离心泵振动原因分析
离心泵产生振动的原因及解决方法
离心泵产生振动的原因及解决方法一. 机泵轴弯曲机泵轴是带着固定在其上的叶轮或转子旋转,由于叶轮和转子的重量,特别是大机泵,当机泵较长时间停止工作时,使机泵轴在一个方向上受力,造成轴弯曲。
轴弯曲的机泵在运行中就会引起叶轮等传动产生不平衡,致使叶轮与本壳发生摩擦,导致机泵产生振动现象。
解决方法是每8h盘车一次,每次按同一方向将轴转动120度。
二. 轴承问题1.轴承“跑外缘”由于轴承装配质量不良,机泵经过长时间运行后,就会出现轴承“跑外缘”现象,造成轴承温度升高,产生杂音,出现转动。
解决的方法是:(1)将轴承支架焊上一层金属,然后车削到合适的尺寸,重新装配;(2)如轴承间隙较大,可加薄铜皮,使轴承外缘静配合达到规定值。
2.轴承磨损目前从市场上采购的轴承或多或少都存在一些质量问题。
主要是滚珠大小不一、硬度差、间隙大等,很难保证维修质量。
轴承磨损一般伴随有发热和异常声音,严重时发生卡泵。
因此,发现轴承异常时应及时停机更换。
3.轴瓦间隙过大这种情况常出现在采用滑动轴承的大、中型水泵中,若轴瓦间隙过大,就容易使轴松动,因此应及时调整轴瓦间隙。
三. 联轴器问题联轴器的作用主要是把泵和电机连接起来一同旋转并转递扭矩,其问题有以下两点,一是不同心,有些大型泵使用一段时间后,就会发生变化,如果出现不同心现象,只能停机并重新找正;二是联轴器所使用的胶圈、梅花胶皮、等容易损坏,将损坏的胶圈换掉即可恢复正常。
四. 液体通道不畅当机泵运行时,由于液体通道不畅,产生水力冲击而引起机泵振动。
主要原因有以下几点。
1、出口阀门开度太小离心式泵,特别是高扬程、大排量的泵在流量小时容易产生不通程度的振动,当开大阀门流量正常后,振动就会消失。
2、泵吸入端管道进气或有杂物入口端装有底阀和过滤网的输送泵,在试运初期流体过脏或粘度过大,易产生气蚀,同时伴随有振动,严重时水泵不能正常工作。
为了消除这一现象,最好在泵的入口端安装一负压表,以便随时观察负压变化,从而准确判断吸入管路的变化情况,及时清理底阀和过滤器。
离心泵的振动原因分析
离心泵的振动原因分析离心泵的振动原因分析1.离心泵的转子不平衡与不对中。
这个问题在离心泵的振动问题中所占比例较大,约为80%的比例。
造成离心泵转子不平衡的因素:材料阻止不均匀、零件结构不合格,造成转子质量中心线与转轴中心线不重合产生偏心据形成的不平衡。
校正离心泵的转子不平衡又可分为两。
静平衡与动平衡:一般也称为单面平衡和双面平衡。
其区别就是:单面平衡是在一个校正面进行校正平衡,而双面平衡是在两个校正面上进行校正。
2.安装原因:基础螺栓松脱、校调的水平度没有调整好,在离心泵工作之前,要检查一下其基础螺栓是否有松动的现象,以及离心泵的安装是否水平。
这些也会造成离心泵在工作的时候发生振动的情况。
3.离心泵内有异物。
在离心泵工作之前,要检查下泵内部,由于长期使用,在离心泵的内部可能存在一些例如水中的杂草等异。
4.由于长时间的使用造成离心泵内部的气蚀穿孔。
5.离心泵的设计方面存在不合理的情况,例如零件大小尺寸等问题。
不过这种情况相对较少。
离心泵在出场之前,都会在车间内部进行多次的检测工作,以保证出厂离心泵的合格率。
CQB-G高温磁力驱动离心泵安装和调试:(一)应水平安装.开车前应检查冷却箱之润滑油油位.若油位过低时应及时补充。
开泵前.首先应打开冷却水回路.进水管阀门的开启度应根据泵正常工作后冷却出水管的温度进行调节。
(二)当抽吸液面高于果轴心线时.起动前打开吸入管道阀门即可.若抽吸液面低于泵轴心线时.管道需配备底阀。
(三)泵使用前应进行检查.电机风叶转动要灵活.无卡住及异常声响.各紧固件要紧固。
(四)检查电机旋转方向是否与磁力泵转向标记一致。
(五)电机启动后.缓慢打开排出阀.待泵进入正常工作状态后.再将排出阀调到所需开度。
泵停止工作前.应先关闭排出阀门.然后切断电源.再关闭冷却水管阀门。
CQB-G高温磁力驱动离心泵产品概述:CQB-G高温磁力驱动离心泵采用多重循环冷却结构,保证了原动力和磁传动的可靠性和稳定性,同时采用柱销联轴器减少了泵的噪音和震动,便拆式和柱销联轴器同时使用,使泵的结构增长,更有利于泵的散热。
离心泵振动常见原因分析及预防措施
高速离心泵,尤其需要注意在流量为40到60m 3/h 且扬程低于800m 时需要选用多级泵[1]。
通过速度系数法设计离心泵流程模型,以寻找泵体在流水线上的最优运行方案。
在叶轮方面通过水力损失判断具体的容积效率,从而找到最合理的离心泵比转速。
(2)液体通道结构。
液体通道结构包括出口阀门、液体吸入端口和出口管道,在这三个方面的设计需要保证出口阀门的面积能够有效处理气体的理论数值,确保泵内压强符合生产需要。
液体吸入端要配备滤网等结构,避免发生堵塞,保障端口畅通。
由于离心泵内存在理论的气体残留量,所以在出口管道方面的设计要尽量减少压强波动,将排气部位设置在较为适合空气流通的位置。
(3)轴承与联轴器需要保持相对的稳定,避免在运行时不同心的情况,应当注意到扭矩在电机与泵体之间的传递足够稳定。
防止联轴器发生磨损的部件也要配备到位,确保及时更换,使得其结构设计能够发挥离心泵的功能。
2.2 保障离心泵的工程结构和材料质量离心泵的材料质量尤为关键,离心泵轴的刚性如果不达标,就会发生传动轴与静止物件的碰撞,进而造成离心泵振动。
同样的,如果离心泵轴的材料结构不合理,也会导致离心泵由于轴底结构承压不均匀而发生振动。
在最基础的离心泵泵体架构方面,泵体高速运转中的驱动装置架需要保证其形态的稳定,从基础地脚螺栓到整体离心泵基础,都需要保证其刚性达到离心泵运行需要。
在离心泵的基础以及泵支架方面考虑刚性,能够有效处理离心泵振动情况。
联轴器的结构与材料质量同样影响这离心泵振动情况,为此要调增离心泵联轴器的周向间距,保持轴体的对称性,并且维持联轴器的平衡水平来解决离心泵振动。
离心泵自身运行时如果产生不对称的压强环境也会导致离心泵震动,所以在工程结构上要维持液体流动条件的对称,叶轮结构需防止出口压力不均匀造成液体漩涡,降低液体回流,以一定的叶片倾斜度来处理脉冲压力。
由于石油化工的生产特点,需要针对性地解决液体腐蚀情况,通过加厚离心泵体的密闭层厚度,可以根据相应材料技术的发展为离心泵内的各种隔离部件增添新材料。
离心泵振动原因分析及整改措施
离心泵是炼厂不可缺少的转动设备动力设备,离心泵的运行状态决定了泵能否安全稳定地长周期运行,进而决定整个装置是否能够平稳运行。
离心泵在运转过程中轴承位置的振动值一般采用速度有效值来表示,单位mm/s。
轴承座的振动标准执行ISO 10816—3 或者GB/T6075.3 等相关标准。
某公司硫磺联合装置有3套溶剂再生装置,其中1号溶剂再生装置处理量为500 t/h,2 号3号溶剂再生装置处理量为600 t/h,工艺流程相同如图1所示。
其中1 号溶剂再生装置贫液泵P-104AB设备型号250X250WEZ500、型式OH2、扬程80 m、额定流量550m3/h、电动机功率185kW、电压:10000V以及转速1480 r/min,2号、3号溶剂再生装置P-204AB、P304AB贫液泵额定流量为650m3/h、电动机功率200kW,其他参数与P104AB相同。
1号溶剂再生装置在开工初期水联运时发现P104AB泵在运转时轴承座水平振动值超标,通过手持式测振仪检测振值在4~13 mm/s 波动,振值波动的同时伴有“呼呼”的嗡鸣声。
现场初步认为水联运初期管线内有杂物造成泵入口过滤器堵塞,导致发生这种现象。
现场安排切泵,清理泵入口滤网。
当切换到另一台泵运行时,发现也发生了同样的问题,而且原运转泵过滤器滤网干净没有杂物。
2号、3号溶剂再生装置在水联运时P-204AB/304AB也发生了同样的问题,泵叶轮流道情况如图2所示。
在泵P-104AB/204AB/304AB运转时,用巡检仪对泵轴承座进行测振,通过巡检仪自带的频谱功能,发现每台泵振值的高点都是在150Hz附近,如图3所示,这几台泵的转速都是1480r/min,所以6倍频高,结合泵的叶轮为6流道,所以现场泵的振动问题初步判定为叶片通过频率故障。
故障原因分析及制定措施现场泵或者风机叶片流道通过故障主要有以下几个方面:一是动刚度不足,即设备或与其相连管道的动刚度不足,在压力脉动作用下,出现振动放大效应,表现为叶片通过频率振动十分剧烈。
离心泵振动的原因及处理方法
离心泵振动的原因及处理方法离心泵啊,那可是在各种工业领域都大显身手的重要设备呢!可要是它振动起来,那可真让人头疼啊!你想想看,离心泵就好比是一台不知疲倦的“大力士”,整天在那辛勤工作。
可突然有一天,它开始“哆嗦”起来了,这是为啥呢?原因之一可能是转子不平衡。
就好像一个人走路一瘸一拐的,能稳当吗?转子不平衡了,离心泵自然就会振动啦。
还有啊,轴弯曲也会导致振动哦,这就好比是一根笔直的扁担突然变弯了,挑东西能不晃悠嘛!再说说安装问题吧。
如果离心泵安装得歪七扭八的,它能好好工作吗?肯定会闹别扭呀,振动也就随之而来了。
地脚螺栓松动也是个麻烦事儿,就像人的脚站不稳一样,离心泵也会摇摇晃晃的。
另外,泵内有异物也不行呀,就好比人嗓子里卡了东西,能舒服吗?离心泵也会通过振动来表达它的不满呢!那遇到这些问题该咋办呢?咱得对症下药啊!对于转子不平衡,就得好好给它调整平衡,让它能稳稳当当工作。
轴弯曲了,那就得想办法把它弄直呀,这可不能马虎。
安装的问题呢,就得重新认真安装,让离心泵站得稳稳的。
地脚螺栓松动了,赶紧拧紧呀,可别让它再晃悠啦。
要是泵内有异物,那得赶紧清理掉,让它的“嗓子眼儿”通畅起来。
还有啊,操作不当也可能让离心泵振动哦。
比如说流量过大或过小,就像人跑步速度忽快忽慢,能不难受嘛。
这时候就得调整好流量,让离心泵工作在一个舒适的状态。
总之啊,离心泵振动可不是小事儿,咱得重视起来。
要像照顾自己的宝贝一样照顾好它,及时发现问题,及时解决。
不然它要是闹起脾气来,耽误生产可就麻烦啦!你说是不是这个理儿呢?咱可不能让这么重要的设备出了问题还不管不顾呀,那可不行!要让离心泵一直稳稳当当地为我们服务,为我们的生产助力呀!。
离心泵振动常见原因分析及预防措施
离心泵振动常见原因分析及预防措施2.刘爱国中石化胜利油田分公司孤东采油厂油气集输管理中心巡护站3.张金立中石化胜利油田分公司孤东采油厂油气集输管理中心二号联合站摘要:离心泵在正常运转的时候如果出现振动情况的发生,会对极大的降低其使用效果。
而造成离心泵振动的原因非常多,例如:设计方面、制造过程及使用不当等都会导致离心泵在使用过程中发生振动。
所以本文针以上原因进行了细致的分析,再采取有效的预防措施,从最大程度上来提高离心泵的使用效率。
关键词:离心泵、振动、原因分析、预防措施前言:总所周知,离心泵如果在起使用过程中频繁出现振动问题,会极大的降低它的使用效果,如果严重的还会降低自身的使用效果。
从而给企业带来不必要的经济损失。
而造成其振动的原因非常多,如:设计方面、制造过程及使用不当,还例如自身的叶轮没有做好平衡、叶轮流道内有东西堵塞离心泵泵机的密封性不高而到时泄露等等。
而本文会根据其中最容易出现的几种原因进行分析并根据这些原因制定有效的预防措施。
1.离心泵工作时产出振动最容易出现的原因1、1离心泵设计方面及安装过程中的所最容易出现的问题在设计离心泵时,因每个设计者的侧重点和设计风格不一样,那么对最重要的叶轮水力的重视程度也会不一样。
而叶轮作为离心泵工作的重要原件之一,会极大的影响离心泵的运转及使用寿命。
如何设计者在设计时没有针对叶轮的静平衡指标作出严格的工作标准,那么就会导致离心泵在工作时产生振动的发生。
而安装离心泵的时候,如果安装方式方法运用不当,也会造成同样的情况发生,一旦安装不当,还会对离心泵的使用质量造成影响。
在安装时,安装人员的专业性及操作性必须要有所要求,因为一旦安装过程出现问题,那么必然会导致以后的使用过程出现问题,严重的还会导致离心泵的使用寿命。
在整个安装过程中,离心泵基础面板摆放是否标准,离心泵配置管道的型号是否选择一致等都是检验安装人员专业性的最基本的标准。
如果以上安装人员在安装时无法同时满足以上两个基本标准,那么安装后离心泵工作时就会出现振动的情况发生。
离心泵振动常见原因分析及预防措施
离心泵振动常见原因分析及预防措施离心泵主要由泵体、泵头、支架、泵轴、联轴器、叶轮、轴承、机封或盘根等零部件组成,振动是评价离心泵运行可靠性的一个重要技术指标,引起机泵振动的因素较多,通常包括离心泵转子动态不平衡,泵轴同轴度偏差大及对中不好,地脚螺栓未完全紧固,各零部件装配间隙不当产生碰擦,管道附加与残余应力作用,工艺操作波动或抽空等,各种因素可能单一作用于机泵上,也可能多种因素组合作用于机泵上,其引起振动现场和振动大小也不相同,需要及时采取措施,使其运行在可靠的允许振动范围内,将对机泵的损害降到最低。
标签:离心泵;联轴器;不稳定工况;振动引言:在离心泵日常应用过程中,振动作为其不稳定工况,会损耗或损坏机泵泵体、支架、泵轴、机封、轴承及油封等相关零部件。
分析离心泵常见振动问题,在振动初期及时发现并采取相应的预防措施,实现离心泵长周期稳定运行。
1.离心泵振动超标的危害根据SHS01003—2004《石油化工旋转机械振动标准》,可将离心泵振动烈度评定等级划分为4个区域,即A,B,C,D,A区为优秀状态,B区为合格状态,C区为不合格状态,D区为不允许状态,当离心泵振动到达C区和D区时,将会出现振动超标,并对机泵产生一定危害。
①导致离心泵不能正常运行;②引起管路或电机振动,影响其寿命;③造成机封、轴承或油封等损害;④使地脚螺栓、联轴器螺栓等松动;⑤造成基础裂缝或破损;⑥造成管路阀门、滤器等损坏;⑦产生噪声,损害员工身心健康;⑧严重时,会造成设备损伤或损坏。
2.离心泵振动原因分析2.1泵轴原因(1)离心泵转子轴多为带多级台阶的细长直轴,其运行挠度较大,易出现局部刚度不足和整体同心度偏差大等情况,引起泵轴和轴承、直口等部位碰磨,产生振动。
(2)叶轮和转子的重量附加在泵轴上,当机泵长时间停车时,使泵轴受一个方向作用力,引起泵轴弯曲,再次使用时,叶轮、轴承及泵轴等传动部件会出现动态不平衡,使叶轮与泵体和隔板发生摩擦,便会出现不同程度的振动。
离心泵噪声升高、振动的五大原因及分析
各种离心泵在使用过程中难免会有遇到出现噪声及振动的现象,那么离心泵出现噪声及振动的原因究竟是什么呢?01、出现汽蚀汽蚀是离心泵运行中出现噪声、振动和效率下降的主要原因,汽蚀不仅影响流体流动状态,而且影响其动态响应,从长远来看,汽蚀还可能引起离心泵通流部分表面的破坏、密封的失效和轴承磨损等。
02、泵轴与电动机不同心使用的离心泵产品属于带联轴器的离心泵系列,在安装过程中或者在检修以后由于电机与泵之间采用的是联轴器连接安装时导致了电机或者泵头出现了移位、或者在检修之后电机与泵之间的平衡没有调整好都会出现噪声及振动现象。
必须校正好才能解决此现象,也可以改选没有联轴器的离心泵例如:单级卧式离心泵。
03、出口流量太大很多用户在选用离心泵型号时由于缺少对离心泵性能的了解,在选择离心泵扬程时会觉得选一个高扬程的离心泵只要在这个扬程范围内都能使用。
由于这种想法往往会导致在使用过程中出现离心泵振动大有噪声的现象,因为离心泵扬程高而实际使用的扬程低这样会导致泵的出口流量超大,流量大了会导致吸水管阻力过大从而出现振动现象,严重时还会导致电机超电流导致烧电机的现象出现。
如果已经在使用中的离心泵是由于这种原因所致建议关小出口阀门或者改小离心泵叶轮。
04、离基础或者紧固件松动长时间使用的离心泵有可能出现基础螺栓或者离心泵电机螺栓泵体螺栓出现松动的现象,所以使用中要经常观察如出现螺栓松动现象需要紧固好。
05、离心泵轴承损坏每个离心泵轴承都有使用寿命高速旋转过程中都会出现磨损现象,如果转动部分有擦、磨现象就会出现比较大的噪声,如果轴承箱里面缺油也会导致轴承损坏并发出噪声或者振动现象。
如果选用离心泵作为管道增压输送,计划安装方便的离心泵建议选用:管道离心泵输送的水里面含有部分细微的颗粒例如沙粒建议选用:单级离心泵。
离心泵喘振的原因及解决方法
离心泵喘振的原因及解决方法一、离心泵喘振的原因1.轴向不平衡:离心泵的转子轴向不平衡是最常见的原因之一、转子轴向不平衡主要表现为泵的振动频率与叶轮的转速相等,并且振动频率较高。
2.动静脉动的相互作用:当泵的进口流速较低,特别是在小流量和高扬程的工况下,会发生动静脉动的相互作用,从而引起泵腔内的压力变化,导致离心泵喘振。
3.气液两相流过程中的喘振:在一些工况下,如气体液体混输过程中,液体在离心力的作用下往外移动,而气体则往内运动。
当两相流速达到一定值时,会出现气液两相流相互干涉的现象,进而引起离心泵喘振。
4.叶轮与封水系统的不匹配:封水系统对离心泵的运行非常重要,当封水系统的适配性不合理时,如低压封水系统与高压封水系统不匹配,会导致泵体产生振动和喘振。
5.液力喘振:液力喘振是指由于液体在流动过程中产生的涡流紊乱,使得离心泵产生涡旋振动。
液力喘振是一种自激振荡,其频率与泵的工况有关。
二、离心泵喘振的解决方法1.检查并平衡转子轴向:对于转子轴向不平衡,可以使用动平衡仪进行检测和校正。
通过调整转轴位置,使转子在运转过程中保持平衡。
2.优化动静脉动的相互作用:针对动静脉动相互作用引起的喘振问题,可以通过改变进口流道结构、增大进口流速或采用消除泡沫和空气的措施来优化系统的流态,减少动静脉动的相互作用。
3.控制气液两相流:针对气液两相流引起的喘振问题,可以通过调整输送流量和改变流道结构来控制两相流的速度,从而减少喘振的可能性。
4.优化封水系统:封水系统的适配性非常重要,应根据泵的工况选择合适的封水系统,并确保封水系统的压力和流量匹配稳定,避免封水系统不匹配引起的喘振问题。
5.设计合理的阻振器:在离心泵的设计和安装中,可以采用一些阻振措施,如设置阻振器、减振装置等,对泵的振动进行控制。
综上所述,离心泵喘振的原因有很多,涉及到流体力学、结构力学和系统设计等多个方面。
针对不同的原因,需要采取相应的解决方法,以降低离心泵喘振的发生概率,确保泵的正常运行和使用寿命。
离心泵机组振动过大的原因及解决措施
离心泵机组振动过大的原因及解决措施天津市300450摘要:在管道输送中通常使用离心泵作为原油输送的动力源,是管道输送中的“心脏”。
在离心泵运行过程中会产生一定的振动和噪声,振动是评价泵机组运行可靠性的一个重要指标,影响泵机组的正常运转,同时长期处于超过听力保护标准的环境中听觉疲劳难以恢复,持续累积可使听阈由生理性转变成不可恢复的病理过程。
本文针对探索造成离心泵振动超标的原因有哪些,是否与设计构造、施工安装、工艺操作以及运行维护等方面因素有关,根据原因并找到更好地预防或减少振动超标的方法,从而保障设备的安全。
关键词:离心泵;振动;原因;措施一、离心泵机组振动超标原因分析1、设计制造设计制造环节出现的问题是离心泵振动超标的根本原因,也是最不能忽视的。
叶轮是离心泵最主要的部件,它将机械能传递给液体,使液体获得动能。
叶轮在设计制造过程中质量控制不好,如:加工精度不合格、叶轮口环和泵体口环之间以及级间衬套不合格等原因都会使叶轮偏心,从而造成振动超标。
2、安装施工在安装时如果没有良好的泵基础,就算是安装上也难免会在后期运行时产生较大的振动。
还要保证地脚的螺栓固定良好,因为离心泵会通过地脚的螺栓固定在地上,一旦地脚螺栓固定不稳,就会使泵体得不到良好的固定。
与此同时还要保证垫铁的厚度合适,使泵体在运行时保持平衡。
除此以外,泵的进出口都要与管线对齐,一旦进出口与管线不在同一水平线,管线与泵机组将产生共振现象。
3、同轴度差在安装过程中离心泵的泵体与电机是通过联轴器来联系的,联轴器的安装对泵体和电机之间的同轴度要求很高,如果联轴器不对中,在运行过程中会造成离心泵振动过大。
4、轴弯曲变形轴是离心泵转子中重要的部件,它不仅作为扭矩的传输,而且在轴上有很多的零部件。
在泵轴的运转过程中,有可能会有不平衡量增大的情况发生,造成这一情况的原因主要是泵轴发生弯曲变形。
在泵轴的运输和安装过程中也需要特别注意,尤其是对于某些长度较长的泵轴,极易发生弯曲。
离心泵产生振动的原因及解决方法
离心泵产生振动的原因及解决方法发表时间:2019-10-28T10:25:37.057Z 来源:《文化时代》2019年16期作者:陈国文[导读] 离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。
本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。
陈国文中国石油运输有限公司新疆塔里木运输分公司新疆阿克苏地区 842000摘要:离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。
本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。
关键词:离心泵;振动;原因;处理措施引言目前在工业生产领域离心泵的应用十分广泛,为工业生产做出了巨大的贡献,在面对离心泵故障的时候如果不能实现正确的处理,必然会导致影响离心泵的正常运行,因此必须要对离心泵的故障维修进行以及振动等进行精确分析。
1 机泵轴弯曲机泵轴的主要作用是带动叶轮以及转子进行旋转,由于离心泵的转子以及叶轮本身的重量比较重,如果在经历长时间的运行之后会导致机泵在开机运行的过程中产生一个较大的轴向力,这样就会导致机泵轴产生完全的现象,由此会进一步导致机泵在运行过程中出现严重的不平衡现象,进而会引发机泵与壳体之间的严重摩擦现象,这样就会导致机泵出现严重的振动现象。
主要的解决措施为针对离心泵的叶轮以及机泵的壳体进行8小时一次的盘机,按照相同的方向降泵轴旋转120度左右[1]。
2 轴承问题2.1轴承“跑外缘“轴承如果在装配的过程中出现安装质量差的问题,就会导致机泵在长时间的运行过程中产生轴承“跑外缘“的现象,进而使得轴承的温度进一步升高,甚至产生较大的杂音,并进一步引发离心泵的振动现象。
离心泵振动原因分析和解决方案
离心泵振动原因分析和解决方案作者:张永哲来源:《科学与财富》2018年第24期摘要:在炼油化工生产装置中,较为常用的一项设备就是离心泵,其发挥着运输流体的作用。
但是在运行过程中常常会出现振动故障,为此,本文首先对离心泵振动的原因进行分析,并在此基础上探讨其有效的解决方案,希望能对广大同行有所助益。
关键词:离心泵;振动;原因;解决;方案一、离心泵振动的原因分析(一)机械方面原因第一,转子质量分布不均。
转子质量分布不均极易导致轴承不平衡,一旦启动离心泵,如若轴承受力不对称就会出现小幅振动,而一旦转速不断加大,直至其大过规定限额后,其振幅便会大大增加。
一些离心泵,因为使用时间过长,部分轴承转动零件以及叶轮出现严重老化,或是离心泵其内部产生腐蚀或磨损,而导致该类现象出现的原因归根究底在于转子质量不对称,进而导致离心泵出现震动故障。
由于该问题引发的振动故障往往具有较大的破坏性,所以一旦出现该类故障则需要立即将转子更换,且校验校正下一步的平衡性,进而将振动源彻底消除。
第二,离心泵机组中心不正。
在离心泵中,一个重要动力构件就是其机组,如若机组中心不正,则必定会导致在转动时机组振动的产生,且符合不断增加,随之而造成的振动频率与幅度也会不断变大。
归纳来说,导致该问题出现原因主要在于以下几点:一是离心泵质量不达标,一些机组做工质量低劣,在实际安装时没能正确校正位置;二是前后轴瓦不对称或轴承磨损。
由于机组中心不正而导致的振动,需要对离心泵的运行参数进行细致检测,且合理调配离心泵的性能,防止出现振动情况。
三是联轴器不对正。
在离心泵中一个关键部位就是联轴器,在安装离心泵时,如若连接螺栓相应精度不准或是联轴器不同心均会导致离心泵轴承与原动机轴承不在相同水平线上。
一旦启动离心泵,便会产生振动故障。
如若是联轴器不对正,则会在刚开始运行离心泵时产生较小振动,而通过较常时间运行,就会由于基础下沉或地脚螺栓松动垫板移动而导致泵中心偏移,进而引发振动。
离心泵振动故障分析及排查措施
离心泵振动故障分析及排查措施摘要:离心泵广泛应用于炼化、采油、电力、冶金等行业中,它运行状态的好坏,直接影响环保和生产等安全工作,加强对其维护与管理,防止设备发生事故,具有十分重要的意义。
随着工业的发展,新时期对设备的检、维修工作提出了更为严格的要求。
关键词:离心泵;故障诊断;设备维护1 离心泵振动的原因分析1.1 机械方面原因第一,转子质量分布不均。
转子质量分布不均极易导致轴承不平衡,一旦启动离心泵,如若轴承受力不对称就会出现小幅振动,而一旦转速不断加大,直至其大过规定限额后,其振幅便会大大增加。
一些离心泵,因为使用时间过长,部分轴承转动零件以及叶轮出现严重老化,或是离心泵其内部产生腐蚀或磨损,而导致该类现象出现的原因归根究底在于转子质量不对称,进而导致离心泵出现震动故障。
由于该问题引发的振动故障往往具有较大的破坏性,所以一旦出现该类故障则需要立即将转子更换,且校验校正下一步的平衡性,进而将振动源彻底消除。
第二,离心泵机组中心不正。
在离心泵中,一个重要动力构件就是其机组,如若机组中心不正,则必定会导致在转动时机组振动的产生,且符合不断增加,随之而造成的振动频率与幅度也会不断变大。
归纳来说,导致该问题出现原因主要在于以下几点:一是离心泵质量不达标,一些机组做工质量低劣,在实际安装时没能正确校正位置;二是前后轴瓦不对称或轴承磨损。
由于机组中心不正而导致的振动,需要对离心泵的运行参数进行细致检测,且合理调配离心泵的性能,防止出现振动情况。
三是联轴器不对正。
在离心泵中一个关键部位就是联轴器,在安装离心泵时,如若连接螺栓相应精度不准或是联轴器不同心均会导致离心泵轴承与原动机轴承不在相同水平线上。
一旦启动离心泵,便会产生振动故障。
如若是联轴器不对正,则会在刚开始运行离心泵时产生较小振动,而通过较常时间运行,就会由于基础下沉或地脚螺栓松动垫板移动而导致泵中心偏移,进而引发振动。
第四,支撑部件出现故障。
离心泵的稳定运行离不开支撑部件的支持,防止因为地基下沉等因素而降低离心泵的运行效率。
导致离心泵振动的10大原因
导致离心泵振动的10大原因在转动设备和流动介质中,低强度的机械振动是不可避免的。
但好比人咳嗽一样,久病不治,必将酿成大祸……下面详细介绍离心泵振动的十大原因,希望对使用单位有所帮助。
一、引起离心泵振动的十大原因——轴轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。
另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。
轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。
旋转轴的偏心,会导致轴的弯曲振动。
二、引起离心泵振动的十大原因——基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。
水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。
另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。
三、引起离心泵振动的十大原因——联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。
这些原因都会造成振动。
四、引起离心泵振动的十大原因——水泵自身的因素叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。
离心泵振动及噪音大的原因及对策简述
离心泵振动及噪音大的原因及对策简述离心泵原理简单的说就是叶轮高速旋转时,带动叶片间的液体旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外缘,当液体进入泵壳后,由于蜗壳形泵壳中的流道逐渐扩大,液体流速逐渐降低,一部分动能转变为静压能,于是液体以较高的压强沿排出口流出,故称为离心泵。
在处理不当的情况下,叶轮产生的离心力会导致泵出现振动和不正常的噪音。
离心泵使用时发现泵振动及噪音异常,应立即停机作检查。
1、泵基础是否牢靠当发生振动时,首先应检查离心泵的地脚螺栓是否紧固。
若未紧固会造成离心泵震动。
还要考虑地脚基础强度是否够用,有时由于设计原因,基础偏软也能引起震动。
2、联轴器找正很多离心泵是通过联轴器进行驱动,联轴器的种类也很多。
常规的三爪联轴器找正的好坏直接影响到联轴器、轴、轴承、机封等正常运行和使用寿命。
3、找中心中心不正也是引起震动的常见原因,必须严格按照标准将中心调整在规定范围之内。
4、轴承检查轴承安装是否出现问题或是否损坏。
5、转子中心位置调整水泵转子应与定子同心,否则在水泵运行时会产生摩擦,产生震动。
6、动静平衡检测在离心泵拆解后,为了避免开泵时震动,还应将叶轮作静平衡试验。
外部条件对水泵的影响当水泵本身可能有的问题全部排除后,如仍不能解决震动的问题时,还要考虑外部条件对水泵的影响。
滚动轴承在运转中有异声且温度高1、轴承存在质量问题。
检查轴承需注意轴承外观、滚动体是否转动灵活、轴承各部分尺寸间隙等。
2、轴承跑套。
当轴承箱温度高且有异声,振幅时大时小,振动周期不定,解体检查发现轴承外圈的外圆面有磨损痕迹,并且间隙过大,说明轴承以及跑套,可用胶粘、补焊、镶套的方法修复。
跑套严重,不能用上述方法修复需更换。
3、轴承磨损严重或已损坏。
轴承运转响声很大,并且温度高、振幅大,需更换轴承。
4、轴承轴向定位问题。
泵运转时,温度高而振动不大,可能是轴承轴向间隙过大,停车后,用工具轻轻敲击联轴器靠背轮发现有明显的轴向窜动,需重新调整间隙。
离心泵的振动原因及处理措施
要点二
耐腐蚀材料
针对腐蚀性介质,采用耐腐蚀材料,提高离心泵的耐久性 和可靠性,延长设备的使用寿命。
THANKS
谢谢您的观看
02
离心泵振动原因
设计因素
叶轮设计不合理
叶轮设计不符合流体力学原理,导致流体在叶轮中流动不均 匀,产生振动。
轴承设计不当
轴承设计不当或选型不合理,无法有效支撑泵体,导致振动 。
制造因素
零部件加工精度不足
泵的零部件加工精度不足,导致装配后间隙过大或不均匀,引起振动。
材料质量不达标
泵的材料质量不达标,如铸件内部存在气孔、夹渣等缺陷,影响泵的稳定性。
03
离心泵振动处理措施
设计优化
优化叶轮和蜗壳设计
通过改进叶轮和蜗壳的设计参数,降低流体诱导的振动和噪音。
增加刚度与稳定性
提高泵体的刚度和稳定性,以减ห้องสมุดไป่ตู้因结构变形引起的振动。
优化轴承和密封设计
改进轴承和密封的设计,降低摩擦和磨损,从而减少振动。
制造质量控制
01
02
03
严格控制材料质量
选用优质材料,确保泵的 零部件制造精度和稳定性 。
04
离心泵振动案例分析
设计不当案例
总结词
设计参数不合理、结构形式选择不当等原因导致离心泵振动。
详细描述
在设计阶段,未充分考虑离心泵的工作环境和工况,导致设计参数不合理,如叶轮和蜗壳的匹配度不 高、轴承跨距过短等。此外,结构形式选择不当也可能引起振动问题,如未采用合适的减震措施或支 撑结构。
制造缺陷案例
总结词
制造过程中存在的缺陷导致离心泵振动。
详细描述
在制造过程中,可能由于加工精度不足、材料质量不达标等原因,导致离心泵内部零件存在制造缺陷,如叶轮不 平衡、轴承间隙过大等。这些缺陷在运行过程中会引发振动。
离心泵的振动原因及处理措施
3、联轴器连接螺栓的周向间距不良,对 称性被 破坏;联轴器加长节偏心,将会产 生偏心力;联轴器锥面度超差;联轴器静平 衡或动平衡不好;弹性销和联轴器的配合 过紧,使弹性柱销失去弹性调节功能造成 联轴器不能很好地对中;联轴器与轴的配 合间隙太大;联轴器胶圈的机械磨损导致 的联轴器胶圈配合性能下降;联轴器上使 用的传动螺栓质量互相不等。这些原因
• 4、轴承。装配轴承时,要保持合理的轴承游 隙,对于轴承部件的工作性能和寿命有重要 意义。滚动轴承在较大间隙的状态下工作, 会使载荷集中作用在处于受力方向上的少 数几个滚动体上,使滚动体的内环滚道、外 环滚道接触处应力集中,从而降低刚度和寿 命,当轴承有较大的径向间隙和轴向间隙,还 会发生主轴中心线的漂移和轴向窜动,不但 影响加工精度,而且会产生振动,把轴承间隙 调整到零时,滚动体受力较均匀,但此时刚度 并不高, 当把轴承间隙调到产生一定过盈时, 滚动体和内环滚道、外环滚道接触处产生
5、间隙和易损件。保证电机轴承间隙合 适定期检查、更换叶轮口环、泵体口 环、等易磨损零件。 6、减小汽蚀的影响:汽蚀对泵的工作很 不利,因此必须高度重视防止汽蚀的发 生或设法削弱汽蚀对泵工作的影响。 只要保证泵内低压区的压力不低于液 体的温度所对应的汽化压力,就可防止 泵内出现汽蚀现象。
• 主要措施有: • (1)正确确定泵的安装高度。中小型卧式离 心泵的几何安装高度是指泵轴中心线至吸 液池液面的垂直距离;立式离心泵的安装高 度是指叶轮进口边中心线至吸液池液面的 垂直距离;对于大型泵则应以叶轮入口边最 高点来决定几何安装高度。 • (2)尽量提高泵进口的压力,使泵内低压区的 压力高于汽化压力,减少吸入管道的阻力。 • (3)增大叶轮进口面积,降低流速。如:增大叶 轮进口直径、进口宽度或采用双吸叶轮等。 以降低泵内能量损失,使泵内压力最低处的
离心泵的振动原因分析
离心泵的振动原因分析离心泵是一种广泛应用于工业和民用领域的常见泵类设备,它主要通过旋转运动将液体从低压区域抽入泵内,然后通过离心力将液体推向高压区域。
在运行过程中,离心泵可能会出现振动问题,这不仅会降低泵的效率,还可能对设备造成损坏,甚至对工作环境和人员安全带来威胁。
下面将对离心泵振动的原因进行分析。
一、不平衡不平衡是引起离心泵振动的主要原因之一、当泵的转子不平衡时,会导致旋转运动时的离心力不平衡,进而引起泵的振动。
这种不平衡主要有以下几个原因:1.装配不当:安装时未能准确装配转子的每个部分,如叶轮、轴承等,使其存在不平衡。
2.磨损:长期使用过程中,泵内部的零部件会因磨损而引起不平衡。
3.污秽:泵内的零部件受到污秽物质的影响而引起不平衡。
二、轴承问题轴承是泵内部一个重要的部件,它承受着泵的转子的重量和惯性。
轴承问题可能导致泵的不稳定性和振动问题,常见的轴承问题包括:1.轴承磨损:长期使用后,轴承可能因磨损而引起不平衡和振动。
2.轴承松动:轴承安装不紧密或脱落,轴承松动会导致泵的不稳定性和振动。
3.轴承润滑不良:轴承润滑不良会增加轴承的摩擦和磨损,进而引起振动。
三、流道堵塞离心泵的流道在运转中可能会受到颗粒、污泥和杂质的堵塞,导致流体的流动不畅。
这种不正常的流动状态会在泵内部产生压力不均和流体振动,从而引起泵的振动。
四、泵的过大流量或过高扬程如果泵的流量或扬程超过了其设计参数,泵会超过正常运行状态,压力和振动会增加。
例如,当泵的出口阀门关闭或部分关闭时,泵的流量可能会过大,造成压力的积聚和振动的增加。
五、泵的自然频率与激励频率共振泵的自然频率与激励频率共振是一种常见的振动原因。
当泵的自然频率与激励频率相近时,会引起共振效应,进而增加振幅和振动。
六、基础不稳定泵的基础不稳定是引起离心泵振动的另一个重要原因。
如果泵的基础不稳定,例如基础坚固性不够或支撑不均匀,会导致泵的运动不稳定和振动。
为解决离心泵振动问题1.确保泵的轴和转子正确安装,减少转子的不平衡。
离心泵振动原因
1.离心泵振动原因?叶轮没有做好平衡;叶轮流道内有异物堵塞,造成叶轮偏重;轴承损坏;泵与底座、底座和基础有松动现象;电机与泵联接的联轴器未找正对中;轴承径向游隙太大;机组低频共振。
2.离心泵完好标准扬程、流量、密封泄漏、振动3.离心泵泵机械密封泄漏原因泵用机械密封种类繁多,型号各异,但泄漏点主要有五处:(l)轴套与轴间的密封;(2)动环与轴套间的密封;(3)动、静环间密封;(4)对静环与静环座间的密封;(5)密封端盖与泵体间的密封。
一、泄漏原因分析及判断1.安装静试时泄漏。
机械密封安装调试好后,一般要进行静试,观察泄漏量。
如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。
在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。
此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。
2.试运转时出现的泄漏。
泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。
因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。
引起摩擦副密封失效的因素主要有:(l)操作中,因抽空、气蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离;(对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤;(3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量;(4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座;(5)工作介质中有颗粒状物质,运转中进人摩擦副,探伤动、静环密封端面;(6)设计选型有误,密封端面比压偏低或密封材质冷缩性较大等。
上述现象在试运转中经常出现,有时可以通过适当调整静环座等予以消除,但多数需要重新拆装,更换密封。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大多数 泵 的振 动 故 障 都 是 由机 械 故 障 或 缺 陷导
致的。这其 中包括 : 电机 内部结构件松动 , 轴承定位
装置松动 , 铁 芯 硅 钢 片过 松 , 轴 承 因磨 损 而 导 致 支 撑 刚度 下 降 ; 电机 转 子本 身 质 量 不 平 衡 , 导 致 扭 矩 变 化 并产 生 不 平 衡 的离 心 力 , 产生振动 ; 电机 定 子 绕 组 之
1 引起 泵振 动原 因的分析
数据表明 : 内部 原 因为 引起 振 动 的 主要 原 因 , 占到 泵
引起离心泵振动的原 因是多方 面的, 其发生伴随
多重 因素 、 多 种 原 因 的叠 加 和共 同作 用 。 由驱 动 机 、 泵、 流体 及 管路 组 成 的管 输 系 统 是 一 个 有 机 的整 体 ,
造成泵 腔 内积存 了大量蒸 汽 , 形成 空腔 。在人 口涡
流、 叶轮脱 流 以及 两 相 流对 叶轮 和 出 口处 蜗 壳 的 冲击 作 用下 , 泵体 产生 振 动 。而 当喘振 频 率 与整 个 系统 的 固有频 率或 泵轴 旋转 频 率 重 迭 时将 发 生共 振 , 对 整 个 系统造 成严 重损 坏 。
振 源所 处位 置并 不一 定 与振 动 原 因存 在 必 然 的联 系 。
振 动故 障 的 7 0 % 。 按 照振 源 所 在 空 间 位 置 的分 类 显 然 不 够 完 整 。 若 对 引起 振 动 的诱 因进 行 深入 分 析 , 可 以发 现 离 心 泵 存 在 2种 振 动 : 自激振 动 和环境 振 动 J 。 自激 振 动 是
2 01 5住
管
技 术 5 设 备
2 0l 5 No .1
第1 期
P i p e l i n e T e c hn i q u e a n d Eq ui p me nt
离 心 泵 振 动 原 因分 析
刘 超 , 王 中 良, 于 涛 , 徐 佳楠
第 1期
刘超 等 : 离心 泵振动 原 因分析 l 0倍 。
3 1
间的 电 阻 不 平衡 , 因而 导 致 磁 场 不 均 匀 , 产 生 了 不 平 衡 的 电磁力 , 这 种 电磁力 成为 激振 力 引发振 动 j 。 电机及 离心 泵基 础 是 动力 系统 工 作 的平 台 , 不 但 能 消除 系统 产生 的力矩 , 还 有 吸收 、 隔 离 振 动 的作 用 。 性 能优 良的泵 基 础 其 质 量 应 为 泵 和 电机 等 机 械 质 量 总 合 的 3倍 以上 。 电机 或 泵 组 与 基 础 之 间 采 用 的 接触 固 定 形 式 不好 , 基 础 和 电机 或 泵 组 系 统 吸 收 、 传 递、 隔离 振动 能力 差 , 导 致 基础 和 电机 的 振 动都 超 标 。
磨损甚至结构设计不合理等原因而引起 的振动 ; 外部
原 因为离 心 泵 的 运行 状 态 和 各 紧 固件 及 连 接 件 的加 工、 安 装 质量 以及 配件 等 原 因所 引 起 的泵 振 动 。相 关
收 稿 日期 : 2 0 1 4— 0 3— 2 1 收 修 改稿 日期 : 2 0 1 4—0 8— 2 4
t h e s o l u t i o n s we r e p u t f o r wa r d .
Ke y wo r d s: p u mp;v i b r a t i o n;s t r u c t u r e;h y d r a u l i c ;h y d r o d y n a mi c s
共振ቤተ መጻሕፍቲ ባይዱ。
联轴 器 连 接 螺 栓 的 周 向 间距 不 良, 对 称 性 被 破
坏; 联 轴 器加 长节 偏 心 , 将会产生偏心力 ; 联 轴器 与轴
的配 合 间隙太 大 ; 联轴 器 胶 圈 的机 械 磨 损 导致 的联 轴 器 胶 圈配 合性 能下 降 ; 联 轴 器 上使 用 的 传 动螺 栓 质 量 互 相 不等 。这 些原 因都 会造 成振 动 。 轴承 的刚 度太低 会 造 成 第一 临界 转 速 降 低 , 引 起 振 动 。另外 , 轴 承性 能 不 良导 致 耐 磨 性 差 , 固定 不 好 ,
状态 受 流 体 情 况 影 响 ; 泵机组高速运转部件多 , 要 满
离心泵来讲是一种受迫振动 , 是指 由于离心泵 以外 的
装 置 和设备 ( 电机 或 涡 轮 机 ) 运 行 时所 产 生 的振 动 对
泵 的运 行 的影 响 。
足单体力矩平衡与系统力矩 平衡 ; 流体运动本身较复
杂 。这 些 都是影 响泵 动态 性能稳 定性 的因素 。 如果按 照 泵 机 组 空 间 位 置 将 以上 原 因进 行 分 类
原因、 水 力 学原 因和流 体 力学原 因 , 并详 细 阐述 了 4种振 动 生成 原 因的 内在机 理 及表 现形 式 。 同时 , 还
结合 具体 实例针 对振 动故 障排 查原 因, 并提 出了解决措施 。
关键 词 : 泵; 振动; 结构 ; 水力 学 ; 流体 力学
中图分 类号 : T H1 1 3 文献标 识码 : A 文章编 号 : 1 0 0 4— 9 6 1 4 ( 2 0 1 5 ) 0 1— 0 0 3 0— 0 3
陷, 即 扬 程 一流 量 曲 线 呈 驼 峰 形 , 形 成 不 稳 定 工 作 区 。当泵 在此种 工 况下 运 行 时 , 由于入 口压 力过 低
生空 腔 , 使 得 基 础 不 但 不 能 够 发 挥 消 振 减 振 的作 用 ,
反而 由于内部缺陷与泵或 电机 的振动共 同作用形成
基础 砼 浇筑 过程 质量 控 制 不严 , 振捣 不 实 甚 至 内部 产
此外 , 泵 的吸入室 以及压 缩 级 的机 械结 构 设 计 不 合理 , 会 导致 流场 不 稳 定 , 形成压力脉冲, 从 而 引起 水
力 损失 和振 动 。合 理 的 内部 结 构 设 计 直 观 地 表 现 为
通 常泵 轴通 过联 轴器 与 驱 动 电机 或 涡轮 机 相 连 接 , 使
得泵 的动态 性 能 与驱 动 机 的 动态 性 能 相 互 影 响 形 成
指 由于离心泵本 身的设计 、 制造 、 安装和使用等方面
的原 因使其 在作旋 转 运 动 时产 生 的 振动 ; 环 境 振 动 对
干涉 ; 叶轮 、 蜗壳与液流直接接触并相互作用 , 其运行
Vi br a t i o n An a l y s i s o f Ce nt r i f ug a l Pu mp
L I U C h a o ,W ANG Z h o n g — l i a n g,YU T a o ,XU J i a — n a n
( P e t r o C h i n a Oi l &Ga s P i p e l i n e C o n t r o l C e n t e r , B e i j i n g 1 0 0 0 0 7 , C h i n a )
扬 程 一流量 曲线呈 缓 降型 , 不会 出现驼 峰 。
1 . 3 水 力学 及流体 力 学原 因
水力 学原 因导 致 的泵 振 动 多 是 由于 其 内部 结 构 不合 理 引起 , 如 叶 轮 参 数 不合 理 、 进 口流 道 结 构不 合 理、 泵腔 空间 形状不 合 理 等原 因造 成 流体 在 流 经 泵体 过程 中产 生脉 动 、 湍流 , 对 泵体 形成 冲击 。 当运转 泵 的入 口压 力 低 于相 应 工 况 下 所 输 送 流 体 的饱 和蒸汽 压 时 , 流 体 则 会发 生 汽 化 , 产 生 气泡 ; 气 泡被 液流裹 挟 至高 压 区压 缩 、 溃 灭 对 叶轮 造 成 伤 害 的 全过 程 , 在 流体 力 学 中被 称 为汽 蚀 。 汽蚀 的产 生往 往 伴 随着激 烈 的振动 。 喘振是 汽蚀 的极 限工 况 , 其 前 提 是 泵 存 在设 计 缺
( 中国 石 油 北 京 油 气 调 控 中心 , 北京 1 0 0 0 0 7 )
摘要 : 振 动是 泵机 组 最 常见 的故 障之 一 , 是 多重 因 素的 叠加 和 多种 原 因的共 同作 用 造 成 的。 由驱 动机 、 泵、 流体及 管路 组成 的 管输 系统是 一个有 机 的整体 , 振 源所 处位 置 并 不一 定与振 动原 因存 在 必 然 的联 系。文 中分析 了离心泵产 生振 动 的原 因 , 并 将 自激振 动 和 环境 振 动进 一 步分 解 为 机械 原 因、 结 构
进 一步 对 自激 振 动 和 环 境 振 动 深 入 分 析 可 将 其 分 为 4类 : 机 械原 因 、 结构 原 因 、 水力 学原 因 、 流体 动力
学原 因 。 1 . 1 机械原 因
可将其分为 内部原 因与外部原 因。内部原 因主要是
离心 泵 内部 各部 件 , 由于装 配 、 加 工 质量 、 长 时 间运 行
Ab s t r a c t : Vi b r a t i o n i s o n e o f t h e mo s t c o mmo n p u mp ma l f u n c t i o n s c a u s e d b y t h e i n t e r a c t i o n o f mu h i p l e f a c t o r s a n d v a r i o u s
s o u r c e i s n o t n e c e s s a r i l y a s s o c i a t e d w i t h t h e v i b r a t i o n c a u s e s .T h e c a u s e f o r t h e v i b r a t i o n o f t h e p u mp u n i t wa s d i s c u s s e d a n d d i — v i d e d i n t o f o u r k i n d s :me c h a n i c a l ,s t r u c t u r a l ,h y d r a u l i c a n d h y d r o me c h a n i c a 1 .T h i s a r t i c l e s t a t e d t h e p r i n c i p l e o f f o u r r e a s o n s a n d t h e i r e x p r e s s i o n s .Me a n w h i l e ,t h e c a u s e s we r e c h e c k e d i n v i e w o f t h e v i b r a t i o n f a u l t c o mb i n i n g wi t h c o n c r e t e e x a mp l e s ,a nd