成群体的单个生物称为个体(Individual), 每一个个体对其生存环境都有不同的适应能力,这种适

应能力称为个体的适应度(Fitness)。
遗传算法简介


遗传算法是模拟生物在自然环境下的遗传和进化过程 而形成的一种自适应全局优化概率搜索方法。 它最早由美国密西根大学的H.Holland教授提出,起源 于60年代对自然和人工自适应系统的研究; 1967年,Bagley发表了关于遗传算法应用的论文,在 其论文中首次使用“遗传算法( Genetic Algorithm” 一词。 70年代 De Jong基于遗传算法的思想在计算机上进行 了大量的纯数值函数优化计算实验。 在一系列研究工作的基础上,80年代由Goldberg进行 归纳总结,形成了遗传算法的基本框架。

遗传算法的0-1背包问题(c语言)之欧阳家百创编

遗传算法的0-1背包问题(c语言)之欧阳家百创编

基于遗传算法的0-1背包问题的求解欧阳家百(2021.03.07)摘要:一、前言组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。

比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。

但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。

尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。

遗传算法已经成为组合优化问题的近似最优解的一把钥匙。

它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。

背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为)2(O n ,传统上采用动态规划来求解。

设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。

二、问题描述背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?该问题的模型可以表示为下述0/1整数规划模型:目标函数:∑==n i ii n x c x x x f 121),,(max⎪⎩⎪⎨⎧=∈≤∑=),2,1(}1,0{t .s 1n i x p x w i n i i i i (*)式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种群空间, 而混合遗传算法形成的种群空间强于耗 散遗传算法形成 的种群空间。所 以在效率上混合
() 2 耗散遗传算法 遗传算法可用耗散结构理论分析 : 系统初始条 件为随机选取的基 因 , 通过选 择、 交叉算子 向适应 度高的方向发展 , 变异算子提供随机扰动。因而形 成一种耗散结构。但 由于进化 的不断进行 系统 中 不同的基 因逐渐处于相 同, 使得这种耗散消逝。但 又会陷入局部最优解。交叉和变异算子对 于算法 的收敛性 起决 定作 用 , 而通 过变异 操作 可增 加种 群
的多样性 , 可跳 出上 述局 限。但 由于 一般交 叉 概率
遗传算法最好 , 耗散遗传算法次之 , 基本遗传算法 最差 。结 果如 下 面三 张表所 示 :
表 1 基本遗传算 法的运行结果
由于背包问题有约束条件 , 故在一般处理时采 用 罚 函数改造 目标 函数 得 到适 应 度 函数 。但 为方 便起见在我的程序 中将 目 函数直接表示为 : 标
f ,jj ∑ :a j ∑ :CX ,j x
【 0 ∑nli i . aX >b =
收到本文时 间:0 6年 1 2 20 2月 2 1 3
() 1 混合遗传算法 将启发式搜索算法“ 贪婪算法 ” 引入染色体解
码 过程 中 , 对于那 些 不满 足约束 的染 色体 编码 对应
的个体 , 优先装入价值密度较大且编码值为 1 的物 品, 直至背包容量 限制装不下为止, 并将未装入 的

作者简介 : 陆鹏 , , 男 硕士研究生 , 研究方 向: 数据仓库 与数 据挖 掘 , 遗传算法 。高茂庭 , , 士研 究生 , 男 博 副教授 , 研究 方 向: 数据挖 掘 , 数据库 , 管理信息系统 。李迎新 , , 男 硕士研究生 , 研究 方向 : 模糊识别 。
5 交叉算 子
采用单点杂交算子 , 在两个父代染色体的编码 串上随机选择一个杂交位 , 在此位后的两部分进行 交换 , 产生新 的子代染色体 。交叉概率一般设 为
0 8左右 。 .
2 遗传算 法编码
对于遗传算法来说首先要解决 的是其编码 问
题 。正 因为背包 问题 属 于 0—1规 划 问题 , 以我 所 们直 接采 用二 进 制 编码 。例如 一个 8变 量 的 背包 问题 : 当产 生 一 个 二 进 制 的 编 码 个 体 ( 0 111 1000 ) 表示该 个 体选择 物 品 14,,。 , 68
【.. ∑n1ii st . aX ≤b ( =1或 0) _ Xi 半个世 纪 以来 , 问题一 直是 算法 与复杂 性 研 该
比较 , 如果 比后者大 , 则不论 。否则讲父个体 中适 应度最优个体替代新种群中适应度最差的个体 。
究的热点问题之一。而遗传算法是改进式启 发算 法, 利用 了生 物 学 的 概 念 先 建 立 一 组 可 行 解 的种 群 , 以编码 , 并加 然后通过遗传 , 交叉和变异对现有 种群进行迭代以求 的问题最优解 。它适用 于大规 模 , 峰多 态 函数 , 离 散 变量 等 情 况 下 的全 局最 多 含 优化问题 。故本文将遗传算法应用于解决 背包 问 题, 并通 过算 例来 证 明算法 的可 通过算例来证明该算法解决背包 问题 的可行性 与有效性 , 并 以及评价各算法得优缺点 。 关键词
中图分类号 T 3 19 P 9 .
1 引 言
众所周知背包问题 (npakpol 是典型 kasc r e b m)
的N P完 全 问题 。它数 学模 型是 一 个 0—1规 划 问 题, 表示如 下 :
维普资讯
第3 5卷( o7 第 1 2 o ) 0期
计 算机 与数 字工程
3 5
遗 传 算 法 在 0— 一 维 背 包 问题 上 的应 用 研 究 1
陆 鹏 高茂庭 李迎新
203 ) 0 15 ( 上海海事大学信息工程学 院 上海
摘 要
遗传算法是 改进式启 发算 法 , 模拟 自然界生 物进 化过程 的计算模 型 。本 文将 多种 改进 的遗传算 法应用 于背 遗传算法 背包 问题 交叉算 子 变异算子 二重结构编码 ’
6 变异算子
在个体某个基因位发生了变异 , 1 由 变为 0 或 反之。类似于生物的基 因突变。选用一个较小 的 变异概率如 0 1 . 左右。
7 一重结构编码 的算法改进
针 对 上述 一 重 编码 结 构 的算 法 有 以下 两 种 改
进方 法
3 适应度 函数 的表 示
维普资讯
3 6

鹏等 : 传算 法在 0—1一维背包 问题上 的应用研究 遗
第3 5卷
物品编码值修 正为 0 形成个体新 的染 色体编码。 , 例如将 个体编码 ( 1 100 修正 为( 100 0 。 1 100 ) 110 0 ) 优先装入 了第 12 3 、、 个个体 , 因为他们的价值密度 均大于第 4 个个 体。( : 注 上例 中已假设个 体按价
f x ∑nl i Ma . CXi _
即将超过约束条件 的个体直接摈弃 。从实验
结 果 上看这 是 可行 的 。
4 选 择
采用轮盘赌选择方法。另外为 了算法 的收敛
性, 引入最优值保持策 略: 让每次迭代产生的新种
群 中适应 度 最优 个 体 与 父个 体 中适 应 度最 优 的相
值密 度从 大 到小排 列 )
叉概 率 为 0 8 变 异 概 率 为 0 1的情 况 下 : 本 遗 ., . 基
传算法在第 1 4代达到最优解 , 耗散遗传算法在第
5 代达到最优解 , 而混合遗传算法 可在第 4代算到
最优解。从标方差 和平均适应度值来看耗散遗传 算法形成的种群空 间要优于基本遗传算法形成 的
相关文档
最新文档