整式乘除培优经典题一word版本
(完整版)整式的乘除培优(可编辑修改word版)
(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)
北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
(word完整版)整式的加减乘除培优精华
练习:1、下列那些式子是单项式,并指出他的系数和次数 2013 a 2bba +5x y 2 2013y x + 0 -10 π b a 2221012⨯2、若c ax y -是关于x ,y 的单项式,且系数为2013,次数为12,则a= ,c= 。
3、12)1(++n y x m 是关于x ,y 的四次单项式,则m= ,n= 。
4、下列那些式子是多项式,并指出他的次数,读法,各项的次数x 2+x 3+x 40 4—2π 9 x 4y b a y x +- 6ab+4 243(a+b)5、z y xy x +++444读作: ; 1425-+++-z xz y xy 读作: ;6、2013435232--+-+b a ab b a b a 这个多项式的最高次项是 ,一次项是 ,二次项是 ,三次项是 ,常数项是 。
7、已知4543433515a y y x y x y x +-+-,按a 升幂排列为: ; 按a 的降幂排列为 ;按b 升幂排列为: ;按b 的降幂排列为 . 8、下列那些式子是整式12π -4yxz x 2-y 22a-b+8c 543 43x 4y 0 322013y x + b a 2221012⨯9、若b b a x y x 532-+和是同类项则a= ,b= 。
若363543y x y x nn m -+和是同类项则m= ,n= 。
11、若442-+x x 的值为0,则51232-+x x 的值是________.12、如果代数式535ax bx cx ++-当2x =-时的值为13,那么当2x =时,该式的值是 . 13、若3a =-,25b =,则20072006a b +的个位数字是=________。
14、已知012=-+a a ,求2013223++a a = 。
15、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 。
整式的运算-培优-练习
整式的运算-培优-练习2《整式的运算》培优练习略有难度,适合培优使用,题目较多一、填空题:1、若0352=-+y x ,则y x 324⋅的值为 。
2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。
3、若3622=+=-y x y x ,,则y x -= 。
4、若942++mx x 是一个完全平方式,则m 的值为 。
5、计算2002200020012⨯-的结果是 。
6、已知()()71122=-=+b a b a ,,则ab 的值是 。
7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。
8、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 。
9、若n m n m 3210210,310+==,则的值为 。
10、已知2235b a ab b a +==+,则,的值为 。
11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
12、已知()()22123--==+b a ab b a ,化简,的结果是 。
13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
14、计算()()2222b ab a b ab a +-++的结果是 。
15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。
16、计算()()123123-++-y x y x 的结果为 。
17、若xx x 204412,则=+-的值为 。
318、()2101--= 。
19、若()()206323----x x 有意义,则x 的取值范围是 。
20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。
22、已知199819992000201x x x x x ++=++,则的值为 。
(完整版)整式乘除与因式分解培优精练专题答案.docx
整式乘除与因式分解培优精练专题答案一.选择题(共 9 小题)1.( 2014?台湾)算式 2 2 2之值的十位数字为何?()99903 +88805 +77707 A .1B . 2C . 6D . 8分析: 分别得出 999032、888052、 777072的后两位数,再相加即可得到答案.2解答: 解: 99903 的后两位数为 09,288805 的后两位数为 25,277707 的后两位数为 49,09+25+49=83 ,所以十位数字为 8, 故选: D .2.( 2014?盘锦)计算(2a 2) 3? a 正确的结果是( )A .3a7B . 4a7C . a7D . 4a6分析: 根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式 ==4a 7,故选: B .3.( 2014?遵义)若 a+b=2 , ab=2,则 a 2+b 2的值为( )A .6B . 4C . 3D . 2分析: 利用 a 2+b 2=( a+b ) 2﹣2ab 代入数值求解.解答: 解: a 2+b 2=( a+b ) 2﹣ 2ab=8﹣ 4=4,故选: B .4.( 2014?拱墅区二模)如果 ax 2+2x+ =(2x+) 2+m ,则 a , m 的值分别是()A . 2,0B . 4, 0C .2,D . 4,运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:22+m ,解: ∵ax +2x+ =4x +2x+∴ ,解得 .故选 D.5.( 2014?江阴市模拟)如图,设(a>b>0),则有()A .B.C. 1<k< 2D. k>2解答:解:甲图中阴影部分的面积=a 2﹣ b2,乙图中阴影部分的面积=a( a﹣ b),=,∵a> b> 0,∴,∴1< k<2.故选: C.6.( 2012?鄂州三月调考)已知,则的值为()A .B.C. D .无法确定解答:解:∵a+ =,∴两边平方得:( a+ )2=10 ,展开得: a 2+2a? +=10 ,∴a 2+=10 ﹣ 2=8 ,∴( a﹣)2=a2﹣2a?+=a2+﹣2=8﹣2=6,∴a﹣=±,故 C.7.已知,代数式的等于()A .B.C.D.分析:先判断 a 是正数,然后利用完全平方公式把两平方并整理成的平方的形式,开方即可求解.解答:解:∵,∴a> 0,且2+a 2=1,∴+2+a 2=5,即(+|a|)2=5,开平方得,+|a|=.故 C.8.( 2012?州)求1+2+2 2+23+⋯+22012的,可令S=1+2+22+23+⋯+22012,2S=2+22+23+24+⋯+22013,因此 2S S=220131.仿照以上推理,算出1+5+5 2+53+⋯+52012的()A .520121B. 520131C.D.分析:根据目提供的信息,S=1+5+5 2+53+⋯+52012,用 5S S 整理即可得解.解答:解: S=1+5+52320125S=5+52342013 +5 +⋯+5,+5 +5 +⋯+5,因此, 5S S=520131,S=.故 C.9.( 2004?州)已知 a=x+20 ,b=x+19 , c=x+21 ,那么代数式 a 2+b2+c2ab bcac 的是()A .4B. 3C. 2D. 1:.分析:已知条件中的几个式子有中间变量 x ,三个式子消去 x 即可得到: a ﹣b=1 ,a ﹣ c=﹣ 1,b ﹣ c=﹣ 2,用这三个式子表示出已知的式子,即可求值.解答:解:法一: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac , =a ( a ﹣ b ) +b ( b ﹣c ) +c ( c ﹣ a ),又由 a= x+20, b= x+19, c=x+21 ,得( a ﹣b ) = x+20 ﹣x ﹣ 19=1,同理得:( b ﹣ c )=﹣ 2,( c ﹣ a ) =1 , 所以原式 =a ﹣ 2b+c= x+20 ﹣ 2(x+19 ) + x+21=3 .故选 B .法二: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac ,= ( 2a 2+2b 2+2c 2﹣ 2ab ﹣2bc ﹣ 2ac ),22 2 2 2 2= [( a ﹣ 2ab+b )+( a ﹣ 2ac+c ) +( b ﹣2bc+c ) ],= [( a ﹣ b ) 2+(a ﹣ c ) 2+( b ﹣ c ) 2] ,= ×( 1+1+4) =3. 故选 B .二.填空题(共 9 小题)x+5 )( x+n ) =x 2+mx ﹣ 5,则 m+n= 3 .10.( 2014?江西样卷)已知(分析: 把式子展开,根据对应项系数相等,列式求解即可得到m 、 n 的值.解答: 解:展开( x+5 )(x+n ) =x 2+( 5+n ) x+5n∵( x+5 )( x+n ) =x 2+mx ﹣5,∴5+n=m , 5n= ﹣5,∴n=﹣ 1, m=4 .∴m+n=4 ﹣ 1=3 .故答案为: 311.(2014?徐州一模)已知 x ﹣ =1,则 x 2+ = 3 .分析:首先将 x ﹣ =1 的两边分别平方,可得(x ﹣ )2=1,然后利用完全平方公式展开,解答:变形后即可求得 x 2+的值.或者首先把 x 2+凑成完全平方式 x 2+ =( x ﹣ )2+2,然后将 x ﹣ =1 代入,即可求得 x 2+的值.解:方法一: ∵x ﹣ =1,∴( x ﹣ ) 2=1,即 x 2+ ﹣ 2=1,∴x 2+=3.方法二: ∵x ﹣ =1 ,2 2,∴x + =( x ﹣ ) +2 =1 2+2, =3 .故答案为: 3.12.( 2011?平谷区二模)已知2 2.,那么 x +y = 6分析:首先根据完全平方公式将( x+y ) 2用( x+y )与 xy 的代数式表示,然后把x+y , xy的值整体代入求值.解答:解: ∵x+y=, xy=2 ,∴( x+y ) 2=x 2+y 2+2xy ,∴10=x 2+y 2+4,∴x 2+y 2=6.故答案是: 6.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:( a ±b )2=a 2±2ab+b 2.13.( 2010?贺州)已知 10m =2, 10n =3,则 103m+2n= 72 .解答: 解: 103m+2n =103m 102n =( 10m ) 3( 10n ) 2=23?32=8×9=72.点评: 本题利用了同底数幂相乘的性质的逆运算和幂的乘方的性质的逆运算.同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.14.( 2005?宁波)已知 a ﹣ b=b ﹣ c= , a 2+b 2+c 2=1,则 ab+bc+ca 的值等于 ﹣.分析:先求出 a ﹣ c 的值,再利用完全平方公式求出(a ﹣b ),( b ﹣c ),( a ﹣ c )的平方和,然后代入数据计算即可求解.解答: 解: ∵a ﹣ b=b ﹣ c= ,∴( a ﹣ b )2= ,( b ﹣ c )2=, a ﹣ c= ,22﹣ 2ab= 2 2﹣ 2bc= 22,∴a +b , b +c , a +c ﹣ 2ac=∴2( a 2+b 2+c 2)﹣ 2( ab+bc+ca ) = ++= ,∴2﹣ 2( ab+bc+ca ) = ,∴1﹣( ab+bc+ca ) = ,∴ab+bc+ca=﹣ =﹣ .故答案为:﹣.点评:a ﹣ b=b ﹣ c= ,得到 a ﹣ c= ,然后对 a本题考查了完全平方公式,解题的关键是要由﹣ b= , b ﹣ c= , a ﹣ c= 三个式子两边平方后相加,化简求解.15.( 2014?厦门)设 a=192×918, b=8882﹣ 302, c=10532﹣ 7472,则数 a , b , c 按从小到大的顺序排列,结果是 a < c < b .考点 :因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为 918,再比较另一个因数,另一个因数大的这个数就大.解答:解: a=192×918=361×918,b=888 2﹣302=( 888﹣ 30) ×(888+30 )=858×918,c=1053 2﹣7472=( 1053+747 )×( 1053﹣ 747)=1800×306=600×918,所以 a <c < b . 故答案为: a < c < b .16.( 1999?杭州)如果 a+b+ ,那么 a+2b ﹣ 3c= 0 .分析:先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a 、b 、c 的值后,再代值计算.解答:解:原等式可变形为:a ﹣ 2+b+1+|﹣ 1|=4+2﹣ 5( a ﹣ 2)+( b+1 )+|﹣ 1|﹣ 4﹣ 2 +5=0( a ﹣ 2)﹣ 4+4+ ( b+1 )﹣ 2+1+|﹣1|=0( ﹣ 2) 2+(﹣ 1)2+| ﹣ 1|=0;即:﹣ 2=0,﹣ 1=0,﹣ 1=0 ,∴=2, =1, =1,∴a ﹣ 2=4 ,b+1=1 , c ﹣1=1,解得: a=6, b=0 ,c=2;∴a+2b ﹣ 3c=6+0﹣ 3×2=0.17.已知 x ﹣ =1,则 = .分析:2的值,再把所求算式整理成 的形式, 然把 x ﹣ =1 两边平方求出x + 后代入数据计算即可.解答:解: ∵x ﹣ =1,∴x 2+﹣2=1 ,∴x 2+=1+2=3 ,= = = .故应填:.18.已知( 2008﹣ a )2+( 2007 ﹣a ) 2=1,则( 2008﹣a ) ?( 2007﹣ a ) = 0.解答:解: ∵( 2008﹣ a ) 2+(2007﹣ a )2=1,22﹣ 2( 2008﹣ a)( 2007﹣ a),∴(2008 ﹣ a)﹣ 2(2008 ﹣ a)( 2007﹣ a)+( 2007﹣ a) =1即( 2008﹣ a﹣ 2007+a)2=1﹣ 2( 2008﹣a)( 2007﹣a),整理得﹣ 2( 2008﹣a)(2007﹣ a) =0,∴( 2008 ﹣a)( 2007﹣ a) =0.三.解答题(共8 小题)22是一个完全平方式,那么k= 4 或﹣ 2 .19.如果 a ﹣2( k﹣ 1) ab+9b解答:解:∵a 2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣ 2( k﹣1) ab=±2×a×3b,∴k﹣ 1=3 或 k﹣ 1=﹣ 3,解得 k=4 或 k= ﹣ 2.即k=4 或﹣ 2.故答案为: 4 或﹣ 2.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.x x+320.已知 3 =8,求 3.解答:解: 3x+3=3x?33=8 ×27=216 .点评:本题考查了同底数幂的乘法,底数不变指数相加.n﹣5n+1 3m﹣22n﹣ 1 m﹣233m+221.计算: a ( a b) +( a b)(﹣ b)分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.解答:解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣ 3b6m﹣4+a3n﹣ 3(﹣b6m﹣ 4),3n﹣ 36m﹣43n﹣ 36m﹣4,=a b﹣ a b=0 .点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.22.已知 n 是正整数, 1++是一个有理式 A 的平方,那么,A=±.解答:解: 1++=,分子: n 2( n+1 )2+(n+1 )2+n2=n2( n+1 )2+n2+2n+1+n2,22=n ( n+1) +2n( n+1) +1,2=[n ( n+1 )+1] ,∴分子分母都是完全平方的形式,∴A= ±.故答案为:±.23.已知 2008=,其中 x,y 为正整数,求 x+y 的最大值和最小值.分析:首先根据 2008=可知 xy=2009 ,再根据 x,y 为正整数,确定 x、y 可能的取值.根据 xy 的乘积的个位是 9,确定 x、 y 的个位可能是1、3、 7、 9.通过 x、y 都具有同等的地位,那么x 取过的值, y 也有可能,故只取x 即可, x 的十位数最大不会超过 5.因而就x 取值可能是 1、 11、 13、 17、 19、 21、 23、 27、 29、 31、 33、 37、 39、 41、 43、47、 49.就这几种情况讨论即可.解答:解:∵2008=2008=xy ﹣ 1∴2009=xy∵x, y 为正整数,并且乘积是2009 的个位数是9因而 x、y 的个位可能是1、 3、 7、 9①当 x 的个位是 1 时,x=1 , y=2009 显然成立,x=11 , y 不存在,x=21 , y 不存在,x=31 , y 不存在,x=41 , y=49,②当 x 的个位是 3 时x=3 , y 不存在,x=13 , y 不存在,x=23 , y 不存在,x=33 , y 不存在,x=43 , y 不存在;③当的个位是7 时x=7 , y=287x=17 , y 不存在x=27 , y 不存在x=37 , y 不存在x=47 , y 不存在;④当 x 的个位是9 时x=9 , y 不存在 x=19 , y 不存在 x=29 , y 不存在 x=39 , y 不存在 x=49 , y=41. 故可能的情况是① x=1 , y=2009 或 x=2009 , y=1, x+y=2010 ② x=7 , y=287 或 x=287 , y=7, x+y=7+287=394 ③ x=41 , y=49 或 x=49, y=41, x+y=41+49=90故 x+y 的最大值是 2010,最小值是 9024.( 2000?内蒙古)计算:解答: 解:由题意可设字母 n=12346,那么 12345=n ﹣1, 12347=n+1 ,于是分母变为 n 2﹣( n ﹣ 1)(n+1 ).应用平方差公式化简得22222n ﹣( n ﹣1 ) =n ﹣ n +1=1 ,所以原式 =24690 .25.设 a 2+2a ﹣1=0 , b 4 ﹣2b 2﹣ 1=0 ,且 1﹣ ab 2≠0,求的值.分析:解法一:根据 1﹣ab 2≠0 的题设条件求得 b 2=﹣ a ,代入所求的分式化简求值.解法二:根据a 2+2a ﹣ 1=0 ,解得 a=﹣ 1+ 或 a=﹣ 1﹣,由 b 4﹣2b 2﹣ 1=0 ,解得:2b = +1,把所求的分式化简后即可求解.解答:解法一:解: ∵a 2+2a ﹣ 1=0 , b 4﹣2b 2﹣ 1=0∴( a 2+2a ﹣1)﹣( b 4﹣ 2b 2﹣ 1)=0化简之后得到: (a+b 2)( a ﹣ b 2+2) =0若 a ﹣ b 2+2=0 ,即 b 2=a+2,则 1﹣ ab 2=1﹣ a ( a+2) =1﹣ a 2﹣ 2a=0,与题设矛盾,所以a ﹣ b 2+2≠0因此 a+b 2=0,即 b 2=﹣ a∴===(﹣ 1) 2003=﹣ 1解法二: 解: a 2+2a ﹣ 1=0(已知),解得 a=﹣ 1+ 或 a=﹣1﹣ , 由 b 4﹣ 2b 2﹣ 1=0 ,解得: b 2= +1 , ∴ =b 2+ ﹣ 2+= +1﹣ 2+ ,当 a= ﹣ 1 时,原式 = +1﹣ 2+4+3 =4 +3 ,∵1﹣ ab 2≠0, ∴a= ﹣ 1 舍去;当 a=﹣ ﹣ 1 时,原式 = +1﹣2﹣ =﹣ 1,∴(﹣ 1) 2003=﹣ 1,即 =﹣ 1. 点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意 1﹣ab 2≠0 的运用. 26.已知3|2x ﹣ 1|+ +( z ﹣1) 2=0,求 x 2+y 2+z 2+2xy+2xz+2yz 值. 分析:首先利用非负数的性质求得 x 、 y 、 z 的值,然后代入代数式求解即可. 解答:解: ∵3|2x ﹣1|+ +( z ﹣ 1) 2=0,∴2x ﹣ 1=0, 3y ﹣ 1=0, z ﹣ 1=0 ∴x= , y= , z=1 ∴x 2+y 2+z 2+2xy+2xz+2yz= ( )2+( ) 2+12+2× × +2× ×1+2 × ×1=点评: 本题考查了因式分解的应用及非负数的性质,解题的关键是求得未知数的值.。
《整式的乘除与因式分解》培优训练及答案
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
(完整word版)整式的乘除测试题(3套)及答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
整式的乘除培优辅导全
培优训练(一)(30分钟 50分)一、选择题(每小题4分,共12分)1.(2014·南通中考)计算(-x )2·x 3的结果是( )(A )x 5 (B )-x 5 (C )x 6 (D )-x 62.已知n 是大于1的自然数,则(-c )n -1·(-c )n +1等于( )(A )()2n 1c -- (B )-2nc (C )-c 2n (D )c 2n3.(2014·滨州中考)求1+2+22+23+…+22 012的值,可令S =1+2+22+23+…+22 012,则2S =2+22+23+24+…+22 013,因此2S -S =22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为( )(A )52 012-1 (B )52 013-1 (C )2 013514- (D )2 012514- 二、填空题(每小题4分,共12分)4.已知4m +1=28,则4m =______.5.居里夫人发现了镭这种放射性元素.1千克镭完全衰变后,放出的热量相当于375 000千克煤燃烧所放出的热量.估计地壳内含有100亿千克镭,这些镭完全衰变后所放出的热量相当于______千克煤燃烧所放出的热量(用科学记数法表示).6.已知2x ·2x ·8=212,则x =_____.三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3); (2)a 3·a 2-a ·(-a )2·a 2;(3)(2m -n )4·(n -2m )3·(2m -n )6.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)化简:(1)(-2)n+(-2)n·(-2)(n为正整数). (2)(-x)2n-1·(-x)n+2(n为正整数).培优训练(二)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·重庆中考)计算(ab)2的结果是( )(A)2ab(B)a2b(C)a2b2 (D)ab22.下列运算中,正确的是( )(A)3a2-a2=2 (B)(-a2b) 3=a6b3(C)a3·a6=a9 (D)(2a2)2=2a43.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为( )(A)6×106立方毫米(B)8×106立方毫米(C)2×106立方毫米(D)8×105立方毫米二、填空题(每小题4分,共12分)4.已知22×83=2n,则n的值为______.5.若2x+y=3,则4x×2y=______.6.计算:(1)[(56)6×(-65)6]7=________.(2)82 013× (-2 012=______.三、解答题(共26分)7.(8分)已知x-y=a,试求(x-y)3·(2x-2y)3·(3x-3y)3的值.8.(8分)比较3555,4444,5333的大小.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b.例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么log a(MN)=log a M+log a N. 完成下列各题(1)因为______,所以log28=_______;(2)因为______,所以log216=______;(3)计算:log2(8×16)=_______+_______=_______.培优训练(三)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·江西中考)下列运算正确的是( )(A)a3+a3=2a6 (B)a6÷a-3=a3(C)a3·a3=2a3 (D)(-2a2)3=-8a62.和3-2的结果相同的数是( )(A)-6 (B)9的相反数(C)9的绝对值(D)9的倒数3.(2014·东营中考)若3x=4,9y=7,则3x-2y的值为( )(A)47(B)74(C)-3 (D)27二、填空题(每小题4分,共12分)4.(2014·滨州中考)根据你学习的数学知识,写出一个运算结果为a6的算式_____.5.根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的______倍.6.计算:a-1·a-2÷a-3=_____.三、解答题(共26分)7.(8分)用小数或分数表示下列各数:(1)4-3×2 0130;(2)×10-3.8.(8分)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x-2)x+3=1,求x的值”,她解答出来的结果为x=-3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?【拓展延伸】9.(10分)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”).①1-2 _____ 2-1;②2-3_____3-2;③3-4_____4-3;④4-5_____5-4;….(2)由(1)可以猜测n-(n+1)与(n+1)-n(n为正整数)的大小关系:当n______时,n-(n+1)>(n+1)-n;当n______时,n-(n+1)<(n+1)-n.培优训练(四)(30分钟50分)一、选择题(每小题4分,共12分)1.某种细胞的直径是5×10-4毫米,这个数是( )(A)毫米(B)毫米(C) 5毫米(D) 05毫米2.(2014·大庆中考)科学家测得肥皂泡的厚度约为000 7米,用科学记数法表示为( )(A)×10-6米(B)×10-7米(C)7×10-7米(D)7×10-6米3.小聪在用科学记数法记录一个较小的数时,多数了2个零,结果错误地记成×10-8,正确的结果应是( )(A)×106 (B)×10-6(C)×1010 (D)×10-10二、填空题(每小题4分,共12分)4.(2014·玉林中考)某种原子直径为×10-2纳米,把这个数化为小数是_____纳米.5.(2014·本溪中考)已知1纳米=10-9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_____.本100页的书大约厚cm,则书的一页厚约______ m(用科学记数法表示).三、解答题(共26分)7.(8分)某种计算机的存储器完成一次存储的时间为十亿分之一秒,则该存储器用百万分之一秒可以完成多少次存储?8.(8分)在显微镜下,人体的一种细胞形状可以近似地看成圆形,它的半径为×10-7米,它相当于多少微米?若1张百元人民币约09米厚,那么它相当于约多少个这种细胞首尾相接的长度?【拓展延伸】9.(10分)1微米相当于一根头发直径的六十分之一,一根头发的直径大约为多少米? 一根头发的横断面的面积为多少平方米?一般人约有10万根头发,把这些头发捆起来的横断面约有多少平方米(π取?培优训练(五)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·沈阳中考)计算(2a)3·a2的结果是( )(A)2a5 (B)2a6 (C)8a5 (D)8a62.下列运算正确的是( )(A)|-3|=3 (B)-(-12)=-12(C)(a3)2=a5(D)2a·3a=6a3.如果-2m2×□=-8m2n3,则□内应填的代数式是( )(A)6n3 (B)4n3(C)-6n3 (D)4m2n3二、填空题(每小题4分,共12分)4.计算:(-2x) 3·(-5xy2)=______.5.已知x m+1y n-2·x m y2=x5y3,那么m n的值是______.6.如图,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是_____(只要求写出一个结论).三、解答题(共26分)7.(8分)若1+2+3+…+n=m,求(ab n)·(a2b n-1)…(a n-1b2)·(a n b)的值.8.(8分)用18个棱长为a的正方体木块拼成一个长方体,有几种不同的拼法,分别表示你所拼成的长方体的体积,不同的拼法中,你能得到什么结论(至少用两种方法)?【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x z w)y,求×.培优训练(六)(30分钟50分)一、选择题(每小题4分,共12分)1.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+_____.空格的地方被钢笔水弄污了,你认为横线上应填写( )(A)3xy(B)-3xy(C)-1 (D)12.要使(x2+ax+1)(-6x3)的展开式中不含x4的项,则a应等于( )(D)0(A)6 (B)-1 (C)16(-a+b-c)与-a(a2-ab+ac)的关系是( )(A)相等(B)互为相反数C)前式是后式的-a倍D)前式是后式的a倍二、填空题(每小题4分,共12分)4.计算:-2a(b2+ab)+(a2+b)b= _______ .5.若2x(x-1)-x(2x+3)=15,则x=_____.6.如图所示图形的面积可表示的代数恒等式是______.三、解答题(共26分)7.(8分)某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?8.(8分)已知某长方形的长为(a+b)cm,它的宽比长短(a-b)cm,求这个长方形的周长与面积.【拓展延伸】a米.9.(10分)一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12(1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?培优训练(七)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3; ②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6; ④(1-a)(1+a)=1-a2.(A)4个(B)3个(C)2个(D)1个2.已知(x+a)(x+b)=x2-13x+36,则a+b的值是( )(A)13 (B)-13 (C)36 (D)-363.一个三角形的一边长为m+2,这条边上的高比它长m,则这个三角形的面积为( )(A)2m2+6m+4 (B)m2+3m+2 (C)m+2 (D)1m+12二、填空题(每小题4分,共12分)4.已知a2-a+5=0,则(a-3)(a+2)的值是_____.5.将一个长为x、宽为y的长方形的长增加1、宽减少1得到的新长方形的面积是_____.6.有若干张如图所示的A类、B类正方形卡片和C类长方形卡片,如果要拼成一个长为3a+b,宽为a+2b的大长方形,则需要C类卡片_____张.三、解答题(共26分)7.(8分)说明:对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值总能被6整除.8.(8分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性. 【拓展延伸】9.(10分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_____=_____×25;②_____×396=693×_____.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并说明其正确性.培优训练(八)(30分钟50分)一、选择题(每小题4分,共12分)1.计算(3a-b)(-3a-b)等于( )(A)9a2-6ab-b2 (B)-9a2-6ab-b2(C)b2-9a2 (D)9a2-b22.由m(a+b+c)=ma+mb+mc①,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3②.我们把等式②叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形不正确的是( )(A)(x+4y)(x2-4xy+16y2)=x3+64y3(B)(2x+y)(4x2-2xy+y2)=8x3+y3(C)(a+1)(a2+a+1)=a3+1 (D)x3+27=(x+3)(x2-3x+9)3.下列各式中,计算结果为81-x2的是( )(A)(x+9)(x-9) (B)(x+9)(-x-9) (C)(-x+9)(-x-9) (D)(-x-9)(x-9)二、填空题(每小题4分,共12分)4.当x=3,y=1时,代数式(x+y)(x-y)+y2的值是______.5.如果(a+b+1)(a+b-1)=63,那么a+b的值为______.6.观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(x n+x n-1+…+x+1)=_____(其中n为正整数).三、解答题(共26分)7.(8分)a,b,c是三个连续的正整数(a<b<c),以b为边长作正方形,分别以c,a为长和宽作长方形,哪个图形的面积大?为什么?8.(8分)如图所示,小明家有一块L型的菜地,要把L型的菜地按图中所示的样子分成面积相等的两个梯形,种上不同的蔬菜,已知这两个梯形的上底都是a米,下底都是b 米,高是(b-a)米.请你给小明家算一算,小明家的菜地的面积是多大?当a=10米,b=30米时,面积是多少?【拓展延伸】9.(10分)两个连续偶数的平方差能被4整除吗?为什么?培优训练(九)(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )(A)2 (B)4 (C)4a(D)2a2+22.一个正方形的边长增加了3 cm,它的面积增加了51 cm2,这个正方形原来的边长是( )(A)5 cm(B)6 cm(C)7 cm(D)8 cm3.计算5a(2-5a)-(5a+1)(-5a+1)的结果是( )(A)1-10a+50a2 (B) 1-10a(C)10a-50a2-1 (D)10a-1二、填空题(每小题4分,共12分)=______.4.100⨯+9910115.为了便于直接应用平方差公式计算,应将(a+b-c)·(a-b+c)变形为[a______][a______].6.(2014·万宁中考)观察下列各式,探索发现规律:22-1=1=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;……用含正整数n的等式表示你所发现的规律为______.三、解答题(共26分)7.(8分)利用平方差公式计算:(1)31×29. (2)×.8.(8分)计算:(1)4x 2-(2x +3)(-2x -3). (2)(3ab +12)(3ab -12)-a 2b 2.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)·(22+1)(24+1)(28+1)…(21 024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21 024+1) =(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21 024+1) =(24-1)(24+1)(28+1)…(21 024+1)=…=(21 024-1)(21 024+1)=22 048-1. 回答下列问题:(1)请借鉴该同学的经验,计算: (3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算: (2112 )(1-213)(1-214)…(1-2110).培优训练(十)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·临沂中考)下列计算正确的是( )(A)2a2+4a2=6a4 (B)(a+1)2=a2+1 (C)(a2)3=a5 (D)x7÷x5=x22.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )(A)(m+n)2-(m-n)2=4mn(B)(m+n)2-(m2+n2)=2mn(C)(m-n)2+2mn=m2+n2(D)(m+n)(m-n)=m2-n23.若a,b是正数,a-b=1,ab=2,则a+b=( )(A)-3 (B)3 (C)±3 (D)9二、填空题(每小题4分,共12分)4.(2014·河北中考)已知y=x-1,则(x-y)2+(y-x)+1的值为_____.5.(2014·江西中考)已知(m-n)2=8,(m+n)2=2,则m2+n2=______.6.(2014.六盘水中考)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=______.三、解答题(共26分)7.(8分)利用完全平方公式计算:(1)482.(2)1032.8.(8分)( 2014·丽水中考)已知A=2x+y,B=2x-y,计算A2-B2.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c 的等式吗?培优训练(十一)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算36a8b6÷13a2b÷4a3b2的方法正确的是( )(A)(36÷13÷4)a8-2-3b6-1-2(B)36a8b6÷(13a2b÷4a3b2)(C)(36-13-4)a8-2-3b6-1-2(D)(36÷13÷4)a8-2-3b6-0-22.一颗人造地球卫星的速度为×107米/时,一架喷气式飞机的速度为×106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的( )(A)1 600倍(B)160倍(C)16倍(D)倍3.已知a3b6÷a2b2=3,则a2b8的值等于( )(A)6 (B)9 (C)12 (D)81二、填空题(每小题4分,共12分)4.计算a5b÷a3=_____.5.已知28a3b m÷28a n b2=b2,那么m=_____,n=_____.6.若(2a)3·(-b2)2÷12a3b2·M=-b8,则M=_____.三、解答题(共26分)7.(8分)计算:(1)(-3xy2)2·2xy÷3x2y5. (2)(x-y)5÷(y-x)3.8.(8分)三峡一期工程结束后的当年发电量为×109度,某市有10万户居民,若平均每户用电×103千瓦时.那么三峡工程该年所发的电能供该市居民使用多少年?【拓展延伸】9.(10分)观察下列单项式:x,-2x2,4x3,-8x4,16x5,…(1)计算一下这里任一个单项式与前面相连的单项式的商是多少?据此规律写出第n个单项式.(2)根据你发现的规律写出第10个单项式.培优训练(十二)(30分钟50分)一、选择题(每小题4分,共12分)1.对于任意正整数n,按照n→平方→+n→÷n→-n→答案程序计算,应输出的答案是( )(A)n2-n+1 (B)n2-n (C)3-n(D)12.计算[2(3x2)2-48x3+6x]÷(-6x)等于( )(A)3x3-8x2 (B)-3x3+8x2(C)-3x3+8x2-1 (D)-3x3-8x2-13.下列计算正确的是( )(A)(9x4y3-12x3y4)÷3x3y2=3xy-4xy2(B)(28a3-14a2+7a)÷7a=4a2-2a+7a (C)(-4a3+12a2b-7a3b2)÷(-4a2)=a-3b+74ab2(D)(25x2+15x2y-20x4)÷(-5x2)=-5-3xy+4x2二、填空题(每小题4分,共12分)4.填上适当的式子,使以下等式成立:2xy2+x2y-xy=xy·_____.5.如果用“★”表示一种新的运算符号,而且规定有如下的运算法则:m★n=m2n+n,则(2x★y)÷y的运算结果是_____.6.已知梯形的面积是3a3b4-ab2,上、下底的长度之和为2b2,那么梯形的高为_____.三、解答题(共26分)7.(8分)计算:(1)(64x5y6-48x4y4-8x2y2)÷(-8x2y2). (2)-12a3b2-16a4b3)÷(-.8.(8分)先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.【拓展延伸】9.(10分)一堂习题课上,数学老师在黑板上出了这样一道题:当a=2 012,b=2时,求[3a2b(b-a)+a(3a2b-ab2)]÷a2b的值.一会儿,雯雯说:“老师,您给的‘a=2 012’这个条件是多余的.”一旁的小明反驳道:“题目中有两个字母,不给这个条件,肯定求不出结果!”他们谁说得有道理?请说明理由.单元评价检测(一)第一章(45分钟100分)一、选择题(每小题4分,共28分)1.(2014·益阳中考)下列计算正确的是( )(A)2a+3b=5ab(B)(x+2)2=x2+4 (C)(ab3)2=ab6 (D)(-1)0=12.计算:2-2=( )(A)14(B)2 (C)-14(D)43.(2014·天门中考)下列运算不正确的是( )(A)a5+a5=2a5 (B)(-2a2)3=-2a6 (C)2a2·a-1=2a(D)(2a3-a2)÷a2=2a-14.若关于x的积(x-m)(x+6)中常数项为12,则m的值为( )(A)2 (B)-2 (C)6 (D)-65.(-112)2 013×(23)2 013等于( )(A)1 (B)-1 (C)-94(D)-496.若x2+mx-15=(x+3)(x+n),则m的值为( )(A)-5 (B)5 (C)-2 (D)27. 现规定一种运算:a*b=ab+a-b,其中a,b为实数,则a*b+(b-a)*b等于( )(A)a2-b(B)b2-b(C)b2 (D)b2-a二、填空题(每小题5分,共25分)8.(2014·贺州中考)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为000 53平方毫米,用科学记数法表示为____平方毫米.9.已知(9n)2=38,则n=_____.10.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=_____.11.已知(x-ay)(x+ay)=x2-16y2,那么a=_____.12.(2014·黔东南中考)如图,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n)个图有_____个相同的小正方形.三、解答题(共47分)13.(10分)计算:(1)(-2x+5)(-5-2x)-(x-1)2. (2)[-6a3x4-(3a2x3)2]÷(-3ax2).14.(12分)先化简,再求值:3(2a-b)2-3a(4a-3b)+(2a+b)(2a-b)-b(a+b),其中a=1,b=2.15.(12分)在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方.(2)然后再减去4.(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?16.(13分)新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系、推广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何获得的?(用(a+b)(c+d)来说明)答案解析一1.【解析】选A.(-x) 2·x3=x2·x3=x2+3=x5.2.【解析】选D .(-c )n -1·(-c )n +1=(-c )n -1+n +1=(-c )2n =c 2n .3.【解析】选C .设S =1+5+52+53+…+52 012,则5S =5+52+53+54+…+52 013,因此,5S -S =52 013-1,S =2 013514. 4.【解析】因为4m +1=4m ×41,所以4m ×4=28,所以4m =7.答案:75.【解析】100亿千克=1010千克,所以100亿千克镭完全衰变后所放出的热量相当于375 000×1010=×105×1010=×1015(千克)煤燃烧所放出的热量.答案:×10156.【解析】因为2x ·2x ·8=2x ·2x ·23=2x +x +3,所以x +x +3=12,解得x =92. 答案:927.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a 3·a 2-a ·(-a )2·a 2=a 3+2-a ·a 2·a 2=a 5-a 5=0.(3)(2m -n )4·(n -2m )3·(2m -n )6=(n -2m )4·(n -2m )3·(n -2m ) 6=(n -2m )4+3+6=(n -2m )13.8.【解析】(1)a x +2=a x ×a 2=5a 2.(2)a x +y +1=a x ·a y ·a =5×4×a =20a .9.【解析】(1)(-2)n +(-2)n ·(-2)=(-2+1)(-2)n=-(-2)n .当n 为偶数时,原式=-2n ,当n为奇数时,原式=2n.(2)(-x)2n-1·(-x)n+2=(-x)2n-1+n+2=(-x)3n+1.当n为偶数时,原式=-x3n+1,当n为奇数时,原式=x3n+1.答案解析二1.【解析】选C.(ab)2=a2b2.2.【解析】选-a2=2a2,(-a2b)3=-a6b3,a3·a6=a9,(2a2)2=4a4,故A,B,D错误.3.【解析】选B.正方体的体积为:(2×102)3=8×106(立方毫米).4.【解析】因为22×83=22×(23)3=22×29=211,所以n=11.答案:115.【解析】因为4x×2y=(22)x×2y=22x×2y=22x+y,所以4x×2y=23=8.答案:86.【解析】(1)[(56)6×(-65)6]7=[(56)6×(65)6]7=[(5665)6]7=1.(2)82 013×(-2 012=8×82 012× 012=8×(8×2 012=8×1=8. 答案:(1)1 (2)87.【解析】(x-y)3·(2x-2y)3·(3x-3y)3=(x-y)3[2(x-y)]3[3(x-y)]3=(x-y)3·8(x-y)3·27(x-y)3=216(x-y)9=216a9.8.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.9.【解析】(1)因为23=8,所以log 28=3;(2)因为24=16,所以log 216=4;(3)log 2(8×16)=log 28+log 216=3+4=7.所以依次应填:(1)23=83(2)24=164 (3)log 28 log 216 7 答案解析三1.【解析】选+a 3=2a 3,a 6÷a -3=a 9,a 3·a 3=a 6,(-2a 2)3=-8a 2×3=-8a 6.2.【解析】选D .因为3-2=21139=,所以和3-2的结果相同的数是9的倒数. 3.【解析】选-2y =3x ÷32y =3x ÷(32)y =3x ÷9y =4÷7=47. 4.【解析】本题属于开放题,答案不惟一,如a 8÷a 2=a 6(a ≠0)或a 4·a 2=a 6.答案:a 8÷a 2(a ≠0)(答案不惟一)5.【解析】因为9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,所以109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的100倍.答案:1006.【解析】a -1·a -2÷a -3=a -3÷a -3=1.答案:17.【解析】 (1)4-3×2 0130=3111464⨯=.(2)×10-3=×3110=× = 29. 8.【解析】当x -2=1时,即x =3,(3-2)3+3=16=1,满足题意;当x -2=-1时,即x =1时,(1-2)1+3=(-1)4=1,满足题意;当x =-3时,而x -2=-5≠0满足题意,所以当(x -2)x +3=1时,x 的值为3或1或-3.9.【解析】(1)①∵1-2=1,2-1=12,1>12,∴1-2>2-1;②∵2-3=18,3-2=19,18>19,∴2-3>3-2;③∵3-4=181,4-3=164,181<164,∴3-4<4-3;④4-5=11 024,5-4=1625,∵11 024<1625, ∴4-5<5-4.故答案依次为:>> < <.(2)≤2 >2.答案解析四1.【解析】选×10-4= 5.2.【解析】选 000 7米=7×10-7米.3.【解析】选B .因为×10-8= 000 040 3,所以原数是 004 03=×10-6.4.【解析】×10-2=.答案:5.【解析】158×10-9= 000 158米=×10-7米.答案:×10-7米6.【解析】 cm ÷100= cm = 05 m =5×10-5m .答案:5×10-57.【解析】因为百万分之一秒=6110秒=10-6秒, 又因为十亿分之一秒=9110秒=10-9秒, 所以10-6÷10-9=10-6-(-9)=103=1 000(次).所以百万分之一秒可以完成1 000次存储.8.【解析】×10-7米=×10-7×106=微米.×10-7米= 000 78米,09÷(2× 000 78)≈58(个).9.【解析】由1微米=10-6米,可求出一根头发直径为10-6×60=6×10-5(米).由圆的面积公式S =πr 2可得一根头发的横断面的面积为×(56102-⨯)2=×10-9(平方米).10万根头发捆绑起来的横断面面积为:×10-9×105=×10-4(平方米).答案解析五1.【解析】选C .(2a )3·a 2=8a 5.2.【解析】选A .|-3|=3;-(-12)=12;(a 3)2=a 6;2a ·3a =6a 2,故选A .3.【解析】选B .因为-2m 2·4n 3=-8m 2n 3,所以□内应填4n 3.4.【解析】(-2x )3·(-5xy 2)=(-8x 3)·(-5xy 2)=40x 4y 2.答案:40x 4y 25.【解析】因为x m +1y n -2·x m y 2=x 2m +1y n ,所以2m +1=5,n =3,所以m n =23=8.答案:86.【解析】当a 与2a 重合时,其乘积为2a 2;当b 与-2b 重合时,其乘积为-2b 2. 答案:2a 2(或-2b 2)7.【解析】因为1+2+3+…+n =m ,所以(ab n )·(a 2b n -1)…(a n -1b 2)·(a n b )=a 1+2+…+n b n +n -1+…+1=a m b m .8.【解析】拼法不惟一,现列举5种:(1)长为18a,宽为a,高为a,体积为18a·a·a=18a3;(2)长为9a,宽为2a,高为a,体积为9a·2a·a=18a3;(3)长为6a,宽为3a,高为a,体积为6a·3a·a=18a3;(4)长和宽都为3a,高为2a,体积为3a·3a·2a=18a3;(5)长为3a,宽为2a,高为3a,体积为3a·2a·3a=18a3.可以发现,不管怎样拼,体积总是18a3.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.答案解析六1.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.2.【解析】选D.(x2+ax+1)(-6x3)=-6x5-6ax4-6x3.展开式中不含x4项,则-6a=0,所以a=0.3.【解析】选A.因为a2(-a+b-c)=-a3+a2b-a2c;-a(a2-ab+ac)=-a3+a2b-a2c,所以两式相等.4.【解析】-2a(b2+ab)+(a2+b)b=-2ab2-2a2b+a2b+b2=-2ab2-a2b+b2.答案:-2ab2-a2b+b25.【解析】2x(x-1)-x(2x+3)=15,去括号,得2x2-2x-2x2-3x=15,-5x=15,所以x=-3.答案:-36.【解析】因为长方形的长是2a,宽是a+b,所以上图的面积是2a(a+b).因为长方形的面积为a2+a2+ab+ab=2a2+2ab,所以2a(a+b)=2a2+2ab.答案:2a(a+b)=2a2+2ab7.【解析】这个多项式是(x2-4x+1) -(-3x2)=4x2-4x+1,正确的计算结果是:(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.8.【解析】由题意可得:这个长方形的宽为(a+b)-(a-b)=2b(cm),长方形的周长为2(a+b+2b)=2a+6b(cm),长方形的面积为(a+b)×2b=2ab+2b2(cm2).9.【解析】(1)防洪堤坝的横断面积S=12[a+(a+2b)]×12a=14a(2a+2b)=1 2a2+12ab.故防洪堤坝的横断面面积为(12a2+12ab)平方米.(2)堤坝的体积V=(12a2+12ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.答案解析七1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选B.(x+a)(x+b)=x2+(a+b)x+ab,又因为(x+a)(x+b)=x2-13x+36,所以a+b=-13.3.【解析】选B.由题意知这条边上的高为2m+2,所以这个三角形的面积为12(m+2)(2m+2)=1(2m2+6m+4)=m2+3m+2.24.【解析】(a-3)(a+2)=a2-a-6,因为a2-a+5=0,所以a2-a=-5,所以原式=-5-6=-11.答案:-115.【解析】由题意可得(x+1)(y-1)=xy-x+y-1.答案:xy-x+y-16.【解析】长为3a+b、宽为a+2b的大长方形的面积为(3a+b)(a+2b)=3a2+2b2+7ab;A类卡片的面积为a·a=a2;B类卡片的面积为b·b=b2;C类卡片的面积为a·b=ab.因此,拼成一个长为3a+b,宽为a+2b的大长方形,需要3张A类卡片、2张B类卡片和7张C 类卡片.答案:77.【解析】因为n(n+7)-(n+3)(n-2)=n2+7n-(n2+n-6)=6n+6=6(n+1),所以当n为正整数时,6(n+1)总能被6整除.8.【解析】(1)观察图乙得知,长方形的长为a+2b,宽为a+b,所以面积为(a+2b)(a+b).又因为这个图形由6部分组成,所以其面积为a2+ab+ab+ab+b2+b2 =a2+2b2+3ab,所以(a+b)(a+2b)=a2+2b2+3ab,(2)如图所示:恒等式是(a+b)(a+b)=a2+2ab+b2.(答案不惟一)9.【解析】(1)①因为5+2=7,所以左边的三位数是275,右边的三位数是572,所以52×275=572×25.②因为左边的三位数是396,所以左边的两位数是63,右边的两位数是36,63×396=693×36.(2)因为左边两位数的十位数字为a,个位数字为b,所以左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,所以一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),理由:左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).答案解析八1.【解析】选C.-b是相同的项,互为相反数的项是3a与-3a,故结果是(-b)2-(3a)2=b2-9a2.2.【解析】选C.因为C中正确的算式应是(a+1)(a2-a+1)=a3+1.3.【解析】选D.因为(x+9)(x-9)=x2-81;(x+9)(-x-9)=-x2-18x-81;(-x+9)(-x-9)=x2-81;(-x-9)(x-9)=81-x2,所以选D.4.【解析】(x+y)(x-y)+y2=x2-y2+y2=x2=32=9.答案:95.【解析】因为(a+b+1)(a+b-1)=63,即(a+b)2-1=63,所以(a+b)2=64,所以a+b=±8. 答案:±86.【解析】(x-1)(x n+x n-1+…+x+1)=x n+1-1.答案:x n+1-17.【解析】以b为边长的正方形面积大.因为a,b,c是三个连续的正整数(a<b<c),所以a=b-1,c=b+1,所以以c,a为长和宽所作长方形的面积为ac=(b-1)·(b+1)=b2-1.又因为以b为边的正方形的面积为b2,且b2-1<b2,所以以b为边长的正方形面积大.8.【解析】由题意得,菜地的面积为:(a+b)(b-a)=(b2-a2)(平方米).2×12当a=10米,b=30米时,b2-a2=302-102=900-100=800(平方米).答:小明家的菜地面积为(b2-a2)平方米,当a=10米,b=30米时,其面积为800平方米.9.【解析】设两个连续偶数为2n ,2n +2,则有 (2n +2)2-(2n )2 =(2n +2+2n )(2n +2-2n ) =(4n +2)×2 =4(2n +1). 因为n 为整数,所以4(2n +1)中的2n +1也是整数, 所以4(2n +1)是4的倍数.答案解析九1.【解析】选C .(a +1)2-(a -1)2=[(a +1)-(a -1)]·[(a +1)+(a -1)]=2×2a =4a .2.【解析】选C .设原来的边长为x cm , 则(x +3)2-x 2=51,所以(x +3+x )(x +3-x )=51,(2x +3)×3=51, 所以2x +3=17,解得x =7.3.【解析】选D .原式=10a -25a 2-(1-25a 2) =10a -25a 2-1+25a 2=10a -1.4.【解析】100991011⨯+=()()22100100100110011001110011100100===-++-+.答案:11005.【解析】通过观察发现两个多项式中a 完全相同,而b ,c 前的符号相反,所以把b -c 看作一项,构造平方差公式为[a +(b -c )][a -(b -c )]=a 2-(b -c )2. 答案:+(b -c )-(b -c )6.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n 的等式表示其规律为(2n )2-1=(2n -1)(2n +1).答案:(2n ) 2-1=(2n -1)(2n +1)7.【解析】(1)31×29=(30+1)(30-1)=302-12=900-1=899. (2)×=(10-(10+=102-=100-=. 8.【解析】(1)4x 2-(2x +3)(-2x -3) =4x 2+4x 2+12x +9 =8x 2+12x +9.(2)(3ab +12)(3ab -12)-a 2b 2 =(3ab )2-(12)2-a 2b 2=9a 2b 2-14-a 2b 2=8a 2b 2-14.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=12(32-1)(32+1)(34+1)(38+1)=12(34-1)(34+1)(38+1)=12(38-1)(38+1) =12(316-1). (2) (2112-)(1-213)(1-214)…(1-2110)=(1-12)(1+12)(1-13)(1+13)…(1-110)(1+110)=132491122331010⨯⨯⨯⨯⨯⨯L =111210⨯=1120. 答案解析十1.【解析】选D .选项A 结果为6a 2,选项B 结果为a 2+2a +1,选项C 结果为a 6.2.【解析】选B .根据图示可知,阴影部分的面积是边长为m +n 的正方形减去中间白色的正方形的面积m 2+n 2,即(m +n )2-(m 2+n 2)=2mn .3.【解析】选B .因为a -b =1,ab =2,可将a -b =1两边同时平方,ab =2两边同乘以4,两式相加可得(a+b)2=9.又a,b为正数,从而B正确.4.【解析】由y=x-1得y-x=-1,所以(x-y)2+(y-x)+1=(y-x)2+(y-x)+1=(-1)2+(-1)+1=1.答案:15.【解析】两式相加得:m2-2mn+n2+m2+2mn+n2=10,所以2(m2+n2)=10,所以m2+n2=5.答案:56.【解析】(a+b)4=a4+4a3b+6a2b2+4ab3+b4答案:a4+4a3b+6a2b2+4ab3+b47.【解析】(1)482=(50-2)2=2 500-200+4=2 304.(2)1032=(100+3)2=10 000+600+9=10 609.8.【解析】A2-B2=(2x+y)2-(2x-y)2=(4x2+4xy+y2)-(4x2-4xy+y2)=4x2+4xy+y2-4x2+4xy-y2=8xy.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4×1×a×b+(b-a)2.2又因为大正方形的面积为c2,所以4×12×a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.答案解析111.【解析】选÷13a2b÷4a3b2=(36÷13÷4)a8-2-3b6-1-2.2.【解析】选C.×107)÷×106)=(2. 88÷×(107÷106)=×10=16,所以这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.3.【解析】选B.因为a3b6÷a2b2=3,即ab4=3,所以a2b8=ab4·ab4=3×3=9.4.【解析】a5b÷a3=(a5÷a3)·b=a2b.答案:a2b5.【解析】因为28a3b m÷28a n b2=a3-n b m-2,所以3-n=0,m-2=2,解得m=4,n=3. 答案:4 36.【解析】因为(2a)3·(-b2)2÷12a3b2=8a3b4÷12a3b2=23b2,所以23b2·M=-b8,M=-b8÷23b2=-32b6.答案:-32b67.【解析】(1)(-3xy2)2·2xy÷3x2y5=9x2y4·2xy÷3x2y5=18x3y5÷3x2y5=6x.(2)(x-y)5÷(y-x)3=(x-y)5÷[-(x-y)3]=-(x-y)5-3=-(x-y)2=-x2+2xy-y2.8.【解析】该市用电量为×103×105=×108,×109)÷×108)=÷×109-8=20(年).答:三峡工程该年所发的电能供该市居民使用20年.9.【解析】(1)-2x,(-2)n-1·x n.(2)第n个单项式为(-2)n-1·x n,则第10个单项式为-512x10.答案解析121.【解析】选D.由题意,有(n2+n)÷n-n=n+1-n=1.2.【解析】选C.[2(3x2)2-48x3+6x]÷(-6x)=(18x4-48x3+6x)÷(-6x)=-3x3+8x2-1.3.【解析】选C.因为(9x4y3-12x3y4)÷3x3y2=3xy-4y2;(28a3-14a2+7a)÷7a=4a2-2a+1;(-4a3+12a2b-7a3b2)÷(-4a2)=a-3b+74ab2;(25x2+15x2y-20x4)÷(-5x2)=-5-3y+4x2,所以A,B,D错误,C正确.4.【解析】因为(2xy2+x2y-xy)÷xy=2y+x-1,所以2xy2+x2y-xy=xy·(2y+x-1).答案:(2y+x-1)5.【解析】(2x★y)÷y=[(2x)2y+y]÷y=(4x2y+y)÷y=4x2+1.答案:4x2+16.【解析】梯形的高为2(3a3b4-ab2)÷2b2=(6a3b4-2ab2)÷2b2=3a3b2-a.答案:3a3b2-a7.【解析】(1)(64x5y6-48x4y4-8x2y2)÷(-8x2y2)=64x5y6÷ (-8x2y2)-48x4y4÷(-8x2y2)-8x2y2÷(-8x2y2)=-8x3y4+6x2y2+1.(2) -12a3b2-16a4b3)÷(-=-÷+12a3b2÷+16a4b3÷=-+ab +13a 2b 2.8.【解析】(a 2b -2ab 2-b 3)÷b -(a +b )(a -b ) =a 2b ÷b -2ab 2÷b -b 3÷b -(a 2-b 2) =a 2-2ab -b 2-a 2+b 2 =-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1. 9.【解析】因为[3a 2b (b -a )+a (3a 2b -ab 2)]÷a 2b =(3a 2b 2-3a 3b +3a 3b -a 2b 2)÷a 2b =2a 2b 2÷a 2b =2b ,所以化简的结果中不含a ,这样代入求值就与a 无关,所以雯雯说得有道理.答案解析 单元检测1.【解析】选D .选项A 不是同类项,不能合并;选项B 中乘法公式应用错误;选项C 应为a 2b 6,错误;选项D 正确.2.【解析】选-2=21124. 3.【解析】选B .(-2a 2)3=-8a 6.4.【解析】选B .(x -m )(x +6)=x 2+6x -mx -6m =x 2+(6-m )x -6m ,得-6m =12,m =-2.5.【解析】选B .原式=(-32)2 013×(23)2 013=(-32×23)2 013=-1. 6.【解析】选C .因为(x +3)(x +n )=x 2+(3+n )x +3n , 所以3n =-15,n =-5;3+n =m ,即m =3-5=-2. 7.【解析】选*b +(b -a )*b =ab +a -b +(b -a )b +(b -a )-b =ab +a -b +b 2-ab +b -a -b=b2-b.8.【解析】000 53=×10-7答案:×10-79.【解析】因为(9n)2=92n=(32)2n=34n,所以4n=8,n=2.答案:210.【解析】原式=ax4-2ax3-ax2-3x3+6x2+3x=ax4-(2a+3)x3-(a-6)x2+3x,因为展开式中不含x3项,所以2a+3=0,a=-3.2答案:-3211.【解析】因为(x-ay)(x+ay)=x2-a2y2,所以a2=16,a=±4.答案:±412.【解析】第(1)个图有2个相同的小正方形,而2=1×2;第(2)个图有6个相同的小正方形,而6=2×3;第(3)个图有12个相同的小正方形,而12=3×4;第(4)个图有20个相同的小正方形,而20=4×5;……所以第(n)个图有n(n+1)个相同的小正方形.答案:n(n+1)13.【解析】(1)(-2x+5)(-5-2x)-(x-1)2=(-2x+5)(-2x-5)-(x-1)2=4x2-25-(x2-2x+1)=4x2-25-x2+2x-1=3x2+2x-26.(2)[-6a3x4-(3a2x3)2]÷(-3ax2)=(-6a3x4-9a4x6)÷(-3ax2)=-6a3x4÷(-3ax2)-9a4x6÷(-3ax2)=2a2x2+3a3x4.14.【解析】3(2a-b)2-3a(4a-3b)+(2a+b)(2a-b)-b(a+b)=3(4a2-4ab+b2)-(12a2-9ab)+(4a2-b2)-(ab+b2)=12a2-12ab+3b2-12a2+9ab+4a2-b2-ab-b2=4a2-4ab+b2,当a=1,b=2时,原式=4×12-4×1×2+22=0.15.【解析】设这个数为x,据题意得,[(x+2)2-4]÷x=(x2+4x+4-4)÷4=x+4.如果把这个商告诉主持人,主持人只需减去4就知道这个数是多少.16.【解析】(1)是第二类知识.(2)单项式乘以多项式(分配律)、字母表示数、数可以表示线段的长或图形的面积等.(3)用数来说明:(a+b)(c+d)=(a+b)c+(a+b)d=ac+bc+ad+bd.用形来说明:如图,边长分别为a+b和c+d的矩形,分割前后的面积相等,即(a+b)(c+d)=ac+bc+ad+bd.。
整式乘除培优经典题一
整式乘除培优经典题一1、已知1999200a x =+,19992001b x =+,19992002c x =+,则多项式222a b c ab bc ca ++---的值为( )A.0 B.1 C.2 D.32、已知,,a b c 均不为0,且0a b c ++=,那么111111()()()a b c b c c a a b +++++的值为 .3、若3a =-,25b =,则20072006a b +的个位数字是( )A.3B.5C.8D.94、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 .5、设1abc =.试求111a b c ab a bc b ca c ++++++++的值. 6.如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 . 7.已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值. 8已知,求的值.9.已知2()4x y -=,2()64x y +=;求代数式值:(1)22x y +; (2)xy11.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.12.已知x +x 1=2,求x 2+21x ,x 4+41x的值. 13比较25180,64120,8190的大小 14.已知a+2b=0,则式子a 3+2ab (a+b )+4b 3的值是___________.15已知x +y =1,那么221122x xy y ++的值为_______. 16如果012=-+x x ,则3223++x x = .17把(x 2一x+1)6展开后得012211111212a x a x a x a x a +++++ ,则024681012a a a a a a a ++++++ .18. 已知200025=x ,200080=y ,则yx 11+等于( ).A .2 B .1 C .21 D .2319设d c b a 、、、都是自然数,且17,,2345=-==c a d c b a ,求d 一b 的值20.))(2(67222B y x A y x y x y xy x +++-=-----.求A 、B 的值.21. 是否存在常数p 、q 使得q px x ++24能被522++x x 整除?如果存在,求出p 、q 的值,否则请说明理由.22.若2x+5y —3=0,则4x .32y .23.满足(x —1)200>3200的x 的最小正整数为 .24.d c b a 、、、都是正数,且5,4,3,25432====d c b a ,则d c b a 、、、中,最大的一个是 . 25.化简)2(2)2(2234++-n n n 得( ). A .8121-+n B .12+-n C .87 D .47 26.已知223344556,5,3,2====d c b a ,那么d c b a 、、、从小到大的顺序是( ).A .a<b<c<dB .a<b<d<cC .b<a<c<dD .a<d<b<c27.计算(0.04)2003×[(一5)2003]2得( ).(杭州市中考题)A .1B .—lC .200351 D .200351- 28.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--试确定c b a 、、 值.29.设d c b a 、、、都是正整数,并且19,,2345=-==a c d c b a ,求a-b 的值.30.多项式875223-+-x x x 与多项式112++bx ax 的乘积中,没有含4x 的项,也没有含3x 的项,则b a +2= .13.若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式,则a = .16.若2233445566,55,33,22====d c b a ,那么d c b a 、、、从小到大的顺序是( ).A .a>b>c>dB .a>b>d>cC .b>a>c>dD .a>d>b>c18.若133=-x x ,则199973129234+--+x x x x 的值等于( )A .1997B .1999C .2001D .200320.已知3x 2-x-1=0,求6x 3十7x 2一5x+1999的值.22.已知102222=⋅=⋅d c b a ,求证:(a 一1)(d —1)=(b 一1)(c 一1).。
整式的乘除培优题目.doc
第三讲整式的乘法和除法一、指数运算律是整式乘除的基础,分别有同底数幂的乘法:,幂的乘方:,积的乘方:,同底数幂的除法:. 学习指数运算律应该注意:(1)运算律成立的条件;(2)运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式.(3)运算律的正向运用、逆向运用、综合运用.二、乘法公式是在多项式乘法的基础上。
经多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数式的证明等方面有着广泛的应用. 在学习乘法公式时应该注意:(1)熟悉公式的结构特点,理解掌握公式;(2)根据待求式的特点,模仿套用公式;(3)对公式中字母的全面理解,灵活应用公式;(4)既能正用,又能逆用,且能适当变形或重新组合,综合运用公式.例1:(1)计算:2000 20007 3 151998( ) (2)比较大小:2000 20003 7 35(2342)1005例2:有足够多的长方形和正方形卡片,如下图:(1)如果选取 1 号、2 号、3 号卡片分别为 1 张、2 张、3 张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.2 2(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a +7ab+3b ,那么需用 2 号卡片张,3 号卡片张.例3:(1)在2004,2005,2006,2007 这四个数中,不能表示为两个整数的平方差的是.(2)已知( 2000 a)( 1998 a) 1999 ,那么 2 ( 1998 )2( a a .2000 )2 b 2 c 2 a例4:已知a,b,c 满足a 2 7,b 2 1,c 6 17 ,则a+b+c 的值等于()练习:24 23 1、填空: 4 ( 0. 25) 12n6na ( ). ;若a 3 ,则2 13、若n 1 n ,y 2n 1 2n 2 ,其中n为整数,则x与y 的数量关系是()x 2 2A.x=4yB.y=4xC.x=12yD.y=12x4、如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是 2 和1 的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片张才能用它们拼成一个新的正方形.2 25、计算: 1. 2345 0. 7655 2. 469 0. 76556、计算: 2 19502 19512 19522 ... 19972 19982 199919492 7、计算:(1)219991998219991997199919992 2(2)( 2 219992005)(19991996199820013995 )20022000 18、已知a 5,求aa 4 2 1a2a?2 n 29、若n满足( n 2004) ( 2005 ) 1,则(2005 n)( n 2004 ) 等于().A.-1B.0C.12D.12 mn n2 m2n mn210、若m,n为有理数,且 2 2 4 4 0 m =()m ,则A.-8B.-16C.8D.1611、小颖与同学做游戏,她把一张纸剪成5块再从所得的纸片中任取一块再剪成5块;然后再从所得 的纸片 中 任 取 一块, 再 剪 成 5块; ⋯这样类似 地进行 下 去 , 能 不 能 在 第 n 次 剪 出 的纸片 恰 好 是 2 0 13块, 若 能 , 求 出这个 n 值; 若 不 能 ,请说明 理 由 . 12、一个自然数减去 45 后是一个完全平方数,这个自然数加上44, 后仍是一个完全平方数,试求这个自然数.。
(完整版)整式的乘除(典型例题)
整式的乘除(典型例题)一.幂的运算:1.若16,8m n a a ==,则m n a +=2.已知2,5m n a a ==,求值:(1)m n a +;(2)2m n a +。
3.23,24,m n ==求322m n +的值。
4.如果254,x y +=求432x y ⋅的值。
5.若0a >,且2,3,x y a a ==则x y a -的值为6.已知5,5,x y a b ==求25x y -的值二.对应数相等:1.若83,x x a a a ⋅=则x =__________ 2.若43282,n ⨯=则n =__________ 3.若2153,m m m a a a +-÷=则m =_________ 4.若122153()()m n n a b a b a b ++-⋅=,求m n +的值。
5.若235232(3)26,m n x y x y xy x y x y --+=-求m n +的值。
6.若312226834,m n ax y x y x y ÷=求2m n a +-的值。
7.若25,23,230,a b c ===试用,a b 表示出c 变式:25,23,245,a b c ===试用,a b 表示出c8.若22(),x m x x a -=++则m =__________a = __________ 。
9.若a 的值使得224(2)1x x a x ++=+-成立,则a 的值为_________。
三.比较大小:(化同底或者同指数) 1.在554433222,3,4,5中,数值最大的一个是 2.比较505与2524的大小变式:比较58与142的大小四.约分问题(注意符号):1.计算201120121(3)()3-等于 . 计算下列各式(1)825(0.125)2-⨯ (2)12(1990)()3980nn +⋅ 五.平方差公式的应用:1.如果2013,1,a b a b +=-=那么22a b -=___________2.计算下列各式(1)2123124122-⨯ (2)8999011⨯+3.计算:241(21)(21)(41)()16x x x x +-++ 4.计算2432(21)(21)(21)(21)+++⋅⋅⋅+ 5.计算2222210099989721-+-+⋅⋅⋅+-.六.完全平方式(1)分块应用:1.已知5,6,a b ab +=-=则22a b +的值是2.若22()()x y M x y +-=-,则M 为3.已知10,24m n mn +==,求(1) 22mn +;(2)2()m n -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式乘除培优经典题型详解
------博奥堂教育王老师
第一类:平方差公式应用
1.平方差公式:22))((b a b a b a -=-+ 典型例题:
2
22
2
2
2222249))(
32(94))(32())(())(())(
(1x y y x y
x y x m n n m m n n m n m n m -=---=---=--=+-=+例
【例2】 ()()()()()()()12121212121212643216842+++++++计算:
【拓展】
()()()()()()()13131313131313643216842+++++++
【例3】(1-221)(1-231)(1-241)…(1-2
91)(1-2011)的值.
【拓展】
()()()()()()
22222222222
99100 (8767452312)
-++-+-+-+-+-
第二类:完全平方公式变形及其应用
()()()2
112
112222222
222
2
22222
22222-+=⎪⎭⎫ ⎝
⎛-++=⎪⎭⎫ ⎝
⎛++++++=+++-=-++=+x x x x x x x x bc ac ab c b a c b a b ab a b a b ab a b a
【例4 】已知19992000a x =+,19992001b x =+,19992002c x =+,则多项式222a b c ab bc ca ++---的值为( ) A.0 B.1 C.2 D.3
【例5】 已知2()4x y -=,2()64x y +=;求代数式值:
(1)
22
x y +; (2)xy
【例6】 已知x +x
1
=2,求x 2+21x ,x 4+4
1x 的值.
第三类:整体带入法
【例7】
已知a+2b=0,则式子a 3+2ab (a+b )+4b 3
的值是___________.
【拓展】.
1..若133=-x x ,则199973129234+--+x x x x 的值等于( ) A .1997 B .1999 C .2001 D .2003
2. 已知3x 2-x-1=0,求6x 3十7x 2一5x+1999的值
第四类:幂的个位数
【例8】 20154的个位是_______ 201527的个位是:______
【例9】 2005200423125⨯积的个位数字是:________ 【拓展】
1. 若3a =-,25b =,则20072006a b +的个位数字是( ) A.3 B.5 C.8 D.9
第五类 :不含某一项
【例10】多项式875223-+-x x x 与多项式112++bx ax 的乘积中,没有含4x 的项,也没有含3x 的项,则b a +2= .
第六类:待定系数法
【例11】))(2(67222B y x A y x y x y xy x +++-=-----.求A 、B 的值.
【拓展】
1 已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--试确定c b a 、、 值.
2 若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式,则a = .
第七类:走进竞赛
1.已知,,a b c 均不为0,且0a b c ++=,那么111111()()()a b c b c c a a b
+++++的值为 .
2、设1abc =.试求111
a b c
ab a bc b ca c ++
++++++的值.
3.把(x 2一x+1)6展开后得012211111212a x a x a x a x a +++++Λ,则
024681012a a a a a a a ++++++ .
4.. 已知200025=x ,200080=y ,则y
x
11+等于( ).A .2 B .1 C .2
1 D .2
3
5.设d c b a 、、、都是自然数,且17,,2345=-==c a d c b a ,求d 一b 的值
6..已知102222=⋅=⋅d c b a ,求证:(a 一1)(d —1)=(b 一1)(c 一1).。