《计算方法》期末试题
计算方法期末试题及答案
计算方法期末试题及答案1. 选择题1.1 下面哪种方法不适合求解非线性方程组?A. 牛顿迭代法B. 二分法C. 割线法D. 高斯消元法答案:D1.2 在计算机中,浮点数采用IEEE 754标准表示,64位浮点数的指数部分占用几位?A. 8位B. 11位C. 16位D. 64位答案:B1.3 对于一个矩阵A,转置后再乘以自身得到的是:A. AB. A^2C. A^TD. I答案:B2. 填空题2.1 假设一个函数f(x)有一个根,使用二分法求解,且初始区间为[a,b]。
若在第k次迭代后的区间长度小于等于epsilon,那么迭代次数不超过:log2((b-a)/epsilon) + 1次。
2.2 求解线性方程组Ax=b的高斯消元法的计算复杂度为:O(n^3),其中n表示矩阵A的维度。
2.3 牛顿迭代法是利用函数的局部线性化来求解方程的方法。
3. 解答题3.1 请简要说明二分法的基本原理和步骤。
答案:二分法是一种不断将区间二分的方法,用于求解函数的根。
步骤如下:1) 确定初始区间[a, b],其中f(a)和f(b)异号。
2) 计算区间中点c = (a + b) / 2。
3) 如果f(c)等于0或小于某个给定的误差限,则c为近似的根。
4) 如果f(a)和f(c)异号,则根在[a, c],令b = c;否则根在[c, b],令a = c。
5) 重复步骤2-4,直至找到满足要求的根或区间长度小于误差限。
3.2 简要描述高斯消元法的基本思想和步骤。
答案:高斯消元法是一种求解线性方程组的方法,基本思想是通过行变换将方程组化为上三角形式,然后通过回代求解。
步骤如下:1) 将增广矩阵[A | b]写为增广矩阵[R | d],其中R为系数矩阵,d为常数向量。
2) 从第一行开始,选取一个非零元素作为主元,通过行变换使得主元下方的元素为0。
3) 对剩余的行重复步骤2,直至得到上三角形矩阵。
4) 从最后一行开始,依次回代求解未知量的值。
数值计算方法期末考试题精选版
数值计算方法期末考试题Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】一、单项选择题(每小题3分,共15分)1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 184.()()120f f <5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=--- []1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式; (2) 对于初始值()()0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩ 雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 用雅可比迭代公式得()()10.72000,0.83000,0.84000X = 用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分101dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度证明题答案1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商 ()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
数值计算方法期末考试题
数值计算方法期末考试题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#一、单项选择题(每小题3分,共15分)1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =????? ???????????????3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C =???????????? 4. 因为方程()420x f x x =-+=在区间[]1,2上满足??????????????? ?,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩的计算公式????????????????????? .填空题答案1.?????? 9和292.??????()()0101f x f x x x --?3.?????? 18 4.??????()()120f f <5.?????? ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩三、计算题(每题15分,共1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1.?????? 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---??????????[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1)?????? 写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)?????? 对于初始值()()0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩?(0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分101dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度证明题答案证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,并令其左右相等,得得1113A A h -==,043hA =。
大学计算方法历年期末考试试题大全(含完整版答案)及重点内容集锦
武汉大学计算方法历年期末考试试题大全(含完整版答案)及重点内容集锦武汉大学2008-2009学年第二学期考试试卷《计算方法》(A卷)(36学时用)学院:学号:姓名:得分:一、(10分)已知的三个值(1)求二次拉格朗日插值L2(x);(2)写出余项R2(x)。
二、(10分)给定求积公式求出其代数精度,并问是否是Gauss型公式。
三、(10分)若矩阵,说明对任意实数,方程组都是非病态的(范数用)。
四、(12分)已知方程在[0,0.4]内有唯一根。
迭代格式A:;迭代格式B:试分析这两个迭代格式的收敛性。
五、(12分)设方程组,其中,分别写出Jacob及Gauss-Seidel迭代格式,并证明这两种迭代格式同时收敛或同时发散。
六、(12分)已知的一组值2.21.0 分别用复化梯形公式和复化辛卜生公式计算七、(12分)20XX年5月左右,北美爆发甲型H1N1流感,美国疾病控制和预防中心发布的美国感染者人数见下表。
为使计算简单,分别用x=-1,0,1,2代表20XX年5月2,3,4,5日。
根据上面数据,求一条形如的最小二乘拟合曲线。
八、(12分)用改进欧拉方法(也称预估-校正法)求解方程:(取步长)1]。
九、(10分)对于给定的常数c,为进行开方运算,需要求方程的根。
(1)写出解此方程的牛顿迭代格式;(2)证明对任意初值牛顿迭代序列{xn}单调减且收敛于c.武汉大学2008-2009学年第二学期考试试卷1、解:(1)二次拉格朗日插值为(2)余项为2、解:当时,左边=2,右边=2;当时,左边=0,右边=0;当时,左边=223,右边=3;当时,左边=0,右边=0;当时,左边=25,右边=29,左边右边;于是,其代数精度为3,是高斯型求积公式。
3、解:而,于是,所以题干中结论成立。
4、解:(1)对于迭代格式A:,其迭代函数为,在[0,,所以发散。
(2)对于迭代格式B:x1,其迭代函数为10e,在,所以收敛。
22 0.4]内5、解:(1)Jocobi迭代法:0b/2因为a21/a22a21a12a11a22(2)Gauss-Seidel迭代法:a12/a11a21a12/a11a22a12/a1101/a22a21a12a11a22| 01/a22(k)因为a21a12a11a22a21a12a11a22综上分析可知两种迭代法同时收敛同时发散。
第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)lim cos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)x y x =-求: 1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积; 2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f bb ξξ'-=∈对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算30arctan lim ln(12)x x x x →-+2、计算120ln(1)d (2)x x x +-⎰ 3、计算积分:21arctanxd x x +∞⎰ 4、已知两曲线()y f x =与1x yxy e++=所确定,在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos t x t udu y t t ⎧=⎪⎨=-⎪⎩,试求:d d y x,22d |d t y x 的值。
人教版数学三年级上学期《期末测试题》含答案解析
2023-2024学年三年级上学期数学期末试卷一、填空题。
1. 在括号里填上合适的单位名称。
三年级学生跑50米的时间是9( )。
一支铅笔约长18( )。
一辆大货车载质量大约是10( ),每小时行驶65( )。
2. 在括号里填上合适的数。
8000千克=( )吨 1分30秒=( )秒3500米=( )千米( )米 2厘米5毫米=( )毫米3. 图中涂色部分占整个正方形( ),再涂( )块,涂色部分就占整个正方形的78。
4. 35是7的( )倍;35的7倍是( )。
5. 要使□9×6的积最接近240,□里填( );要使□15×3的积是四位数,□里最小填( )。
6. 一根铁丝,可以围成一个边长是8厘米正方形,这根铁丝长( )厘米;用这根铁丝,也可以围成一个长( )厘米,宽7厘米的长方形。
7. 周六晚上,小明看了20分钟动画片。
钟面上的时刻是他看完动画片的时刻,那么他是从晚上( )开始看的。
小明计划晚上8:45睡觉,他还有( )分钟可以洗漱。
8. 一张纸如图折起一个三角形。
原来长方形的长是( )cm ,宽是( )cm 。
二、选择题。
9. ()个18是1。
A. 8B. 1C. 1010. 与算式“290×6”结果相等的算式是()。
A. 290×3×3B. 29×6×10C. 300-10×611. 如图,从正方形中剪下一个相同的图形(阴影部分),周长不变的是()。
A. B. C.12. 老师买了4张电影票,一共付了100元,找回一些零钱。
估一估,她买的电影票可能是()元。
A. 22B. 25C. 28D. 813. 下面每组中的3张纸片,可以拼成一个正方形的是()。
A.B.C.三、计算题。
14. 直接写出得数500×3=503+117=2×206=560÷8=8×9+9=300-86=49+19=1-14=215×3=6+3÷3=15. 列竖式计算。
北师大版七年级上学期数学《期末测试题》及答案解析
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.有理数 , , 在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
[答案]A
[解析]
[分析]
根据数轴上点的位置作出判断即可.
(2)若 ,直接写出 的度数(用含 的代数式表示).
28.对数轴上的点 进行如下操作:先把点 表示的数乘以 ,再把所得数对应的点沿数轴向右平移 个单位长度,得到点 .称这样的操作为点 的“倍移”,对数轴上的点 , , , 进行“倍移”操作得到的点分别为 , , , .
(1)当 , 时,
①若点 表示的数为 ,则它的对应点 表示的数为.若点 表示的数是 ,则点 表示的数为;②数轴上的点 表示的数为1,若 ,则点 表示的数为;
[详解]由相反数的意义得,2的相反数是-2,
故选:D.
[点睛]本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.2019年12月16日,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星,卫星距离地球表面约21500000m,将数字21500000用科学记数法表示应为
二、填空题(本题共8个小题,每小题2分,共16分)
9.计算: =________; ________.
[答案](1).-1(2).18
[解析]
[分析]
根据有理数的乘方以及乘除法运算法则进行计算即可得到答案.
[详解] =-1;
,
故答案为:-1,18.
《计算方法》期末考试试题
《计算方法》期末考试试题一 选 择(每题3分,合计42分)1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。
A 、3 B 、4 C 、5 D 、62. 取73.13≈(三位有效数字),则≤-73.13 。
A 、30.510-⨯B 、20.510-⨯C 、10.510-⨯D 、0.5 3. 下面_ _不是数值计算应注意的问题。
A 、注意简化计算步骤,减少运算次数B 、要避免相近两数相减C 、要防止大数吃掉小数D 、要尽量消灭误差 4. 对任意初始向量)0(x ϖ及常向量g ϖ,迭代过程g x B x k k ϖϖϖ+=+)()1(收敛的充分必要条件是__。
A 、11<B B 、1<∞BC 、1)(<B ρD 、21B <5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)1(-k rka ,使得)1(-k rk a = 。
A 、 )1(1max -≤≤k ikni a B 、 )1(max -≤≤k ikni k a C 、 )1(max -≤≤k kj nj k a D 、 )1(1max -≤≤k kj nj a6. 用选列主元的方法解线性方程组AX =b ,是为了A 、提高计算速度B 、简化计算步骤C 、降低舍入误差D 、方便计算7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =(x ),则f (x )=0的根是: 。
A 、y =x 与y =(x )的交点B 、 y =x 与y =(x )交点的横坐标C 、y =x 与x 轴的交点的横坐标D 、 y =(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。
A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式()()463kkk f x dx A f x =≈∑⎰,那么4kk A==∑_____。
《计算机应用基础》期末试题
5. 依据[ ]可以识别文件的类型。
A.文件的大小B.文件的路径C.文件的扩展名D.文件的修改日期6.在Windows 7资源管理器中[ ]菜单提供了文件夹设置功能。
A、文件B、编辑C、工具 D:查看7. Windows 7中,显示3D桌面效果的快捷键是[ ]。
A.Alt+Tal B.Win+Shift C. Ctrl+Tab D. Win+Tab8. 计算的主机由( )构成。
A、CPU、内存储器及辅助存储器B、CPU和内存储器C、存放在主机箱内部的全部器件D、计算机主板上的全部器件9. 计算机中数据的表现形式是( )。
A、八进制B、十进制C、二进制D、十六进制10.下列( )文件是压缩文件A、财务.docB、财务.exeC、财务.zipD、财务.txt11. 外存储器中的信息,必须首先调入( ),然后才能供CPU使用A、ROMB、运算器C、控制器D、RAM12下列“不合法”的文件名是( )。
A、12345678?.txtB、WIN_PROG.EXEC、FILE.DATD、3578.TXT二、填空题(本题共12个空,每空2分,共24分)13.Windows7是由()公司开发的操作系统。
14. PDP是指( )显示器。
15.二进制数1110转换成十进制数为()。
16.磁盘碎片主要是在对硬盘的频繁写入和删除中产生的,可以用()来整理。
17.计算机软件系统中最重要、最基本的系统软件是()。
18.为了减少文件传送时间和节省磁盘空间,可使用()软件对文件“瘦身”。
19. 初次安装系统后,可以使用WIN7的()功能为该系统创建一个系统映象,以便系统被破坏后恢复。
20.批量搜索文件时所用的通配符有()和()。
21.WIN7操作系统中,Ctrl+X是()命令快捷键。
22.文件或文件夹通常有只读、()和()三种属性。
三、判断题(本题共12个小题,每小题2分,共24分)23.睡眠状态是一种省电状态。
()24. WIN7属于多用户、桌面操作系统。
人教版2021-2022学年数学三年级下册除法专项计算期末专项试题 (含答案)
2021-2022学年下学期小学数学三年级期末除法专项计算一.计算题(共16小题)1.(2021秋•兴山县期末)准确口算:直接写出得数。
(1)508⨯= (2)3204÷= (3)9003÷=(4)8005⨯=(5)963÷=2.(2020秋•法库县月考)直接写得数。
113⨯= 1025⨯= 4006⨯= 032⨯= 3700⨯= 704⨯= 2024⨯= 648÷= 1203÷=5005÷=693÷=2410⨯=3.(2021春•南海区校级期中)口算。
342⨯= 405⨯= 7040⨯= 2032⨯= 5607÷= 08÷= 999÷= 9245-= 6439÷= 4216÷≈12650⨯-=1093⨯÷=90156-⨯=4.(2022春•科左中旗校级期中)直接写出得数。
9009÷= 5607÷= 844÷= 80004÷= 30003÷=393÷=10005÷=666÷=5.直接写得数。
663÷=755÷= 2408÷= 2282÷= 242÷=6093÷= 24852+= 2052⨯= 4408÷= 563÷= 04÷= 3006÷= 6153÷=450355-=4404÷=6006÷=6.(2021春•浚县校级月考)脱式计算。
63056÷÷(912336)8-÷2245768+÷ 56776÷⨯7.脱式计算。
37836÷÷7541547-÷384(42)÷⨯58445÷⨯8.(2022春•科左中旗校级期中)连一连。
2019-2020学年第一学期期末考试《计算方法》大作业答案
吉林大学网络教育学院2019-2020学年第一学期期末考试《计算方法》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。
一、解线性方程(每小题8分,共80分)1、用矩阵的LU分解算法求解线性方程组X1+2X2+3X3= 02X1+2X2+8X3= -4-3X1-10X2-2X3= -11答:2、用矩阵的Doolittle分解算法求解线性方程组X1+2X2+3X3= 12X1– X2+9X3= 0-3X1+ 4X2+9X3= 1答:3、用矩阵的Doolittle分解算法求解线性方程组2X1+X2+X3= 46X1+4X2+5X3=154X1+3X2+6X3= 13答:4、用高斯消去法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:5、用无回代过程消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:6、用主元素消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:7、用高斯消去法求解线性方程组1231231232344272266x x x x x x x x x -+=++=-++=答:8、利用Doolittle 分解法解方程组Ax=b ,即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 答:9、利用Doolittle 分解法解方程组Ax=b ,即解方程组123421111443306776081011112x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 答:10、用高斯消元法解方程组1237811351341231x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦答案:二、计算(每小题10分,共20分)1、已知节点x1,x2及节点处函数值f(x1),f(x2),构造线性插值多项式p1(x). 答:2、设f(xi)=i(i=0,1,2),构造二次式p2(x),使满足: p2(xi)=f(xi)(i=0,1,2)答:。
算法期末考试练习题!!!
算法期末考试练习题博主内推:⼀、选择题1.算法分析中,记号O表⽰(B),记号Ω标售(A),记号Θ表⽰(D)A 渐进下界B 渐进上界C ⾮紧上界D 紧渐进界E ⾮紧下界2.以下关于渐进记号的性质是正确的有:(A)A f(n) =Θ(g(n)),g(n) =Θ(h(n)) ⇒f(n) =Θ(h(n))B f(n) =O(g(n)),g(n) =O(h(n)) ⇒h(n) =O(f(n))C O(f(n))+O(g(n)) = O(min{f(n),g(n)})D f(n) = O(g(n)) ⇔g(n) = O(f(n))3. 记号O的定义正确的是(A)。
A O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤ cg(n) };B O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤ f(n) };C O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };4. 记号Ω的定义正确的是(B)。
A O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤ cg(n) };B O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤ f(n) };C (g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D (g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };5. T(n)表⽰当输⼊规模为n时的算法效率,以下算法效率最优的是( C )A T(n)= T(n – 1)+1,T(1)=1B T(n)= 2n2C T(n)= T(n/2)+1,T(1)=1D T(n)= 3nlog2n6. 动态规划算法的基本要素为(C)A 最优⼦结构性质与贪⼼选择性质B 重叠⼦问题性质与贪⼼选择性质C 最优⼦结构性质与重叠⼦问题性质D 预排序与递归调⽤7.下列不是动态规划算法基本步骤的是( A )。
北师大版数学三年级上册《期末考试题》有答案解析
A.(63-27)÷9B.(8×4)-20C.62-(38-17)
【答案】B
【解析】
分析】
详解】A:去掉括号后要先算除法,再算减法,结果会改变;
B:去掉括号后不改变运算顺序,结果不变;
C:62-(38-17)=62-38+17,去掉括号后要改变括号里面的运算符号,不改变运算符号结果就会改变.
【点睛】熟练掌握人民币、长度单位的换算知识是解答本题的关键.
3.一个正方形的边长减少3厘米,它的周长会减少( )厘米.
【答案】12
【解析】
【分析】正方形的周长=边长×4,正方形的边长减少3厘米,则它的周长就减少4个3厘米.
【详解】根据分析可得,它的周长就减少3×4=12厘米.
一个正方形的边长减少3厘米,它的周长会减少(12)厘米.
故答案为:B.
【点睛】没有小括号,要先算乘除法,再算加减法;含有小括号的要先算小括号里面的,再算小括号外面的.
15.学校第十届科技节于2020年10月20日-2021年1月3日举行,此次科技节共开展了( )天.
A.74B.75C.76
【答案】C
【解析】
【分析】根据日期:2020年10月20日到2021年1月3日,经过10月、11月、12月、1月4个月份;而10月份有12天,11月小有30天,12月大有31天,1月有3天,加起来即可解答.
【答案】18:30
【解析】
【分析】开始时间=结束时间-经过时间,据此即可解答.
【详解】19:05-35分钟=18:30
【点睛】熟练掌握时间的推算方法是解答本题的关键.
8.快餐店午饭准备了3种素菜,2种荤菜.若每份只能选一荤一素,可以有( )种搭配供选择.
2020年国家开放大学电大《数学思想与方法》期末考试复习试题答案小抄
2020年国家开放大学《数学思想与方法》期末考试复习试题答案小抄一、填空题1、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以《九章算术》为典范。
2、在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的《几何原本》。
3、《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。
4、推动数学发展的原因主要有两个:实践的需要;理论的需要;数学思想方法的几次突破就是这两种需要的结果。
5、变量数学产生的数学基础是解析几何,标志是微积分。
6、数学基础知识和数学思想方法是数学教学的两条主线。
7、随机现象的特点是在一定条件下,可能发生某种情况,也可能不发生某种情况。
8、等腰三角形的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。
9、学生理解或掌握数学思想方法的过程有如下三个主要阶段潜化阶段、明朗阶段、深入理解阶段。
10、数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。
11、强抽象就是指,通过把一些新特征加入到某一概念中去而形成新概念的抽象过程。
12、菱形概念的抽象过程就是把一个新的特征:一组邻边相等,加入到平行四边形概念中去,使平行四边形概念得到了强化。
13、演绎法与归纳法被认为是理性思维中两种最重要的推理方法。
14、所谓类比,是指由一类事物具有某种属性,推测与其类似的某种事物也具有该属性的推测方法;常称这种方法为类比法,也称类比推理。
15、反例反驳的理论依据是形式逻辑的矛盾律。
16、猜想具有两个显著特点:具有一定的科学性、具有一定的推测性。
17、三段论是演绎推理的主要形式。
三段论由大前提、小前提、结论三部分组成。
18、化归方法是指,把待解决的问题,通过某种转化过程,归结到一类已经能解决或较易解决的问题中,最终获得原问题解答的一种方法。
【人教版】数学五年级上学期《期末测试题》带答案
2023—2024学年上学期期末检测五年级数学试题一、填空题。
(每空1分,共17分)1. 计算“7.86÷1.1”时,可以看作()÷()来计算,商的最高位是()位,用循环小数表示是(),精确到十分位是()。
2. 在()里填上“>”“<”或“=”。
4.2÷0.6()4.2 0.75()0.75×1.029.8()9.84 5.9×4.95()303. 菲菲买了3支钢笔,每支a元,又买了b本练习本,每本0.5元。
一共应付()元;当a=12,b=4时,共应付()元。
(a-0.5)表示()。
4. 下图中每个小方格面积是1cm2,请你估计这片银杏叶的面积是()cm2。
5. 学校要购买60毫升的喷雾瓶同时分装1400毫升的消毒液,至少购买()个才够装。
6. 3×0.5=1.53.3×3.5=11.553.33×33.5=111.555…请根据上面的规律填空:()×()=11111.55555。
7. 下面的图形在两条平行线之间,已知三角形CDE面积是13.5m2,平行四边形ABCD的面积是()m2。
二、选择。
(把正确的答案填在括号里,每题2分,共20分)8. 下面说法正确的是()。
A. 循环小数一定比有限小数大B. 近似数0.50和0.5表示的意义相同C. 0.75÷0.7和7.5÷7的商都是1时,余数都是5D. 3.08×0.6的积是三位小数9. 在下面的除法竖式中,框起来的“25”表示()。
A 25个十 B. 25个一 C. 25个十分之一 D. 25个百分之一10. 根据下面天平的状态,下面等式成立的是()。
A. x÷2=50×2B. x-15=50+10C. x+20=50+30D. x×7=50×711. 计算6.5×3时,下面方法中不正确的是()。
【苏教版】数学四年级上学期《期末测试题》有答案解析
【答案】①.=②.=③.>④.<
【解析】
【分析】分别计算出算式的结果,再进行比较即可。
【详解】(1)500-125-225
=375-225
=150
500-(125+225)
=500-350
=150
150=150
(2)832÷16=52
【答案】12
11.小明的量角器破损了,他仍用这个量角器度量一个角,角的一条边与量角器90°的刻度线重合,另一条边则正好对着125°的刻度处,这个角是( )度。
【答案】35
【解析】
【分析】用量角器测量角的度数时,若角的一边没有和0°刻度线重合,则将角两边所对齐的刻度相减,即可求出这个角的度数。据此解答即可。
【解析】
பைடு நூலகம்【详解】略
7.354÷72的商是( )位数,试商时可以把72看作( )试商,这时商会偏( )(填”大”或”小”)。
【答案】①.一②.70③.大
【解析】
【分析】根据三位数除以两位数的除法计算方法可知,354÷72,被除数前两位上的数小于除数,则商是一位数。除数72接近整十数70,则将72看作70试商。除数变小可,则初商可能偏大。
【详解】125°-90°=35°
则这个角是35度。
【点睛】本题考查学生对用量角器测量角的度数方法的掌握情况。
12.下图中,有( )个锐角,( )个直角,( )个钝角。
【答案】①. 3 ②. 2 ③. 1
【解析】
【分析】根据锐角是小于90°大于0°的角,直角是等于90°的角,钝角是大于90°小于180°的角,据此进行解答。
23.用一副三角尺拼一个75°的角,哪一种拼法是正确的?。()
华东交通大学2015-2016学年《计算方法》期末复习(1)答案
华东交通大学2015—2016学年第二学期复习(A 卷)试卷编号: ( A )卷计算方法 课程 课程类别:必修 考试日期: 月 日 开卷(范围:计算方法教材前三章) 题号 一 二 三 四 五 六 七 八 … 总分 累分人 签名题分252525252525252525100得分注意事项:1、本试卷共 页,总分 100 分,考试时间 50 分钟。
2、考试结束后,考生不得将试卷和草稿纸带出考场。
考场纪律:1、学生应试时必须携带学生证,以备查对,学生必须按照监考老师指定的座位就坐。
2、除答卷必须用的笔、橡皮及老师指定的考试用具外,不得携带任何书籍、笔记、草稿纸等。
3、答卷时不准互借文具(包括计算器)。
题纸上如有字迹不清等问题,学生应举手请监考教师解决。
4、学生应独立答卷,严禁左顾右盼、交头接耳、抄袭或看别人答卷等各种形式的作弊行为,如有违反,当场取消其考试资格,答卷作废。
5、在规定的时间内答卷,不得拖延。
交卷时间到,学生须在原座位安静地等候监考教师收卷后,方可离开考场。
★二分法一、证明f (x )=210x x --=在区间(1,2)内有唯一根,用二分法求此根要求误差小于0.05。
解:令2(x)1f x x =--,则,(1)1f =-,(2)1f = 而且在(1,2)内=2x-1>0,因此方程在(1,2)内有唯一根。
2(1.5) 1.5 1.510.25f =--=-,所以有根区间为(1.5,2)25(1.75) 1.75 1.751016f =--=>,所以有根区间为(1.5,1.75)21(1.625) 1.625 1.6251064f =--=>,所以有根区间为(1.5,1.625)99931(1)1110161616256f =--=-<,所以有根区间为(9116,1.625) 取*19119(11)1 1.59375216832x =+==此时,它与精确解的距离<1191(11)0.05281632-=<二、证明0sin 1=--x x 在[0,1]内有一个根,使用二分法求误差不大于41021-⨯的根要迭代多少承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
成人教育《计算方法 提纲》期末考试复习题及参考答案
一、单项选择题1、Jacobi迭代法解方程组Ax = b的必要条件是( C ).A.A的各阶顺序主子式不为零 B.ρ(A)<1C. D.|A|≤12、设,均差( B )A.3B. -3C. 5D.03、设,则ρ(A)为( C ).A. 2B. 5C. 7D. 34、三点的高斯求积公式的代数精度为( B ).A. 2B.5C. 3D. 45、幂法的收敛速度与特征值的分布( A )。
A. 有关B. 不一定C. 无关6、求解线性方程组Ax=b的分解法中,A须满足的条件是( B )。
A. 对称阵B. 正定矩阵C. 任意阵D. 各阶顺序主子式均不为零7、舍入误差是( A )产生的误差。
A.只取有限位数B.模型准确值与用数值方法求得的准确值C. 观察与测量D.数学模型准确值与实际值8、3.141580是π的有( B )位有效数字的近似值。
A.6B.5C. 4D. 79、幂法是用来求矩阵( A )特征值及特征向量的迭代法。
A. 按模最大B. 按模最小C. 所有的D. 任意一个10、用1+x近似表示所产生的误差是( C )误差。
A. 模型B. 观测C.截断D. 舍入11、解线性方程组的主元素消去法中选择主元的目的是( A )。
A.控制舍入误差B. 减小方法误差C.防止计算时溢出D. 简化计算12、解线性方程组Ax=b的迭代格式收敛的充要条件是( D )。
A. |M|<1B. ρ(A)<1C. |ρ(M)|<1D. ρ(M)<113、用近似表示所产生的误差是( D )误差。
A. 舍入B. 观测C.模型D. 截断14、-324.7500是舍入得到的近似值,它有( C )位有效数字。
A. 5B. 6C.7D. 815、反幂法是用来求矩阵( B )特征值及相应特征向量的一种向量迭代法。
A. 按模最大B. 按模最小C.全部D. 任意一个16、用表示自由落体运动距离与时间的关系式( g为重力加速度),是在时间t内的实际距离,则是( C )误差。
【北师大版】数学三年级上学期《期末检测试题》含答案解析
【解析】
【分析】普通计时法转换成24时计时法的方法:中午12时以前的,直接去掉限制词.中午12点以后的,去掉限制词,“整时”加上12.
【详解】用24时计时法表示晚上10时25分为22:25.
【点睛】本题考查24时计时法和普通计时法的互化方法,需熟练掌握.
6.迎新晚会从18时35分开始,2小时45分钟后结束,结束的时刻是().
9.在括号里填上“>”“<”或“=”.
7×8-5()6×918÷6-3()18÷(6-3)170×6()1200
15.1元()14.9元3米2厘米()3.2米0.7()0.6
二、判断.
10.小亮4月31日和妈妈去游乐园.()
11.两个长和宽分别相等的长方形,它们的周长也一定相等.()
12.一天时间,钟面上的时针正好走一圈.()
50-3×6=77÷7=(19+17)÷9=
21.列竖式计算.
562+418-297=350×4=
506×3=830-(420-270)=
22.脱式计算.
317-(103+116)15+72÷842÷6+9
23.下列图形从上面看分别是什么样子?连一连.
六、解决问题.
24.商店上午卖出冰棍125根,下午卖出冰棍284根,现在还剩下109根,店里原来有多少根冰棍?
三、我会选.
15.钟面上分针从1走到6,经过了()分.
A.30B.25C.5
【答案】B
【解析】
【分析】钟面上,分针走一个小格是1分钟,走一个大格是5分钟.分针从1走到6,共走了5个大格,经过了5×5=25分钟.
【详解】根据分析可知,钟面上分针从1走到6,经过了25分
故答案为:B.
【点睛】本题考查钟面上指针的认识,分针走了几个大格,就经过了几个5分钟.
北京科技大学研究生期末考试计算方法2006
一、填空题(1-7 每空 2%*10,8-9 每空 3%*10) 1、数值 x* 的近似值 x = 0.1234×10−3 ,若满足 x − x∗ ≤ ( 0.5 ×10−7 ),则称 x 有 4 位有效
数字.
2、已知 X = (3,4,0)T , A = XX T 则范数 X =5, A =(28).
6
6 56 56
6 125 125
75 7
∫ 所以
1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1)
在
A1
=
1 6
,
A2
=
5 6
和
x1 = ±
1 时达到最高代数精确度 5。 5
六、(10 分)找出合适的四次多项式ϕ(x) ,使得ϕ(i) = i 0 ≤ i ≤ 2
五、(12 分)找出合适的 A1, A2 , x1 使求积公式
三
∫1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1) 代数精度尽可能高。并给出此最高代数精确度。
∫ 解:令 f (x) = 1
1
f (x)dx = 2
−1
A1 f (0) + A2 f (x1) + A2 f (x2 ) + A1 f (1) = 2 A1 + 2 A2
1
1
∫ ∫ 令 f (x) = x f (x)dx = xdx = 0
−1
−1
A1 f (−1) + A2 f (x1) + A2 f (−x1) + A1 f (1) = A2 (x1 − x1) =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末考试《计算方法》试题
学生姓名专业
层次年级学号
学习中心成绩
一计算题 (共10题,总分值100分 )
1. 应用迭代法求解方程并讨论迭代过程的收敛性。
(10 分)
2. 用矩阵的Doolittle分解算法求解线性方程组
X1+2X2+3X3 = 1
2X1– X2+9X3 = 0
-3X1+ 4X2+9X3 = 1 (10 分)
3. 构造一个收敛的迭代法求解方程X3-X-1=0的唯一正根。
合理选择一个初值,迭代两步,求出x2。
(10 分)
4. 用高斯消去法求解线性方程组
2X1- X2+3X3 = 2
4X1+2X2+5X3 = 4
-3X1+4X2-3X3 = -3 (10 分)
5. 用高斯—赛德尔迭代法求解方程组
(10 分)
6. 设方程组
迭代公式为
求证:由上述迭代公式产生的向量序列收敛的充要条件是
(10 分)
7. 并说明其几何意义。
(10 分)
8. 对于给定的方阵A,若,则矩阵I-A是非奇异的。
(10 分)
9. 基于迭代原理证明(10 分)
10. 用迭代法求方程
x3-x2-1=0
在[1.3,1.6]内的一个实根,选初值x0 =1.3,迭代一步。
(10 分)。